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The hadronic contribution to the eight forward amplitudes of light-by-light scattering
(γ∗γ∗ → γ∗γ∗) is computed in lattice QCD. Via dispersive sum rules, the amplitudes are
compared to a model of the γ∗γ∗ → hadrons cross sections in which the fusion process is
described by hadronic resonances. Our results thus provide an important test for the model
estimates of hadronic light-by-light scattering in the anomalous magnetic moment of the
muon, aHLbL

µ . Using simple parametrizations of the resonance M → γ∗γ∗ transition form
factors, we determine the corresponding monopole and dipole masses by performing a global
fit to all eight amplitudes. Together with a previous dedicated calculation of the π0 → γ∗γ∗

transition form factor, our calculation provides valuable information for phenomenological
estimates of aHLbL

µ . The presented calculations are performed in two-flavor QCD with pion
masses extending down to 190 MeV at two different lattice spacings. In addition to the fully
connected Wick contractions, on two lattice ensembles we also compute the (2+2) discon-
nected class of diagrams, and find that their overall size is compatible with a parameter-free,
large-N inspired prediction, where N is the number of colors. Motivated by this observation,
we estimate in the same way the disconnected contribution to aHLbL

µ .
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I. INTRODUCTION

The non-vanishing probability of two photons scattering off each other is a striking prediction
of quantum electrodynamics (QED) [1, 2]. The smallness of the cross section has so far prohibited
a direct experimental observation, although evidence for the phenomenon has recently been
found by the ATLAS experiment in relativistic heavy-ion collisions [3]. Equally interesting is the
scattering of spacelike virtual photons, γ∗γ∗ → γ∗γ∗. While the contributions of virtual leptons
are calculable in QED perturbatively, the hadronic contributions require a nonperturbative
approach. When the photons are real or spacelike, dispersive sum rules can be used to express
the forward γ∗γ∗ scattering amplitudes in terms of experimentally more accessible γ∗γ∗-fusion
cross sections [4–7]. The hadronic contributions to the γ∗γ∗ → γ∗γ∗ amplitudes can also be
computed ab initio using lattice QCD [8].

One very timely application of hadronic light-by-light (HLbL) scattering is the anomalous
magnetic moment of the muon, aµ = 1

2(g − 2)µ. The current discrepancy between the direct
measurement of aµ and the Standard Model prediction amounts to about 3.6 standard devia-
tions [9]. While the current theory and experimental errors are comparable in size, two new
(g − 2)µ experiments [10, 11] in preparation at Fermilab and J-PARC aim at reducing the ex-
perimental error by a factor of four. The largest sources of theory error are contributions from
the hadronic vacuum polarization (HVP) and from HLbL scattering. The latter is expected
to dominate in the future in view of the dedicated measurements at e+e− colliders ever better
constraining the former. Although an active area of research, the experimental data needed for
the recently proposed data-driven dispersive approaches to HLBL [12–16] are harder to obtain,
and lattice QCD calculations are in particularly high demand.

Lattice QCD calculations of hadron structure have been steadily advancing in recent years.
Several collaborations calculate hadronic observables directly at physical values of the quark
masses. At least two collaborations are addressing the HLbL contribution to (g − 2)µ on the
lattice [8, 17–22]. Although the calculation poses serious challenges due to the complexity of
the four-point function and the long-range nature of the dominant contribution, as a spacelike
quantity it is well suited for a first-principles treatment directly in the Euclidean theory. A
second role of lattice QCD is to provide the necessary hadronic input for the model and disper-
sive approaches to aHLbL

µ . Model calculations (see e.g. [23] for a recent overview) consistently
suggest that the contribution of the pseudoscalar mesons (π0, η, η′) is dominant, and therefore
determining their respective transition form factors is of primary importance. A first calculation
of the π0 → γ∗γ∗ transition form factor in the range of photon virtualities relevant to (g − 2)µ
has been carried out on the lattice [24]. An extension of this calculation to the η, η′ mesons is
possible, though more demanding, due to the appearance of disconnected Wick-contraction dia-
grams. Computing the spectrum and two-photon coupling of the scalar, axial-vector and tensor
mesons is qualitatively more complicated in lattice QCD, since these states are resonances and
require a dedicated treatment.

In many ways, the light-by-light scattering amplitudes are the more accessible observable in
lattice calculations, because they involve spacelike photons that can be treated directly in the
Euclidean theory. The lattice calculation of the cross section γ∗γ∗ → ππ is for instance more
complex than calculating the cross section γ∗γ∗ → γ∗γ∗ for spacelike photons. In experiments,
the weakness of the electromagnetic coupling would make such a measurement impractical, but
in lattice QCD the factor e4 merely multiplies a four-point correlation function at the end of
the calculation.

In this article, we compute the HLbL scattering amplitude for spacelike photons in lattice
QCD. Being parametrized by functions of six Lorentz invariants, it is a complicated object. We
focus on the forward amplitudes because they are simpler functions of three invariants and,
using the optical theorem, they are related to γ∗γ∗ → hadrons cross sections. Our objectives
are:

(i) Provide a stringent test that the light-by-light amplitude for spacelike photons is correctly
described by the type of hadronic model used so far to estimate aHLbL

µ . The model includes
the exchange of pseudoscalar, scalar, axial-vector and tensor mesons.
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(ii) Provide information on their two-photon transition form factors via global fits.

(iii) Compare the transition form factors to phenomenological determinations based on light-
by-light sum rules.

In [8], we laid out the method and computed the forward amplitude sensitive to the total trans-
verse γ∗γ∗ cross section, MTT, via a dispersive sum rule. Here we extend the comparison
between lattice data and phenomenological parametrizations of the γ∗γ∗ → hadrons cross sec-
tions to encompass all eight forward amplitudes. This more extensive analysis allows us to place
much stronger constraints on the size of the contributions of different resonances, because they
contribute to different amplitudes with different weight factors, often even with opposite signs.

Our lattice calculation is performed in QCD with two flavors of light quarks; it involves pion
masses down to 190 MeV and two lattice spacings. While a fully realistic lattice calculation
would have to include at least a dynamical strange quark, the present calculation does provide a
suitable test of hadronic models via dispersive sum rules, since at the required level of precision
it is fairly straightforward to adapt these models to QCD without the strange quark, as discussed
in section V.

Here we have computed the fully connected and the dominant disconnected Wick-contraction
diagrams. We discuss what these classes of diagrams correspond to in terms of the quantum
numbers of the exchanged resonances. The large-N inspired approximation that a quark loop
containing a single, vector-current insertion gives a negligible contribution, corresponds, in two-
flavor QCD, to including only isovector resonances, enhanced by a factor of 34/9. This interpre-
tation of the fully connected class of diagrams was first pointed out in [25, 26], mainly concerning
the pseudoscalar sector; see also the arguments presented in [27]. We rederive the result in detail
in the SU(2) and in the SU(3) flavor symmetric theory under slightly weaker assumptions; see
section III B.

The paper is organized as follows. We begin by introducing the theoretical background for
light-by-light scattering in section II. We then describe the lattice method for computing the
hadronic light-by-light amplitude, including the analytic continuation and the numerical method
to obtain the fully connected and the (2+2) disconnected four-point function (section III).
Section IV presents our numerical results in two-flavor QCD, while some additional material is
provided in appendix B. After introducing the details of the hadronic model for the γ∗γ∗ →
hadrons cross sections in section V and appendix A, we perform fits to the lattice data in
section VI. We compare the results for the transition form factors to existing phenomenological
estimates. In section VII, we discuss our results on the leading disconnected diagrams to the
HLbL amplitude and present what results would have to be obtained in lattice QCD for the
connected and the leading disconnected diagram contributions to aHLbL

µ in order to confirm the
state-of-the-art model estimate. We conclude in section VIII.

II. FORWARD LIGHT-BY-LIGHT SCATTERING AND SUM RULES

In order to establish our notation, we start by recalling the dispersive sum rules for the
scattering of spacelike photons [4, 5]. Just as for real photons [28], they are based on unitarity
and analyticity of the forward scattering amplitude. More specifically, the optical theorem
allows one to relate the absorptive part of the γ∗(λ1, q1)γ∗(λ2, q2)→ γ∗(λ′1, q1)γ∗(λ′2, q2) forward
scattering amplitude to fusion cross sections for the process γ∗γ∗ → X, where X stands for any
C-parity even final state. The relevant kinematic variables are the photon virtualities, q2

i = −Q2
i ,

(i = 1, 2), and the crossing-symmetric variable ν = q1 ·q2, which is related to the squared center-
of-mass energy by s = 2ν − Q2

1 − Q2
2. Denoting the absorptive part of the helicity amplitude

Mλ′1λ
′
2,λ1λ2

by

Wλ′1λ
′
2,λ1λ2

= Im
(
Mλ′1λ

′
2,λ1λ2

)
, (1)



5

the optical theorem yields (with a factor of one half because both photons are identical, and
dΓX is the phase space for a final state X)

Wλ′1λ
′
2,λ1λ2

=
1

2

∫
dΓX (2π)4δ4(q1 + q2 − pX)Mλ1λ2(q1, q2; pX)M∗λ′1λ′2(q1, q2; pX) , (2)

where Mλ1λ2(q1, q2; pX) denotes the invariant helicity amplitude for the fusion process

γ∗(λ1, q1) + γ∗(λ2, q2)→ X(pX) . (3)

The helicity amplitudes are related to the Feynman amplitudes by

Mλ′1λ
′
2λ1λ2

(q1, q2) =Mµνρσ(q1, q2) ε∗µ(λ′1, q1) ε∗ν(λ′2, q2) ερ(λ1, q1) εσ(λ2, q2) . (4)

Using parity and time-reversal invariance, we are left with only eight independent amplitudes
Mλ′1λ

′
2,λ1λ2

[29]. Forming linear combinations, we can consider eight amplitudes which are either
even (first six amplitudes) or odd (last two amplitudes) with respect to the variable ν:

MTT =
1

2
(M++,++ +M+−,+−) , Mτ

TT =M++,−− ,

MTL =M+0,+0 , MLT =M0+,0+ , Mτ
TL =

1

2
(M++,00 +M0+,−0) , MLL =M00,00 ,

Ma
TT =

1

2
(M++,++ −M+−,+−) , Ma

TL =
1

2
(M++,00 −M0+,−0) .

In terms of the Feynman amplitudes, the eight independent helicity amplitudes are then given
by [29]1

MTT =
1

4
Rµµ

′
Rνν

′Mµ′ν′µν , (5a)

Mτ
TT =

1

4

[
RµνRµ

′ν′ +Rµν
′
Rµ
′ν −Rµµ′Rνν′

]
Mµ′ν′µν , (5b)

Ma
TT =

1

4

[
RµνRµ

′ν′ −Rµν′Rµ′ν
]
Mµ′ν′µν , (5c)

MTL =
1

2
Rµµ

′
kν2k

ν′
2 Mµ′ν′µν , (5d)

MLT =
1

2
kµ1k

µ′
1 R

νν′Mµ′ν′µν , (5e)

MLL = kµ1k
µ′
1 k

ν
2k

ν′
2 Mµ′ν′µν , (5f)

Ma
TL = −1

8

[
Rµνkµ

′
1 k

ν′
2 +Rµν

′
kµ
′

1 k
ν
2 + (µν ↔ µ′ν ′)

]
Mµ′ν′µν , (5g)

Mτ
TL = −1

8

[
Rµνkµ

′
1 k

ν′
2 −Rµν

′
kµ
′

1 k
ν
2 + (µν ↔ µ′ν ′)

]
Mµ′ν′µν , (5h)

where the projector Rµν onto the subspace orthogonal to q1 and q2, and the vectors k1 and k2

are defined in Appendix A. The eight helicity amplitudes are functions of (ν,Q2
1, Q

2
2). Then, for

fixed photon virtualities Q2
1 and Q2

2, the sum rules can be generically written as [5]

Meven(ν) =
2

π

∫ ∞
ν0

dν ′
ν ′

ν ′ 2 − ν2 − iεWeven(ν ′) , (6a)

Modd(ν) =
2ν

π

∫ ∞
ν0

dν ′
1

ν ′ 2 − ν2 − iεWodd(ν ′) , (6b)

assuming the convergence of the integral. Here ν0 ≡ 1
2(Q2

1 + Q2
2). If the integral does not

converge, it is necessary to introduce a subtraction

Meven(ν) = Meven(0) +
2ν2

π

∫ ∞
ν0

dν ′
1

ν ′(ν ′ 2 − ν2 − iε)Weven(ν ′) , (7a)

Modd(ν) = νM′odd(0) +
2ν3

π

∫ ∞
ν0

dν ′
1

ν ′2(ν ′ 2 − ν2 − iε)Wodd(ν ′) . (7b)

1 Our definitions of Ma
TL and Mτ

TL are swapped relative to [29], so that our Ma
TL is odd in ν and our Mτ

TL is
even.
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Finally, the absorptive parts Wλ′1λ
′
2,λ1λ2

of those eight independent amplitudes, given by Eq. (2),
are expressed in terms of the γ∗γ∗ → X fusion cross sections [30],

W++,++ +W+−,+− ≡ 2
√
X (σ0 + σ2) = 2

√
X
(
σ‖ + σ⊥

)
≡ 4
√
X σTT , (8a)

W++,−− ≡ 2
√
X
(
σ‖ − σ⊥

)
≡ 2
√
X τTT , (8b)

W++,++ −W+−,+− ≡ 2
√
X (σ0 − σ2) ≡ 4

√
X τaTT , (8c)

W+0,+0 ≡ 2
√
X σTL , (8d)

W0+,0+ ≡ 2
√
X σLT , (8e)

W++,00 +W0+,−0 ≡ 4
√
X τTL , (8f)

W++,00 −W0+,−0 ≡ 4
√
X τaTL , (8g)

W00,00 ≡ 2
√
X σLL , (8h)

where X = ν2 − Q2
1Q

2
2 is the virtual-photon flux factor. Here, L and T refer to longitudinal

and transverse polarizations respectively. The cross sections σ are positive, but the interference
terms τ are not sign-definite. The relevant cross sections for resonance contributions in each
channel are explicitly given in Appendix A in terms of transition form factors.

