
Prepared for submission to JHEP DESY 17-189

Instanton counting in Class Sk

Thomas Bourton, Elli Pomoni

DESY Theory Group, Notkestraße 85, 22607 Hamburg, Germany

E-mail: thomas.bourton@desy.de, elli.pomoni@desy.de

Abstract:

We compute the instanton partition functions of N = 1 SCFTs in class Sk. We obtain
this result via orbifolding Dp/D(p-4) brane systems and calculating the partition function
of the supersymmetric gauge theory on the worldvolume of K D(p-4) branes. Starting with
D5/D1 setups probing a Z` × Zk orbifold singularity we obtain the K instanton partition
functions of 6d (1, 0) theories on R4×T 2 in the presence of orbifold defects on T 2 via com-
puting the 2d superconformal index of the worldvolume theory on K D1 branes wrapping
the T 2. We then reduce our results to the 5d and to the 4d instanton partition func-
tions. For k = 1 we check that we reproduce the known elliptic, trigonometric and rational
Nekrasov partition functions. Finally, we show that the instanton partition functions of
SU(N) quivers in class Sk can be obtained from the class S mother theory partition func-
tions with SU(kN) gauge factors via imposing the ‘orbifold condition’ aA → aAe

2πij/k with
A = jA and A = 1, . . . , N , j = 1, . . . , k on the Coulomb moduli and the mass parameters.
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1 Introduction

In recent years much progress has been made towards the non-perturbative study of four
dimensional (4d) gauge theories with extended supersymmetry. A milestone was the work of
Seiberg and Witten who demonstrated that the instanton series may be effectively summed
by computing the periods of a holomorphic curve, known as the Seiberg-Witten (SW) curve
[1, 2]. Nekrasov was able to verify their results from a purely field theoretic perspective
and derive the instanton partition function by performing the integration over (a suitable
regularization) of the instanton moduli space [3, 4].

String or M-theory realisations as well as compactifications of higher dimensional theo-
ries to 4d have also shed much light on the structure of 4d N = 2 theories. A large class of
4d N = 2 theories may be obtained via (twisted) compactifications of the 6d (2, 0) SCFT
onM4 ×C, a 4d compact manifoldM4 and a Riemann surface C. The N = 2 theories ob-
tained in this way are said to lie in class S [5, 6]. What is more, many protected quantities,
such as partition functions [7] and correlation functions of BPS operators in class S SCFTs
may be computed as observables of a 2d theory which lives on C [8, 9]. One manifestation
of this 4d/2d relation is that the partition function on an ellipsoidM4 = S4

ε1,ε2 is equal to
correlators in Liouville/Toda CFT [8, 10]. Moreover, the 2d Virasoro/W-algebra conformal
blocks are mapped to Nekrasov’s instanton partition function. Another manifestation of a
4d/2d relation is the partition function onM4 = S3×S1 (a.k.a. the superconformal index:
SCI), which can be recast as a correlator of a 2d TQFT living on C [11, 12].

An N = 1 offspring of the class S construction was recently proposed in [13] and
denoted as class Sk and further investigated in [14–20]. See also [21–24]. These are 4d
N = 1 theories which may be obtained via (twisted) compactification of 6d (1, 0) SCFTs
again on C. The landscape of 6d (1, 0) theories is far richer, a classification via F-theory
has been explored [25–28], although, a complete field theoretic understanding is currently
lacking. An interesting subset of 6d (1, 0) theories are the T Nk theories which may be
engineered within M-theory by considering the low energy theory living on N coincident
and parallel M5 branes at the tip of a transverse Γ = Ak−1 singularity. The construction
may be generalised by choosing Γ = ADE which, upon compactification on C leads to a
bigger class of 4d N = 1 theories denoted by class SΓ [15].

Because of their orbifold constructions class Sk theories may provide an ideal starting
point to begin to look for exact results and 2d/4d relations in 4d N = 1 theories which,
so far, have been largely unexplored. Often the orbifolded daughter theory possesses many
similarities with their mother theory [29, 30].

In [13] the 4d SCI was computed and most strikingly it was recast as a correlator of a 2d
TQFT establishing the first 2d/4d relation for class Sk. Subsequently, in [31, 32], the index
and its TQFT description was also computed in the presence of half-BPS surface defects.
Additionally, in [17], SW curves were computed and some of their properties explored. In
[33], guided by the SW curves, the existence of an AGT-like correspondence for the class
Sk, denoted AGTk correspondence, was conjectured. Furthermore, the instanton partition
function ZSkinst was proposed via the relation of ZSkinst and WkN conformal blocks.

In this paper we will compute ZSkinst and verify the proposal of [33] for a subset of class
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Sk theories with a Lagrangian description; 4d theories obtained by compactification of T Nk
when the compactification surface C is either an `-punctured torus C1,` = T 2 \ {p1, . . . , p`}
or an ` + 2-punctured sphere C0,`+2 = CP1 \ {p1, . . . , p`+2}. These theories are conformal
and have weakly coupled Lagrangian descriptions in terms of toroidal or cylindrical N = 1

quiver theories.

We engineer the toroidal N = 1 quiver theories of class Sk in type IIB string theory
as Z` ×Zk orbifolds of D3 branes1. We can study the dynamics of K instantons on the Dp
branes via the correspondence between the ADHM construction [36] and D(p − 4) branes
within Dp branes [37–43]. Instantons of orbifold daughters of N = 4 SYM were intensively
studied in the early days of AdS/CFT [44–50] and recent computations in theories with eight
or more supercharges in various dimensions [51–55] have been possible due to significant
improvement of the old techniques. For this paper we where especially inspired by [56].
The instanton moduli space on D3 branes is isomorphic to the Higgs branch of the theory
on D(−1) branes. The partition function of the supersymmetric matrix model theory on
the worldvolume of K D(−1) branes is equal to the K instanton partition function of the
corresponding class Sk theory.

Using T-duality on the setup of D3 branes in the presence of a Z` × Zk orbifold sin-
gularity we land on D5 branes in the presence of a Z` × Zk orbifold which engineers a
6d (elliptic) uplift of the 4d theories we are interested in. The matrix model describing
pointlike instantons of the 4d theory living on D3 branes is lifted to a 2d gauge theory, the
SCI of which computes the instanton partition function of the corresponding 6d theory on
T 2 [56], living on the worldvolume of the D5 branes. The 2d SCI calculation is very well
studied [57–62]. Taking the 4d limit of the 6d instanton partition function we obtain the
instanton partition function of the 4d class Sk theory.

This paper is organised as follows. In Section 2, we present the string theory setup on
which we base our calculations. Experts can skip this section, however we find it crucial for
building up notation and intuition for the rest of the sections. In Section 3, we prepare for
our main calculation by practising with the calculation of the instanton partition function
of 4d mass deformed N = 4 SYM (a.k.a. N = 2∗) and its 5d and 6d (trigonometric and
elliptic) uplifts: mass deformed 5d N = 2 MSYM on S1 and 6d (2, 0) theory on T 2. This
is obtained via the computation of the SCI of the (4, 4) 2d gauge theory living on the
worldvolume of the K D1 branes with quiver depicted in Figure 4, which we set up using
a supercharge that survives the orbifold projection that will come next. In Section 4, we
present the main computation of our paper, we perform a Z` × Zk ‘orbifold’ to the SCI of
Section 3. We extract the instanton partition function and for k = 1 successfully check our
result against the known instanton partition function of N = 2 circular quivers as well as
their 5d and 6d uplifts. We conclude in Section 5 with a summary and a discussion of our
findings as well as an outlook of future directions. Technical details are presented in the
appendix to not interrupt the flow of the main text.

1This is a T-dual version of the type IIA Hanany-Witten description [34, 35] used in [13].
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2 String theory description

In this section we present the brane setups which we use to ‘engineer’ Lagrangian theories
in class Sk. We use this opportunity to establish notation and discuss the bosonic and
fermionic symmetries of theories in class Sk. We begin with the toroidal N = 1 quiver the-
ories in class Sk which are obtained using type IIB string theory with N D3 branes probing
a Z` × Zk orbifold singularity (Table 1). They are examples of N = 1 orbifold daughters
of N = 4 SYM [63, 64] and were extensively studied in the early days of AdS/CFT. After
T-duality we land on type IIA string theory with N D4 and ` NS5 branes in the presence
of a Zk orbifold singularity (see Table 3), which was used in [13], and naturally produces
cylindrical N = 1 quiver theories in class Sk. Finally, we obtain a 6d uplift of the cylindrical
quivers of class Sk after a further T-duality (see Table 3 and Table 4) which leads to N D5
branes on a Z` × Zk orbifold singularity.

2.1 Type IIB realisation

Consider Type IIB string theory on R4 × R6/Γ with Γ = Z` × Zk with `, k ∈ Z+. Our
goal is to engineer a certain subset of class Sk theories within Type IIB string theory.
Hence, we add a set of N parallel and coincident D3 branes along the R4 as described
in Table 1. We parametrise the worldvolume of the D3 branes with four real coordinates
X1, X2, X3, X4, which arrange themselves into the vector representation of Spin(4) ∼=
SU(2)α × SU(2)α̇. The Cartans, JL, JR, of su(2)α, su(2)α̇ are defined such that lower
α = 1, 2 have JL = +1

2 ,−
1
2 and α̇ = 1̇, 2̇ have JR = +1

2 ,−
1
2 . The R6 ∼= C3 is parametrised

by six real coordinates X5, X6, X7, X8, X9, X10 and the isomorphism is made by the choice
of arrangement into the complex coordinates

Z56 :=
X5 + iX6

√
2

= Φ1|θ=0, Z710 :=
X7 + iX10

√
2

= Φ2|θ=0, Z89 :=
X8 + iX9

√
2

= Φ3|θ=0

(2.1)
and their hermitian conjugates. The orbifold Γ acts on those coordinates (2.1) as

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D3 – – – – · · · · · ·
A`−1 · · · · · · × × × ×
Ak−1 · · · · × × · × × ·

K D(−1) · · · · · · · · · ·

Table 1: The type IIB setup engineering Lagrangian 4d SCFTs in class Sk.

Γ : (Z56, Z710, Z89) 7→
(
ωkZ56, ω`Z710, ω

−1
` ω−1

k Z89

)
(2.2)

where ω` := e2πi/`, ωk := e2πi/k. Before the orbifold action, fundamental strings stretching
between D3 branes give rise to the SU(N) N = 4 SYM theory on their worldvolume;
with R-symmetry Spin(6)R ∼= SU(4)R, the rotation group of the transverse R6 spanned by
X5, X6, X7, X8, X9, X10. In N = 1 superspace the theory contains a vector multiplet V
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and three chiral superfields in the adjoint of the gauge group:
(
Φ1,Φ2,Φ3

)T transforming
in the 3 of SU(3)R ⊂ SU(4)R. The superpotential is given by

WN=4 =
i

3!
εabc tr Φa

[
Φb,Φc

]
− i τYM

8π
trWαWα . (2.3)

The chiral superfields Φa are identified with transverse coordinates (2.1) hence the action
of Γ on C3 lies diagonally inside SU(3)R in the form

M b
a :=

ωk 0 0

0 ω` 0

0 0 ω−1
` ω−1

k


b

a

∈ SU(3)R . (2.4)

Note that Γ also has an action inside the gauge group, SU(N) [65]. Its action can be
conjugated to an element h of the maximal torus T (SU(N)) = U(1)N−1. After scaling
N → |Γ|N = `kN this action breaks G→

∏`
n=1

∏k
i=1 SU(Nni) specified by an `k partition

of `kN =
∑

n,iNni. Note we always take the orbifold indices to be n,m = 1, . . . , ` and
i, j = 1, . . . , k and we impose orbifold periodicity n ∼ n + `, i ∼ i + k. There is a unique
way to preserve conformal invariance; we choose the action of Γ such that Nni = N for all
n, i. Hence h may be written as

h = diag
(
ω`ωkI, . . . , ω`ωkkI, . . . , ω``ωkI, . . . , ω``ωkkI

)
(2.5)

where I denotes the N ×N identity matrix. Quotienting by Γ imposes the identifications

V ∼ h†Vh , Φa ∼Ma
b h
†Φbh . (2.6)

After performing these identifications the resulting theory is an N = 1 torodial quiver gauge
theory with gauge group SU (N)`k and superpotential

WN=1 =
∑̀
n=1

k∑
i=1

iΦ1
(n,i)

(
Φ2

(n−1,i)Φ
3
(n,i−1) − Φ2

(n+1,i+1)Φ
3
(n,i+1)

)
− i

τYM,ni

8π
trWα

niWni,α

(2.7)
which now transform as Φ1

(n,i) ∈ (Nni, Nn(i+1)), Φ2
(n,i) ∈ (Nni, N (n+1)i) and Φ3

(n,i) ∈
(Nni, N (n−1)(i+1)) under the gauge group

∏
n,i SU(Nni) = SU (N)`k. We summarise the

field content in the quiver diagram of Figure 1. The individual couplings for each gauge
node g2

YM,ni are given by integration of a non-zero B-field flux over the two-cycles Cni of
the space obtained by resolving the C3/Γ singularities∫

Cni

B =
4π2

g2
YM,ni

,
∑
n,i

1

g2
YM,ni

=
1

g2
YM

. (2.8)

These are precisely the same class of N = 1 SCFTs which we expect to describe, at low
energies, the 4d thoery obtained by placing N M5 branes at the tip of an Ak−1 singularity
(which is the family of the 6d N = (1, 0) T Nk theories), compactified on T 2 with ` punctures
and complex structure τYM = 4πi

g2YM
+ θ

2π [13]. This statement is known to be true [13] at the

orbifold point for the Zk orbifold, which means that all g2
YM,ni = g2

YM,n for all i = 1, . . . , k.
There, the ` different coupling constants g2

YM,n correspond to the position of the ` punctures
of the torus. What happens away from the orbifold point for the Zk orbifold is currently
under investigation [66].
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N11 N21 N31 N41 N51

N12 N22 N32 N42 N52

N13 N23 N33 N43 N53

Figure 1: The quiver diagram in N = 1 notation with ` = 5, k = 3. Circular nodes denote
vector multiplets and coloured arrows denote chiral multiplets. Blue lines denote Φ1

(n,i),
green Φ2

(n,i) and red Φ3
(n,i). The quiver should be periodically identified in both ‘`’ and ‘k’

directions, with gluing indicated by the black arrowed lines, such that it has the topology of
a torus.

