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We present the results for heavy quark form factors at two-loop order in
perturbative QCD for different currents, namely vector, axial-vector, scalar
and pseudo-scalar currents, up to second order in the dimensional regular-
ization parameter. We outline the necessary computational details, ultra-
violet renormalization and corresponding universal infrared structure.

PACS numbers: PACS number

1. Introduction

The abundance of top quark pair production at high energy colliders
provides important precision tests, with a strong potential for beyond the
Standard Model (BSM) physics scenarios. The top quark, as the heaviest
particle of the SM, has not been explored at high precision yet. Hence,
detailed studies of this channel at future linear or circular electron-positron
colliders is a crucial topic, which is likewise the case for the LHC. In or-
der to match the experimental accuracy, precise predictions are required on
the theoretical side as well. Furthermore, the form factors involving heavy
quarks play an important role in determining various physical quantities
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concerning top quark pair production. The vector and axial vector mas-
sive form factors are important building blocks for the forward-backward
asymmetry in the production of bottom or top quarks at electron-positron
colliders. The decay of a scalar or pseudo-scalar particle to a pair of heavy
quarks also could play a very important role in shedding light on the quan-
tum nature of the Higgs boson. There are also static quantities like the
anomalous magnetic moment, which receive contributions from such mas-
sive form factors. For these reasons, phenomenology and higher order Quan-
tum chromodynamics (QCD) corrections to these form factors have gained
much attention during the last decade.

A plethora of works [1–17] was followed by a series of papers obtaining
the two-loop QCD corrections for the vector form factor [18], the axial-
vector form factor [19], the anomaly contributions [20] and the scalar and
pseudo-scalar form factors [21]. An independent cross-check of the vector
form factor has been performed in [22] with the addition of the O(ε) con-

tribution, where ε = (4−D)
2 , D being the space-time dimension. Recently,

the calculation of a subset of the three-loop master integrals [23] has made
it possible to obtain the vector form factor at three loops [24] in the color-
planar limit. While the main goal is to compute the complete three-loop
corrections for the form factors, the O(ε) pieces at two-loop order are nec-
essary ingredients. Additionally, computing the master integrals with a dif-
ferent technique to the required order in ε and cross-checking the available
results in the literature are also motivating factors. In [25], we compute the
contributions to the massive form factors up to O(ε2) for different currents,
namely, vector, axial-vector, scalar and pseudo-scalar currents, which serve
as input for ongoing and future 3- and 4-loop calculations.

2. The heavy quark form factors

We consider the decay of a virtual massive boson of momentum q into
a pair of heavy quarks of mass m, momenta q1 and q2, and color c and d,
through a vertex Xcd, where Xcd = ΓµV,cd,Γ

µ
A,cd,ΓS,cd and ΓP,cd indicate a

vector boson, an axial-vector boson, a scalar and a pseudo-scalar, respec-
tively. q2 is the center of mass energy squared and we define the dimen-

sionless variable s = q2

m2 . To eliminate square-roots, we introduce another
dimensionless variable x defined by

s = −(1− x)2

x
. (1)

The amplitudes take the following general form

ūc(q1)Xcdvd(q2) , (2)
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where ūc(q1) and vd(q2) are the bispinors of the quark and the anti-quark,
respectively. We denote the corresponding UV renormalized form factors
by FI , I = V,A, S, P . They are expanded in the strong coupling constant
(αs = g2s/(4π)) as follows

FI =
∞∑
n=0

(αs
4π

)n
F

(n)
I . (3)

Studying the general Lorentz structure, one finds the following generic forms
for the amplitudes. For the vector and axial-vector currents we find

Γµcd = ΓµV,cd + ΓµA,cd = −iδcd
[
vQ

(
γµ FV,1 +

i

2m
σµνqν FV,2

)
+ aQ

(
γµγ5 FA,1 +

1

2m
qµγ5 FA,2

)]
(4)

where σµν = i
2 [γµ, γν ], q = q1 + q2, and vQ and aQ are the SM vector

and axial-vector couplings, respectively. For the scalar and pseudo-scalar
currents, we find

Γcd = ΓS,cd + ΓP,cd = −m
v
δcd

[
sQ FS + ipQγ5 FP

]
, (5)

where v = (
√

2GF )−1/2 is the SM Higgs vacuum expectation value, with
GF being the Fermi constant, sQ and pQ are the scalar and pseudo-scalar
couplings, respectively.