Thus, using Eqs. (6) and (8), we obtain the following dispersive sum rules, valid for fixed
photon virtualities Q2

1, Q
2
2 > 0 [5]:

MTT =
1

2

(
M++,++(ν) +M+−,+−(ν)

)
=

4ν2

π

∫ ∞
ν0

dν ′
√
X ′σTT (ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9a)

Mτ
TT =M++,−−(ν) =

4ν2

π

∫ ∞
ν0

dν ′
√
X ′τTT (ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9b)

Ma
TT =

1

2

(
M++,++(ν)−M+−,+−(ν)

)
=

4ν3

π

∫ ∞
ν0

dν ′
√
X ′ τaTT (ν ′)

ν ′ 2(ν ′ 2 − ν2 − iε) , (9c)

MTL =M+0,+0(ν) =
4ν2

π

∫ ∞
ν0

dν ′
√
X ′σTL(ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9d)

MLT =M0+,0+(ν) =
4ν2

π

∫ ∞
ν0

dν ′
√
X ′σLT (ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9e)

Mτ
TL =

1

2

(
M++,00(ν) +M0+,−0(ν)

)
=

4ν2

π

∫ ∞
ν0

dν ′
√
X ′ τTL(ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9f)

Ma
TL =

1

2

(
M++,00(ν)−M0+,−0(ν)

)
=

4ν3

π

∫ ∞
ν0

dν ′
√
X ′ τaTL(ν ′)

ν ′ 2(ν ′ 2 − ν2 − iε) , (9g)

MLL =M00,00(ν) =
4ν2

π

∫ ∞
ν0

dν ′
√
X ′ σLL(ν ′)

ν ′(ν ′ 2 − ν2 − iε) , (9h)

where we use the notation M(ν) ≡ M(ν) −M(0) or M(ν) ≡ M(ν) − νM′(0) respectively
for the even and odd amplitudes. We always consider the subtracted sum rules, even when
the unsubtracted version is well defined, since the subtraction has the effect of suppressing the
high-energy contributions. Evaluating the sum rules using phenomenological inputs on the two-
photon fusion processes, one can confront the results with the light-by-light forward amplitudes
computed on the lattice. In section V, we will present an empirical model for the description of
the two-photon fusion processes and subsequently, by comparing it with our lattice results, we
will be able to extract information about the γ∗γ∗ →M transition form factors. Before coming
to that, we describe the lattice QCD approach to calculating HLBL scattering amplitudes in
the following two sections.
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III. LATTICE QCD AND LIGHT-BY-LIGHT SCATTERING

A. The scattering amplitude in Euclidean field theory

The Feynman amplitudes can be obtained via the calculation of the following Euclidean
four-point correlation function2

ΠE
µνρσ(Q1, Q2) =

∑
X1,X2,X3

〈Jµ(X1)Jν(X2)Jρ(X3)Jσ(0)〉E eiQ1(X1−X3) eiQ2X2 , (10)

where Jµ(X) is the Euclidean electromagnetic vector current (J0 = j0, Jk = ijk) and Qi are

the Euclidean four-momenta (q0
i = −iQ0

i , ~qi = ~Qi). Indeed, using the Lehmann-Symanzik-
Zimmermann reduction formula in Minkowski spacetime, the relation of this Euclidean correlator
to the Feynman forward amplitudes in Minkowski spacetime is [8]

Mµνρσ(q1, q2) = e4in0ΠE
µνρσ(Q1, Q2) , (11)

where n0 is the number of temporal indices. Each of the eight helicity amplitudes can be written
as

M(q2
1, q

2
2, ν) = Tµνµ

′ν′(q1, q2)Mµνµ′ν′(q1, q2)

= e4 TEµνµ′ν′(Q1, Q2) ΠE
µνµ′ν′(Q1, Q2) ,

(12)

for some Minkowski tensor T , defined above through Eq. (5), and some Euclidean tensor TE

given by

TEµνµ′ν′(Q1, Q2) = in0Tµνµ
′ν′(q1, q2) . (13)

Thus, we define

REµν(Q1, Q2) = in0Rµν(q1, q2) = δµν−
1

X

{
(Q1·Q2) (Q1µQ2ν +Q1ν Q2µ)−Q2

1Q2µQ2ν−Q2
2Q1µQ1ν

}
.

(14)
The case of ki in Eq. (5) requires a bit more care, since their definitions contain

√
X and in

Euclidean spaceX = (Q1·Q2)2−Q2
1Q

2
2 ≤ 0. In the Minkowski center of mass frame, if q1 = (q0

1, ~q)
and q2 = (q0

2,−~q), then X = (q0
1 + q0

2)2~q 2 and we can evaluate the ordinary positive square root.
Performing the Wick rotation, q0

i → −iQ0
i , we get

√
X → −i(Q0

1 +Q0
2)|~q| = −i

√
−X. Therefore,

in Eq. (5), we perform the following replacements to obtain the amplitudes in Euclidean space:

Mµ′ν′,µν → e4ΠE
µ′ν′,µν(Q1, Q2) , (15a)

Rµν → REµν , (15b)

k1 → K1 ≡ i
√

Q2
1

−X

(
Q2 −

Q1 ·Q2

Q2
1

Q1

)
, (15c)

k2 → K2 ≡ i
√

Q2
2

−X

(
Q1 −

Q1 ·Q2

Q2
2

Q2

)
. (15d)

These satisfy K2
i = −1, Ki ·Qi = 0, REµνQiν = 0, REµαR

E
αν = REµν and REµµ = 2.

The largest value of |ν| that can be reached with Euclidean kinematics is limited by the
virtualities of the photons3, |ν| ≤ (Q2

1Q
2
2)1/2 ≤ 1

2(Q2
1 + Q2

2) ≡ ν0, while the nearest singularity
is the s-channel π0 pole located at νπ = 1

2(m2
π +Q2

1 +Q2
2).

2 We use capital letters to denote ‘Euclidean’ vectors, i.e. the metric in the scalar product of two such vectors is
understood to be Euclidean.

3 One might be able to extend the reach to |ν| = νπ with methods in the spirit of [31].
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Figure 1: The five classes of quark contractions for four-point functions. In this work, we compute the
leftmost, fully-connected set of contractions, as well as the (2+2) class of diagrams (second from the left).

1. Special case of (anti)parallel momenta

The tensors TE , resulting from Eq. (5) translated to Euclidean space using Eq. (15), are not
defined for collinear Q1 and Q2, since in that case X = 0. However, if we start with non-collinear
momenta and rotate Q2 toward being (anti)parallel with Q1, then each tensor has such a limit.
This limit depends on the initial direction of Q2; we will use the average over this direction to
define TE in the collinear limit.

We define the projector

Rµν = δµν −
Q1µQ1ν

Q2
1

, (16)

and find that REµν → Rµν − VµVν . Here V is a unit vector orthogonal to Q1, pointing in the

direction from which Q2 approached being collinear with Q1. Since K2 ·Q1 = i
√
−X/Q2

2 → 0,
in the collinear limit any contraction of TEµνµ′ν′ with Q1 will vanish. Thus, after averaging over

all V orthogonal to Q1, each TEµνµ′ν′ will be a linear combination of

Rµµ′Rνν′ , RµνRµ′ν′ , Rµν′Rµ′ν . (17)

We obtain the prefactors by contracting the indices in three different ways. For this, we will
make use of

K1 ·K2 =
Q1 ·Q2√
Q2

1Q
2
2

→ s ≡
{

1 Q1, Q2 parallel

−1 Q1, Q2 antiparallel
. (18)

Denoting by 〈. . .〉V the average over V , we find

〈REµµ′REνν′〉V =
2

5
Rµµ′Rνν′ +

1

15

(
RµνRµ′ν′ +Rµν′Rµ′ν

)
, (19a)

〈REµµ′K2νK2ν′〉V =
−4

15
Rµµ′Rνν′ +

1

15

(
RµνRµ′ν′ +Rµν′Rµ′ν

)
(19b)

= 〈K1µK1µ′R
E
νν′〉V , (19c)

〈K1µK1µ′K2νK2ν′〉V =
1

15

(
Rµµ′Rνν′ +RµνRµ′ν′ +Rµν′Rµ′ν

)
, (19d)

〈REµµ′K1νK2ν′〉V = −s 〈REµµ′K2νK2ν′〉V . (19e)

B. Flavor structure of the four-point function

In numerical lattice QCD calculations of n-point functions, the quark path integral is evalu-
ated analytically to yield a sum of contractions of quark propagators. For the four-point function
of vector currents, these fall into five distinct topologies, illustrated in Fig. 1.

The calculation of all Wick-contraction topologies is demanding. In many instances, dis-
connected diagram contributions have been found to make numerically small contributions to
hadronic matrix elements, though not always [32]. Quark loops generated by a single vector
current have been empirically found to be particularly suppressed (see for instance [24, 33–35]).
At short distances, perturbation theory provides an explanation for the suppression of this type
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of contribution, since it requires the exchange of at least three gluons [36]. On the other hand,
it is well known that the disconnected diagram is responsible for the difference between the pion
and the η′ mass in the pseudoscalar two-point function, and is therefore crucial at long distances.

The importance of the disconnected diagrams in the HLbL amplitude has been pointed out
in [25, 26], showing that the pion and η′ pole contributions would have the wrong weight factors
if only the connected diagrams were included. Here,

1. we use (a) flavor symmetry, either SU(2) or SU(3), and (b) the assumption that Wick-
contraction diagrams where a vector current appears as the only insertion in a quark loop,
thus producing a factor Tr{γµS(X,X)}, are negligible;

2. we then derive the weight factors of non-singlet and singlet mesons in the fully connected
and the (2+2) disconnected contribution to the HLbL amplitude;

3. we show that whenever the HLbL amplitude is dominated by the pole-exchange of an
isovector resonance, isospin symmetry induces relations between different Wick-diagram
topologies.

The main result is that under the assumptions stated under (1.), in the fully connected
diagrams the non-singlet meson poles over-contribute by a factor 34/9 (respectively a factor
3) in QCD with two (respectively three) degenerate flavors of quarks, while the singlet mesons
do not contribute. The (2+2) disconnected diagrams contain the singlet-meson contribution
and correct the fully connected diagram by compensating with (−25/9) (respectively −2) times
the non-singlet meson contribution. For QCD with a realistic quark spectrum, we expect the
relations between the classes of diagrams to lie between the quoted predictions.

The starting point is the observation, based on Fig. 1, that the Wick contractions contributing
to the HLbL amplitude can be written as (we drop the space-time arguments and indices of the
four-point amplitudes)

ΠHLbL =
∑
f

Q4
fΠ4

f +
∑
f1,f2

Q2
f1Q2

f2Π2+2
f1,f2

+
∑
f1,f2

Q3
f1Qf2Π3+1

f1,f2
(20)

+
∑

f1,f2,f3

Q2
f1Qf2Qf3Π2+1+1

f1,f2,f3
+

∑
f1,f2,f3,f4

Qf1Qf2Qf3Qf4Π1+1+1+1
f1,f2,f3,f4

.

In the case that the quark masses are all equal, one can drop the flavor indices, e.g. Π2+2
f1,f2

→
Π2+2. In particular, let Π be the four-point function of the ‘up’ current ūγµu. Since in that case∑

f Qnf = 1 ∀n, and because all quark lines carry the same quark mass, the ΠX
f are precisely

the Wick contractions appearing in Π (X = 4, 2 + 2, 3 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1), including
the normalization. On the other hand, the HLbL amplitude is expressed as Wick contractions
ΠX
f weighted by polynomials in the quark charges.

An important observation is that with two flavors of quarks, there are only three linearly
independent symmetric polynomials in Qu and Qd, for instance

(Q4
u +Q4

d), 2Q2
uQ2

d, QuQd(Q2
u +Q2

d). (21)

With three flavors, there are four such independent polynomials in (Qu,Qd,Qs), for instance

P1 ≡ (Q4
u +Q4

d +Q4
s), P2 ≡ (Q2

u +Q2
d +Q2

s)
2,

P3 ≡ (Q3
u +Q3

d +Q3
s)(Qu +Qd +Qs), P4 ≡ (Q2

u +Q2
d +Q2

s)(Qu +Qd +Qs)2,
(22)

while P5 ≡ (Qu +Qd +Qs)4 = 6P1 − 3P2 − 8P3 + 6P4.