2.2 Type IIA realisation

Indeed, by performing a T-duality along, say, X7 to the setup of Table 1 we may obtain
the Hanany-Witten description of the above class Sk theories in Type IIA as described in
[13]. To perform the T-duality we may partially resolve the C3/Γ singularity. Resolving
the A`−1 singularity gives rise to an ALE space which is equivalent to the λ→∞ limit of
the `-centred Taub-Nut space TN` with metric

ds2 = V −1
(
dΘ + ~A · d~x

)2
+ V d~x2, V =

∑̀
n=1

1

|~x− ~xn|
+

1

λ2
(2.9)

subject to the condition ~∇V = −~∇× ~A . The underlying geometry is that of an S1 fibered
over an R3 base. To perform the T-duality we hence replace C3/Γ by (C× TN`) /Zk where
C is parametrised by Z56, Z56 and TN` is parametrised by Θ = X7, ~x =

(
X8, X9, X10

)
. We

may then T-dualise along the TN` circle (which is invariant under the Zk action). We hence
obtain the Hanany-Witten description shown in Table 2 . Under the T-duality the ` centers

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D4 – – – – · · – · · ·
` NS5 – – – – – – · · · ·
Ak−1 · · · · × × · × × ·
K D0 · · · · · · – · · ·

Table 2: The type IIA setup obtained by a T-duality along X7 to Table 1.

of TN` become ` NS5 branes fixed at positions Θn and ~xn in the transverse directions. The
angles Θn at which the NS5 branes sit along the S1 with radius β7 are related to the gauge

– 6 –



couplings at the nth node by

4π2

gYM,ni
=

Θn −
∑n−1

a=1 Θa

(1− k)2πβ7

∫
Ci

B, β7 =
1

λ
(2.10)

with Cj the two cycles of the resolution of Ak−1.
We could just as well have instead resolved the Ak−1 singularities and T-dualised along

X5 yielding the brane setup of Table 3. Let us conclude this section with a final comment.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D4 – – – – – · · · · ·
A`−1 · · · · · · × × × ×
k NS5 – – – – · · – · · –

K D0 · · · · – · · · · ·

Table 3: Alternative type IIA setup obtained by instead a T-duality along X5 to Table 1.

Naively we see that there is a k ↔ ` symmetry. However, this is true only at the ‘orbifold
point’ for both orbifolds or for very special values of k, ` and the gauge couplings. The
Ak−1 singularity has k − 1 blow up modes, while A`−1 has `− 1. In case we turn them all
on to generic points the k ↔ ` symmetry is lost.

2.3 A 6d uplift

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D5 – – – – – – · · · ·
A`−1 · · · · · · × × × ×
Ak−1 · · · · × × · × × ·
K D1 · · · · – – · · · ·

Table 4: Type IIB setup engineering a 6d uplift of the 4d theories we are interested in.

In this paper our primary interest will be that of the theory living on the D(−1)/D0

branes in Tables 1 , 2 and 3 . In both cases these are supersymmetric matrix models
invariant under at least two supercharges. We could choose to work directly with these
matrix models, however we find it more convenient to work instead with the two dimensional
uplift of those matrix models. Hence, we instead work with the brane setup of Table 4,
obtained by performing a further T-duality along X6 to Table 3. Before performing the
T-duality we also assume that X5 may be safely decompactified such that it parametrises
a space with the topology of R. The T-duality may again be performed by replacing A`−1

with TN` , we then T-dualise along the TN` circle, landing us on the setup of Table 4 . The
Spin(6)R R-symmetry group has been broken to a subgroup U(1)56×Spin(4)R which acts
by rotations along R2 , R4 parametrised by X5, X6 and X7, X8, X9, X10 respectively. The
Z` orbifold further breaks the Spin(4)R R-symmetry group down to a subgroup SU(2)R

– 7 –



6d (2, 0) AN−1

5d SU(N)

N = 2 MSYM

6d (1, 0) T N`

5d NN,`

4d class S N = 2 Ã`−1

S1
6 S1

6

S1
5

S1
5

Nahm pole BCs

(a)

6d (1, 0) T Nk

5d NN,k

6d (1, 0) T N`
+ defect

5d NN,`
+ defect

4d class Sk N = 1 Ã`−1 × Ãk−1

S1
6 S1

6

S1
5

S1
5

‘Orbifold’-
Nahm pole BCs

(b)

Figure 2: Left: Schematic overview for k = 1 of two alternate ways to obtain the 4d
N = 2 Ã`−1 circular quivers with SU(N)` gauge group in class S from compactifications of
6d SCFTs. Right: A schematic overview of the k > 1 generalisations of compactifications
of 6d SCFTs. The resulting 4d SCFTs are N = 1 Ã`−1 × Ãk−1 torodial quivers in class Sk
with gauge group SU(N)`k.

corresponding to the isometry group of TN`, while, the Zk orbifold breaks the U(1)56 ×
SU(2)R down to the maximal torus of SU(2)R.

It is also useful to understand this IIB setup via uplifting it to M-theory - see Table
5. We begin with the more familiar k = 1 case, the 6d (1, 0) T N` SCFT associated to N

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

N M5 – – – – – – · · · · ·
A`−1 · · · · · · × × × × ·
Ak−1 · · · · × × · × × · ·
K M2 · · · · – – · · · · –

Table 5: The M-theory uplift of the IIB setup in table 4, ‘engineering’ a 6d uplift of the 4d
theories we are interested in. For k = 1 this is the same as (2.2) in [54]. For ` = 1, this is
the codimension-two defect of Kanno and Tachikawa [67].

M5 branes sitting at the tip of an Z` orbifold singularity of M-theory. Compactifying that
on S1

6 gives 5d N = 1 circular quivers NN,` with ` nodes denoting SU(N) gauge groups2

and ` links denoting bifundamental hypermultiplets [14, 74, 75], see Figure 3. Further
compactification on S1

5 results in 4d N = 2 Ã`−1 circular quiver theories with SU(N)`

gauge group. The Ã`−1 theory may also be realised via the well known Class S construction
obtained by compactifying the AN−1 (2, 0) theory on the ` punctured torus with certain
half-BPS Nahm pole boundary conditions specified at the punctures [76–78], see Figure 2a.

2We wish to remind the reader that Fiber-Base duality exchanges N ↔ ` and leads to a duality between
the 5d N = 1 circular quivers NN,` and N`,N [68–73].
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N

N

N

N

N

Figure 3: 5d circular (necklace) quiver NN,` for ` = 5. Circular nodes denote N = 1 vector
multiplets and solid lines connecting them denote bifundamental N = 1 hypermultiplets.
Circle reduction of NN,` results in 4d N = 2 circular Ã`−1 quiver with the same structure.

When k > 1 the resulting 6d theory corresponds to T N` in the presence of a codimension-
two Gukov-Witten [79, 80] surface operator associated to ` copies of the partition

kN = N1 + · · ·+Nk = N + · · ·+N (2.11)

for the factors of SU (kN)`. For ` = 1, this is the codimension-two defect of Kanno and
Tachikawa [67] which may be realised as a Zk orbifold in M-theory, see Table 5. Finally,
KK reducing along the circle on which we performed the final T-duality (from Table 3 to
Table 4) leads to the 5d N = 1 circular/necklace quiver gauge theory NkN,` on R4 × S1 in
the presence of the defect along the circle (see Figure 2b). Analogously, there is also the
Class Sk construction obtained by compactification of the T Nk on a torus with ` punctures
with ‘orbifold’ Nahm pole boundary conditions specified at each puncture [13, 15, 24].

2.4 On supersymmetry of the D1/D5 system

Type IIB string theory has 32 supersymmetries parametrised by two 32 component spinors
εL , εR of positive chirality Γ11εL/R = +εL/R where Γ11 = Γ1 . . .Γ10 and ΓM are the 32×32

Gamma matrices. The D5/D1 system preserves 1/4 of the 32 supersymmetries. Between
them they preserve only those supersymmetries of the form

εL = Γ1Γ2Γ3Γ4Γ5Γ6εR, εL = σΓ5Γ6εR, (2.12)

with σ = ±1 corresponding to whether we choose to insert D1 or anti-D1 branes. The
theory living on the (anti-)D1 branes then possesses (p, q) supersymmetry with p + q =

32/4 = 8. By choosing an explicit representation for the Gamma matrices it can be shown
that p = q = 4 and that the preserved supercharges are

Qαa
+ 1

2

, Qαȧ− 1
2

, if σ = +1 (2.13)

Q
α̇ȧ
+ 1

2
, Q

α̇a
− 1

2
, if σ = −1 (2.14)
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where a, ȧ = 1, 2 are indices of Spin(4) ∼= SU(2)a × SU(2)ȧ and the subscript ±1
2 de-

notes the representation under the U(1)56 which acts as the Lorentz group of the D1-brane
worldvolume theory.

The SU(2)a × SU(2)ȧ rotates the two planes of the C2 parametrised by Z710, Z89

into one another. The Cartans of su(2)a, su(2)ȧ J
R
L , J

R
R may be expressed in terms of the

generators J710 and J89 of U(1) rotations in their respective planes as

JRL =
1

2
(J710 − J89) , JRR =

1

2
(J710 + J89) , (2.15)

which are defined such that lower a = 1, 2 have JRL = +1
2 ,−

1
2 and lower ȧ = 1̇, 2̇ have

JRR = +1
2 ,−

1
2 . Hence the Γ action on the supercharges is

Γ :
(
Qαa

+ 1
2

, Qαȧ− 1
2

)
7→ ω

2JRL
` ω

J56+JRL−J
R
R

k

(
Qαa

+ 1
2

, Qαȧ− 1
2

)
, (2.16)

Γ :
(
Q
α̇ȧ
+ 1

2
, Q

α̇a
− 1

2

)
7→ ω

2JLR
` ω

J56+JRL−J
R
R

k

(
Q
α̇ȧ
+ 1

2
, Q

α̇a
− 1

2

)
. (2.17)

Hence, the supercharges which survive the orbifold action are Qα1̇
− 1

2

for σ = +1 or Qα̇2̇
+ 1

2
for

σ = −1. We will use one of them to compute the SCI in the next section.

3 4d N = 2∗ Instantons from a 2d superconformal index computation

In this section we warm up for our main calculation that we perform in the next section by
reproducing the well known instanton partition function of N = 2∗ via a 2d superconformal
index (SCI) calculation. We parameterise our partition function and use a supercharge
that survives the orbifold projection (2.16) (2.17) so that we are well prepared for the next
section.