To extract the form factors FI,i, I = V,A, we multiply the following
projectors on Γµcd and perform a trace over the spinor and color indices

PV,i =
i

vQ

δcd
Nc

/q2 −m
m

(
γµg

1
V,i +

1

2m
(q2µ − q1µ)g2V,i

)/q1 +m

m
,

PA,i =
i

aQ

δcd
Nc

/q2 −m
m

(
γµγ5g

1
A,i +

1

2m
(q1µ + q2µ)γ5g

2
A,i

)/q1 +m

m
. (6)

gkI,i ≡ gkI,i(d, s) are given in [18, 19]1. Nc denotes the number of colors,

CF = N2
c−1
2Nc

and CA = Nc are the eigenvalues of the Casimir operators of

the gauge group SU(Nc) in the fundamental and the adjoint representation,
respectively. The form factors FS and FP can be obtained from Γcd through
suitable projectors as given below and performing trace over the spinor and

1 In [18], there is a typo for g2V,2. The formula in [19] is correct.
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color indices

PS =
v

2msQ

δcd
Nc

/q2 −m
m

(
− 1

(s− 4)

)
/q1 +m

m
,

PP =
v

2mpQ

δcd
Nc

/q2 −m
m

(
− i

s
γ5

)
/q1 +m

m
. (7)

2.1. Renormalization

To regularize the unrenormalized form factors we use dimensional reg-
ularization [26] in D = 4− 2ε space-time dimensions. To do so, it becomes
important to define γ5 in a proper manner within this regularization scheme.
Based on the appearance of γ5 in a γ-chain in the axial-vector and pseudo-
scalar form factors, the Feynman diagrams can be subdivided into two cate-
gories: non-singlet contributions, where γ5 is attached to open fermion lines
and singlet contributions, where γ5 is attached to a closed fermion loop. For
the non-singlet case, we use an anticommuting γ5 in D space-time dimen-
sions with γ25 = 1, as it does not lead to any spurious singularities. In this
case, a canonical Ward identity holds to this order, as described by Eq. (14).
We follow the prescription presented in [27,28], which mostly followed [26],
for the γ5’s in the singlet contributions. For each γ5 in a fermion loop we
use

γ5 =
i

4!
εµνρσγ

µγνγργσ, (8)

where the Lorentz indices are D-dimensional. In the end, we are left with
the product of two ε-tensors which is expressed in terms of D-dimensional
metric tensors. This prescription of γ5 needs a special treatment during
renormalization, as will be discussed later.

The ultraviolet (UV) renormalization is performed in a mixed scheme.
We renormalize the heavy-quark mass and wave function in the on-shell
(OS) scheme, while the strong coupling constant is renormalized in the mod-
ified minimal subtraction (MS) scheme [29, 30]. The corresponding renor-
malization constants are already known in the literature and are denoted
by Zm,OS [31–33], Z2,OS [31–33] and Zas [34–38] for the heavy-quark mass,
wave function and strong coupling constant, respectively. The renormaliza-
tion of massive fermion lines has been taken care of by properly considering
the counterterms. The singlet contributions demand extra care for renor-
malization. The singlet pieces of the axial-vector current are infrared (IR)
finite but the chirality preserving part of them contains a UV pole which
is renormalized by the multiplicative renormalization constant ZJ . Larin’s
prescription [28] for γ5, on the other hand, implies multiplication of a fi-

nite renormalization constant Zfin5 which ensures that the anomalous Ward
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identity Eq. (15), as shown below, is satisfied. We would like to note that
the Ward identities are true for physical quantities and hence, the remain-

ing finite renormalization due to Zfin5 has to be carried out in calculating
finally the corresponding observable to which the corresponding form factor
contributes. An additional heavy quark mass renormalization is needed for
scalar and pseudo-scalar currents due to the presence of heavy-quark mass
in the Yukawa coupling. The singlet piece of the pseudo-scalar vertex is
both IR and UV finite, hence no additional renormalization is necessary.

2.2. Infrared structure

The IR singularities of the massive form factors can be factorized [39]
as a multiplicative renormalization factor. The corresponding structure is
constrained by the renormalization group equation (RGE),

FI = Z(µ)F finI (µ) (9)

where F finI is finite as ε→ 0 and the RGE of Z gives

d

d lnµ
lnZ(ε, x,m, µ) = −Γ(x,m, µ) . (10)

Note that Z does not carry any information (I) regarding the vertex. Here
Γ denotes the massive cusp anomalous dimension, which is available up to
three-loop level [40–43]. Both Z and Γ can be expanded in a perturbative
series in αs

Z =
∞∑
n=0

(αs
4π

)n
Z(n) , Γ =

∞∑
n=0

(αs
4π

)n+1
Γn (11)

and the solution for Eq. (10) is given by

Z = 1 +
(αs

4π

)[Γ0

2ε

]
+
(αs

4π

)2 [ 1

ε2

(Γ2
0

8
− β0Γ0

4

)
+

Γ1

4ε

]
+O(α3

s) . (12)

Eq. (12) correctly predicts the IR singularities for all massive form factors
at two-loop level.