1. The case of Nf = 2 QCD

We assume exact isospin SU(2) symmetry. The photon couples to the electromagnetic cur-
rent, whose isospin decomposition reads

Je.m.
µ = J1

µ + J0
µ, J1

µ =
Qu −Qd

2
(ūγµu− d̄γµd), J0

µ =
Qu +Qd

2
(ūγµu+ d̄γµd). (23)
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The upper index on the current indicates the isospin quantum number I = 0, 1.
There are both isoscalar and isovector resonances that couple to two photons. As is well

known, the coupling of an isovector resonance occurs only when one of the photons couples via
the isoscalar part, and one couples via the isovector part of the e.m. current4. Since the amplitude
for a neutral pion to couple to two photons vanishes if either both are isoscalar (Qu = Qd) or
both are isovector (Qu = −Qd), and the coupling must be quadratic in the charges, it must be
proportional to (Q2

u − Q2
d). Then the contributions to Π and ΠHLbL of an isovector resonance

M1 are related by

ΠHLbL,M1 = (Q2
u −Q2

d)
2 ΠM1 . (24)

Correspondingly, the dependence of the transition form factor of an isoscalar resonance on the
quark charges is such that it contains two independent terms,

FM0γ∗γ∗ = (Q2
u +Q2

d)FC + (Qu +Qd)2FD. (25)

The notation indicates that FD contains all the diagrams where at least one vector current
appears isolated in a quark loop. In view of the form (25) of the M0γγ vertex, the pole
contribution of an isoscalar meson has the dependence

ΠHLbL,M0
= (Q2

u +Q2
d)

2ΠA + (Qu +Qd)2(Q2
u +Q2

d)ΠB + (Qu +Qd)4ΠC . (26)

on the quark charges, where the contributions ΠB and ΠC are only non-vanishing if the dis-
connected diagrams involving at least one isolated vector current inserted in a quark loop are
non-vanishing. As discussed below, ΠB is O(1/N) and ΠC is O(1/N2) in the large-N power
counting.

By identifying the polynomials in Qu and Qd in Eqs. (24) and (20), we obtain three conditions
that relate the contributions of an isovector resonance to the various Wick contractions:

ΠM1
= Π4,M1

+ Π2+2,M1
+ Π3+1,M1

+ Π2+1+1,M1
+ Π1+1+1+1,M1

, (27)

−ΠM1
= Π2+2,M1

+ Π2+1+1,M1
+ 3 Π1+1+1+1,M1

, (28)

0 = Π3+1,M1
+ 2 Π2+1+1,M1

+ 4 Π1+1+1+1,M1
. (29)

Thus if for a specific kinematic regime one isovector resonance exchange dominates the HLbL
amplitude, it is sufficient to compute three of the five Wick-contraction classes. For instance,
Π1+1+1+1,M1

and Π2+1+1,M1
can be expressed in terms of the classes Π4,M1

, Π2+2,M1
and

Π3+1,M1
of diagrams. We also note the exact expression

Π4,M1
= 2(ΠM1

+ Π2+1+1,M1
+ 3Π1+1+1+1,M1

), (30)

for the fully connected class of diagrams.
Similarly, equating the expressions (26) and (20) yields the relations

ΠM0
= ΠA + ΠB + ΠC = Π4,M0

+ Π2+2,M0
+ Π3+1,M0

+ Π2+1+1,M0
+ Π1+1+1+1,M0

, (31)

ΠA + ΠB + 3ΠC = Π2+2,M0
+ Π2+1+1,M0

+ 3 Π1+1+1+1,M0
, (32)

2ΠB + 4ΠC = Π3+1,M0
+ 2 Π2+1+1,M0

+ 4 Π1+1+1+1,M0
. (33)

Eliminating Π2+2,M0
and Π3+1,M0

, we get

Π4,M0
= 2(−ΠB − 3ΠC + Π2+1+1,M0

+ 3Π1+1+1+1,M0
). (34)

4 That an isovector resonance cannot decay into two isovector photons is shown by the Wigner-Eckart theorem:

〈MI′′=1,m′′ |J1,m|V 1,m′〉 = C11(1,m′′;m,m′)〈M1||J1||V 1〉,

where CI,I′(I
′′,m′′;m,m′) is the Clebsch-Gordan coefficient for composing isospin I with isospin I ′ and ob-

taining isospin I ′′ and 〈π||J1||V 1〉 is the reduced matrix element. It so happens that C11(1, 0; 0, 0) = 0.
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2. Large-N expectations

In terms of large-N counting, where N is the number of colors, every additional disconnected
quark loop costs a factor 1/N . However it is worth looking more closely how this property
emerges. For instance, just keeping the leading class of diagrams Π4,M would not reproduce
the correct dependence on Qu and Qd for the exchange of a single meson, be it isoscalar or
isovector. Put in a different way, the relations (30) and (34) derived from isospin symmetry
relate contributions to diagrams that scale differently with N .

The resolution of this apparent contradiction is that, at large N , neutral mesons are expected
to come in degenerate pairs, one isoscalar, one isovector, due to the vanishing of the quark
annihilation diagrams. Only when the sum of the contributions of a pair is considered, the
large-N counting should apply. Here we only apply the large-N counting rule to the insertion
of a vector current. Considering the sum of the contributions of such a pair, we obtain from
(30–34) the relation

Π4,M0+M1
= 2

(
ΠM1 −ΠB − 3ΠC + Π2+1+1,M0+M1

+ 3Π1+1+1+1,M0+M1
)
. (35)

Large-N counting should apply at this point, and we expect to be able to neglect in first
approximation ΠB,ΠC (down by 1/N and 1/N2 respectively) and the terms Π2+1+1,M0+M1

and
Π1+1+1+1,M0+M1

, since they are expected to be down by 1/N2 and 1/N3 respectively relative
to Π4,M0+M1

. All neglected terms contain at least one isolated vector current in a quark loop.
In that approximation, the leading diagram classes are given by

Π4,M0+M1 ≈ 2ΠM1
, (36)

Π2+2,M0+M1 ≈ −ΠM1
+ ΠM0

. (37)

Thus, using Eqs (36) and (24) we obtain for the fully connected contribution in Eq. (20)

(Q4
u +Q4

d)Π
4,M0+M1 ≈ (Q4

u +Q4
d)2ΠM1

=
Q4
u +Q4

d

(Q2
u −Q2

d)
2
2ΠHLbL,M1

=
34

9
ΠHLbL,M1

, (38)

where we have included the physical charges of the u and d quarks in the last step. The (2+2)
disconnected diagrams complement the connected diagrams to yield the full contribution,

(Q2
u +Q2

d)
2Π2+2,M0+M1 ≈ −25

9
ΠHLbL,M1

+ ΠHLbL,M0
. (39)

The charge factors in Eqs. (38) and (39) agree with Refs. [25, 26].
The stronger large-N prediction, which however turns out not to be a good approximation

in QCD, is that isoscalar and isovector states in each symmetry channel (pseudoscalars, scalars,
tensors, etc.) compensate each other in the (2+2) disconnected diagrams, making the latter
1/N suppressed as compared to the fully connected diagrams. The channel where the degen-
eracy expected at large N is most badly broken is the pseudoscalar channel, since mη′ � mπ0 .
Therefore, we expect the Π2+2 class of diagrams to be dominated by the π0 and η′ contribu-
tions, since their contributions cancel each other to a far lesser extent than for other meson pairs
such as a2 and f2. For instance, the empirical ratio of the two-photon widths of a2 and f2 are
roughly as expected if one neglects disconnected diagrams (see Table II for the source of the
phenomenological values),

Γf2γγ
Γa2γγ

≈ (2.93± 0.40)keV

(1.00± 0.06)keV
= 2.93± 0.44 ≈ (Q2

u +Q2
d)

2

(Q2
u −Q2

d)
2

=
25

9
≈ 2.7778. (40)

On the other hand, using the phenomenological values [37, 38]

Γη′γγ = 4.35 keV, Γπ0γγ = 7.82 eV, (41)

and the fact that Γ ∝ m3
P |FPγ∗γ∗(0, 0)|2, we obtain

|Fη′γ∗γ∗(0, 0)|2
|Fπ0γ∗γ∗(0, 0)|2 ≈ 1.56 6= (Q2

u +Q2
d)

2

(Q2
u −Q2

d)
2
≈ 2.7778, (42)
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which does not agree well with the large-N expectation and the approximation of mstrange =∞
implicitly made here by using relations derived in Nf = 2 QCD. A further channel in which the
large-N expectations are not well fullfilled is the scalar sector; in particular, there does not seem
to be an isovector analogue of the f0(600) meson. However, it turns out that the scalars make
an overall small contribution to the light-by-light amplitudes.

3. The case of Nf = 3 QCD

Here we assume exact SU(3) flavor symmetry, mu = md = ms. Since in the previous
paragraphs we have treated the case of Nf = 2 QCD, corresponding to ms =∞, one may hope
that the real world lies somewhere in between these two idealized cases.

In nature, Qu = 2/3 and Qd = Qs = −1/3. Somewhat more generally, for Qu+Qd+Qs = 0,
the SU(3)f decomposition reads

Je.m.
µ = J3

µ + J8
µ, J3

µ =
Qu −Qd

2
(ūγµu− d̄γµd), J8

µ =
Qu +Qd

2
(ūγµu+ d̄γµd− 2s̄γµs).

(43)
It follows directly from Qu +Qd +Qs = 0 that no diagrams with a single vector current inside
a quark loop occurs in the HLbL amplitude: Π3,1, Π2+1+1 and Π1+1+1+1 do not contribute.
However it is useful to keep the charges generic to derive relations from flavor symmetry and
large-N arguments.

In the SU(3) symmetric theory, mesons come in octets and singlets5. Taking the pseudoscalar
sector as an example, the transition form factor of the neutral pion is given by (Q2

u − Q2
d)F8;

neglecting again the single vector current inside a quark loop, the η meson has the transition
form factor

√
1/3(Q2

u+Q2
d−2Q2

s)F8. Under the same assumption, the form factor of the η′ has
a charge dependence given by

√
2/3(Q2

u +Q2
d +Q2

s)F0. Only in the strict large-N limit would
we have F0 = F8.

Thus the pole contribution of a meson octet to the four-point function of the electromagnetic
current has the following dependence on the quark charges,

ΠHLbL,oct =
3

4

[
(Q2

u −Q2
d)

2 +
1

3
(Q2

u +Q2
d − 2Q2

s)
2
]
Πoct, (44)

where Πoct is the octet contribution to Π. The corresponding expression for the singlet meson
reads

ΠHLbL,sgl = (Q2
u +Q2

d +Q2
s)

2 Πsgl. (45)

Matching the expressions (44) and (20), we obtain the relations

3

2
Πoct = Π4,oct, (46)

−1

2
Πoct = Π2+2,oct. (47)

where we have consistently neglected the octet contribution to Π3+1, Π2+1+1 and Π1+1+1+1.
Under the corresponding assumption for the singlet contribution, we have

0 = Π4,sgl, (48)

Πsgl = Π2+2,sgl. (49)

Combining these equations, we finally have the following expressions for the fully connected and

5 Higher representations are allowed by symmetry, but do not seem to occur in QCD at low energies.
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the (2+2) disconnected class of diagrams,

(Q4
u +Q4

d +Q4
s)Π

4,oct+sgl ≈ P1 Π4,oct = P1 ·
3

2
Πoct =

P1

P1 − 1
3P2

ΠHLbL,oct

= 3ΠHLbL,oct, (50)

(Q2
u +Q2

d +Q2
s)

2Π2+2,oct+sgl ≈ − P2

3(P1 − 1
3P2)

ΠHLbL,oct + ΠHLbL,sgl

= −2ΠHLbL,oct + ΠHLbL,sgl. (51)

In the last of these equations we have set Qu = 2/3, Qd = Qs = −1/3.

C. Lattice calculation of the fully-connected vector four-point function

We now describe our method to calculate the six contractions that have fully connected quark
lines (leftmost topology in Fig. 1), whereas the dominant class of disconnected diagrams (second
diagram topology from the left in Fig. 1) is discussed in the next section.

We discretize the Euclidean four-point function using the local and conserved currents, as
well as a contact operator,

J lµ(X) = ZV ψ̄(X)γµQψ(X), (52a)

Jcµ(X) =
1

2

[
ψ̄(X + aµ̂)(γµ + 1)U †µ(X)Qψ(X) + ψ̄(X)(γµ − 1)Uµ(X)Qψ(X + aµ̂)

]
, (52b)

Tµ(X) =
1

2

[
ψ̄(X + aµ̂)(γµ + 1)U †µ(X)Qψ(X)− ψ̄(X)(γµ − 1)Uµ(X)Qψ(X + aµ̂)

]
, (52c)

where ψ = (u, d)T is the doublet of light quarks, Q = diag(2
3 ,−1

3) is the quark charge matrix,
Uµ(X) are the gauge links, and ZV is the renormalization factor for the local current. We use
one local and three conserved currents. In position space, the lattice four-point function is given
by

Πpos
µ1µ2µ3µ4(X1, X2, X3, 0) =

〈
J lµ4(0)

[
Jcµ1(X1)Jcµ2(X2)Jcµ3(X3) + δµ1µ2δX1X2Tµ1(X1)Jcµ3(X3)

+ δµ1µ3δX1X3Tµ3(X3)Jcµ2(X2) + δµ2µ3δX2X3Tµ3(X3)Jcµ1(X1)

+ δµ1µ3δµ2µ3δX1X3δX2X3J
c
µ3(X3)

]〉
.