As discussed in the introduction, since the class Sk gauge theories of interest may be
realised within Type II string theory as a theory living on the worldvolume of Dp branes
with coordinates X1, . . . , Xp+1, one of the most important tools we plan to use in this paper
is the relationship between the ADHM construction of instantons [36] and D(p− 4) branes
[37–41] in other words

|K| (A)SD instantons in a Dp-brane ≡ |K| (anti-)D(p− 4)-branes . (3.1)

(Anti-)Self-dual ((A)SD) instantons are solutions to the (A)SD Yang-Mills equations F =

± ? F . The instanton number K = 1
4π2

∫
M4

trF ∧ F ∈ Z is a topological invariant. For
SD instantons F = + ? F K ≥ 0 while for ASD instantons F = − ? F K ≤ 0. Since
parity maps K → −K we can choose to focus only on ASD instantons, corresponding to
σ = signK = −1. The moduli space of ASD instantons for the gauge theory living on
the Dp branes, MDp

K , is then isomorphic to the Higgs branch of the theory living on the
D(p− 4) branes

MDp
K
∼=MK D(p− 4)

Higgs =
{
Xp+2 = Xp+3 = · · · = X10 = 0,Vp−3 = 0

}
/U(K) (3.2)

where Vp−3 = FF̄ + 1
2D

2 is the scalar potential of the (p− 3)d next to maximal supersym-
metric gauge theory living on the worldvolume of the D(p − 4) branes. The vanishing of
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F - and D- terms translate into the ADHM constraints [42, 43]. When supersymmetry is
present the Higgs branch is protected from quantum corrections and the fluctuation deter-
minants in the instanton measure cancel. The action of the theory on the D(p− 4) branes
is the equivalent to the instanton action, hence the partition function of the theory of K
D(p − 4) branes is then nothing else but the partition function of K instantons (up to a
possible overall factor Zextra) for the gauge theory living on the Dp branes

ZextraZDp
K-inst(a,m, . . . ) =

∫
MDp

K,r

e−Sinst(a,m,...,µ)dµ = ZK D(p− 4)
Higgs (a,m, . . . ) . (3.3)

The factor Zextra is often present due to the fact that the theory on the D(p − 4) branes
provides the UV completion of the ADHM sigma model [51, 81] and therefore it may
contain extra degrees of freedom which do not appear in the ADHM construction. Those
extra degrees of freedom generally decouple from the the ADHM degrees of freedom and
the partition function factorises as above. The case that interests us is the case p = 5, i.e.
D5 branes on R4 × T 2, thus we have to compute the partition function of the 2d gauge
theory living on the world volume D1 branes wrapping a T 2. This partition function is the
2d superconformal index a.k.a. flavoured elliptic genus.

3.1 D1 worldvolume theory

Before discussing the supersymmetric index we must first discuss the worldvolume theory
living on the D1 branes in the low energy limit in the presence of the D5s.

D1-D1 The theory arising from quantising open strings stretching betweenK parallel and
coincident Dp-branes is given by p+1 dimensional Yang-Mills theory with 16 supercharges,
for p = 1 that is the well known N = (8, 8) SYM theory. In terms of multiplets under
the N = (4, 4) subalgebra given by Q

α̇ȧ
+ 1

2
, Q

α̇a
− 1

2
they form a N = (4, 4) vector multiplet

V and hypermultiplet H, which can be thought of as the reduction to 2d of a 4d N = 2

vector multiplet and hypermultiplet respectively. V contains a 2d gauge field A±, four
scalars degrees of freedom Yaȧ, right moving fermions λα̇a+ 1

2
and left moving fermions ξα̇ȧ− 1

2
.

H contains scalars Xαα̇, right moving fermions ξαȧ
+ 1

2

and left moving fermions λαa− 1
2

.

D1-D5 Open D1-D5 strings preserve N = (4, 4) supersymmetry and gives rise to a
N = (4, 4) hypermultiplet U in the bifundamental representation of U(K) × SU(N). U
contains two complex scalars φα̇ and their conjugates φ†α̇, and fermions χȧ

+ 1
2

, ψa− 1
2

plus their

conjugates χ†
+ 1

2
ȧ
, ψ†− 1

2
a
. Finally, the field content may be conveniently summarised in the

quiver diagram of Figure 4 .

3.2 The 2d index calculation

We now turn to the computation of the supersymmetric index a.k.a flavoured elliptic genus
partition function for our N = (4, 4) theory. The supersymmetric index can be understood
as the Witten index of the theory quantised on S1×R refined by fugacities which keep track
of further relevant quantum numbers and it is independent of the coupling constants of the
theory. Since our theory admits a free field limit, computing the SCI is a ‘letter counting’
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K

N

Figure 4: The N = (4, 4) 2d quiver of the gauge theory on K D1 branes in the presence
of N D5s. Using N = (4, 4) notation, solid lines denote hypermultiplets, while the circular
node denotes the U(K) vector multiplet.

problem on R2 in the radial quantisation [57–62, 82]. For theories with a Lagrangian de-
scription the index can also be obtained using localisation techniques [83, 84] and explicitly
performing the path integral of the 2d theory on T 2, however for simplicity we will follow
the former approach.

We also choose to view our N = (4, 4) theory as an N = (0, 2) theory with additional
flavour symmetry. We choose the N = (0, 2) supercharges to be

Q := Q
2̇1̇
+ 1

2
, Q̃ := Q

1̇2̇
+ 1

2
. (3.4)

2d N = (0, 2) theories have a single right moving U(1)R R-symmetry. The N = (0, 2) IR
R-symmetry for this model was computed in [85] and it is given by3

RIR = −2JR , (3.5)

under which RIR[Q] = −1 and RIR[Q̃] = +1

We will compute the index which counts cohomology classes of Q̃. Since Q̃ and its
conjugate4 Q̃† = S̃ commute with SU(2)α, SU(2)a we may include fugacities v, w for their
Cartans. Furthermore, they also commute with the diagonal subgroup SU(2)D ⊂ SU(2)α̇×
SU(2)ȧ hence we also include a fugacity z for its Cartan JD = JR + JRR . Recall that5 the
Cartans of su(2)α, su(2)α̇, su(2)a and su(2)ȧ all commute with the orbifold and the fugacities
v, w and z that we introduced here will still be meaningful for our calculation in the next
section. We also include fugacities xA for the Cartans fA of su(N) and yI for the Cartans
gI of u(K). The Witten index is then defined as

Z6d,N
K (q, t, s, p, xA) = Tr

[
(−1)F qH−v2JLw2JRL z2JR+2JRR

N∏
A=1

xfAA

K∏
I=1

ygII

]
(3.6)

where F = F− + F+ is the fermion number, H−, H+ are the left and right moving UV
Hamiltonians respectively generating iso(T 2). In Euclidean signature we define 2H± =

3Our D5/D1 setup is precisely that of [85] with Q+
5 = N , Q−5 = 0, R− = −2JR and R+ = −2JRR

4We wish to stress that also Q̃† = S̃ is preserved by the orbifold that we will impose in the next section.
To see this note that S̃ is ‘uncharged’ under the orbifold generators (2.16) and (2.17).

5The Cartans of su(2)a and su(2)ȧ denoted as JRL and JRR can be written in terms of the generators J710

and J89 which are the U(1) rotations in the respective planes (2.15).
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H ∓ iP and q := e2πiτ with τ the complex structure of the T 2 is generated by w ∼ w+ 1 ∼
w + τ . Explicitly, we will work with the square torus with complex structure τ = iβ6/β5

with β5, β6 the radii of the two S1 factors. In radial quantisation the conformal map from
the plane to the cylinder is Z56 = e2πiw, where w := σ + it and Lorentz transformations
Z56 7→ eiθZ56 are then mapped to translations around the S1 factor of the cylinder

(σ, t) 7→
(
σ +

θ

2π
, t

)
(3.7)

generated by P = iJ56.
One of the crucial properties of the Witten index (3.6) is that it receives contributions

only from those states which satisfy

δ =
{
Q̃, S̃

}
= H+ −

1

2
RUV = 0 (3.8)

where RUV is the N = (0, 2) R-symmetry at the UV fixed point and the index is hence
independent of q. Furthermore the index (3.6) is also independent of all continuous pa-
rameters such as coupling constants and Fayet-Iliopoulos parameters [86, 87], hence we can
compute the index in the free field limit where it reduces to a counting problem.

In the free field limit we have aN = (0, 2) superconformal theory withVir⊕sVirN=2,NS

symmetry where Vir is the standard (N = 0) left-moving Virasoro algebra generated by
{Ln, c}, sVirN=2,NS is the N = 2 super-Virasoro algebra in the NS sector generated by{
Ln, G

±
r , Jn, c

}
and n, r+ 1

2 ∈ Z. Our choice of the Neveu-Schwarz basis over the Ramond
basis is purely for calculational convenience and the index is independent of this choice up
to an overall factor [62]. We will require the following brackets of the sVirN=2,NS algebra:{

G
+
r , G

−
s

}
= Lr+s +

1

2
(r − s)Jr+s +

c

6

(
r2 − 1

4

)
δr+s,0 ,[

L0, G
±
r

]
= −rG±r ,

[
J0, G

±
r

]
= ±G±r .

(3.9)

In the free field limit, where it is appropriate to refer to the index as the SCI, we identify

L0 = H−, L0 = H+, J0 = RUV

Q = G
−
− 1

2
, S = G

+
+ 1

2
, Q̃ = G

+
− 1

2
, S̃ = G

−
+ 1

2
.

(3.10)

Away from the free limit, the theory is not conformal and we have an RG flow from the free
UV fixed point to an IR fixed point. The R-charge assignments generally change along RG
flow. Nonetheless, the index is RG invariant and we can evaluate the index at the IR fixed
point by using the non-anomalous R-symmetry assignment in the IR which, in our case, is
(3.5).

At the UV fixed point the shortening condition (3.8) can be written as

δ =
{
G

+
− 1

2
, G
−
+ 1

2

}
= L0 −

1

2
J0 = 0 . (3.11)

and the states contributing to the index must have J0 = 2L0, so we can trivially write
L0 = 1

2J0 + L0 − L0. To account for the change of the R-symmetry assignment along the

– 13 –



RG flow we have that J0 = RUV → RIR and hence going to the IR is taken into account
by shifting

qL0 = qL0−L0+ 1
2
RUV → qL0−L0+ 1

2
RIR . (3.12)

while holding L0, L0 fixed to their values in the UV. In words, we evaluate the trace over
the local operators at the UV fixed point, however, since the index is a renormalisation
group invariant, we evaluate the SCI of the IR fixed point by using the non-anomalous
R-symmetry in the IR (3.5).

3.2.1 Letter counting

As stressed earlier the index may be computed in the free field limit. This is done by
identifying all ‘letters’ with δ = 0. The single letter partition functions for the N = (4, 4)

multiplets may be easily read off from Tables 7, 8, 9 in Appendix A. They are given by

iV (q, w, z, yI) =

[(
w + w−1

) (
z + qz−1

)
− qz−2 − z2 − 2q

1− q

]
K∑

I,J=1

yIy
−1
J , (3.13)

iH(q, v, w, z, yI) =

[
q

1
2

(
v + v−1

) (
z + z−1 − w−1 − w

)
1− q

]
K∑

I,J=1

yIy
−1
J , (3.14)

iU (q, w, z, xA, yI) =

[
q

1
2

(
z + z−1 − w−1 − w

)
1− q

]
K∑
I=1

N∑
A=1

(
yIx
−1
A + y−1

I xA
)
. (3.15)

The full index is then by enumerating all possible ‘words’ and then projecting onto gauge
invariant states by integrating over the Haar measure [dG] of the G = U(K) gauge group.
[dU (K)] may be reduced to an integral over the maximal torus T (G) at the cost of intro-
ducing the Vandermonde determinant

∏
I 6=J (yI − yJ)

∮
[dU (K)] =

1

K!