2.3. Anomaly and Ward identities

As stated earlier, the axial-vector and pseudo-scalar currents consist of
two different contributions: non-singlet and singlet, depending on whether
the vertex is attached to open fermion lines or a fermion loop, as

ΓµA,cd = Γµ,nsA,cd + Γµ,sA,cd , ΓP,cd = ΓnsP,cd + ΓsP,cd . (13)
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ns and s denote non-singlet and singlet cases, respectively. For the non-
singlet case, we use anti-commutation of γ5 and finally γ25 = 1. This ap-
proach respects the chiral invariance and leaves us with the following Ward
identity

qµΓµ,nsA,cd = 2mΓnsP,cd . (14)

The singlet contributions exhibit the ABJ anomaly [44, 45] which involves

the truncated matrix element of the gluonic operator GG̃ between the vac-
uum and a pair of heavy quark states. Denoting its contribution by 〈GG̃〉Q,
we can immediately write down the anomalous Ward identity for the singlet
case, as follows

qµΓµ,sA,cd = 2mΓsP,cd − i
(αs

4π

)
TF 〈GG̃〉Q . (15)

The UV renormalization of the quantity 〈GG̃〉Q involves mixing of the glu-
onic operator with another operator ∂µψ̄γ

µγ5ψ, as discussed in [28,46,47].

3. Details of the computation

The computation of the two-loop form factors has been performed fol-
lowing the generic procedure. We have used QGRAF [48] to generate the
Feynman diagrams. The output has then been processed using FORM [49,50]
to perform the Lorentz, Dirac and color algebra. Specifically we use the
FORM package color [51] for color algebra. The diagrams have been ex-
pressed in terms of a linear combination of a large set of scalar integrals.
These integrals have been reduced to a set of master integrals (MIs) using
integration by parts identities (IBPs) [52–58] with the help of the program
Crusher [59]. The diagrams have been matched to the different topologies
defined in Crusher using the codes Q2e/Exp [60,61]. Now, after performing
the reductions, all that remains to be done is to compute the MIs. We fol-
low both the method of differential equations and the method of difference
equations to achieve this.

3.1. Method of differential equations

We have obtained the two-loop MIs contributing to massive form factors
as Laurent expansions in ε by means of the standard differential equation
method [62–67]. This technique has already been applied to such type
of integrals at two and three loops in [23, 68, 69]. In this work, we have
calculated the two-loop MIs up to sufficient order in ε to obtain O(ε2)
accuracy in the form factors. We have derived a system of coupled linear
differential equations by taking derivative of each MI w.r.t x and then using
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IBPs again with help of Crusher. The system can then be expanded order-
by-order in the parameter ε. The expanded system simplifies greatly and
can be arranged mostly in a block triangular form except for a few 2 ×
2 sub-systems, for which we first decouple them and use the variation of
constants to solve. Generically, we solve the whole system in a bottom-
up approach i.e. first solving the simplest sectors and then moving up in
the chain of sub-systems. These steps have been automated and results
have been obtained efficiently using a minimal set of independent harmonic
polylogarithms (HPLs) by means of the Mathematica packages Sigma [70,
71] and HarmonicSums [72–77].

Now what remains is to obtain the appropriate boundary conditions.
As noticed earlier in [68, 69], the analytic structure of the MIs puts strong
constraints on the choice of integration constants. For most of the MIs, we
determine the boundary conditions by demanding regularity of the functions
at x = 1. However, some MIs are characterized by a branch cut at x = 1
and for such cases, we have matched the general solutions of the differential
equations with asymptotic expansions of the corresponding integrals around
x→ 1.