(53)
The contact terms are present when two or three conserved currents coincide and serve to ensure
that the conserved-current Ward identities hold. Using the backward lattice derivative ∆, these
take the form

∆X1
µ1 Πpos

µ1µ2µ3µ4 = ∆X2
µ2 Πpos

µ1µ2µ3µ4 = ∆X3
µ3 Πpos

µ1µ2µ3µ4 = 0 . (54)

In momentum space, we evaluate the Euclidean four-point function as

ΠE
µνρσ(Q1, Q2) =

∑
X1,X2,X3

eiQ1(X1+
a
2 µ̂)eiQ2(X2+

a
2 ν̂)e−iQ1(X3+

a
2 ρ̂)Πpos

µνρσ(X1, X2, X3, 0) . (55)

The fully-connected contribution to Eq. (55), which is the part proportional to Tr (Q4) = 17
81 ,

is evaluated using the method of sequential propagators. First, a point-source propagator

S0(X) ≡ S(X, 0), (56)

where S is the single-flavor all-to-all quark propagator (degenerate for u and d), is computed
from the origin. To concisely describe the sequential propagators, we introduce the “insertions”
Jµ(X) and Tµ(X) for the conserved vector current and contact operator:

Jcµ(X) = ψ̄Jµ(X)Qψ, (57a)

Tµ(X) = ψ̄Tµ(X)Qψ. (57b)
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Formally, these objects have the same size as an all-to-all quark propagator, but they are exactly
zero for all sites except those that are removed from X by one lattice spacing. The point-source
propagator is then combined with a plane wave and the conserved vector current insertion to
form the source for new (sequential) propagators,

SQ,µ ≡ S
∑
X

e−iQ(X+
a
2 µ̂)Jµ(X)S0. (58)

These, in turn, are used to form sources for double-sequential propagators

SQ1µ1;Q2µ2 ≡ S
∑
X

[
e−iQ1(X+

a
2 µ̂1)Jµ1(X)SQ2µ2 + e−iQ2(X+

a
2 µ̂2)Jµ2(X)SQ1µ1

+ δµ1µ2e
−i(Q1+Q2)(X+

a
2 µ̂1)Tµ1S0

]
. (59)

Finally, noting that γ5Jµ(X) is anti-Hermitian and γ5Tµ(X) is Hermitian, the fully-connected
four-point function is obtained6 as

ΠE,conn
µνρσ (Q1, Q2) = −Tr [Q4]ZV

∑
X2

eiQ2(X2+
a
2 ν̂)
〈

Tr
(
γσγ5

×
[
S†Q1µ;−Q1ρ

γ5Jν(X2)S0 + S†0γ5Jν(X2)S−Q1µ;Q1ρ

− S†−Q1ρ
γ5Jν(X2)S−Q1µ − S†Q1µ

γ5Jν(X2)SQ1ρ

+ δµνe
iQ1(X2+

a
2 ν̂)(S†0γ5Tν(X2)SQ1ρ − S†−Q1ρ

γ5Tν(X2)S0

)
+ δρνe

−iQ1(X2+
a
2 ν̂)(S†0γ5Tν(X2)S−Q1µ − S†Q1µ

γ5Tν(X2)S0

)
+ δµνδρνS

†
0γ5Jν(X2)S0

])〉
U
,

(60)

where 〈. . . 〉U denotes the expectation value over gauge fields. The sequential propagators depend
on Q1, so a separate calculation must be done for each Q1. However, none of the sources for
the propagators depend on Q2; therefore, we are able to efficiently evaluate ΠE,conn

µνρσ (Q1, Q2) for
all Q2 available on the lattice. In momentum space, the conserved-current Ward identities take
the form

Q̂1µΠE
µνρσ(Q1, Q2) = Q̂2νΠE

µνρσ(Q1, Q2) = Q̂1ρΠ
E
µνρσ(Q1, Q2) = 0, (61)

where Q̂µ ≡ 2
a sin

aQµ
2 . We have verified that in our implementation these hold on each gauge

configuration.

D. Lattice calculation of the (2+2) disconnected four-point function

We also calculate one class of disconnected diagrams to obtain an indication of their relevance.
Based on the charge factor and the arguments given in section III B, the second class in Fig. 1,
which we call (2 + 2) and is proportional to Tr (Q2)2 = 25

81 , is the most important. We evaluate
this class of diagrams using a different lattice expression that has two local and two conserved
currents:

Πpos,(2+2)
µ1µ2µ3µ4(X1, X2, X3, 0) =

〈
J iµ1(X1)Jcµ2(X2)J jµ3(X3)J lµ4(0)

〉
, (62)

where (i, j) = (l, c) or (c, l) depending on the contraction, chosen such that each quark loop
contains one local and one conserved current. Specifically, denoting the Y -to-all propagator as

6 A more generic case was given in Ref. [20].
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SY (X) ≡ S(X,Y ), we use

ΠE,(2+2)
µνρσ = Tr [Q2]2Z2

V

∑
X1,X2,X3

eiQ1(X1−X3)eiQ2(X2+
a
2 ν̂)

×
〈
eiQ1

a
2 µ̂Tr

[
γσγ5S

†
0γ5Jµ(X1)S0

]
Tr
[
γργ5S

†
X3
γ5Jν(X2)SX3

]
+ e−iQ1

a
2 ρ̂Tr

[
γσγ5S

†
0γ5Jρ(X3)S0

]
Tr
[
γµγ5S

†
X1
γ5Jν(X2)SX1

]
+ e−iQ1

a
2 ρ̂Tr

[
γµγ5S

†
X1
γ5Jρ(X3)SX1

]
Tr
[
γσγ5S

†
0γ5Jν(X2)S0

]〉
c
,

(63)

where

〈TrATrB〉c =
〈(

TrA− 〈TrA〉U
)(

TrB − 〈TrB〉U
)〉

U
(64)

is the QCD-connected expectation value over gauge fields. Each trace corresponds to a quark
loop in Fig. 1.

Since X1 and X3 are summed over, we evaluate the traces involving SX1 and SX3 stochas-
tically. To do this, we introduce a color triplet, scalar noise field φa(X) with randomly chosen

U(1) components, so that it has expectation value E[φa(X)φ†b(Y )] = δabδXY . We use this as the
source for two quark propagators,

Sφ(X) =
∑
Y

S(X,Y )φ(Y ), SφQ1(X) =
∑
Y

S(X,Y )e−iQY φ(Y ), (65)

where each spin component is solved independently using the same noise source φ [39]. With
these, we use the one-end trick [40] and obtain∑

X1

eiQ1X1Tr
[
γµγ5S

†
X1
γ5Jν(X2)SX1

]
= E

(
Tr
[
γµγ5S

†
φQ1

γ5Jν(X2)Sφ

])
,

∑
X3

e−iQ1X3Tr
[
γµγ5S

†
X3
γ5Jν(X2)SX3

]
= E

(
Tr
[
γµγ5S

†
φγ5Jν(X2)SφQ1

])
.

(66)

We reduce this stochastic noise by averaging over four noise fields per configuration, as well as
using color dilution [41, 42] and hierarchical probing [43] with 32 Hadamard vectors. We find
that for these two-point loops hierarchical probing has no benefit over using additional noise
fields; however, the noise-source propagators can be reused for one-point loops relevant for the
hadronic vacuum polarization and for the other disconnected four-point diagrams, and for those
loops it is beneficial. We also find that it can (if possible) in some cases be beneficial to average
over the exchange of the local and conserved currents in a quark loop. We further reduce gauge
noise by translating the origin of the point-source propagator S0 and averaging over 128 point
sources per gauge configuration.

IV. LATTICE RESULTS

A. Lattice setup

The four-point correlation functions are computed on a subset of the Nf = 2 CLS (Coordi-
nated Lattice Simulations) ensembles generated using the plaquette gauge action for gluons [45]
and the O(a)-improved Wilson-Clover action for fermions [46] with the non-perturbative pa-
rameter cSW [47]. The fermionic boundary conditions are periodic in space and antiperiodic in
time. We consider two different values of the lattice spacing and different pion masses in the
range from 190 to 440 MeV. The parameters of the ensembles used in this work are summarized
in Table I.

For each ensemble, the connected four-point correlation function is computed at a few values
of Q1 = (n · 2π/T, 0, 0, 0), the first-listed component corresponding to the time direction, with
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Table I: Parameters of the simulations: the bare coupling β = 6/g2
0 , the lattice resolution, the hopping

parameter κ, the lattice spacing a in physical units extracted from [44], the pion mass mπ, the rho mass
mρ and the number of gauge configurations.

CLS β L3 × T κ a [fm] mπ [MeV] mρ [MeV] mπL # confs
E5 5.3 323 × 64 0.13625 0.0652(6) 437(4) 971 4.7 500
F6 483 × 96 0.13635 314(3) 886 5.0 150
F7 483 × 96 0.13638 270(3) 841 4.3 124
G8 643 × 128 0.136417 194(2) 781 4.1 86
N6 5.5 483 × 96 0.13667 0.0483(4) 342(3) 917 4.0 236

n = 1, 2, 3 on ensemble E5; n = 1, 3 on F6 and F7; n = 1, 4 on G8 and n = 2 on N6. For
the (2+2) diagrams, we use n = 2 (E5) and n = 3 (F6). Then, for each value of Q1, the
four-point correlation function is evaluated for many different values of Q2, corresponding to
different values of Q2

2 and ν.
For the fully-connected diagrams, we used two source positions on ensembles E5, F6, F7;

one source position on N6; and eight source positions on G8. In the latter case, we used the
truncated-solver method [48] for the eight sources and a computation with exact inversions of
the Dirac operator for bias correction on one source.

To estimate the even subtracted amplitudes, we compute the subtraction term directly at ν =
0, i.e., with Q2 orthogonal to Q1. For the odd subtracted amplitudes, we use the approximation
M(ν) ≈M(ν)− ν

ν1
M(ν1), where ν1 is the smallest available nonzero value of ν. In both cases

we linearly interpolate the subtraction term in Q2
2 to match the value in the unsubtracted term.

In all tables and figures, our results for the HLbL amplitudes are multiplied by a factor of
106 for better readability.

B. Connected contribution to the forward light-by-light amplitudes

The results for the connected contribution to the eight amplitudes are depicted in Figs. 3–4
for the ensemble F6. Additional figures for ensemble G8 can be found in appendix B, Fig.
10. For F6 we show the amplitudes for two different values of the virtuality Q2

1. We used all
lattice momenta Q2 up to Q2

2 . 4 GeV2. The variable ν is then bounded by ν ≤ (Q2
1Q

2
2)1/2.

The four amplitudes MTT , MTL, MLT and , MLL are positive as they are related to cross
sections, while the amplitudes Ma

TT , Mτ
TT , Mτ

TL, Ma
TL, corresponding to interference terms,

are not sign-definite. Since all amplitudes vanish in the limit of either Q1 or Q2 → 0, the signal
deteriorates at small Q2

1 (for fixed Q2
2) as can be seen by comparing the left and right panels of

Fig. 3.

C. Disconnected contribution to the forward light-by-light amplitudes

We now come to our results for the (2+2) disconnected diagram contribution to the eight
subtracted amplitudes. We obtain this contribution with a reasonable statistical precision;
however, some of the amplitudes are significantly different from zero when Q2

2 = 0, as shown
in the left panel of Fig. 2. In infinite volume, the Euclidean four-point function should vanish
at this kinematic point, since a conserved current can be written as the divergence of a tensor
field, Jµ(x) = ∂ν(xµJν(x)), so that

∫
d4x Jµ(x) is a pure boundary term, which vanishes in the

presence of a mass gap. Therefore this is a sign of significant finite-volume effects. The bulk of
the effect may be removed when subtracting the amplitude at ν = 0, but some of it may remain.
Figure 2 also shows that due to correlations, the subtraction significantly reduces the statistical
uncertainty. The full set of subtracted amplitudes on ensemble F6 is shown in Fig. 5.
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Figure 2: Contribution (×106) from (2 + 2)-disconnected diagrams to the forward scattering amplitude
MTT on ensemble E5, without (left) and with (right) subtraction of the value at ν = 0.

Table II: Particle multiplets and physical values for the mass and two-photon width as quoted by the
PDG [37], as well as by [49] for the two-photon width of the f2(1270) meson and [38] for the π0 width.
In the case of the axial-vector mesons, the indicated width is the effective width defined in Eq. (77)
and obtained phenomenologically in [6]. A cross indicates an absent or imprecise value in the PDG. An
asterisk means that we use the isoscalar result divided by a factor 25/9 as explained in section III B.

Isovector Isoscalar Isoscalar

name m [MeV] Γγγ [keV] name m [MeV] Γγγ [keV] name m [MeV] Γγγ [keV]

0−+ π 134.98 0.0078(2) η′ 957.78(6) 4.35(25) η 547.86(2) 0.515(18)

0++ a0(980) 980(20) 0.30(10) f0(600) × × f0(980) 990(20) 0.31(5)

1++ a1(1260) 1230(40) 1.26∗ f1(1285) 1281.8(0.6) 3.5(0.8) f1(1420) 1426.4(0.9) 3.2(0.9)

2++ a2(1320) 1318.3(0.6) 1.00(6) f2(1270) 1275.5(0.8) 2.93(40) f ′2(1525) 1525(5) 0.081(9)
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Figure 3: Amplitudes MTT , Mτ

TT , Ma

TT and MLT (×106) for the ensemble F6 and for two different
values of Q2

1 (left: Q2
1 = 0.039 GeV2, right: Q2

1 = 0.352 GeV2). The curves with error-bands represent
the fit results discussed in Sec. VI.
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Figure 4: Amplitudes MTL, Ma

TL, Mτ

TL and MLL (×106) for the ensemble F6 and for two different
values of Q2

1 (left: Q2
1 = 0.039 GeV2, right: Q2

1 = 0.352 GeV2). The curves with error-bands represent
the fit results discussed in Sec. VI.
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Figure 5: Contribution (×106) from (2 + 2)-disconnected diagrams to the eight subtracted forward scat-
tering amplitudes on ensemble F6 with one fixed virtuality Q2

1 = 0.352 GeV2.
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Table III: List of individual contributions to each of the eight helicity amplitudes. A cross indicates the
absence of a contribution in the given channel. The relevant cross sections for each channel are given in
Appendix A.