∮
T (G)

K∏
I=1

dyI
2πi

∏
I 6=J

(yI − yJ) . (3.16)

The contour is taken over |yI | = 1 . The full index is then given by

Z6d,N
K (q, v, w, z, xA) =

∮
[dU (K)]Z(0)(q, v, w, z, xA, yI)

∏
M=V,H,U

ZM(q, v, w, z, xA, yI)

(3.17)
where Z(0) is the Casimir contribution which may, apriori, depend on all fugacities. It is
given by [88–95]

Z(0)(q, v, w, z, xA, yI) = q
1
2
ECasimir , ECasimir = Finite

q→1

[∑
M

∂iM
∂ log q

]
(3.18)

and

ZM(q, v, w, z, xA, yI) := PE [iM(q, v, w, z, xA, yI)] , PE [i(·)] := exp

[ ∞∑
n=1

1

n
i(·n)

]
(3.19)
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where iM are the single letter partition functions (3.13), (3.14) and (3.15). Explicitly:

ZV (q, w, z, yI) =
K∏

I,J=1

(
q yIyJ ; q

)2
θ
(
qz−2 yI

yJ
; q
)

θ
(
wz yIyJ ; q

)
θ
(
qwz−1 yI

yJ
; q
) , (3.20)

ZH(q, v, w, z, yI) =

K∏
I,J=1

θ
(
q

1
2 vw yI

yJ
; q
)
θ
(
q

1
2 v−1w yI

yJ
; q
)

θ
(
q

1
2 vz−1 yI

yJ
; q
)
θ
(
q

1
2 v−1z−1 yI

yJ
; q
) , (3.21)

ZU (q, w, z, xA, yI) =
K∏
I=1

N∏
A=1

θ
(
q

1
2w xA

yI
; q
)
θ
(
q

1
2w yI

xA
; q
)

θ
(
q

1
2 z−1 xA

yI
; q
)
θ
(
q

1
2 z−1 yI

xA
; q
) , (3.22)

where

θ (x; q) := (x; q)
(
qx−1; q

)
, (x; q) :=

∞∏
n=0

(1− xqn) = exp

[
−
∞∑
n=1

1

n

xn

1− qn

]
(3.23)

is the q-theta function and q-Pochhammer symbol respectively. They are related to the
Jacobi theta function

θ1(x; q) := iq
1
12 η(q)(x−

1
2 − x

1
2 )
∞∏
n=1

(1− xqn)(1− x−1qn) = iq
1
12 η(q)x−

1
2 θ(x; q) , (3.24)

where η(q) := q
1
24
∏∞
n=1(1 − qn) = q

1
24 (q; q) is the Dedekind eta function. Finally, we

conclude that the full index is given by

Z6d,N
K =

(q; q)2K

K!

∮
T (G)

K∏
I=1

dyI
2πiyI

Z(0)(q, . . . )
K∏
I=1

N∏
A=1

θ
(
q

1
2w xA

yI
; q
)
θ
(
q

1
2w yI

xA
; q
)

θ
(
q

1
2 z−1 xA

yI
; q
)
θ
(
q

1
2 z−1 yI

xA
; q
)

×
∏
I 6=J

θ

(
yI
yJ

; q

) K∏
I,J=1

θ
(
qz−2 yI

yJ
; q
)
θ
(
q

1
2 vw yI

yJ
; q
)
θ
(
q

1
2 v−1w yI

yJ
; q
)

θ
(
wz yIyJ ; q

)
θ
(
qwz−1 yI

yJ
; q
)
θ
(
q

1
2 vz−1 yI

yJ
; q
)
θ
(
q

1
2 v−1z−1 yI

yJ
; q
)

(3.25)
where we used the identity (x; q) = (1− x) (qx; q). It also useful to assemble the quantity

Z6d,N (q, v, w, z, xA;q6d) :=
∑
K≥0

qK6dZ
6d,N
K (q, v, w, z, xA) (3.26)

with q6d a formal dimensionless parameter. When considering our 6d theory on R4×S1
5×S1

6

as a 5d theory on R4×S1
5 dressed by KK modes along S1

6 we may regard q6d as a fugacity for
the topological U(1) global symmetry associated to the conserved current ?5dJ = 1

8π2 trF ∧
F .

3.3 The 6d instanton partition function

The countour integrals (3.25) may be computed via the Jefferey-Kirwan residue prescription
[83, 84, 96]. The function θ (y; q) has simple zeros for y = qa+b/τ for a, b ∈ Z and no poles.
Furthermore, to compute residues note that

∂

∂y
θ (y; q) |y=1 = − (q; q)2 . (3.27)
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Using the identity θ (qx; q) = −1
x θ (x; q) the residue is given by∮

y=qa+b/τ

dy

2πiy

1

θ (y; q)
= (−1)a+1 (q; q)−2 q

a
2

(a−1) . (3.28)

Hence, we can perform the residue prescription. The integrand of (3.26) has simple poles
at

yI = yJ (zw)±1 , yI = yJ

(
z

qw

)±1

, (3.29)

yI = yJ

(
vz

q1/2

)±1

, yI = yJ

(
z

vq1/2

)±1

, yI = xA

(
z

q1/2

)±1

. (3.30)

As explained in [52, 81] only residues arising from the poles (3.30) should be kept. We
assume that the xA’s are sufficiently generic and furthermore we close the contour such
that we collect residues coming from poles with the positive sign exponents. The solutions
to (3.30) may be classified by N -coloured Young’s diagrams ~Y = {Y1, . . . , YN} with each
diagram YA containing |YA| boxes such that |~Y | :=

∑
A |YA| = K. Given a Young’s diagram

YA a box s is labelled by coordinates (l, p) and the corresponding pole is given by

y(s) = xA

(
z

q1/2

)l+p−1

vl−p . (3.31)

The residue for a fixed coloured Young diagram is then

Z6d,N
~Y

= Z(0)
N∏

A,B=1

∏
s∈YA

θ
(
q−1zw−1EAB; q

)
θ (zwEAB; q)

θ (EAB; q) θ (q−1z2EAB; q)
, (3.32)

where we defined

EBA :=
xB
xA

(
vz

q1/2

)LA(s)
(
q1/2v

z

)AB(s)+1

(3.33)

and where LB(s) and AB(s) denote the distance from the box s to the right end and the
bottom of the Young diagram YB respectively. Z(0) = q

1
2
ECasimir is the Casimir contribution

(3.18). To compute it one is forced to specify the q-dependence of the fugacities, we hence
define

v := q
β5ε−
2iπ , wq

1
2 := q

β5m
iπ , zq−

1
2 := q

β5ε+
2iπ , xA := q

β5aA
iπ , (3.34)

where we used the shorthand notation

ε± := ε1 ± ε2 . (3.35)

Z(0) is then a constant and is given by

Z(0) = q
β25NK

π2

(
ε+
2
−m+ iπ

β5

)
(
ε+
2

+m)
. (3.36)

The K instanton partition function (3.25) is then given by summing over all coloured Young
diagrams ~Y . Hence, equation (3.26) finally reads

Z6d,N :=
∑
K≥0

qK6d
∑
~Y

|~Y |=K

Z6d,N
~Y

=
∑
~Y

q
|~Y |
6d Z

6d,N
~Y

. (3.37)
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3.4 The 5d limit of the instanton partition function

Reducing the D5/D1 system on S1
6 by taking β6 → 0 results in 5d N = 2 SYM with gauge

group SU(N) at Chern-Simons level κ = 0. Hence by either taking the 5d limit directly
to (3.37) or taking the limit directly the contour integral (3.25) we expect to obtain the
instanton partition function for the 5d theory. Here we take the first approach but we detail
the limit of the contour integral expression in Appendix B.1.

Recall that q = e2πiτ and τ = iβ6/β5 therefore this limit corresponds to taking

q → 1 . (3.38)

To take the limit, first note that the ratio of q-theta function may be rewritten as

θ (qa; q)

θ (qb; q)
=

[a]q
[b]q

∞∏
n=1

[n+ a]q [n− a]q
[n+ b]q [n− b]q

(3.39)

where [n]q := (1− qn)/(1− q) is the q-number. The q-number has the property that

lim
q→1

[n]q = n (3.40)

and therefore

lim
q→1

θ (qa; q)

θ (qb; q)
=

sinh iπa

sinh iπb
. (3.41)

Further note that by definition

lim
q→1
Z(0) = q

1
2
ECasimir = 1 . (3.42)

Applying this to (3.37) yields

Z5d,N =
∑
K≥0

qK5d
∑
~Y

|~Y |=K

N∏
A,B=1

∏
s∈YA

sinhβ5

(
EAB + ε+

2 −m
)

sinhβ5

(
EAB + ε+

2 +m
)

sinhβ5 (EAB) sinhβ5 (EAB + ε+)
(3.43)

=
∑
~Y

q
|~Y |
5d Z

5d,N
~Y

(3.44)

where we defined

EBA = aB − aA + ε1LA(s)− ε2 (AB(s) + 1) , (3.45)

such that EAB = q
EAB
iπ and we take q5d = limq→1 q6d. This reproduces the instanton

partition for the mass deformed 5d N = 2 theory (a.k.a. N = 1∗) on R4 × S1
5 which was

computed via localisation of the path integral of the ADHM quantum mechanics in e.g.
[51, 52, 97]. Hence we indeed identify

Z5d,N = Z5d,N
inst,N=1∗ .
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3.5 The 4d limit of the instanton partition function

Armed with the above, the equivalence of Z5d,N in the 4d limit (β5 → 0) with the instanton
partition function Z4d,N

inst,N=2∗ for the 4d N = 2∗ theory is essentially trivial to prove. Taking
the β5 → 0 limit of (3.43) or equivalently evaluating the contour integrals (B.8) we obtain

Z4d,N =
∑
K≥0

qK4d
∑
~Y

|~Y |=K

N∏
A,B=1

∏
s∈YA

(
EAB + ε+

2 −m
) (
EAB + ε+

2 +m
)

EAB (EAB + ε+)
(3.46)

=
∑
~Y

q
|~Y |
4d Z

4d,N
~Y

= Z4d,N
inst,N=2∗ (3.47)

we then identify m as the hypermultiplet mass in the Ω-background [98] and set q4d =

limβ5→0 q5d. It may be shown [99–101] that the vector multiplet contribution is given by

zvec(a, ~Y ) =
N∏

A,B=1

∏
s∈YA

1

EAB (EAB + ε+)
(3.48)

and the contribution from the adjoint hypermultiplet is

zadj(a,m, ~Y ) =
N∏

A,B=1

∏
s∈YA

(
EAB +

ε+
2
−m

)(
EAB +

ε+
2

+m
)

(3.49)

also note that
zadj

(
a,
ε+
2
, ~Y
)

=
1

zvec(a, ~Y )
. (3.50)

4 Orbifolding to 4d N = 2/N = 1 circular/toroidal quivers

The main goal of this paper is to compute the 2d index in the presence of the Γ = Z` ×Zk
orbifold before reducing to the zero dimensional matrix model partition function which is
expected to be equal to the partition function of instantons for the Γ-orbifolded 4d theory.

In principle we could work directly with the 2d orbifolded theory by working out the
projections and writing down the Lagrangian and computing it’s partition function. How-
ever we prefer instead to work with the SCI interpreted as a counting device to which we
implement projection onto Γ-invariant states.

We take the same approach, as one takes when computing, e.g. the supersymmetric
Lens space L(1, r) × S1 indices [88, 102–105]. This is also the same method one uses to
compute orbifold partition functions in 2d CFT [106].

4.1 Orbifolding the supersymmetric index

If we denote some (mother) theory by M we may obtain a new (daughter) theory D =

M/Γ by quotienting out by an orbifold group Γ which is generically embedded inside both
the global symmetry group FM and gauge group GM of M . We collectively denote the
generators of Γ by γ. If M is a supersymmetric theory with a supercharge Q, then it is
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possible to count cohomology classes of Q, i.e. to compute the supersymmetric index of M
for the supercharge Q which, providing that M admits a suitable free field limit such that
standard letter counting techniques can be applied, is schematically defined to be

IM (a) = TrHM

[
(−1)F e−β{Q,Q†}afM

]
(4.1)

where fM collectively denotes the subset of linearly independent generators of FM such
that [Q, fM ] = 0 and a their fugacities. If we assume that Γ is abelian and furthermore
commutes with both Q and its conjugate

[Q, γ] = [Q†, γ] = 0 (4.2)

then the theory D will also generically possesses at least one supersymmetry, namely Q.
D also has reduced global and gauge symmetry groups FD = CFM (Γ), GD = CGM (Γ)

where CG(S) denotes the centraliser of S in G which, of course, depends on the choice of
embedding Γ ↪→ FM × GM . One may then obtain the supersymmetric index of D for the
supercharge Q by means of projection:

ID(a) =
∑
ρ

TrHρ

[∫
[dΓ]εγ(−1)F e−β{Q,Q†}af

]
. (4.3)

The orbifold projection can be considered as a gauging of the Γ symmetry of the theory M
resulting in a new theory D. The ‘integral’ over the invariant Haar measure of the group
Γ implements the projection onto Γ-invariant states. When Γ is discrete and abelian the
Haar measure is simply given by summing over all elements of the group and dividing by
the number of elements of the group∫

[dΓ] =
1

|Γ|
∑
ε∈Γ

. (4.4)

Since HM is a Hilbert space with grading by global symmetries, it may be decomposed
HM = ⊕ρHρ according to the Γ action. To include states which may also be twisted in the
‘time’ direction we must also sum over different vacuua Hρ. This definition automatically
receives contributions from both untwisted sectors as well as sectors which may be twisted
by global or gauge symmetries. Note that in the computation of ID, since GM was gauged,
one should ‘integrate’ over all independent (up to G/CGM (Γ) gauge transformations) em-
beddings Γ ↪→ GM . Note also that in some cases one may also choose to instead use a
weighted sum over embeddings, for example discrete theta angles [103]. On the other hand
FM is not gauged and hence one should fix a particular embedding Γ ↪→ FM which in turn
specifies the global symmetry of the daughter theory D.