3.2. Method of difference equations

We have considered the method of difference equation as an alternative
way to compute the MIs. The idea [65] is to write the integrals in series
expansion of y = (1 − x) and then use the differential equations to derive
difference equations satisfied by the coefficients of the series. In the non-
singlet case, considering the fact that the MIs are regular at x = 1, we can
therefore write

Ji(y) =
∞∑
n=0

r∑
j=−2

εjCi,j(n)yn . (16)

On the other hand, for the singlet case, some integrals have a branch cut at
x = 1 which actually shows up as ln(1− x) ≡ ln(y). Henceforth, we include
powers of these logarithms in the expansion of these integrals as [78]

Ki(y) =
∞∑
n=0

3∑
k=0

r∑
j=−2

εjCi,j,k(n) lnk(y)yn. (17)

Using the system of differential equations, we have obtained a system of
difference equations for the coefficients Ci,j and Ci,j,k. This system now can
be solved with proper initial conditions in the same manner as for the system
of differential equations and finally we have obtained the MIs in terms of
harmonic sums and generalized harmonic sums and after performing the
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sums, in terms of HPLs. The whole procedure has been automated using
Sigma, EvaluateMultiSums, SumProduction [79] and HarmonicSums.

4. Results

The analytic results for all two-loop UV renormalized form factors FI ,
I = V,A, S, P up to O(ε2) are presented as an attachment anci.m with the
arXiv preprint [25]. The results up to O(ε) are printed in the appendix
of [25].
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Fig. 1. CACF coefficient of O(ε) part of FV,1 (left) and FV,2 (right).

The behavior of the form factors in various kinematic regions also carries
substantial importance. We therefore study them in the low energy, high en-
ergy and threshold regions which correspond to x→ 1, x→ 0 and x→ −1,
respectively. We extensively use the packages Sigma and HarmonicSums for
all the expansions. Below, we present a brief summary of all the expansions,
and instead of printing the voluminous results here, we choose to plot some
parts of them, namely the coefficient of CACF for the O(ε) piece of each of
the form factors and the corresponding expansion in high and low energy
regions. Fig. 1, Fig. 2 and Fig. 3 contain the corresponding terms for vec-
tor, axial-vector and scalar form factors, respectively. The notation for the
figures is presented in the right part of Fig. 3.
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Fig. 2. CACF coefficient of O(ε) part of FA,1 (left) and FA,2 (right).

Low energy region (q2 � 4m2): The low energy limit of the space-like
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(q2 < 0) form factors is given by x → 1. To expand the HPLs, we redefine
x as x = eiφ and expand them around φ = 0. Note that for φ→ 0, FV,1 = 1
and FV,2 is finite and agrees with the anomalous magnetic moment of the
top quark, as expected.

High energy region (q2 � 4m2): The asymptotic or high energy limit
is given by x → 0. We expand the form factors up to O(x4). In the limit
x→ 0, the chirality flipping form factors FV,2 and FA,2 vanish and the effect
of γ5 gets nullified implying FV,1 = FA,1 and FS = FP .

Threshold region (q2 ∼ 4m2): In the threshold limit q2 ∼ 4m2 or x →
−1, we define the variable β =

√
1− 4m2

q2
and expand the form factors

around β = 0 up to O(β2).
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Fig. 3. CACF coefficient of O(ε) part of FS (left) and labels for all plots.

4.1. Checks

We explicitly check our results by comparing them to the ones available
in the literature. Except a difference in an overall factor due to differ-
ent renormalization schemes and another difference in the wave function
renormalization (Z2,OS), we agree with both the bare and UV renormalized
results in [18, 19, 21] up to O(ε0) for all the form factors except the singlet
parts of axial-vector form factors. While the bare singlet contributions for
axial-vector currents also match with the results in [20], we find a mismatch
of terms which are polynomial in x for the renormalized contributions. We

also compare the O(ε) pieces for the two-loop vector form factors F
(2)
V,1 and

F
(2)
V,2 with the results presented in [22] and find a difference of the following

term, as has also been mentioned in [24],

− CFCA

[
ε
{ 1037x3

(1 + x)6

}]
. (18)

We cross-checked the vector form factors, the exact ones and also their
expansions in different regions, presented in [24] up to O(ε) in the color-
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planar limit. We also compare with predictions of the vector form factor FV,1
in the high energy limit as given in [22] considering the evolution equations.

5. Conclusion

To shed more light on the Higgs mechanism and electro-weak symmetry
breaking, a precise determination of the properties of the top quark, the
heaviest SM particle, is needed. A future electron-positron collider can
reach high precision and hence an equal theory prediction is much required.
In a similar way this also applies to the LHC for its high luminosity phase.
In [25], we compute up to O(ε2) contributions to the heavy quark form
factors for vector, axial-vector, scalar and pseudo-scalar currents at two-loop
level. These contributions constitute an important part in three-loop results
and also contribute to potential future 4-loop calculations. Additionally,
they serve as a cross-check of earlier results available in the literature.
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