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Machine learning as an instrument for data unfolding

Alexander Glazov

Abstract A method for correcting for detector smearing effects using machine
learning techniques is presented. Compared to the standard approaches the
method can use more than one reconstructed variable to infere the value of
the unsmeared quantity on event by event basis. The method is implemented
using a sequential neural network with a categorical cross entropy as the loss
function. It is tested on a toy example and is shown to satisfy basic closure
tests. Possible application of the method for analysis of the data from high
energy physics experiments is discussed.

Keywords Machine learning · Data unfolding

1 Introduction

The problem of unfolding, i.e. correcting the observed distributions in data
for the detector resolution effects in order to obtain the true underlying distri-
bution of the physical quantity, is a common problem in high energy physics
(HEP). A number of methods has been developed to solve it which typically
formulate the problem in terms of the transfer matrix from the truth to re-
constructed distribution. The unfolding then corresponds to an inversion of
the transfer matrix. A simple inversion, however, may lead to a significant
bin-to-bin anticorrelations for the unfolded distribution, spoiling stability of
the result [1,2]. A number of regularisation methods has been proposed to
overcome this problem. They use smoothness of the physical observable as
an extra prior information [3,2,4], introduce explicit priors using e.g. reduced
cross-entropy method [5], analyse the transfer matrix with singular value de-
composition procedure and keep significant eigenvalues only [6], invert the
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transfer matrix in an iterative approach and truncating the number of itera-
tions [7,8,9,10,11]. There are several other approaches to solve the unfolding
problem, e.g. by applying extra smearing corrections to the reconstructed data,
obtaining this way spectra which are folded multiple times with the detector
response, and extrapolating them back to zero foldings [12]. An application
of machine learning methods for unfolding is discussed in Ref. [13]. A recent
review and performance comparison of different unfolding methods used fre-
quently in HEP can be found in Ref. [14].

In this letter, the problem of unfolding is viewed as a categorization prob-
lem, i.e. assigning for each reconstructed data event the most probable truth
bin. Similarly to the approach described in Ref. [15], the method does not
require binning for the reconstructed quantities, the correction is applied on
event-by-event basis, and the unfolding is performed in an iterative procedure.
A set of closure tests is proposed to check convergence of the procedure and
that it is bias free.

The categorization is a common problem for the modern machine learning
(ML) methods. For example, the standard benchmark for the ML algorithms,
the classification of the hand-written digits using MNIST database [16], is a
categorization problem. A number of methods has been developed to solve it
with high efficiency which can be employed for the unfolding problem. These
include methods such as boosted decision trees and artificial neural networks.
Deep neural networks (DNN) are under active development now in part due
to advances in computational resources which are suitable for them. DNNs
with various architectures can be tried for the unfolding problem. In particu-
lar, networks with convolutional layers may explore distance relation between
variables and truth-bins. Sequential networks with fully connected layers can
be used for generic unfolding problems which include long-range migration
effects due to e.g. kinematic misreconstruction.

The strength of the ML methods is that they can use large amount of
information as input. The ultimate goal of ML in HEP is to determine the
underlying physics quantities directly from the unprocessed detector informa-
tion. Given the current status of algorithms and computing resources the goal
is still to be reached in future. It is also important to see first how the method
performs in comparisons to other approaches using a single input variable.
The method is introduced in the following using a one-dimensional unfolding
problem, starting from no smearing and miscalibration effects, to check that
the model is sufficient. The miscalibration and smearing are added next lead-
ing to an iterative unfolding procedure. The second reconstructed variable is
introduced as the final example. The letter concludes with a discussion of the
results and possible future applications of the method.
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2 Method description

The described below example and the unfolding procedure, called in the fol-
lowing as “ML unfolding”, can be found on github1 as a python jupyter note-
book. The code uses Keras [17] and borrows the underlying neural network
architecture from the example files of the package.