4.1.1 A toy example - the orbifold index of a free Fermi multiplet

Let us proceed with a simple toy example. Staying in 2d, since that is the most relevant for
us, we letM be the theory of a free N = (0, 2) Fermi multiplet ψ− 1

2
, ψ− 1

2
. Both left moving

fermions have L0 = J0 = 0 and hence both satisfy the BPS condition δ =
{
Q,Q†

}
= 0
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(3.11) furthermore they both have L0 = 1
2 . The free Fermi multiplet admits a U(1)f

flavour symmetry generated by f under which ψ− 1
2
, ψ− 1

2
have charges f = +1,−1. The

total global symmetry is then FM = U(1)f × Iso(T 2)×U(1)R. In particular R2 ⊂ iso(T 2) is
the algebra of translations around the two cycles of the torus, where L0−L0 generates radial
translations and L0 + L0 generate time translations. U(1)R is the R-symmetry generated
by J0 = R under which Q,Q† have charges R = −1,+1 as before. Enumerating the letters
of Table 6 we obtain

IM (a, q) = TrHM

[
(−1)F qL0af

]
= PE

[
−
q

1
2

(
a+ a−1

)
1− q

]
= θ

(
aq

1
2 ; q
)

(4.5)

We consider the theory obtained by the Zk orbifold D = M/Zk where Zk has an action

Letter L0 L0 J0 f Index Orb Index

ψ− 1
2

1/2 0 0 +1 q
1
2a −q1/2a

ψ− 1
2

1/2 0 0 −1 q1/2a−1 −ε−1q1/2a−1

∂− 1 0 0 0 q ε−1q

Table 6: Letters of the Fermi multiplet.

inside all three factors of FM . To preserve the supercharge Q we require that Zk translation
in Iso(T 2) and rotation by U(1)R acts by equal but opposite amounts. Hence the Zk group
elements are of the form

e
2πi
k
γ ∈ Zk , γ =

f

2
+
(
L0 − L0

)
+

R

2
. (4.6)

Since the quotient acts in the radial direction only ID is simply obtained by taking the
Pleythistic exponent of the orbifolded single letter index

i(a, q) =
1

k

∑
ε∈Zk

[
−
(
ε−

1
2 q

1
2 ε

1
2a+ ε−

1
2 q

1
2 ε−

1
2a−1

)]∑
n≥0

ε−nqn (4.7)

=
1

k

∑
ε∈Zk

[
−q

1
2a− q−

1
2a−1

]∑
ñ≥0

qkñ
k−1∑
j=1

ε−jqj + q−
1
2a−1 (4.8)

=− aq
1
2 + a−1qk−

1
2

1− qk
(4.9)

where we used the basic fact that
∑
ε∈Zk

ε = 0. The index for the theory D for the supercharge

Q is then

ID(a, q) = PE [i(a, q)] = PE

[
−aq

1
2 + a−1qk−

1
2

1− qk

]
= θ

(
aq

1
2 ; qk

)
. (4.10)

We now move to apply this general discussion to the D1 worldvolume theory.
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4.2 Computing the orbifolded superconformal index

The orbifold acts on the coordinates X1, . . . , X10 as in (2.2). The orbifold action is also
embedded in the SU(`kN) flavour group as in (2.5), where we also scaled N → `kN with
respect to the previous section. Furthermore, the orbifold also has an action inside the
U(K) gauge group of the D1 worldvolume theory breaking U(K) →

∏`
n=1

∏k
i=1 U(Kni),∑

n,iKni = K and U(0) is defined to be the trivial group. As in equation (2.5) the action
may be conjugated to an element of the maximal torus g ∈ T (U(K))

g = diag
(
ω`ωkIK11 , . . . , ω`ω

k
kIK1k

, . . . , ω``ωkIK`1 , . . . , ω
`
`ω

k
kIK`k

)
. (4.11)

The only difference is that we do not fix Kni but rather ‘integrate’ over all possible Kni

satisfying
∑

n,iKni = K which indeed are in one-to-one correspondence with embeddings
Γ ↪→ U(K) up to gauge transformations. In the language of the discussion in Section
4.1 we consider GM = U(K), FM = SU (`kN) × Iso

(
T 2
)
× Spin(4)R and Γ = Z` × Zk.

Then CSU(`kN) (Γ)6 coincides with SU(N)`k. On the other hand CGM (Γ) =
∏
n,i U(Kni)

corresponding to the (unordered) partition K = K11 + · · ·+K`k but since GM was gauged
we sum over all partitions.

For convenience we choose to split the Cartans fA, A = 1, . . . , `kN of su(`kN) into
Cartans fni,A, A = 1, . . . , N of ⊕nisu(N) we also do the same with the u(K) Cartan
generators gI , I = 1, . . . ,K into Cartans gni,I , I = 1, . . . ,Kni of ⊕niu(Kni). Following
the above discussion, recalling that the supercharge Q̃ (given in (3.4)) and its conjugate S̃
commute with the orbifold action, we compute

Z6d,`,k
K (q, v, w, z, xni,A) = Tr

 1

`k

∑
ε`∈Z`
εk∈Zk

εγ`` ε
γk
k

∏
n,i

N∏
A=1

(
εn` ε

i
k

)fni,A Kni∏
I=1

(
εn` ε

i
k

)gni,I

× (−1)F qH−v2JLw2JRL z2JR+2JRR
∏
n,i

N∏
A=1

x
fni,A
ni,A

Kni∏
I=1

y
gni,I
ni,I

 ,
(4.12)

where the first line corresponds to the projection operator
∫

[dΓ] εγ of (4.3) implementing
the Douglas-Moore orbifold procedure with:

γ` = J710 − J89 := 2JRL , γk := J56 − J89 = J56 + JRL − JRR . (4.13)

Recall that in computing the index previously we mapped the plane to the cylinder Z56 =

e2πi(σ+it) hence, rotations of the plane Z56 7→ eiθZ56 are mapped to translations σ 7→ σ+ θ
2π

(3.7). Hence, quotienting out by rotations on the plane corresponds, after the conformal
map, to quotienting out translations generated by L0 − L0 on the torus.

We assume that the IR R-symmetry RIR does not change under the orbifold; in which
case, relegating the explicit derivation to Appendix A, we obtain the orbifolded single letter

6Note that here CSU(`kN) (Γ) is equivalent to the Levi subgroup L specified by ` copies of (2.11).
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indices which are denoted by iΓV , iΓH , iΓU and are given by equations (A.11), (A.12), (A.13)
respectively. In addition, for a fixed partition {Kni} the Haar measure becomes∮

[dU(K)]→
∏̀
n=1

k∏
i=1

1

Kni!

∮
T [U(Kni)]

Kni∏
I=1

dyni,I
2πiyni,I

∏
I 6=J

(
1−

yni,I
yni,J

)
:=

∮ ∏
n,i

[dU(Kni)]

(4.14)
which coincides with the Haar measure for the product group

∏
n,i U(Kni). The ‘orbifolded’

index for a fixed partition {Kni} is then

Z6d,N,`,k
{Kni} (q, v, w, z, xni,A) :=

∮ ∏
n,i

[dU (Kni)]Z(0)
{Kni}(q, . . . )

∏
M=V,H,U

ZΓM(q, . . . ) . (4.15)

The Casimir contribution Z(0)
{Kni} is defined in the same way as (3.18). The ‘orbifolded’

single letter partition function are defined as in (3.19) and are explicitly given by

ZΓV =
(
qk; qk

)2K∏
n,i

∏
I 6=J

θ
(
yni,I
yni,J

; qk
)

(
1− yni,I

yni,J

) ∏
i 6=j

Kni∏
I=1

Knj∏
J=1

θ

(
qLij

yni,I
ynj,J

; qk
)

×
∏
n,i,j

∏Kni
I=1

∏Knj
J=1 θ

(
z−2qLij+1 yni,I

ynj,J
; qk
)

∏Kni
I=1

∏K(n+1)j

J=1 θ
(
wzqLij

yni,I
y(n+1)j,J

; qk
)
θ
(
z−1wqLij+1 yni,I

y(n+1)j,J
; qk
) ,

(4.16)

ZΓH =
∏
n,i,j

∏Kni
I=1

∏K(n+1)j

J=1 θ
(
wvqLij+

1
2

yni,I
y(n+1)j,J

; qk
)
θ
(
wv−1qLij+

1
2

yni,I
y(n+1)j,J

; qk
)

∏Kni
I=1

∏Knj
J=1 θ

(
vz−1qLij+

1
2
yni,I
ynj,J

; qk
)
θ
(
v−1z−1qLij+

1
2
yni,I
ynj,J

; qk
) , (4.17)

ZΓU =
∏
n,i,j

N∏
A=1

Kni∏
I=1

θ
(
wqLij+

1
2

yni,I
x(n+1)j,A

; qk
)
θ
(
w−1qk−Lji−

1
2

yni,I
x(n−1)j,A

; qk
)

θ
(
z−1qLij+

1
2
yni,I
xnj,A

; qk
)
θ
(
zqk−Lji−

1
2
yni,I
xnj,A

; qk
) . (4.18)

Here
Lij := {# ∈ Z | 0 ≤ # ≤ k − 1 and # = i− j mod k} (4.19)

is a unique integer and is equivalent to the Lij = [[i− j]] as defined in [88]. It satisfies the
important relation

Lij =

{
k − Lji i− j 6= 0 mod k

0 i− j = 0 mod k
(4.20)

It also satisfies L(i+k)j = Lij = Li(j+k) allowing us to consistently abuse the orbifold
condition i ∼ i+ k within products, etc.

We also consider a rewriting of (4.15) in which many simplifications become manifest.
We change integration variables and define shifted variables

yni,I → qk−iyn,I , xni,A := qk−ix̃n,A , (4.21)

we also combined the indices such that A = iA = 1, . . . , kN and I = iI = 1, . . . ,Kn where
Kn :=

∑k
i=1Kni.
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The shifts may be interpreted in the following way: since the effect of a non-trivial
holonomy may always be locally removed by a gauge transformation, the shift of the fugac-
ities x can be thought of as a gauge transformation on the D5 theory. On the other hand,
the shift of the y’s may always be made by a change of integration variables.

Those variables allow us to make rewritings of the form

k∏
i,j=1

θ
(
qLij−i+jx; qk

)
= θ

(
x; qk

)k∏
i>j

θ
(
qLij−i+jx; qk

)∏
j>i

θ
(
qLij−i+jx; qk

)
(4.22)

= θ
(
x; qk

)k∏
i>j

θ
(
x; qk

)∏
j>i

θ
(
qkx; qk

)
(4.23)

=
k∏

i,j=1

θ
(
x; qk

)∏
j>i

(
−1

x

)
(4.24)

where the second line follows by applying the definition (4.19) and the relation (4.20) while
the third line is courtesy of the identity θ (qx; q) = −1

x θ (x; q). In terms of those variables
we have

Z6d,N,`,k
{Kni} (q, v, w, z, xn,iA) =

(
qk; qk

)2K ∏̀
n=1

(
k∏
i=1

1

Kni!

) ∏̀
n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni

×
∏̀
n=1

∮ Kn∏
I=1

dyn,I
2πiyn,I

Z(0)
{Kni}

kN∏
A=1

Kn∏
I=1

θ
(
wq

1
2

yn,I
x̃n+1,A

; qk
)
θ
(
w−1q−

1
2

yn,I
x̃n−1,A

; qk
)

θ
(
z−1q

1
2
yn,I
x̃n,A

; qk
)
θ
(
zq−

1
2
yn,I
x̃n,A

; qk
)

×
∏̀
n=1

∏
I6=J

θ

(
yn,I
yn,J

; qk
) Kn∏
I,J=1

θ
(
z−2q

yn,I
yn,J

; qk
)

θ
(
vz−1q

1
2
yn,I
yn,J

; qk
)
θ
(
v−1z−1q

1
2
yn,I
yn,J

; qk
)

×
Kn∏
I=1

Kn+1∏
J=1

θ
(
wvq

1
2

yn,I
yn+1,J

; qk
)
θ
(
wv−1q

1
2

yn,I
yn+1,J

; qk
)

θ
(
wz

yn,I
yn+1,J

; qk
)
θ
(
z−1wq

yn,I
yn+1,J

; qk
) ,

(4.25)
The full ‘orbifolded’ index (4.12) is then given by summing over all partitions {Kni} of

K. However, in analogy with (3.26) from the 5d point of view we expect to have a U(1)`k

topological symmetry associated to the currents ?5dJni = 1
8π2 trFni ∧ Fni for the (n, i)th

gauge node in the quiver. Since the D-instantons serve as sources for those currents and the
associated instanton number Kni is related to the partition {Kni} following our discussion
in Section 4.1 we may weight each contribution with fugacities q6d,ni for each current and
assemble the quantity

Z6d,N,`,k(q, v, w, z, xn,A;q6d,ni) =
∑
K≥0

∑
{Kni}∑
n,i Kni=K

∏
n,i

qKni6d,ni

Z6d,`,k
{Kni}(q, v, w, z, xni,A)

(4.26)
the sum over all possible partitions of K is equivalent to summing over all embeddings
Γ ↪→ U(K) up to gauge transformation.
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4.3 The 6d orbifolded instanton partition function

In this section we check that for k = 1 our partition function indeed reproduces the known
result for the partition function for {K1, . . . ,K`} D1-branes in the presence of `N D5 branes
on A`−1 singularity as computed in [107]. Furthermore we show that the Zk orbifolded index
may be obtained from the partition function without orbifold (up to an overall shift in the
Casimir contribution) with the substitution rule x→ x̃ and q → qk.