MTT Mτ
TT Ma

TT MTL MLT Mτ
TL Ma

TL MLL

Pseudoscalar σ0/2 −σ0 σ0/2 × × × × ×
Scalar σ0/2 σ0 σ0/2 × × τTL τTL σLL

Axial σ0/2 −σ0 σ0/2 σTL σLT τTL −τTL ×
Tensor σ0+σ2

2 σ0
σ0−σ2

2 σTL σLT τTL τaTL σLL

Scalar QED σTT τTT τaTT σTL σLT τTL τaTL σLL

V. EMPIRICAL PARAMETRIZATION OF THE HADRONIC γ∗γ∗-FUSION CROSS
SECTION

A. Model description and particle content

In this section, we describe how we model the hadronic γ∗γ∗-fusion cross section. We rep-
resent it as a sum of contributions from charge-conjugation even mesonic resonances produced
in the s-channel. Specifically, we include the pseudoscalar (JPC = 0−+), scalar (JPC = 0++),
axial-vector (JPC = 1++) and tensor (JPC = 2++) mesons. Table II lists the most relevant light
mesons with these quantum numbers. In our implementation, we limit ourselves to the lightest
state in each symmetry channel. The assumption that those states are sufficient to saturate
the sum rules is motivated by the fact that, at small energies, higher mass singularities are
suppressed in Eq. (9). Moreover, we have revised the model used in [8] to better account for
the fact that we perform fits to the fully-connected diagrams. Rather than including isovector
and isoscalar mesons, we consider only isovector mesons, enhanced by a factor 34/9: we refer
the reader to section III B for a justification of this approximation, which we expect to be su-
perior. The procedure mostly modifies the contribution of the pseudoscalar sector, due to the
large mass difference between the pion and the η′ meson. Also, since lattice simulations are
performed using Nf = 2 dynamical quarks, we do not include the η meson. Finally, we include
the Born approximation to the γ∗γ∗ → π+π− cross section using scalar QED, as described in
Ref. [5], using a monopole vector form factor, the monopole mass being set to the ρ meson mass.
Explicit formulae for cross sections used in our model are given in Appendix A. The individual
contributions to the eight amplitudes from each channel are summarized in Table III.

B. Assumptions on masses and resonances

Our lattice simulations are performed at larger-than-physical quark masses. For each ensem-
ble, the pion and ρ meson masses are determined from the pseudoscalar and vector two-point
correlation functions respectively; see Table I for the obtained values. To obtain an estimate of
the lowest-lying meson mass mX in every other symmetry channel, we assume that mX admits
a constant additive shift relative to its physical value mphys

X . The shift δm is determined from
the difference between the ρ mass computed on the lattice and its experimental value,

mX = mphys
X + δm, δm = mlat

ρ −mphys
ρ . (67)

In section VI, we will test the sensitivity of our results to variations of δm by a factor of two.
As for resonances, we assume that their contributions are well approximated by Breit-Wigner
distributions and use the following formal substitution in the cross sections given in Appendix A,

δ(s−m2
X) ↔ mX

π

ΓX
(s−m2

X)2 +m2
XΓ2

X

, (68)
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where mX and ΓX are the mass and the total width of the particle respectively. However, the
remaining part of the cross section is still evaluated at s = m2

X . For the (very narrow) pseu-
doscalar mesons, one can perform the integration explicitly and obtain the following contribution
to the sum rules (using δ(ν − νP ) = 2δ(s− sP ), where νP = 1

2(m2
P +Q2

1 +Q2
2)) :

4ν2

π

∫ ∞
ν0

dν ′
√
X ′σ0(ν ′)

ν ′(ν ′ 2 − ν2 − iε) = 64π
Γγγ
mP

ν2XP

m2
P νP (ν2

P − ν2)

[
FPγ∗γ∗(Q2

1, Q
2
2)

FPγ∗γ∗(0, 0)

]2

(69)

= 16π2α2 ν2XP

νP (ν2
P − ν2)

[
FPγ∗γ∗(Q2

1, Q
2
2)
]2
, (70)

in the even case, and

4ν3

π

∫ ∞
ν0

dν ′
√
X ′σ0(ν ′)

ν ′2(ν ′ 2 − ν2 − iε) = 16π2α2 ν3XP

ν2
P (ν2

P − ν2)

[
FPγ∗γ∗(Q2

1, Q
2
2)
]2
, (71)

in the odd case, where XP ≡ ν2
P −Q2

1Q
2
2.

C. Parametrization of the form factors

In this subsection, we briefly review the available information on the transition form factors
of the exchanged mesons in the hadronic model, and present the parametrization we use in
fitting the lattice HLbL amplitudes. While detailed information is available in the case of the
pion from lattice QCD, no experimental data is presently available at doubly virtual kinematics
in any channel. In these cases, a monopole or dipole ansatz, in which the Q2

1 and Q2
2 dependence

factorizes, is made to describe the photon-virtuality dependence, even though such an ansatz
might not have the asymptotic behavior predicted by the operator-product expansion. Our
motivation is that this type of parametrization is used in model calculations of aHLbL

µ . Also,
given our goal of performing fits to the HLbL amplitudes computed on the lattice, the number
of free parameters characterizing the transition form factors should be commensurate with the
precision of the lattice data.

1. Pseudoscalar mesons

For pseudoscalar mesons, experimental data are available when at least one photon is on-shell,
and in this case a good parametrization of the data is obtained using a monopole form factor
[50–53]. However, as shown in Ref. [24], a monopole form factor failed to reproduce the lattice
data in the doubly-virtual case, in contrast to the LMD+V model. Furthermore, the LMD+V
model is compatible with the Brodsky-Lepage behavior [54–56] in the singly-virtual case and
with the operator-product expansion (OPE) prediction [57, 58] in the Q2

1 = Q2
2 doubly-virtual

case. We therefore use this model for the pion transition form factor, of which the parameters
were determined in Ref. [24] for each ensemble listed in Table I.

2. Scalar mesons

Scalar mesons can be produced by two transverse (T) or two longitudinal (L) photons. Cor-
respondingly, the amplitude is parametrized by two form factors, F TSγ∗γ∗ and FLSγ∗γ∗ . Only the
first one has been measured experimentally: this was done for the f0(980) meson in the region
Q2 < 30 GeV2 by the Belle Collaboration [59], and the results are compatible with a monopole
form factor with a monopole mass MS = 0.800(50) GeV. Therefore, we assume the form

F TSγ∗γ∗(Q
2
1, Q

2
2)

F TSγ∗γ∗(0, 0)
=

1

(1 +Q2
1/M

2
S)(1 +Q2

2/M
2
S)
. (72)
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Table IV: Tensor form factor normalizations for the isoscalar meson f2(1270). For helicities Λ = 2 and
Λ = (0, T ) the normalization is obtained using Eq. (79) and the measured two-photon decay width. For
helicities Λ = 1 and Λ = (0, L) the results are extracted from Ref. [6].

Λ = 2 Λ = (0, T ) Λ = 1 Λ = (0, L)

F
(Λ)
T γ∗γ∗(0, 0) 0.500± 0.034 0.095± 0.011 0.24± 0.05 −0.90± 0.30

For simplicity, we also assume that the transverse and longitudinal form factors are equal (the
longitudinal one is only relevant for the amplitudes Ma

TL, M τ
TL and MLL),

FLSγ∗γ∗(Q
2
1, Q

2
2) = −F TSγ∗γ∗(Q2

1, Q
2
2) . (73)

The normalization is obtained from the experimentally measured two-photon decay width Γγγ
given by (see Table II)

Γγγ =
πα2

4
mS

[
F TSγ∗γ∗(0, 0)

]2
, (74)

while the monopole mass MS will be treated as a free parameter.

3. Axial mesons

For axial mesons, we have two form factors, F
(0)
Aγ∗γ∗ and F

(1)
Aγ∗γ∗ , corresponding to the two

helicity states of the meson. We use the same parametrization as in Ref. [5], inspired by quark
models,

F
(0)
Aγ∗γ∗(Q

2
1, Q

2
2) = m2

AA(Q2
1, Q

2
2) , (75a)

F
(1)
Aγ∗γ∗(Q

2
1, Q

2
2) = − ν

X

(
ν +Q2

2

)
m2
AA(Q2

1, Q
2
2) , (75b)

F
(1)
Aγ∗γ∗(Q

2
2, Q

2
1) = − ν

X

(
ν +Q2

1

)
m2
AA(Q2

1, Q
2
2) , (75c)

in which 2ν = m2
A +Q2

1 +Q2
2 with mA the meson mass,

A(Q2
1, 0)

A(0, 0)
=

1

(1 +Q2
1/M

2
A)2

, (76)

and assuming factorization such that A(Q2
1, Q

2
2) = A(Q2

1, 0)A(0, Q2
2)/A(0, 0) = A(Q2

2, Q
2
1). In

particular, the form factor F
(1)
Aγ∗γ∗ is not symmetric in the photon virtualities Q2

1, Q
2
2. These

form factors have been measured by the L3 Collaboration for one real and one virtual photon in
the region Q2 < 5 GeV2 [60, 61] for the isoscalar resonance. Using the previous parametrization,
the authors obtain the dipole mass MA = 1040(78) MeV for the f1(1285) meson. We obtain the
normalization of the form factors from the values given in [6] for the effective two-photon width,
defined as

Γ̃γγ ≡ lim
Q2

1→0

m2
A

Q2
1

1

2
Γ(A → γ∗LγT ) =

πα2

4

mA

3

[
F

(1)
Aγ∗γ∗(0, 0)

]2
, (77)

and we will consider MA as a free parameter in our fits.

4. Tensor mesons

We now turn our attention to the tensor mesons. The singly-virtual form factors of the
isoscalar resonance f2 for helicities Λ = 2, 1, (0, T ) have also been measured experimentally
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in the region Q2 < 30 GeV2 by the Belle Collaboration [59], where the data are compatible
with a dipole form factor [6]. Therefore, we use the following parametrization for all helicities
Λ = (0, T ), (0, L), 1, 2,

F
(Λ)
T γ∗γ∗(Q

2
1, Q

2
2)

F
(Λ)
T γ∗γ∗(0, 0)

=
1

(1 +Q2
1/M

2
T,(Λ))

2(1 +Q2
2/M

2
T,(Λ))

2
, (78)

where we allow for a different dipole mass for each helicity. The normalization of the transverse
form factors is computed from the experimentally measured two-photons widths [37], Γγγ =

Γ
(0)
γγ + Γ

(2)
γγ , assuming that the ratio of helicity 2 to helicity 0 decays is r = 91.3 % (see Ref. [62]):

Γ(0)
γγ = πα2mT

2

15

[
F

(0,T )
T γ∗γ∗(0, 0)

]2
,

Γ(2)
γγ =

πα2

4
mT

1

5

[
F

(2)
T γ∗γ∗(0, 0)

]2
. (79)

In Ref. [6], the authors obtain the normalization of the two other form factors by saturating
two different sum rules involving one real and one virtual photon; their results are summarized
in Table IV.

Finally, based on large-N arguments reviewed in section III B, we assume the following rela-
tionship between the two-photon decay widths of the isoscalar and isovector mesons,

Γγγ(fX) =
25

9
Γγγ(aX) . (80)

In particular, we observe that this approximation works well for the tensor meson, where the
two-photon decay widths have been measured both for the isovector and isoscalar mesons (see
Table II).

VI. FITTING THE γ∗γ∗ →HADRONS MODEL TO THE LATTICE HLBL
AMPLITUDES

A. Preliminary checks

In this section, we fit simultaneously the eight forward light-by-light amplitudes using the
phenomenological model described in Sec. V. We have checked that we can reproduce the results
given in Refs. [5, 6] in the limit where only one photon is virtual to the quoted accuracy 7 (Tables I
and II of [5] and Table III and IV of [6]). Moreover, fits have been checked using two different
routines: the Minuit package from CERN [63] and the GSL library [64].

B. Fit of the eight helicity amplitudes

It appears that the five subtracted amplitudes MTT , Mτ
TT , Ma

TT , MTL and MLT are
statistically more precise than the three other amplitudes Mτ

TL, Ma
TL and MLL. Moreover,

these last three amplitudes also depend on the longitudinal scalar form factor and on the tensor
form factor with helicity Λ = (0, L) which are unknown from experiment and for which we
use values from phenomenology (see Table IV). As shown in the last row of Table VI, the
contribution from scalar QED is always small and therefore we do not try to fit the associated
monopole mass which is explicitly set to the rho mass computed on the lattice. We therefore
have six fit parameters, which correspond to the monopole and dipole masses of the scalar (MS),

axial (MA) and tensor (M
(2)
T ,M

(0,T )
T ,M

(1)
T ,M

(0,L)
T ) mesons. The results are given in Table V,

and the corresponding plots for the ensemble F6 are shown in Figs. (3 and 4; additional plots

7 In the second paper, the authors worked in the narrow width approximation.
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Table V: Results of the simultaneous fit to the eight subtracted amplitudes MTT , Mτ

TT , Ma

TT , MTL,
MLT , Ma

TL, Mτ

TL and MLL for the five lattice ensembles. The six mass parameters are given in units
of GeV.