The classifier used for the unfolding is based on a three layer sequential neu-
ral network. The first layer contains Ninp neurons where Nimp is the number
of input variables. For a standard unfolding problem Ninp = 1, but Ninp = 2 is
examined in this letter as well. The second layer contains κN2

bin fully connected
dense cells employing ReLU activation function, f(x) = max(0, x). HereNbin is
the number of truth bins and κ is determined empirically to be κ ∼ 8. The sec-
ond layer plays the role analogous to the transfer matrix, which justifies a large
number of neurons, proportional to N2

bin. The ReLU activation function is well
suited for the first task of the neural network to determine the bin boundaries
for the reconstructed variable. The final third layer contains Nbin categorical
neurons activated using the softmax function, fi(x) = expxi/

∑Nbin

k=1 expxk.

The network uses categorical cross entropy, H(p,q) = −
∑Nevt

e=1

∑Nbin

i=1 pei log qei
as the loss function, where pei and qei are the truth and predicted probabilities
for an event e and summation runs over all Nevt Monte Carlo events and truth
bins. By construction, pei = 1 for one ith-bin and zero for all other bins while
qei may be non-zero for a couple of bins, as determined by the softmax activa-
tion function. The training of the network employs the ADADELTA method
which uses dynamically optimized per-dimension learning rate for the gradient
decent minimization [18].

It is essential to ensure that the unfolding procedure is not biased towards
the distribution used in the simulation to train the neural network. Therefore
the ML unfolding is performed iteratively. The classifier is trained initially
using an input distribution of x = xg which may have no prior information,
so called flat prior F (xg) = const, or be based on previous measurements and
theoretical expectations. The trained classifier is then applied to the data, to
determine qe,datai that is used to compute an updated binned F ′i (x) distribu-

tion as F ′i (x) = 1/Nevt, data

∑Nevt, data

e=1 qe,datai , which in turn is employed to
re-sample the Monte Carlo simulation and re-train the classifier. The proce-
dure is repeated until convergence which can be detected based on stability of
the unfolded result over several consequent iterations compared to statistical
uncertainties. Given that the model used for the ML unfolding has many re-
dundant parameters, many possible training results can be obtained at each
iteration. This introduces additional statistical uncertainty which can be re-
moved by taking an average over unfolded results using several ML unfolding
sessions that use different input random numbers. Twenty sessions are used
for the analysis presented here.

The described above iterative procedure is a common method for solv-
ing unfolding problems and has been proved to converge for a wide class of

1 https://github.com/aglazov/MLUnfold.git
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Fig. 1 Probability for the consecutive truth bin number, P i
gen, shown with different colours

and line styles, as a function of the reconstructed variable xr for the simulation without
smearing and ML estimator trained based on the truth prior, which is shown as a dotted
line.

them [7,8,9]. The convergence can be probed for the ML unfolding using a
set of closure tests. The zero-level test verifies that the classifier internal ar-
chitecture is sufficient to solve the classification problem and determine the
truth-bin boundaries in the trivial case when reconstructed xr = xg. The test
should be fulfilled with any prior distribution after the zeroth iteration. The
test establishes the required ML topology and the training strategy, such as
the number of batches and epochs used for the training. When performed us-
ing the truth-based prior, it also checks the sufficiency of the Monte Carlo
sample statistics, especially for the bins correponding to the minimum of the
distribution.

The first-level test checks that the setup provides a fixed-point for the
iterative procedure when using the truth-based prior. Agreement between the
input truth and the unfolded distribution is expected after the zeroth iteration
which should hold within statistical uncertainties.

The final closure test is based on different prior distributions for the train-
ing and validation samples and is used to determine required number of iter-
ations. For example, a flat prior can be used for the initial training. A conver-
gence should be observed for a range of validation distributions. This test can
be performed in a more systematic manner if the expected distribution has
well-defined uncertainties. In this case, the prior distribution can be based on
the expected distribution and varied within its uncertainties to verify conver-
gence to the central value, which should be achieved to a much better level
than the size of the uncertainty. It could be also instructive to verify that
the truth-based prior is a stable fixed point by altering the prior slightly and
verifying that the procedure converges rapidly.