We must first evaluate the contour integrals (4.15). It bares many resemblances with
the unorbifolded (` = k = 1) partition function (3.26) discussed in Section 3. In particular,
the poles are now located at

yn+1,I = yn,J (zw) , yn−1,I = yn,J

(
z

qw

)
, (4.27)

yn,I = yn,J

(
vz

q1/2

)±1

, yn,I = yn,J

(
z

vq1/2

)±1

, yn,I = x̃n,A

(
z

q1/2

)±1

. (4.28)

Proceeding in an analogous way to the unorbifolded index we again assume that the
x̃’s can be made sufficiently generic and that the correct residues to collect are again those
coming from the poles (4.28). Solutions to (4.28) are then in fact classified by ` lots of
kN -coloured Young’s diagrams which we label by ~Yn = {Yn,A} = {Yn,1, . . . , Yn,kN} again
with each diagram Yn,A containing |Yn,A| boxes such that |~Yn| :=

∑
A |Yn,A| = Kn where

Kn :=
∑k

i=1Kni as before. Given a Young’s diagram Yn,A a box s is labelled by coordinates
(l, p) and the corresponding pole is given by

yn(s) = x̃n,A

(
z

q1/2

)l+p−1

vl−p (4.29)

Hence, for a fixed partition {Kni} the residue of (4.15) for a fixed set of kN -tuples ~Y1, . . . , ~Y`
is

Z6d,N,`,k

{Kni},{~Yn}
= Z(0)

{Kni},{~Yn}

∏̀
n=1

(
Kn!∏k
j=1Kni!

) ∏̀
n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni

×
∏̀
n=1

kN∏
A,B=1

∏
s∈Yn+1,A

θ
(
q−1zw−1E(n+1)n,AB; qk

)∏
s∈Yn,A θ

(
zwEn(n+1),AB; qk

)∏
s∈Yn,A θ (Enn,AB; qk)

∏
s∈Yn,A θ (q−1z2Enn,AB; qk)

(4.30)
where we defined

Enm,AB :=
x̃n,A
x̃m,B

(
vz

q1/2

)Lm,B(s)
(
q1/2v

z

)(An,A(s)+1)

(4.31)

where Ln,A(s) and An,A(s) denote the distance from the box s to the right end and the bot-
tom of the Young diagram Yn,A respectively. Furthermore, we also notice the multinomial
coefficient Kn!/

∏k
i=1Kni! =

( ∑
iKni

Kn1,...,Knk

)
.

We are still yet to describe the Casimir contribution. Again we must specify the q-
dependence of the fugacities. We write

v := q
β5kε−
2iπ , wq

1
2 := q

β5km
iπ , zq−

1
2 := q

β5kε+
2iπ , x̃n,A := q

β5kãn,A
iπ . (4.32)
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The Casimir contribution is explicitly given in equation (A.14) and after evaluating its
residue for a fixed kN -tuples {~Yn} is

Z(0)

{Kni},{~Yn}
=
∏̀
n=1

kN∏
A
q
kKnβ

2
5

2π2
[2ã2n,A−ã

2
n−1,A−ã

2
n+1,A+2m(ãn+1,A−ãn−1,A)]

× q
−k2KNβ25

iπ (
ε+
2

+m)
(
ε+
2
−m+ 1

β5iπ

) ∏̀
n=1

kN∏
A,B=1

∏
s∈Yn,B

q
β25
2π2

(φn(s)+
ε+
2 )(ãn+1,A+ãn−1,A−2ãn,A) ,

(4.33)
where as before we must use the definitions (4.32). For a box s ∈ Yn,A the function φn(s)

is given by

φn(s) = ãn,A + (l − 1)ε1 + (p− 1)ε2 . (4.34)

Equation (4.25) is then obtained by summing over all ~Yn

Z6d,N,`,k
{Kni} (q, v, w, z, xni,A) =

∑
~Y1,...,

~Y`
|~Yn|=Kn

Z6d,N,`,k

{Kni},{~Yn}
(q, v, w, z, xni,A) . (4.35)

The case k = 1: We may immediately compare our expression (4.35) for k = 1 to
the {K1, . . . ,K`} partition function computed in [107] equation (5.5). After taking the
appropriate decoupling limit by ‘opening up’ the quiver we find agreement7 up to a choice
of overall normalisation Z(0).

The case k > 1: By inspection we can immediately see, writing in a schematic fashion
and suppressing the unchanged arguments, that

Z6d,N,`,k
{Kni} (q, x) =

∏̀
n=1

(
Kn

Kn1, . . . ,Knk

) ∏̀
n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni
Z6d,kN,`,1
{kKn}

(
qk, x̃

)
.

(4.36)
In words, we claim that the orbifolded (k > 1) index corresponding to the choice or {Kni}
may be obtained from the unorbifolded (k = 1) index by substituting q → qk, xn,A → x̃n,A
and multiplying by an overall factor.

4.4 The 5d limit of the orbifolded instanton partition function

We can again take the 5d β6 → 0 (q → 1) limit. For k = 1 the resulting 5d theories are
the N = 1 circular quivers denoted by NN,` on R4 × S1

5. For k > 1 we expect the resulting
5d theory is NkN,` with k codimension 1 defects which fill the R4 and are located at points
Θ = Θj=1,...,k where Θ ∼ Θ + 2π is the coordinate of S1

5.

7Our parameters are related to those of [107] by tthem = zvq1/2, dthem = zv−1q−1/2, cthem = q1/2w.
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Following the same procedure as before and making the identifications (4.32), we find

Z5d,N,`,k
{Kni} =

∑
~Y1,

~Y2,...,
~Y`

| ~Yn|=Kn

∏̀
n=1

(
Kn

Kn1, . . . ,Knk

)

×
kN∏
A,B=1

∏
s∈Yn,A

sinhβ5

(
En(n−1),AB + ε+

2 −m
)

sinhβ5

(
E(n−1)n,AB + ε+

2 +m
)

sinhβ5 (Enn,AB) sinhβ5 (Enn,AB + ε+)

(4.37)
again limq→1Z(0)

{Kni} = 1 and the function Enm,AB is defined as

Enm,AB := ãn,A − ãm,B + ε1Ln,A(s)− ε2 (An,B(s) + 1) . (4.38)

As before the instantons partition function of the resulting 5d theory is given by

Z5d,N,`,k =
∑
{Kni}

∏
n,i

qKni5d,ni

Z5d,N,`,k
{Kni} . (4.39)

4.5 The 4d limit of the orbifolded instanton partition function

Finally, we take the 4d β5 → 0 limit. We expect that by taking the 4d limit we land on the
4d torodial quiver SCFTs in Class Sk. In particular, we want to compare our expression in
this limit with the expression proposed in [33]. Applying the 4d limit to (4.37) yields:

Z4d,N,`,k
{Kni} =

∑
~Y1,

~Y2,...,
~Y`

| ~Yn|=Kn

∏̀
n=1

(
Kn

Kn1, . . . ,Knk

)

×
∏̀
n=1

kN∏
A,B=1

∏
s∈Yn+1,A

(
E(n+1)n,AB + ε+

2 −m
)∏

s∈Yn,B
(
En(n+1),AB + ε+

2 +m
)∏

s∈Yn,A (Enn,AB)
∏
s∈Yn,A (Enn,AB + ε+)

(4.40)
and the partition function of instantons reads

Z4d,N,`,k =
∑
{Kni}

∏
n,i

qKni4d,ni

Z4d,N,`,k
{Kni} = Z4d

inst,Ã`−1×Ãk−1
. (4.41)

For k = 1 (4.40) may be compared with the partition function of instantons for the 4d
N = 2 Ã`−1 circular quiver theories.

4.6 From necklace/toroidal to linear/cylindrical quivers

In this subsection we want to briefly explain, for the sake of the non-expert reader, how
we can obtain the instanton partition functions for linear N = 2 (generic `, k = 1) or
cylindrical N = 1 quivers (generic ` and k) from the formulas we have just derived that
are for necklace N = 2 (generic `, k = 1) and toroidal N = 1 (generic ` and k) quivers
respectively. Firstly, for the N = 2 theories with generic ` and k = 1, we choose a fugacity
q6d,n for one n corresponding to one coupling constant of the nth gauge node and send it
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N N N N N N

Figure 5: The 5d NN,` quiver for ` = 5 after taking the decoupling limit obtained by sending
one of the couplings to zero. Similarly, circle reduction in 4d N = 2 linear A`−1 quivers.

N11 N21 N31 N41N51 N51

N12 N22 N32 N42 N52N52

N13 N23 N33 N43 N53N53

Figure 6: The 4d A`−1 × Ãk−1 cylindrical quiver in N = 1 notation with ` = 5, k = 3

obtained after taking a decoupling limit of the Ã`−1 × Ãk−1 torodial quiver.

to zero in equation (4.26). This corresponds to ungauging this gauge factor and breaks
the necklace at this node. See Figure 3 and Figure 5. It is useful for notational clarity to
ungauge the node with n = `. Then the hypermultiplets that couple to this node from the
left and from the right become fundamental and the Coulomb branch parameters a1 = mL

and a` = mR are interpreted as anti-fundamental and fundamental masses, respectively.
Moving on to the toroidal N = 1 quivers with generic ` and k, we can obtain cylindrical
N = 1 quivers via ungauging all of the k-nodes with n = `, setting in (4.26) q6d,`i = 0

for all i = 1, . . . , k. See Figure 1 and Figure 6. Finally, let us stress that this ungauging
procedure can be done for all 6d, 5d and 4d instanton partition functions.

4.7 From N = 2∗ to N = 2 Ã`−1 instantons at the orbifold point

In this subsection, we want to discuss a relationship between instantons of the N = 2∗

theory and the N = 2 Ã`−1 (k = 1) at a special point in the parameter space, which
is commonly referred to as ‘the orbifold point’. For the Ã`−1 theories this corresponds
to setting all instanton parameters equal q4d,n ≡ q and the vevs take the special values
an,A = aL = aA where L = nA, n = 1, . . . , ` and A = 1, . . . , N .

The partition function for the Ã`−1 quiver is given by a sum over ` N -coloured Young
diagrams with KA boxes. The idea is that since all the qA parameters are equal, we can
rewrite the sum

∑
{Kn}≥0

qK1+···+K`
∑
~Yn

|~Yn|=Kn

=
∞∑
K=0

qK
∑

K1,...,K`=0
K1+···+K`=K

∑
~Yn

|~Yn|=Kn

→
∞∑
K=0

qK
∑
~W

| ~W |=K

(4.42)
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where ~W is a `N -coloured Young diagram. One can easily convince themselves by example
that every possible `N -tuple with K boxes can be generated by summing over all possible
` of N -tuples {~Yn} with K1, . . . ,K` boxes subject to the constraint

∑
Kn = K. After all,

the set of Young diagrams with K boxes are just counting partitions of K but we can just
as well consider a set of ` sub-Young diagrams counting partitions of K1, . . . ,K` and then
partitions of those diagrams. Then,

Z4d,SU(N)

inst,Ã`−1
(an,A,m;q) =

∑
{Kn}

qK
∑
~Yn

|~Yn|=Kn

∏̀
n=1

zvec

(
an, ~Yn

)
zbi

(
an,A, ~Yn; an+1,A, ~Yn+1;m

)
(4.43)

=

∞∑
K=0

qK
∑
~W

| ~W |=K

zvec

(
aL, ~W

)
zbi

(
aL, ~W ; aL, ~W ;m

)
(4.44)

= Z4d,SU(`N)
inst,N=2∗ (aL,m;q) (4.45)

where zvec is defined in (3.48) and

zbi

(
an, ~Yn; am, ~Ym;m

) N∏
A,B=1

∏
s∈Yn+1,A

(
Emn,AB +

ε+
2
−m

) ∏
s∈Yn,B

(
Enm,AB +

ε+
2

+m
)

(4.46)
This is because, for these specific values it is possible to rewrite, for example,

∏̀
n=1

zvec

(
aA, ~Yn

)
=

N∏
A,B=1

1∏
sn∈WA+nN

EAB (EAB + ε+)
= zvec

(
aL, ~W

)
, (4.47)

where ~W is a `N -coloured Young diagram given by ~W = {~Y1, . . . , ~Y`} = {Y1,1, . . . , Y`,N}.
A similar rewriting may be performed for the bifundamental contribution zbif. Note, for
this factorisation to work it is imperative that qA = q. Summing over the Young diagrams
one arrives at (4.44). Note that this may also be seen from the refined topological vertex
formalism [108]. The NN,` are the 5d lifts of the circular Ã`−1 quiver theories and may be
obtained by compactifying M-theory on a certain class of non-compact Calabi-Yai 3-folds
denoted XN,`. When `N = `′N ′ then XN,` ∼ XN ′,`′ can be related by flop transition and
thus Ztop

`,N (ω) = Ztop
`′,N ′(ω

′).