MS MA M
(2)
T M

(0,T )
T M

(1)
T M

(0,L)
T χ2/d.o.f.

E5 1.38(11) 1.26(10) 1.93(3) 2.24(5) 2.36(4) 0.60(10) 4.22
F6 1.12(14) 1.44(5) 1.66(9) 2.17(5) 1.85(14) 0.89(28) 1.15
F7 1.04(18) 1.29(8) 1.61(12) 2.08(7) 2.03(7) 0.57(16) 1.19
G8 1.07(10) 1.36(5) 1.37(24) 2.03(6) 1.63(13) 0.73(14) 1.13
N6 0.86(37) 1.59(3) 1.72(17) 2.19(4) 1.72(18) 0.51(8) 1.35

Table VI: Relative contributions in % of each particle to the different amplitudes for the ensemble F7 at
Q2

1 = 0.352 GeV2, ν = 0.467 GeV2 and for two values of Q2
2. For each Q2

2 value, the normalization is
such that the absolute values of the entries in a given column add up to 100.

Q2
2 [GeV2] MTT Mτ

TT Ma

TT MTL MLT Ma

TL Mτ

TL MLL

0−+ 1.0 35 −56 68 × × × × ×
3.0 30 −38 61 × × × × ×

0++ 1.0 7 11 8 × × 23 14 42
3.0 5 6 8 × × 19 9 50

1++ 1.0 2 −2 1 43 57 −43 32 ×
3.0 8 −11 11 21 49 −40 23 ×

2++ 1.0 53 25 −20 56 42 19 −47 25
3.0 56 44 19 79 51 −38 −67 40

Scalar QED
1.0 4 5 3 1 < 1 −15 −7 33
3.0 1 1 1 < 1 < 1 −3 −1 10

for G8 are shown in appendix B, 10). The quoted error on the fit parameters is only statistical
and estimated using the jackknife method. The quoted χ2 correspond to uncorrelated fits. The
χ2 per degree of freedom are slightly above unity, with the exception of the value for ensemble
E5. Here we attribute its large value to the fact that the statistical errors are smallest on E5
and that finite-volume effects could be significant for this ensemble. Given that lattice artifacts
and finite-size effects are not taken into account by the χ2, we consider the obtained description
of the data on the other ensembles to be satisfactory.

In Table VI, we show the relative contribution of each channel to the different amplitudes
at Q2

1 = 0.352 GeV2, ν = 0.467 GeV2 and for two values of Q2
2. The amplitudes Ma

TT , Mτ
TT ,

Mτ
TL and Ma

TL involve interference cross sections and are not sign-definite: we observe large
cancellations between the different contributions. The latter help to stabilize the fit due to the
enhanced sensitivity to the relative size of these contributions. In particular, fitting only the am-
plitudesMTT ,MTL andMLT leads to unstable fits. Figures 6 and 7, in addition to displaying
the ν-dependence of the amplitudes for two sets of values of (Q2

1, Q
2
2), show the contributions

of the individual mesons. The pseudoscalar and tensor mesons give the dominant contribution
to the amplitudes MTT , Mτ

TT and Ma
TT , which involve two transverse photons. As stated

above, the scalar QED contribution is always small, except for MLL. The axial form factor is
mainly constrained from MTL, MLT where the axial and tensor mesons make the dominant
contribution; this is clearly visible from Figs. 6 and 7. It also contributes significantly to the
amplitudes Ma

TL and Mτ
TL, which involve one transverse and one longitudinal photon. On the

other hand, the axial meson does not contribute significantly to the amplitudes MTT , Mτ
TT

and Ma
TT involving two transverse photons, especially at low virtualities. This suppression is

expected since axial mesons have vanishing contribution when at least one photon is real accord-
ing to the Landau-Yang theorem [65, 66]. Finally, the tensor meson contributes significantly to
all amplitudes.
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Figure 6: The dependence of the amplitudesMTT ,Mτ

TT ,Ma

TT andMLT (×106) on ν for two different
values of Q2

2, the virtuality Q2
1 = 0.352GeV2 being fixed. The results correspond to the lattice ensemble

G8. Note that at fixed photon virtualities, the form factors are completely determined. The black line
corresponds to the total contribution and each colored line represents a single-meson contribution.
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Figure 7: The dependence of the amplitudes MTL, Ma

TL, Mτ

TL, MLL (×106) on ν for two different
values of Q2

2, the virtuality Q2
1 = 0.352GeV2 being fixed. The results correspond to the lattice ensemble

G8. Note that at fixed photon virtualities, the form factors are completely determined. The black line
corresponds to the total contribution and each colored line represents a single-meson contribution.
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Table VII: Fit variations for F6. The first row corresponds to the results obtained in the previous section.
Then, each row corresponds to a new fit using p ± δp and varying only one parameter at a time: the
quoted number is the shift observed for the monopole/dipole mass, in units of GeV. A cross indicates
that the parameter remains unchanged to all indicated digits of the central values in the first row. For
instance, using Γγγ(a0)+δΓγγ(a0) instead of Γγγ(a0), the scalar monopole mass is shifted by −0.09 GeV,
the other monopole/dipole masses being unaffected. In the last row, the mass shift δm applied to the
spectrum (see Eq. (67)) is varied by a factor of two.

MS MA M
(2)
T M

(0,T )
T M

(1)
T M

(0,L)
T χ2/d.o.f.

Principal 1.12(14) 1.44(5) 1.66(9) 2.17(5) 1.85(14) 0.91(7) 1.15

Γ(a0)
× × × × × × 1.15
× × × × × × 1.15

Γγγ(a0)
−0.09 × × × × × 1.14
+0.12 × × × × × 1.15

Γ(a1)
−0.01 +0.03 × +0.01 × × 1.14
−0.01 −0.02 +0.01 × +0.01 × 1.15

Γ̃γγ(a1)
× −0.10 +0.02 −0.01 +0.02 × 1.17

+0.03 +0.19 −0.01 +0.02 −0.01 × 1.12

Γ(a2)
× × × × × × 1.15
× × × × × × 1.15

F
(2)
T γ∗γ∗

−0.01 × −0.06 +0.01 × × 1.15
× × +0.08 × +0.01 × 1.14

F
(0,T )
T γ∗γ∗

−0.08 × −0.01 −0.09 −0.01 × 1.13
+0.08 × +0.02 +0.11 +0.02 × 1.17

F
(1)
T γ∗γ∗

× × × × −0.14 × 1.14
−0.01 × × × +0.21 × 1.15

δm×2
×0.5

+0.20 +0.13 +0.11 +0.13 +0.14 +0.10 1.17
−0.10 −0.06 −0.05 −0.08 −0.06 −0.05 1.15

C. Influence of the non-fitted model parameters

In the previous fit, only the monopole and dipole masses entering the form factors were
considered as fit parameters. The other parameters (p = Γ,Γγγ , δm, . . . ) were fixed using phe-
nomenology as described in Sec. V. However, these parameters are sometimes associated with
relatively large experimental errors (δp) or modelled (like the global mass shift in the spectrum
where we assume mX = mexp

X + δm with δm = mlat
ρ −mexp

ρ ). Therefore, we perform exactly the
same fit as in the previous section but using p±δp instead of p (and varying only one parameter
at a time). In this way, we can see the influence of these parameters on the monopole and
dipole masses obtained in the previous section. The results are summarized in Table VII for the
ensemble F6. In this table, δm corresponds to the global mass shift applied to the spectrum
(see Eq. (67)), and is multiplied or divided by a factor of two.

We observe that the experimental error on the total decay widths of the particles have a
negligible effect. Increasing the two-photon width (or equivalently, the normalization of the
form factor) tends to reduce the associated monopole or dipole mass. Finally, increasing the
global mass shift by a factor two leads to a noticeable change in the monopole and dipole masses
with little change in the χ2.

Varying the normalization of the form factor F
(0,L)
T γ∗γ∗ leads to negligible changes in all param-

eters but M
(0,L)
T ; this particular correlation is studied in more detail in the next subsection.

D. Bounds for the tensor form factor F
(0,L)
T γ∗γ∗

The transition form factor F
(0,L)
T γ∗γ∗ of the tensor meson enters only the amplitudesMτ

TL,Ma
TL

and MLL, which are less precisely determined on the lattice. In particular the fit is not able
to determine both the dipole mass and the normalization independently, and they are highly
correlated. To illustrate this point, we use the previously obtained best fit parameters and
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Figure 8: Value of χ2/d.o.f. for different dipole masses and form factor normalizations (tensor form
factor, helicity Λ = (0, L)). Left: ensemble F7, right: ensemble G8.

compute the χ2/d.o.f. along a scan in the plane (M
(0,L)
T , F

(0,L)
T γ∗γ∗(0, 0)). The results are shown

in Fig. 8: for a dipole mass of 1 GeV, a normalization F
(0,L)
T γ∗γ∗(0, 0) ≈ −0.4 is favored but the

results show a strong dependence on M
(0,L)
T .

E. Chiral extrapolations

Finally, we perform a chiral extrapolation for the six monopole and dipole masses that we
have fitted to the lattice four-point function. For each of these parameters, we assume a linear
dependence on m2

π. We perform two sets of fits, either including or excluding the ensemble E5,
which has the largest pion mass. The lattice results are given in Table VIII and depicted in
Fig. 9 together with the fits excluding E5. The displayed errors are purely statistical. The blue
points in Fig. 9 represent the ensemble N6 and therefore correspond to a finer lattice spacing
than the other data points. We remind the reader that we have included only isovector mesons in
the description of the fully connected amplitude, therefore all our fitted form factor parameters
correspond to isovector mesons. While the results are quite stable under including or excluding
ensemble E5, we consider the latter to be our final results, mainly because the χ2 per degree of
freedom of the global fit was unacceptably large for E5. We make the following observations:

• The monopole mass of the scalar meson transition form factor does not depend strongly
on the pion mass. After a mild extrapolation, we obtain MS = 1.04(14) GeV at the
physical pion mass. The result lies above the experimental result MS = 0.796(54) GeV
from the Belle Collaboration for the isoscalar scalar meson [59].

• The axial dipole mass is also very weakly dependent on the pion mass. We obtain MA =
1.32(7) GeV at the physical pion mass. The finer ensemble N6 suggests a value 10% larger.
More ensembles would be needed to confirm whether MA is afflicted by large discretisation
effects. For comparison, the L3 Collaboration obtained a dipole massMA = 1.040(80) GeV
for the isoscalar partner f1(1285); the measurement relied on single-virtual measurements
only [60, 61]. The difference in the kinematics at which the form factor was probed could
be part of the reason we found a larger dipole mass, in addition to a potential genuine
difference between the isospin partners. We also recall that the transition form factors
have been parametrized in a fairly simplistic way (see Eq. (76) and above).

• Finally, for the tensor meson a2, linear extrapolations in m2
π yield the results given in Ta-

ble VIII. Fits to experimental data on the single-virtual form factor [6, 59] yielded smaller
values for the f2(1270) meson. For instance, our result for the helicity-2 transition form

factor, M
(2)
T = 1.35(24) GeV, is only slightly larger than the value 1.222(66) GeV ob-

tained phenomenologically. On the other hand, our values of M
(1)
T = 1.69(16) GeV and
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Table VIII: Results of the chiral extrapolation for the scalar monopole mass MS , the axial dipole mass
MA and the four tensor dipole masses corresponding to different helicities. All results are given in units
of GeV and correspond to isovector mesons at the physical value of the pion mass. Results including or
excluding the ensemble (E5) with the largest pion mass are given. We consider the latter to be our final
results (last column of the table).

Including E5 Excluding E5
MS 0.94(12) 1.04(14)
MA 1.40(07) 1.32(07)

M
(2)
T 1.39(12) 1.35(24)

M
(1)
T 1.67(10) 1.69(16)

M
(0,T )
T 2.01(07) 1.96(09)

M
(0,L)
T 0.74(14) 0.67(19)

M
(0,T )
T = 1.96(9) GeV are almost a factor two larger than the corresponding phenomeno-

logical f2 results, M
(1)
T = 0.916(20) GeV and M

(0,T )
T = 1.051(36) GeV. Especially M

(0,T )
T

is statistically well constrained by the lattice data and only weakly dependent on the

lattice spacing and the pion mass. Finally, our value for M
(0,L)
T = 0.67(19) GeV is in

agreement with the estimate 0.877(66) GeV obtained in [6] within the large uncertainties.

To summarize, in all cases except M
(0,L)
T , we obtain larger monopole and dipole masses for the

isovector mesons than in phenomenology for the isoscalar mesons. The strongest difference is in

M
(1)
T and M

(0,T )
T , where we find that the form factors fall off far more slowly; this discrepancy

could be due to the use of the factorization assumption for the dependence on the photon virtu-
alities. On the other hand, we find agreement within the uncertainties for the scalar monopole
mass and the helicity-two form factor of the tensor meson.