As an example, the ML unfolding is tested using a distribution following
F (xg) = sin2 5xg function for the generated xg varied between 0 and 1. Nbin =
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Fig. 2 Left: comparison of the truth, reconstructed and unfolded distributions for the test
when the reconstructed xr is shifted vs truth xg as xr = xg + 0.05. Right: corresponding
response matrix with the over-flow events in reconstructed bin number placed in the last
bin.

10 truth bins are used for the unfolding which are distributed uniformly with a
bin width of 0.1. The efficiency of the detector is assumed to be uniform in xg,
focusing the test on the bin migration effects. Training and test samples with
2 × 106 and 20 × 103 random events are used, respectively. The test sample is
use as pseudo-data for unfolding. Two initial training samples are generated
following the truth-based F (xg) = sin2 5xg and flat F (xg) = const priors.

The zeroth-level check of the procedure is to ensure that the neural net-
work is sufficiently large to determine truth bin boundaries for the case without
detector smearing, i.e. when reconstructed xr = xg. Indeed, in this case the
neural network reaches > 99.9% prediction accuracy PA, determined by com-
paring the reconstructed bin with maximal probability to the truth bin, for the
validation sample after training. For the prior with non-uniform distribution,
significant amount of the training cycles is required to achieve this accuracy.
The result of the training using batch size of 1000 events and 400 epochs is
shown in Figure 1. Very sharp bin boundaries are visible for all but the bin
corresponding to the minimum of the prior distribution, but even for this bin
the accuracy is sufficient, considering typical smearing effects.

This is a non-trivial result already since the network did not receive directly
any information on the bin boundaries. It can be extended to the first inter-
esting application: consider bias of the reconstructed variable xr = xg + 0.05.
It is illustrated in Figure 2. A sizable shift of the reconstructed distribution
with respect to the truth is observed in this case, making simple bin-by-bin
unfolding inapplicable. The shift introduces large off-diagonal elements to the
transfer matrix. The ML unfolding, trained using the flat prior with no itera-
tions performs very well, reproducing the truth within statistical uncertainties
of the test sample which estimated using bootstrap resampling method [19].
The bootstrap method uses generated events multiple (or zero) times follow-
ing Poisson probability distribution with the expectation value µ = 1. Thirty
bootstrap replica are used in the analysis presented here.
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Fig. 3 Left: comparison of the truth, reconstructed and unfolded distributions with zero
and fifteen iterations from the flat prior for the test when the reconstructed xr is smeared
by 0.05. Right: corresponding response matrix with the under- and over-flow events in re-
constructed bin number placed in the first and last bin, respectively.

For the next checks, the bias of the reconstructed variable is removed and
half-bin Gaussian smearing (σ = 0.05) is introduced. This leads to sizable bin-
to-bin migrations, see Figure 3. The diagonal elements of the transfer matrix,
which show the fraction of events reconstructed in the same bin as the truth,
the so called bin stability, is at 60% level. The bin purity, which is measured
as a fraction of truth events for a reconstructed bin, is also close to 60%, apart
from the seventh bin, corresponding to the distribution minimum, where it
dips to 20% only. The accuracy of the ML prediction is also at PA ∼ 64−66%
level in this case with the lower value obtained the flat prior and higher for the
truth-based prior. It is then verified that when using the truth-based prior,
F (xg) = sin2 5xg, the unfolded distribution agrees with the truth to within
statistical uncertainties of the test sample, see Figure 4.

The flat initial prior is used to train the ML classifier for the following. The
zeroth iteration of ML unfolding is in fact extra smearing on top of detector
resolution effects: with no prior information on the underlying distribution
shape, the neural network can only smear the reconstructed event according
to the probabilities to be originated from the truth bins. This can be observed
in Figure 3 by comparing the zeroth iteration to reconstructed distribution. For
the following iterations, the shape of the distribution obtained from the last
iteration is parameterized using cubic splines based on Ref. [20] and used as a
prior for the event generation. The splines are chosen such that the integrals
over bin boundaries agree with F ′i (x) for all bins.

