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We study the nature of the electroweak phase transition (EWPT) in models where the Higgs emerges as a
pseudo-Nambu-Goldstone boson of an approximate global symmetry of a new strongly-interacting sector con-
fining around the TeV scale. Our analysis focusses for the first time on the case where the EWPT is accompanied
by the confinement phase transition of the strong sector. We describe the confinement in terms of the dilaton,
the pseudo-Nambu-Goldstone boson of spontaneously broken conformal invariance of the strong sector. The
dilaton can either be a meson-like or a glueball-like state and we demonstrate a significant qualitative difference
in their dynamics. We show that the EWPT can naturally be strongly first-order, due to the nearly-conformal
nature of the dilaton potential. Furthermore, we examine the sizeable scale variation of the Higgs potential pa-
rameters during the EWPT. In particular, we consider in detail the case of a varying top quark Yukawa coupling,
and show that the resulting CP violation is sufficient for successful electroweak baryogenesis. We demonstrate
that this source of CP violation is compatible with existing flavour and CP constraints. Our scenario can be
tested in complementary ways: by measuring the CP-odd top Yukawa coupling in neutron EDM experiments,
by searching for dilaton production and deviations in Higgs couplings at colliders, and through gravitational
waves at LISA.

INTRODUCTION

Deciphering the origin of the Higgs potential and its stabi-
lization against quantum corrections is an essential step to-
wards the microscopic understanding of electroweak (EW)
symmetry breaking. This is one of the key questions posed
by the standard model (SM) of particle physics. One of very
few known options for a natural underlying dynamics is that
the Higgs boson is a composite object, a bound state of a
new strongly interacting sector which confines around the TeV
scale [1]. The mass gap between the Higgs and the yet un-
observed other composite resonances can be explained if the
Higgs is a pseudo-Nambu-Goldstone boson of a global sym-
metryG of the strong sector which breaks down to a subgroup
H due to a strong condensate χ. The Higgs mass is then pro-
tected by a shift symmetry.

Another question left unanswered by the SM is the origin
of the matter-antimatter asymmetry of the universe. One fas-
cinating framework, the EW baryogenesis mechanism [2, 3],
fails in the SM due to the absence of a first-order EW phase
transition (EWPT) and of sufficient CP-violation. Determin-
ing the nature of the EWPT is an indispensable step to inves-
tigate whether EW baryogenesis is the correct explanation for
the baryon asymmetry of the universe.

In Composite Higgs (CH) models, since the Higgs arises
only when a non-zero condensate χ forms, the confinement
phase transition and the EWPT are closely linked. Neverthe-
less, so far, studies of the EWPT in CH models considered
them separately. They either focussed on the confinement
phase transition, relying on a 5D description [4–12], or as-
sumed that the EWPT takes place after confinement of the
strong sector [13–16]. The novelty of our work is to con-
sider the interlinked dynamics between the Higgs and the con-
densate during the EWPT. We present a detailed analysis of
the EWPT associated with the confinement phase transition,

within a purely four-dimensional framework, and show that
often both phase transitions happen simultaneously. In fact,
this seems to be the most minimal way to obtain a strong first-
order EWPT in CH models and solves the first problem of
EW baryogenesis in the SM. Complementing previous stud-
ies based on 5D-dual models in which the condensate is a
glueball, we also treat the meson case (motivated by lattice
studies [17, 18]).

An additional attractive feature of CH models is the ex-
planation of the hierarchy of SM Yukawa couplings as orig-
inating from the mixing between elementary and composite
fermions [19, 20]. The resulting Yukawa couplings effectively
depend on the confinement scale and are therefore expected
to vary during the phase transition. CH models thus automati-
cally incorporate the possibility of varying Yukawa couplings
during the EWPT, which was shown to bring sufficient CP vi-
olation for EW baryogenesis [21, 22]. Furthermore, the Higgs
potential in CH models is intimately tied to the top quark
Yukawa coupling. Its variation then leads to a large variation
of the Higgs potential, making the coupled Higgs-χ dynamics
non-trivial. In this letter, we study this effect and show that
sufficient CP violation is naturally induced from the varying
top Yukawa, thus solving the second problem of EW baryo-
genesis in the SM. We therefore demonstrate that CH models
can naturally give rise to EW baryogenesis, even in their sim-
plest implementation, the so-called Minimal Composite Higgs
Model.

HIGGS + DILATON PHASE TRANSITION

The Higgs potential at present times can be parametrised as
a sum of trigonometric functions of h [23],

V 0[h] = α0 sin2

(
h

f

)
+ β0 sin4

(
h

f

)
, (1)
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where α0 and β0 are generated by sources which explicitly
break G and are fixed to reproduce the mass and vacuum ex-
pectation value (vev) of the Higgs. The scale f , balancing
the Higgs field in the trigonometric functions, is generated by
the strong sector condensate. The currently preferred value is
around f = 0.8 TeV [24] which we will use in the follow-
ing. This value of f has to be linked to the condensation scale
χ. The novel aspect of our work is to promote χ to a dy-
namical field. In well-motivated scenarios, the strong sector
is nearly conformal above the TeV scale [25]. Confinement
is then associated with the spontaneous breaking of confor-
mal invariance. This gives rise to a corresponding pseudo-
Nambu-Goldstone boson, the dilaton, which we identify with
χ. If the dilaton is somewhat lighter than the other composite
resonances, we can describe the confinement phase transition
in terms of the dilaton getting a vev. We derive the joint po-
tential for the Higgs and the dilaton, working in the regime
where other composite resonances can be integrated out, and
show under which circumstances both fields obtain a vev si-
multaneously.