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25

M
S

[G
eV

]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25

M
A

[G
eV

]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

M
(
2
)

T
[G

eV
]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

M
(
0
,L

)

T
[G

eV
]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

M
(
1
)

T
[G

eV
]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

M
(
0
,T

)

T
[G

eV
]

m
2

π
[GeV2]

a = 0.065 fm
a = 0.048 fm

Figure 9: Chiral extrapolations for each monopole and dipole mass, excluding the ensemble E5 with the
largest pion mass. The blue point corresponds to the lattice ensemble N6 and gives an indication about
discretisation effects. Only the statistical error is displayed.
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VII. STUDY OF DISCONNECTED DIAGRAMS

In this section, we test whether the hadronic model of section V together with the arguments
summarized in section III B is consistent with the (2+2) disconnected diagrams, which we have
computed on two lattice ensembles. The arguments, based on the large-N motivated idea that
an isolated vector current insertion in a fermion loop gives a suppressed contribution, lead to the
conclusion that the (2+2) disconnected class of diagrams contains all of the contributions from
flavor-singlet meson poles, while the mesons in the adjoint representation of the flavor symmetry
group contribute with a negative weight factor; the latter is (−25/9) in the SU(2)flavor case and
(−2) in the SU(3)flavor case. The generic large-N expectations would further lead to the stronger
conclusion that, in each JPC sector, the non-singlet resonances cancel the contribution of the
flavor-singlet resonances. One channel, however, where the degeneracy is badly broken is the
pseudoscalar sector, since the pion is much lighter than the η′ meson. Therefore, in the two-flavor
theory we expect the (2+2) disconnected class of diagrams to be given to a good approximation
by

M(2+2)
.. ≈ −25

9
M(π0)

.. +M(η′)
.. . (81)

We have calculated the π0 → γ∗γ∗ transition form factor on the same lattice ensembles as used
here in a previous publication [24]. For the η′, the two-photon decay width is fairly well known
experimentally; thus, assuming a vector-meson-dominance model for the virtuality dependence
of the η′ transition form factor and using the known ρ mass on each lattice ensemble, Eq. (81)
provides a prediction for the M(2+2)

.. amplitudes. We use the vector mass given in Table I. In

Fig. 5 we display the prediction for the three largest subtracted amplitudes M(2+2)
TT , Mτ,(2+2)

TT

and Ma,(2+2)
TT together with the direct lattice calculation. We find that Eq. (81) predicts the

overall size of the amplitudes well, within the fairly large uncertainties. The agreement is most

compelling in theMτ,(2+2)
TT amplitude; this is also one of the amplitudes where the pseudoscalar

poles make a large contribution. In fact, in this channel, Mτ,(2+2)
TT amounts to about −90% of

the fully connected contribution Mτ,(4)
TT .

A. Estimate of the contribution of the (2+2) disconnected class of diagrams to aHLbL
µ

We have obtained some evidence from our Nf = 2 lattice data that the (2+2) class of
diagrams is dominated by the pseudoscalar exchanges with the weight factors derived in section
III B. Using the results from [67], we can now estimate the importance of the (2+2) disconnected
class of diagrams in aHLbL

µ in two limits:

• ms =∞, which corresponds to the two-flavor theory;

• ms = mud, which corresponds to the SU(3)-flavor symmetric theory.

We expect the real world to lie between these two predictions. In these two limits, we obtain

aHLbL,(2+2)
µ ≈

 −
25
9 a

HLbL,π0

µ + aHLbL,η′
µ = −(162± 27) · 10−11 ms =∞,

−2(aHLbL,π0

µ + aHLbL,η
µ ) + aHLbL,η′

µ = −(142± 19) · 10−11 ms = mud.
(82)

We have used the LMD+V result for the pion (62.9 · 10−11) and the VMD results for the η
and η′ (respectively 14.5 · 10−11 and 12.5 · 10−11) quoted in [67] (see also References therein)
and assigned to each contribution an uncertainty of 15%. For comparison, the Nf = 2 lattice
calculation [24] of the pion transition form factor and its parametrization by the LMD+V model

led to the value aHLbL,π0

µ = (65.0± 8.3) · 10−11.
Taking in addition the result aHLbL

µ ≈ (102 ± 39) · 10−11 from a model calculation [68], the
generic large-N based expectations imply the following estimate for the fully connected class of
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diagrams,

a
HLbL,(4)
µ,model ≈

 (264± 51) · 10−11 ms =∞,
(244± 46) · 10−11 ms = mud.

(83)

These estimates give an idea of what to expect in forthcoming lattice calculations. We remark,
as also pointed out in [67], that the VMD model for the η and η′ transition form factors is not
tested in the doubly virtual case; and that the VMD form factor falls off as (Q2)−2 in the limit of
two large spacelike virtualities Q2

1 = Q2
2 = Q2, whereas the operator-product expansion predicts

a 1/Q2 fall-off. Thus the η and η′ contributions above could be somewhat underestimated due
to the use of the VMD model. In the case of the pion, the ‘bias’ from using the VMD is −10%,
relative to using the more sophisticated LMD+V model.

The only lattice calculation [19] to have presented results for a
HLbL,(4)
µ and a

HLbL,(2+2)
µ found

respectively 116.0(9.6) and −62.5(8.0) in units of 10−11. We conclude that either these lattice
results are severely underestimated, which could be due to discretization and finite-volume
effects; or the hadronic model based on resonance exchanges is not viable; or the large-N inspired
approximations made to estimate (82) and (83) are inadequate; or a combination of the above.

A new high-statistics lattice calculation of a
HLbL,(2+2)
µ in a large volume would be particularly

illuminating to resolve the issue, since the prediction (82) is relatively clear-cut.

VIII. CONCLUSION

With the hadronic light-by-light contribution to the muon anomalous magnetic moment
aHLbL
µ in mind, we have studied the eight forward light-by-light amplitudes for spacelike photons

in Nf = 2 lattice QCD. Via dispersive sum rules, we have tested whether the type of hadronic
models used to estimate aHLbL

µ provides a good description of lattice results. All in all, we
found that by fitting the virtuality dependence of six meson transition form factors, we were
able to describe the lattice data within statistical uncertainties. The monopole and dipole
masses parametrizing the transition form factors compare reasonably well in magnitude with
phenomenological determinations for the I = 0 isospin partner, with the notable exception of
the dipole masses of the tensor meson for helicities Λ = 1 and Λ = (0, T ), where we find that
the form factors fall off far more slowly. The simultaneous fit to all eight amplitudes allowed us
to test the individual relevance of the various resonance contributions, given that they appear
with different weights and signs in different amplitudes. Thus our study provides evidence, by a
completely independent method, that the resonance-exchange model widely used in calculating
aHLbL
µ is not missing a large contribution.

The (2+2) disconnected class of diagrams was computed on two lattice ensembles. We found
that a parameter-free prediction based on a specific large-N argument presented in detail in
section III B (see also the earlier [26]), which expresses this set of diagrams in terms of the
pseudoscalar mesons alone, was compatible with the lattice data, albeit within large relative
errors. Motivated by this observation, we estimated what values a lattice calculation would have
to obtain for the fully connected and (2+2) set of disconnected diagrams if it is to reproduce
the current model estimates of aHLbL

µ .
While we laid out many technical details of the method, we regard the present calculation as

exploratory, and leave a more quantitative comparison of monopole and dipole masses, including
an estimate of systematic errors, for the future. Indeed we were only able to perform stable
fits by making model assumptions, for instance about the masses of the lightest resonances
in the scalar, axial-vector and tensor sectors in Nf = 2 QCD at non-physical quark masses.
In addition to neglecting the three classes of diagrams containing at least one isolated vector
current insertion in a quark loop, we had to assume various relations between the two-photon
decay widths of isospin-partner resonances that are justified only for a large number of colors
N . Also, the employed parametrization of the axial-vector resonance form factors is a further
vulnerable assumption.
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In the future, it would be useful to repeat the calculation of the forward light-by-light am-
plitudes with higher statistics, on ensembles including also the dynamical strange quark effects,
and with a lighter pion mass. Especially at virtualities . 0.1 GeV2, which can contribute sig-
nificantly to aHLbL

µ [67], smaller statistical errors would be beneficial to test the hadronic model
more stringently. Finite-volume effects could not be addressed in any detail here, and a dedi-
cated study would be important to carry out, given the long-range nature of the neutral pion
contribution [21, 22].
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Appendix A: Cross sections γ∗γ∗ → X

This appendix is based on the Appendix of Ref. [5]. We collect the relevant formulae needed to
evaluate the sum rules in the general case with two virtual photons.

1. Notations

The metric tensor of the subspace orthogonal to q1 and q2 is given by

Rµν(q1, q2) = −gµν +
1

X

{
(q1 · q2) (qµ1 q

ν
2 + qµ2 q

ν
1 )− q2

1 q
µ
2 q

ν
2 − q2

2 q
µ
1 q

ν
1

}
, (A1)

such that Rµνq
ν
i = 0 for i = 1, 2. It satisfies Rµν = Rνµ, Rµµ = 2 and RµαR

αν = −Rµν . We use the
‘mostly minus’ metric convention. The virtual photon flux factor is defined through X = (q1 ·q2)2−q2

1q
2
2 =

ν2 −Q2
1Q

2
2 with the crossing-symmetric variable ν given by ν = q1 · q2

The vectors ki are defined by

k1 =

√
−q2

1

X

(
q2 −

q1 · q2

q2
1

q1

)
, k2 =

√
−q2

2

X

(
q1 −

q1 · q2

q2
1

q2

)
, (A2)

and satisfy k2
i = 1, ki · qi = 0.

Finally, the helicity amplitudes for the γ∗(λ1, q1)γ∗(λ2, q2)→ X(pX) fusion process are related to the
Feynman amplitudes by

M(λ1, λ2) =Mµν ε
µ
1 (λ1) εν2(λ2) . (A3)

2. Pseudoscalar mesons

The transition γ∗(q1, λ1) + γ∗(q2, λ2) → P, where P is a pseudoscalar state, is described by the
following amplitude:

M(λ1, λ2) = −i e2 εµναβ ε
µ(q1, λ1) εν(q2, λ2) qα1 q

β
2 FPγ∗γ∗(Q

2
1, Q

2
2) , (A4)

where εµ(q1, λ1) and εν(q2, λ2) are the polarization vectors of the virtual photons with helicities λ1, λ2 =
0,±1. The only non-zero helicity amplitudes, which we define in the rest frame of the produced meson,
are given by :

M(+1,+1) = −M(−1,−1) = e2
√
X FPγ∗γ∗(Q

2
1, Q

2
2) . (A5)

The two-photon decay width is given by

Γγγ =
πα2

4
m3
P [FPγ∗γ∗(0, 0)]

2
, (A6)
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and from Eqs. (2) and (8)

σ0 = σ⊥ = 2σTT = 2τaTT = −τTT = 16π2δ(s−m2
P )

Γγγ
mP

2
√
X

m2
P

[
FPγ∗γ∗(Q

2
1, Q

2
2)

FPγ∗γ∗(0, 0)

]2

,

σLL = σTL = σLT = τTL = τaTL = 0 . (A7)

3. Scalar mesons

The transition γ∗(q1, λ1) + γ∗(q2, λ2) → S where S is a scalar state can be parameterized by one
transverse (FTAγ∗γ∗) and one longitudinal (FLAγ∗γ∗) form factor and is described by the following matrix
element

M(λ1, λ2) = e2 εµ(q1, λ1) εν(q2, λ2)

×
(

ν

mS

){
−Rµν(q1, q2)FTSγ∗γ∗(Q

2
1, Q

2
2) +

ν

X

(
qµ1 +

Q2
1

ν
qµ2

)(
qν2 +

Q2
2

ν
qν1

)
FLSγ∗γ∗(Q

2
1, Q

2
2)

}
.