The iterative ML unfolding procedure leads to a fair representation of
the underlying truth distribution after the tenth iteration. The convergence is
illustrated in Figure 5 which shows rapid convergence up to the tenth iteration
and oscillatory behavior for the following iterations, generating sizable bin-to-
bin anticorrelations.

To illustrate additional capabilities of the ML unfolding a second recon-
structed variable is introduced. The first variable retains Gaussian smearing
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Fig. 4 Left: comparison of the truth and unfolded distributions after zeroth iteration of
unfolding with the prior based on the truth distribution. Right: ratio of the truth and
unfolded distributions.
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Fig. 5 For unfolding based on the single reconstructed variable startng with the flat prior,
ratio of unfolded to truth binned distributions for iterations from 0 to 14 (left) and from 15
to 24 (right).
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Fig. 6 Left: comparsion of the truth and reconstructed distribution with Gaussian and log-
normal smearing labeled as rec 1 and rec 2, respectively. Right: relative statistical uncertainty
of the unfolded result using single Gaussian smeared variable rec 1 and using both rec 1 and
rec 2 variables.
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with σ = 0.05 and additional shift of +0.05. The second variable is smeared
using log-normal distribution, with σ = 0.15 and shift of −0.05. Difference of
the smearing models prevents direct combination of the two variables into a
single one. Figure 6, left shows comparison of the generated and reconstructed
distributions. The second reconstructed variable has an improved accuracy for
the first bins of the distribution, but much worse for the rest. When trained
using both variables, the prediction accuracy of the neural network improves
from PA ∼ 65% to PA ∼ 70% compared to usage of the single variable.
Consequently, the statistical uncertainty is improved for the two-variable ML
unfolding, see Figure 6, right.

3 Discussion

A method of machine learning unfolding shows promising performance for the
toy example presented here. For a single reconstructed variable, it is similar to
iterative approaches with an additional advantage that it does not require bin-
ning in the reconstructed quantities. It is insensitive to miscalibration between
truth and reconstructed variables and chooses the effective binning automat-
ically. While being much more computationally demanding compared to the
standard techniques, the method benefits from many tools developed recently
for the machine learning applications, including hardware optimization. For
instance, the training of one epoch for the example discussed in the letter
takes ∼ 5 second of physical time on a Dell Precision 5520 laptop with Intel
i7-7820HQ CPU and Nvidia Quadro M1200 GPU, thanks to GPU-based ac-
celeration of Keras using the Tensorflow backend. However multiplying this
by the number of epochs to complete the training, additional training sessions
and bootstrap replica to estimate statistical uncertainties, complete training
demands large resources.

The method can be naturally extended to several input variables. It has
been demonstrated that even a variable with a poor resolution can add valuable
information for determining the truth distribution. As such, the method can be
used as an agregator of the experimental information to a new variable which
can be employed as a proxy to the truth and any other unfolding approach
can be applied for the transfer from this variable to the truth.

The ability of the method to make use of several variables can be beneficial
for many types of measurements. For example, measurements of the struc-
ture functions in deep-inelastic lepton-proton scattering rely on two variables,
Bjorken-x and absolute momentum transfer squared, Q2. These two variables
can be reconstructed using the scattered lepton kinematics alone, but they can
be also determined based on the hadronic final state (HFS). A number of kine-
matic methods which combine lepton and HFS information were introduced
in the past (see e.g. [21]), and they can be employed by the ML method in an
optimal way. Another example is the measurement of the Z-boson transverse
momentum, pZT, at the LHC. Currently, two distinct measurements are per-
formed: of pZT itself, which is preferred by theory, and of the variable φ∗ which
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is related to pZT and, being insensitive to the measured absolute momenta, has
higher accuracy experimentally (see e.g. [22]). With the ML method discussed
here, both variables can be used to unfold pZT. One can also use invariant mass
of the lepton pair, as the third variable, with a known Z-boson lineshape as a
prior, to control calibration and QED radiative effects at event by event level.

To conclude, a ML unfolding method is introduced and tested in this letter.
It can serve as a useful tool for several analyses in HEP.
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