4.8 From Class S to Class Sk instantons at the orbifold point

In this section we show that we can write our partition function in a similar form as
predicted in [33]. We set ` = 2 for simplicity and take a decoupling limit such that we
open up the Ã1 × Ãk−1 in the ‘`’-direction such that our Class Sk theories are given by
orbifolds of N = 2 SCQCD. This limit is obtained by setting, say, q4d,1i = qi and q4d,2i = 0.
The resulting Class Sk theories were denoted as SCQCDk in [33]. If we further go to the
‘orbifold point’ (with respect to the Zk orbifold), we set all couplings equal qi := q/k for
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all i = 1, . . . , k

ZNinst,N = 1 SCQCDk(ani,A) =
∑
K≥0

qK
∑

K1+···+Kk=K

Z4d,N,2,k
{Ki} = ZkNinst,N = 2 SCQCD(ãn,A) .

(4.48)
Furthermore, at the orbifold point the instanton partition function for N = 1 SU(N)k

SCQCDk may be obtained from the orbifold mother N = 2 SCQCD SU(kN) theory by
making the replacement

aA → ãA = aAe
2πij/k , A = jA , (4.49)

where we have identified ã with the Zk orbifold projection of the vev’s of the SU(kN) vector
multiplet scalar Φ of the mother theory.

5 Conclusions

In this paper we computed the instanton partition function of 4d N = 1 theories in class
Sk and a 5d and 6d uplift of them, which correspond to 5d N = 1 and 6d (1, 0) theories
in the presence of a half-BPS defect. We further observed that class Sk instanton partition
functions can be obtained from the 4d N = 2 theories in class S and their 5d and 6d uplifts:
the 5d N = 1 necklace quiver NN,` and the 6d (1, 0) SCFT T N` (without the defect) via
imposing the ‘orbifold condition’ on the Coulomb moduli and mass parameters as

ZSk,SU(N)
inst (aA) = ZS,SU(kN)

inst (aA) with aA → aAe
2πij/k (5.1)

with A = jA being an SU(kN) fundamental index, A = 1, . . . , N an SU(N) index and
j = 1, . . . , k counting the number of the mirror images. It is worthwhile to remark that this
type of property also holds in the case of Z` orbifold daughters of SU(`N) N = 4 SYM
theory, which are the circular N = 2 quivers with gauge group SU(N)`. The partition
function of mass deformed N = 4 SYM, after imposing the orbifold condition on the
Coulomb moduli and mass parameters as above, gives the instanton partition function of
the circular N = 2 quiver at the orbifold point,

ZN=2SU(N)`

inst (aA) = ZN=2∗ SU(`N)
inst (aL) with aL = anA (5.2)

where L = nA = 1, . . . , `N , A = 1, . . . , N and n = 1, . . . `. This fact was also recently
observed in [108]. This type of simplicity for theories obtained via orbifold constuctions
has been long anticipated [45, 49, 109]8.

It is important to stress that our result for the class Sk instanton partition functions
match with the prediction of [33] coming from a calculation of a completely different type.
In [33] based on the anticipation of an AGT type correspondence for theories in class Sk,
and the comparison of the spectral curves of theories in class Sk with 2d CFT blocks, the 2d
CFT symmetry algebra and its representations that should underlie AGTk were identified.
These conformal blocks led to a prediction for the instanton partition functions of the 4d
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N N

N N

q4d,11 q4d,21

q4d,22q4d,12

q4d,2i = 0

N 2N

N 2N

q4d,11

q4d,12

q4d,12 = 0
N 3N

q4d,11

Figure 7: Left: Ã1 × Ã1 quiver. Middle: The quiver may opened up in the ` direction by
taking the decoupling limit q4d,2i = 0. The resulting theory is SCQCD2. Right: Taking a
further decoupling limit q4d,n2 = 0 yields N = 1 SQCD with Nf = 3N theory.

N = 1 SCFTs of class Sk which we precisely reproduce here. Further work in this direction
is definitely worthwhile.
N = 1 SQCD with Nf = 3N can be obtained from class Sk, from the Z2 × Z2 theory

depicted in Figure 7 in the limit where three of the coupling constants go to zero as shown
in the figure. It would be very interesting to learn how to isolate the instantons of the
N = 1 SQCD with Nf = 3N . This is one of the most important long term goals of this
endeavour. Naively going away from the orbifold point can be obtained by allowing the q

‘instanton fugacities’ in front of the K D1 brane partition functions to differ. However, it
is not any more clear what the precise physical interpretation of the a parameters is. We
are currently tying to understand this point [66], by backing up, deriving and studying the
SW curves away from the orbifold point, following the work of [111].

What is more, we would like to bring to the attention of the reader the fact that the
N = 1 instanton partition function we derived is a product of an orbifolded vector and a
bifundamental hyper multiplet contributions

Zinst =
∏

quiver

zorb
vec z

orb
bif (5.3)

directly arising from their N = 2 mother theory construction. An important question is if
the instanton partition function may be further reorganised, for the Sk theory, as

Zinst
?
=
∏

quiver

zN=1
vector z

N=1
chiral . (5.4)

At this stage it is unclear to us if this is even possible, however we believe that carefully
studying the SW curves away from the orbifold point [66] will be illuminating.

A comment concerning our strategy is in order. For the computation of the instanton
partition function we have decided, instead of computing the matrix model path integral of
the 0d theory that lives on the D(−1) branes, to compute the 2d SCI of the gauge theory
which lives on the K D1 branes for the following reasons. First of all, the SCI computation
is very well studied/understood and is rather more tractable than directly localising the

8See also [110] for similar simplicity for N = 1∗.
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matrix model. Secondly, along the way to the instanton partition function of the 4d theories
of interest we also computed the partition function of self-dual strings of a certain set of
6d (1, 0) theories in the presence of half-BPS surface operators, which is a very interesting
result in its own right. It would be very interesting to attempt localisation and compute the
2d partition function that we have computed, in analogy with the localisation computation
of the Lens space index [88, 104]. Another very interesting alternative to our strategy is
the Origami approach of Nekrasov [112].

Our strategy may be applied to several other interesting cases such as computing parti-
tion functions of (1, 0) theories in the presence of a surface operator lying along C ⊂ C2

ε1ε2 .
Some results along these lines already exist in the literature [56, 67, 113–115]. The parti-
tion function of the (1, 0) theory on T 2 in the presence of certain half-BPS surface operator
should be related to a certian orbifold of the M-string ellipic genus [54, 55], this is currently
being explored in [116]. Finally, one could also try to compute partition functions in class
Sk in the presence of defects via combining the two orbifold constructions.

In an orthogonal direction, and in connection with [33], it would be instructive to try to
repeat the method of [117], who, starting from the (2, 0) theory in 6d, were able to obtain
a direct derivation of the AGT correspondence, for the N = 1 theories of class Sk.

Finally, using our results and taking the large N limit, one could learn about the gravity
dual of N = 1 theories in class Sk following the work of [44, 45].
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A The supersymmetric index computation

A.1 Single letter indices

As the Witten index is independent of coupling constants we may compute the index in the
free field g → 0 limit. To compute the index we list the gauge covariant field content with
δ = H+− 1

2R = 0. Only the ‘letters’ with δ = 0 contribute to the index and their quantum
numbers are listed in Tables 7, 8 and 9. We denote also the decomposition of N = (4, 4)

multiplets into N = (0, 2) multiplets. Since the N = (0, 2) field strength multiplet is not
conformal extra care must be taken to take the free field limit. In two dimensions the field
strength multiplet Υ is nothing but a Fermi multiplet with auxillary D − iF+− . The R-
charge of Υ is fixed to unity everywhere along the flow, i.e. R [Υ] = J0 [Υ] = 1 . Therefore
the index of the off-diagonal vector multiplet with Cartan zero modes should be equal to
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N = (0, 2) Letter L0 J0 γ` γk Index

Y, Y †
Y 22̇ 0 0 +1 0 wz

Y 11̇ 0 0 −1 0 w−1z−1

λ
1̇1
+ 1

2
1/2 +1 −1 0 −w−1z−1

Ỹ †, Ỹ

Y 12̇ 0 0 −1 −1 w−1z

Y 21̇ 0 0 +1 +1 wz−1

λ
1̇2
+ 1

2
1/2 +1 +1 +1 −wz−1

ξ, ξ
† ξ

1̇1̇
− 1

2
0 0 0 0 −qz−2

ξ
2̇2̇
− 1

2
0 0 0 −1 −z2

Υ,Υ†
ξ

2̇1̇
− 1

2
−1/2 −1 0 −1 −q

ξ
1̇2̇
− 1

2
1/2 +1 0 −1 −q

∂−λ
1̇1
+ 1

2
1/2 +1 −1 −1 qw−1z−1

∂−λ
1̇2
+ 1

2
1/2 +1 +1 0 qwz−1

∂− 0 0 0 −1 q

Table 7: Gauge covariant field content with δ = 0 of the N = (4, 4) vector multiplet V .

that of a off-diagonal Fermi multiplet of R-charge RIR = RUV = 1:

Zvec(yI 6= yJ , q) = ∆(y)−1ZFermi(yI 6= yJ , q) = PE

− 2q

1− q
∑
I 6=J

yI
yJ

 (A.1)

where ∆(y) is the Vandermonde determinant accounting for the Cartan zero modes. The
single letter indices we given in (3.13), (3.14) and (3.13). We again list them here

iV (q, w, z, yI) =

[(
w + w−1

) (
z + qz−1

)
− qz−2 − z2 − 2q

1− q

]
K∑

I,J=1

yIy
−1
J , (A.2)

iH(q, v, w, z, yI) =

[
q

1
2

(
v + v−1

) (
z + z−1 − w−1 − w

)
1− q

]
K∑

I,J=1

yIy
−1
J , (A.3)

iU (q, w, z, xA, yI) =

[
q

1
2

(
z + z−1 − w−1 − w

)
1− q

]
K∑
I=1

N∑
A=1

(
yIx
−1
A + y−1

I xA
)
. (A.4)

Finally, we also list the Casimir energy:

ECasimir = Finite
q→1

[∑
M

∂iM
∂ log q

]
=
β2

5

iπ
2NK

(ε+
2

+m
)( iπ

β5
+
ε+
2
−m

)
. (A.5)

A.2 Orbifolded single letter indices

The single letters for the Γ projected multiplets is given by enumerating all letters in Tables
7, 8 and 9 while also inserting fugacities for the Γ action embedded in the global and gauge
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N = (0, 2) Letter L0 J0 γ` γk Index

X,X†
X11̇ 0 0 0 0 q

1
2 v−1z−1

X22̇ 0 0 0 0 q−
1
2 vz

ξ22̇
+ 1

2

1/2 +1 0 0 −q−
1
2 vz

X̃†, X̃

X21̇ 0 0 0 0 q
1
2 vz−1

X12̇ 0 0 0 0 q−
1
2 v−1z

ξ12̇
+ 1

2

1/2 +1 0 0 −q−
1
2 v−1z

λ, λ†
λ11
− 1

2

0 0 −1 −1 −q
1
2 v−1w−1

λ22
− 1

2

0 0 +1 0 −q
1
2 vw

λ̃†, λ̃
λ12
− 1

2

0 0 +1 0 −q
1
2 v−1w

λ21
− 1

2

0 0 −1 0 −q
1
2 vw−1

∂−ξ
22̇
+ 1

2

1/2 +1 0 −1 q
1
2 vz

∂−ξ
12̇
+ 1

2

1/2 +1 0 −1 q
1
2 v−1z

∂− 0 0 0 −1 q

Table 8: Gauge covariant field content with δ = 0 of the N = (4, 4) hypermultiplet H.