The only non-zero helicity amplitudes are given by

M(+1,+1) = M(−1,−1) = e2 ν

mS
FTSγ∗γ∗(Q

2
1, Q

2
2) ,

M(0, 0) = −e2 Q1Q2

mS
FLSγ∗γ∗(Q

2
1, Q

2
2) . (A8)

The two-photon decay width is given by

Γγγ =
πα2

4
mS

[
FTSγ∗γ∗(0, 0)

]2
, (A9)

and from Eqs. (2) and (8)

σ0 = σ‖ = 2σTT = 2τaTT = τTT = 16π2δ(s−m2
S)

Γγγ
mS

2ν2

m2
S

√
X

[
FTSγ∗γ∗(Q

2
1, Q

2
2)

FTSγ∗γ∗(0, 0)

]2

,

σLL = 16π2δ(s−m2
S)

Γγγ
mS

2Q2
1Q

2
2

m2
S

√
X

[
FLSγ∗γ∗(Q

2
1, Q

2
2)

FTSγ∗γ∗(0, 0)

]2

,

τTL = τaTL = −16π2δ(s−m2
S)

Γγγ
mS

Q1Q2

mS

ν

mS

√
X

FTSγ∗γ∗(Q
2
1, Q

2
2)FLSγ∗γ∗(Q

2
1, Q

2
2)[

FTSγ∗γ∗(0, 0)
]2 . (A10)

4. Axial mesons

The transition γ∗(q1, λ1) + γ∗(q2, λ2) → A(pA,Λ), where A is an axial-vector state, can be parame-

terized by two form factors F
(0)
Aγ∗γ∗ and F

(1)
Aγ∗γ∗ , where the superscript indicates the helicity state (Λ) of

the axial-vector meson

M(λ1, λ2; Λ) = e2 εµ(q1, λ1) εν(q2, λ2) εα∗(pf ,Λ)

× i ερστα

{
Rµρ(q1, q2)Rνσ(q1, q2) (q1 − q2)τ

ν

m2
A

F
(0)
Aγ∗γ∗(Q

2
1, Q

2
2)

+Rνρ(q1, q2)

(
qµ1 +

Q2
1

ν
qµ2

)
qσ1 q

τ
2

1

m2
A

F
(1)
Aγ∗γ∗(Q

2
1, Q

2
2)

+Rµρ(q1, q2)

(
qν2 +

Q2
2

ν
qν1

)
qσ2 q

τ
1

1

m2
A

F
(1)
Aγ∗γ∗(Q

2
2, Q

2
1)

}
. (A11)

The only non-zero helicity amplitudes are given by

M(+1,+1; Λ = 0) = −M(−1,−1; Λ = 0) = e2 (Q2
1 −Q2

2)
ν

m3
A

F
(0)
Aγ∗γ∗(Q

2
1, Q

2
2) ,

M(0,+1; Λ = −1) = − e2Q1

(
X

νm2
A

)
F

(1)
Aγ∗γ∗(Q

2
1, Q

2
2) ,

M(−1, 0; Λ = −1) = − e2Q2

(
X

νm2
A

)
F

(1)
Aγ∗γ∗(Q

2
2, Q

2
1) . (A12)
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In this case, the equivalent two-photon width is defined by

Γ̃γγ ≡ lim
Q2

1→0

m2
A

Q2
1

1

2
Γ(A → γ∗LγT ) =

πα2

4

mA

3

[
F

(1)
Aγ∗γ∗(0, 0)

]2
, (A13)

and from Eqs. (2) and (8)

σ0 = σ⊥ = 2σTT = 2τaTT = −τTT = 16π2δ(s−m2
A)

3Γ̃γγ
mA

(Q2
1 −Q2

2)2

m4
A

2ν2

m2
A

√
X

[
F

(0)
Aγ∗γ∗(Q

2
1, Q

2
2)

F
(1)
Aγ∗γ∗(0, 0)

]2

,

σLT = 16π2δ(s−m2
A)

3Γ̃γγ
mA

2X
√
X

ν2m2
A

Q2
1

m2
A

[
F

(1)
Aγ∗γ∗(Q

2
1, Q

2
2)

F
(1)
Aγ∗γ∗(0, 0)

]2

,

σTL = 16π2δ(s−m2
A)

3Γ̃γγ
mA

2X
√
X

ν2m2
A

Q2
2

m2
A

[
F

(1)
Aγ∗γ∗(Q

2
2, Q

2
1)

F
(1)
Aγ∗γ∗(0, 0)

]2

,

τTL = −τaTL = 16π2δ(s−m2
A)

3Γ̃γγ
mA

Q1Q2

m2
A

X
√
X

ν2m2
A

[
F

(1)
Aγ∗γ∗(Q

2
1, Q

2
2)

F
(1)
Aγ∗γ∗(0, 0)

F
(1)
Aγ∗γ∗(Q

2
2, Q

2
1)

F
(1)
Aγ∗γ∗(0, 0)

]
,

σLL = 0 . (A14)

5. Tensor mesons

The transition γ∗(q1, λ1) + γ∗(q2, λ2) → T (Λ) where T is a tensor state with helicity Λ = ±2,±1, 0
can be parameterized by four form factors T (Λ),

M(λ1, λ2; Λ) = e2 εµ(q1, λ1) εν(q2, λ2) ε∗αβ(pf ,Λ)

×
{[
Rµα(q1, q2)Rνβ(q1, q2) +

s

8X
Rµν(q1, q2)(q1 − q2)α (q1 − q2)β

] ν

mT
F

(2)
T γ∗γ∗(Q

2
1, Q

2
2)

+Rνα(q1, q2)(q1 − q2)β
(
qµ1 +

Q2
1

ν
qµ2

)
1

mT
F

(1)
T γ∗γ∗(Q

2
1, Q

2
2)

+Rµα(q1, q2)(q2 − q1)β
(
qν2 +

Q2
2

ν
qν1

)
1

mT
F

(1)
T γ∗γ∗(Q

2
2, Q

2
1)

+Rµν(q1, q2)(q1 − q2)α (q1 − q2)β
1

mT
F

(0,T )
T γ∗γ∗(Q

2
1, Q

2
2)

+

(
qµ1 +

Q2
1

ν
qµ2

)(
qν2 +

Q2
2

ν
qν1

)
(q1 − q2)α(q1 − q2)β

1

m3
T

F
(0,L)
T γ∗γ∗(Q

2
1, Q

2
2)

}
, (A15)

where εαβ(pf ,Λ) is the polarization tensor for the tensor meson with four-momentum pf and helicity Λ.
The different non-vanishing helicity amplitudes are

M(+1,−1; Λ = +2) =M(−1,+1; Λ = −2) = e2 ν

mT
F

(2)
T γ∗γ∗(Q

2
1, Q

2
2) ,

M(0,+1; Λ = −1) = −e2Q1
1√
2

(
2X

νm2
T

)
F

(1)
T γ∗γ∗(Q

2
1, Q

2
2) ,

M(−1, 0; Λ = −1) = −e2Q2
1√
2

(
2X

νm2
T

)
F

(1)
T γ∗γ∗(Q

2
2, Q

2
1) ,

M(+1,+1; Λ = 0) =M(−1,−1; Λ = 0) = −e2

√
2

3

(
4X

m3
T

)
F

(0,T )
T γ∗γ∗(Q

2
1, Q

2
2) ,

M(0, 0; Λ = 0) = −e2Q1Q2

√
2

3

(
4X2

ν2m5
T

)
F

(0,L)
T γ∗γ∗(Q

2
1, Q

2
2) . (A16)

The two-photon decay widths for helicities Λ = 0, 2 are respectively given by

Γ(0)
γγ = πα2mT

2

15

[
F

(0,T )
T γ∗γ∗(0, 0)

]2
,

Γ(2)
γγ =

πα2

4
mT

1

5

[
F

(2)
T γ∗γ∗(0, 0)

]2
. (A17)
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and from Eqs. (2) and (8)

σ0 = 16π2δ(s−m2
T )

5Γ̃
(0)
γγ

mT

8X
√
X

m6
T

[
F

(0,T )
T γ∗γ∗(Q

2
1, Q

2
2)

F
(0,T )
T γ∗γ∗(0, 0)

]2

,

σ2 = 16π2δ(s−m2
T )

5Γ̃
(2)
γγ

mT

2ν2

m2
T

√
X

[
F

(2)
T γ∗γ∗(Q

2
1, Q

2
2)

F
(2)
T γ∗γ∗(0, 0)

]2

,

σ‖ = σ0 +
σ2

2
,

σ⊥ =
σ2

2
,

σLT = 16π3δ(s−m2
T )α2 Q

2
1

m2
T

X
√
X

ν2m2
T

[
F

(1)
T γ∗γ∗(Q

2
1, Q

2
2)
]2
,

σTL = 16π3δ(s−m2
T )α2 Q

2
2

m2
T

X
√
X

ν2m2
T

[
F

(1)
T γ∗γ∗(Q

2
2, Q

2
1)
]2
,

τTL = 16π3δ(s−m2
T )α2X

√
X

ν2m2
T

Q1Q2

m2
T

[
2

3

4X

m4
T

F
(0,T )
T γ∗γ∗(Q

2
1, Q

2
2)F

(0,L)
T γ∗γ∗(Q

2
1, Q

2
2)− 1

2
F

(1)
T γ∗γ∗(Q

2
1, Q

2
2)F

(1)
T γ∗γ∗(Q

2
2, Q

2
1)

]
,

τaTL = 16π3δ(s−m2
T )α2X

√
X

ν2m2
T

Q1Q2

m2
T

[
2

3

4X

m4
T

F
(0,T )
T γ∗γ∗(Q

2
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2
2)F
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T γ∗γ∗(Q

2
1, Q

2
2) +

1

2
F

(1)
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2
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2
2)F
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T γ∗γ∗(Q

2
2, Q

2
1)

]
,

σLL = 16π3δ(s−m2
T )α2Q

2
1Q

2
2

m4
T

16

3

X3
√
X

ν4m6
T

[
F

(0,L)
T γ∗γ∗(Q

2
2, Q

2
1)
]2
.
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Appendix B: Additional material: tables and figures

We present tables of results for the forward HLbL scattering amplitudes on three lattice ensembles at
a few values of the kinematic variables. Figure 10 displays the results on ensemble G8 as a function of
Q2

2.

Table IX: Forward HLbL scattering amplitudes (×106) on the ensembles G8, F7, F6. The variable ν is
given in GeV2 units. Results are given for two sets of virtualities, A corresponding to (Q2

1 = 0.352 GeV2,
Q2

2 = 0.352 GeV2) and B to (Q2
1 = 0.352 GeV2, Q2

2 = 1.000 GeV2).

G8 ν MTT Mτ

TT Ma

TT MTL MLT Ma

TL Mτ

TL MLL

A

0.087 8.5(60) 1.0(51) × 2.6(72) −7.9(60) × −1.8(25) −6.1(71)
0.176 43.0(112) −20.3(159) −0.9(81) −5.7(185) −26.8(154) 3.7(64) −1.1(35) 1.2(170)
0.263 35.0(105) −12.6(106) 5.6(131) −6.9(174) −0.2(148) −0.1(103) 1.3(42) 22.4(180)
0.351 141.5(220) −69.2(227) 77.0(203) −25.4(202) −17.9(217) 9.9(93) 27.9(114) 65.8(296)

B

0.087 −1.7(18) 0.0(21) × 0.4(23) 2.2(28) × −0.0(7) 3.1(26)
0.176 1.7(57) 0.6(44) 1.5(27) 0.1(63) 3.9(55) −0.3(15) −0.6(29) 3.3(74)
0.263 10.6(39) 1.0(36) 5.2(50) 2.7(84) 5.6(49) −1.4(36) −1.6(22) 2.9(56)
0.351 15.5(54) 6.1(62) 8.5(69) −0.5(88) 6.6(79) 0.8(32) 0.4(38) 4.7(88)
0.438 28.6(57) −0.1(35) 11.6(76) 10.6(81) 16.7(52) −1.4(56) −2.7(36) 3.3(86)
0.525 46.4(75) −5.6(49) 22.2(81) 18.8(90) 22.8(72) 2.9(49) −4.3(45) 6.7(105)
0.612 76.6(97) −27.6(103) 40.2(162) 13.6(131) 17.4(95) 5.7(65) 0.9(75) 23.2(152)

F7 ν MTT Mτ

TT Ma

TT MTL MLT Ma

TL Mτ

TL MLL

A
0.117 3.1(28) 5.0(20) × 0.3(63) 0.7(42) × −2.9(15) 4.3(64)
0.234 23.4(100) −0.6(79) −2.2(37) 8.1(140) −0.5(98) 1.0(30) −2.7(33) −9.4(165)
0.351 72.1(205) −79.4(178) 46.9(75) 15.3(225) 16.2(160) −6.3(104) 6.6(95) −21.8(397)

B

0.117 −0.3(17) −0.1(13) × 3.4(27) 1.8(18) × −0.8(7) −2.1(27)
0.234 0.9(34) 0.3(31) −0.5(16) 10.4(51) 6.9(38) −0.4(10) −2.2(12) −9.1(53)
0.351 13.6(38) 0.3(41) 1.3(39) 24.4(74) 2.8(48) −1.7(23) −3.0(19) −10.4(71)
0.467 31.0(47) −4.8(46) 8.0(36) 28.5(97) 13.2(51) 1.8(33) −6.3(20) −17.0(112)
0.583 74.1(90) −25.7(90) 28.9(50) 35.4(112) 15.1(77) 6.2(54) −8.3(44) −4.2(166)

F6 ν MTT Mτ

TT Ma

TT MTL MLT Ma

TL Mτ

TL MLL

A
0.117 7.0(18) 6.2(15) × −0.9(34) −0.5(21) × 1.1(10) 3.4(37)
0.234 28.8(59) 3.1(53) −0.2(21) 15.0(96) 5.1(63) −2.2(17) 4.9(24) −8.2(95)
0.351 77.2(89) −63.9(77) 40.0(64) 32.3(110) 20.8(84) −1.0(43) −3.4(72) −19.2(173)

B

0.117 2.1(11) 0.6(7) × 0.0(15) 1.4(10) × −0.1(2) 0.9(17)
0.234 8.8(23) 0.3(17) −0.7(9) 4.7(37) 3.3(25) −0.5(7) 0.1(8) 3.1(44)
0.351 18.2(35) −3.5(23) 1.0(28) 13.0(58) 5.8(43) −1.0(18) −0.1(13) 9.4(65)
0.467 36.8(49) 8.4(23) 7.6(24) 20.7(64) 8.2(43) 1.4(19) −1.3(15) 0.3(73)
0.583 79.3(61) −33.7(57) 25.3(38) 30.5(91) 12.0(57) 3.0(37) −5.4(38) 2.3(114)
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Figure 10: The eight amplitudes (×106) for the ensemble G8 and for Q2
1 = 0.352 GeV2. The curves with

error-bands represent the fit results discussed in Sec. VI.
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