N = (0, 2) Letter L0 J0 γ` γk Index

φ, φ†
φ1̇ 0 0 0 0 q

1
2 z−1

φ†
1̇

0 0 0 0 q−
1
2 z

χ†
+ 1

2
1̇

1/2 +1 0 0 −q−
1
2 z

φ̃†, φ

φ†
2̇

0 0 0 0 q
1
2 z−1

φ2̇ 0 0 0 0 q−
1
2 z

χ2̇
+ 1

2

1/2 +1 0 0 −q−
1
2 z

ψ, ψ†
ψ1
− 1

2

0 0 −1 −1 −q
1
2w−1

ψ†− 1
2

1
0 0 1 0 −q

1
2w

ψ̃†, ψ̃
−ψ†− 1

2
2

0 0 −1 −1 −q
1
2w−1

ψ2
− 1

2

0 0 1 0 −q
1
2w

∂−χ
†
+ 1

2
1̇

1/2 +1 0 −1 q
1
2 z

∂−χ
2̇
+ 1

2

1/2 +1 0 −1 q
1
2 z

∂− 0 0 0 −1 q

Table 9: Gauge covariant field content with δ = 0 of the N = (4, 4) hypermultiplet U .

symmetries. Recall that

γ` := 2JRL = J710 − J89 , γk := J56 + JRL − JRR = J56 − J89 . (A.6)
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The projected single letters are thus given by

iΓV (q, w, z, yni,I) =
1

`k

∑
ε∈Z`
εk∈Zk

[(
ε`w + ε−1

` ε−1
k w−1

) (
z + qz−1

)
− qz−2 − ε−1

k z2 − ε−1
k 2q

]

×
∑
r≥0

qrε−rk

∑̀
n,i

k∑
m,j

Kni∑
I=1

Kmj∑
I=1

εn−m` εi−jk yni,Iy
−1
mj,J ,

(A.7)

iΓH(q, v, w, z, yni,I) =
1

`k

∑
ε∈Z`
εk∈Zk

[
q

1
2
(
v + v−1

) (
z−1 + ε−1

k z − ε−1
` ε−1

k w−1 − ε`w
)]

×
∑
r≥0

qrε−rk

∑̀
n,m

k∑
i,i

Kni∑
I=1

Kmj∑
I=1

εn−m` εi−jk yni,Iy
−1
jm,J ,

(A.8)

iΓU (q, w, z, xni,A, yni,I) =
1

`k

∑
ε∈Z`
εk∈Zk

[
q

1
2
(
ε−1
k z + z−1 − ε−1

` ε−1
k w−1 − ε`w

)]∑
n≥0

qnε−nk

×
∑̀
n,m

k∑
i,j

N∑
A=1

εn−m` εi−jk

Kni∑
I=1

yni,Ix
−1
mj,A +

Kmj∑
I=1

y−1
mj,Ixni,A

 .

(A.9)
We now detail how to evaluate the sums over conformal descendants and over the orbifold
group. Firstly, to evaluate the sums over conformal descendants we write to r := Lij+r̃k ≥ 0

with Lij defined in (4.19). This enables one to rewrite, for any fixed value 1 ≤ j ≤ k, to
split the sum ∑

r≥0

qrε−rk =
k∑
i=1

qLijε
−Lij
k

∑
r̃≥0

qr̃k =
k∑
i=1

qLijε
−Lij
k

1− qk
, (A.10)

recall that εkk = 1. After this rewriting the sums over both Z`,Zk may be simply carried
out and is essentially equivalent to demanding that the exponents of ε`, εk vanish modulo
`, k in each term. Hence we have after, rearranging and applying the identity (4.20),

iΓV (q, w, z, yni,I) =

∑̀
n=1

k∑
i,j=1

1

1− qk

− Kni∑
I=1

Knj∑
J=1

(
z−2qLij+1yni,Iy

−1
nj,J + z2qk−Lij−1y−1

ni,Iynj,J

)

+

Kni∑
I=1

K(n+1)j∑
J=1

(
wqLijyni,Iy

−1
(n+1)j,J + w−1qk−Lij−1y−1

ni,Iy(n+1)j,J

) (
z + qz−1

)
−
Kni∑
I=1

Knj∑
J=1

(
qLijyni,Iy

−1
nj,J +

(
qk−Lij − (1− qk)δLni,0

)
y−1
ni,Iynj,J

) ,

(A.11)
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iΓH (q, v, w, z, yni,I) =

∑̀
n=1

k∑
i,j=1

q
1
2

(
v + v−1

)
1− qk

Kni∑
I=1

Knj∑
J=1

(
z−1qLijyni,Iy

−1
nj,J + zqk−Lij−1y−1

ni,Iynj,J

)

−
Kni∑
I=1

K(n+1)j∑
J=1

(
wqLijyni,Iy

−1
(n+1)j,J + w−1qk−Lij−1y−1

ni,Iy(n+1)j,J

) ,
(A.12)

iΓU (q, w, z, xni,A, yni,I) =
∑̀
n=1

k∑
i,j=1

N∑
A=1

q
1
2

1− qkz−1qLij

Kni∑
I=1

yni,Ix
−1
nj,A +

Knj∑
I=1

y−1
nj,Ixni,A

+ zqk−Lij−1

Kni∑
I=1

y−1
ni,Ixnj,A +

Knj∑
I=1

ynj,Ix
−1
ni,A


− wqLij

Kni∑
I=1

yni,Ix
−1
(n+1)j,A +

K(n+1)j∑
I=1

y−1
(n+1)j,Ixni,A


−w−1qk−Lij−1

Kni∑
I=1

y−1
ni,Ix(n+1)j,A +

K(n+1)j∑
I=1

y(n+1)j,Ix
−1
ni,A

 .
(A.13)

In this form the plethystics may be easily performed. For the sake of completeness we also
list the contribution from the Casimir energy (3.18)

ECasimir =
kβ2

5

iπ

(
2NkK

(ε+
2

+m
)( iπ

β5
+
ε+
2
−m

))
+
kβ2

5

π2

∑̀
n=1

kN∑
A=1

Kn∑
I=1

un,I (ãn+1,A + ãn−1,A − 2ãn,A)

+
kβ2

5

π2

∑̀
n=1

kN∑
A=1

Kn

(
2ã2

n,A − ã2
n−1,A − ã2

n+1,A + 2mãn+1,A − 2mãn−1,A
)

(A.14)

where we also made the gauge transformation and redefinition (4.21) and used the defini-
tions (4.32).

B 4d & 5d contour integral representations

In this appendix we present the contour integral representations for the partition functions
for the 5d and 4d theories both in the precense of the orbifold and without. These may
be obtained by applying the limit directly to the respective 6d contour integral expression.
We follow mostly the prescription presented in [118]. We will firstly take the 5d β6 → 0

(q → 1) limit.
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B.1 5d limit of the unorbifolded contour integral

Using the identifications (3.34) and setting yI = q
β5uI
iπ we have that

lim
q→1

∏
I 6=J

(
1− yI

yJ

)
ZV =

∏
I 6=J

sinhβ5 (uIJ)

K∏
I,J=1

sinhβ5 (uIJ − ε+)

sinhβ5

(
uIJ − ε+

2 −m
)

sinhβ5

(
uIJ + ε+

2 −m
) ,

(B.1)

lim
q→1
ZH =

K∏
I,J=1

sinhβ5

(
uIJ + ε−

2 +m
)

sinhβ5

(
uIJ − ε−

2 +m
)

sinhβ5 (uIJ + ε1) sinhβ5 (uIJ + ε2)
, (B.2)

lim
q→1
ZU =

K∏
I=1

N∏
A=1

sinhβ5 (uI − aA −m) sinhβ5 (uI − aA +m)

sinhβ5

(
uI − aA − ε+

2

)
sinhβ5

(
uI − aA + ε+

2

) , (B.3)

where uIJ := uI − uJ . By definition

lim
q→1
Z(0)(q, v, w, z, xA, yI) = 1 . (B.4)

Hence, all that remains is to perform the limit on the integration over the maximal torus
of U(K):

lim
q→1

∮
T [U(K)]

K∏
I=1

dyI
2πiyI

= lim
β6→0

(2τ)K
∫ iπ

2τ

− iπ
2τ

K∏
I=1

duI
2πiβ5

=

∫ +∞

−∞

K∏
I=1

duI
2πiβ5

. (B.5)

Putting all of the above ingredients together we write

Z5d,N
K := lim

q→1
Z6d,N
K (B.6)

=
∑
K≥0

1

K!

∫ K∏
I=1

duI
2πiβ5

K∏
I=1

N∏
A=1

sinhβ5 (uI − aA −m) sinhβ5 (uI − aA +m)

sinhβ5

(
uI − aA − ε+

2

)
sinhβ5

(
uI − aA + ε+

2

) ∏
I 6=J

sinhβ5 (uIJ)

×
K∏

I,J=1

sinhβ5 (uIJ − ε+) sinhβ5

(
uIJ + ε−

2 +m
)

sinhβ5

(
uIJ − ε−

2 +m
)

sinhβ5

(
uIJ − ε+

2 −m
)

sinhβ5

(
uIJ + ε+

2 −m
)

sinhβ5 (uIJ + ε1) sinhβ5 (uIJ + ε2)
.

(B.7)

B.2 4d limit of the unorbifolded contour integral

It is then a straightforward exercise to take the 4d limit β5 → 0. We have

Z4d,N
K := lim

β5→0
Z5d,N
K (B.8)

=
∑
K≥0

1

K!

∫ K∏
I=1

duI
2πi

K∏
I=1

N∏
A=1

(uI − aA −m) (uI − aA +m)(
uI − aA − ε+

2

) (
uI − aA + ε+

2

)
×
∏
I 6=J

uIJ

K∏
I,J=1

(uIJ − ε+)
(
uIJ − ε−

2 −m
) (
uIJ + ε−

2 −m
)(

uIJ −m− ε+
2

) (
uIJ +m− ε+

2

)
(uIJ − ε1) (uIJ − ε2)

.

(B.9)
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B.3 5d limit of the orbifolded contour integral

Taking this limit is largely the same procedure as for the ` = k = 1 case however we instead
use the slightly different set of variables (4.32). We are again interested in the q → 1 limit
of the partition function (4.25). Setting yi,I = q

kuiI
iπ we have

lim
q→1
Z6d,N,`,k
{Kij} := Z5d,N,`,k

{Kij} (B.10)

=
∏̀
i=1

[
1∏k

j=1Kij !

∫ Ki∏
I=1

dui,I
2πiβ5

∏
I6=J

sinhβ5 (ui,I − ui,J )

×
Ki∏
I,J=1

sinhβ5 (ui,I − ui,J − ε+)

sinhβ5 (ui,I − ui,J + ε2) sinhβ5 (ui,I − ui,J + ε1)

×
Ki∏
I=1

Ki+1∏
J=1

sinhβ5

(
ui,I − ui+1,J +m+ ε−

2

)
sinhβ5

(
ui,I − ui+1,J +m− ε−

2

)
sinhβ5

(
ui,I − ui+1,J + ε+

2 +m
)

sinhβ5

(
ui,I − ui+1,J − ε+

2 +m
)

×
kN∏
A=1

Ki∏
I=1

sinhβ5 (ui,I − ãi+1,A +m) sinhβ5 (ui,I − ãi−1,A −m)

sinhβ5

(
ui,I − ãi,A − ε+

2

)
sinhβ5

(
ui,I − ãi,A + ε+

2

) ]
.

(B.11)

B.4 4d limit of the orbifolded contour integral

As before it is straightforward to take the 4d limit β5 → 0.

Z4d,N,`,k
{Kij} := lim

β5→0
Z5d,N,`,k
{Kij} (B.12)

=
∏̀
i=1

[
1∏k

j=1Kij !

∫ Ki∏
I=1

dui,I
2πi

∏
I6=J

(ui,I − ui,J )

Ki∏
I,J=1

(ui,I − ui,J − ε+)

(ui,I − ui,J + ε2) (ui,I − ui,J + ε1)

×
Ki∏
I=1

Ki+1∏
J=1

(
ui,I − ui+1,J +m+ ε−

2

) (
ui,I − ui+1,J +m− ε−

2

)(
ui,I − ui+1,J + ε+

2 +m
) (
ui,I − ui+1,J − ε+

2 +m
)

×
kN∏
A=1

Ki∏
I=1

(ui,I − ãi+1,A +m) (ui,I − ãi−1,A −m)(
ui,I − ãi,A − ε+

2

) (
ui,I − ãi,A + ε+

2

) ]
.

(B.13)
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