The potential (1) is minimised at

h20 ' −(1/2)(α0/β0)f2. (2)

This ties the cosmological evolution of the Higgs and the dila-
ton to each other. In particular, the strengths of the EWPT and
the confinement phase transition then become linked. Since
the latter is governed by the almost conformal dilaton po-
tential, this can naturally lead to a strong first-order EWPT,
i.e. h/T > 1 at the transition temperature, as we will show in
the following.

We describe the coupled dynamics of the Higgs and the
dilaton by using a large-N expansion for the underlying
strongly-coupled gauge theory [26], where N represents the
number of colors. Each insertion of χ or h is accompanied
by a coupling gχ or g∗, respectively. By large-N counting,
these couplings scale as ∼ 1/

√
N for mesons and ∼ 1/N

for glueballs of the gauge theory. The Higgs is expected to
be a meson in analogy with QCD pions while for the dilaton
both meson and glueball cases are possible. Requiring a fully
strongly interacting theory in the limit N → 1, this gives [1]

g∗ = g(meson)
χ = 4π/

√
N, g(glueball)

χ = 4π/N. (3)

The trigonometric functions in V 0[h] can be represented as
power series in h/f . Using the large-N scaling together with
dimensional analysis, one finds that this has to correspond to a
power series in g∗h/(gχχ0), where χ0 is the dilaton vev today.
This fixes the relation between f and χ0 as

g∗f = gχχ0. (4)

To account for the variation of the scale balancing h in the
trigonometric functions in Eq. (1) when χ varies, the kinetic
terms are fixed by dimensional analysis as

Lkin =
1

2
(χ/χ0)2(∂µh)2 +

1

2
(∂µχ)2. (5)

We next turn to the Higgs-independent dilaton potential. In
an exactly conformal theory, only a term χ4 can appear which
does not allow for a minimum χ0 6= 0. We therefore break
conformal invariance explicitly in the UV by a term εO in the
Lagrangian, where O is an operator with scaling dimension
4 + γε. If 0 > γε � −1, the coefficient ε slowly grows when
running from the UV scale down to lower energies until it
triggers conformal-symmetry breaking and confinement. This
is reflected by an additional term in the dilaton potential (see
e.g. [27])

Vχ[χ] = cχg
2
χχ

4 − ε[χ]χ4 (6)

which allows for a minimum at χ0 6= 0. Here the func-
tion ε[χ] is governed by an RG equation with β-function
β ' γεε + cεε

2/g2χ and cχ and cε are order-one coefficients.
We will trade γε for the dilaton mass mχ and fix the remain-
ing constants as cε = 0.1, and cχ = 0.5 not far from a naive
order-one estimate.

To obtain a first-order phase transition, the dilaton potential
needs a barrier that separates the origin from the minimum
χ0. Such a barrier (which the potential (6) does not feature)
results from temperature corrections, which produce an addi-
tional minimum around χ = 0. Indeed, by dimensional anal-
ysis and large-N counting, the free energy of the deconfined
phase is given by [4–6]

∆VT [χ = 0] ∼ −cN2T 4 . (7)

We choose c = π2/8, a value corresponding to N = 4
SU(N) super-Yang-Mills that is representative of a realistic
conformal sector. We reproduce this free energy at χ = 0
by including the standard one-loop thermal corrections from
45N2/4 strongly coupled bosonic degrees of freedom with
mass m = gχχ [5] (Using fermions would only marginally
change the shape of the potential.) At high temperatures, this
dip traps the dilaton at χ = 0. As the temperature drops, it
eventually tunnels to the global minimum at χ ' χ0 corre-
sponding to a confined phase.

Altogether, the potential of our model reads

Vtot[h, χ] = (χ/χ0)4V 0
h [h] + Vχ[χ] + ∆V 1-loop

T [h, χ] , (8)

where the prefactor χ4 of the Higgs potential follows from di-
mensional analysis since the dilaton vev is the only source of
mass in the theory. Furthermore, ∆V 1-loop

T includes the one-
loop thermal corrections from SM particles, the Higgs and
dilaton as well as the states reproducing the free energy (7).

We have calculated the tunnelling trajectory and action for
O(3)-symmetric bubbles in the two-dimensional field space
(h, χ). The phase transition happens at a temperature Tn for
which the bubble action is S3/Tn ≈ 140. In Fig. 1, we
show examples of tunneling trajectories. An important quan-
tity for EW baryogenesis is the strength of the phase transi-
tion h[Tn]/Tn, where h[Tn] is at the minimum of the Higgs
potential at Tn. To ensure that sphalerons do not wash out
the generated baryon asymmetry, h[Tn]/Tn & 1 is required.



3

In the left panel of Fig. 2, we show how the strength of the
EWPT depends on N and the dilaton mass for both a meson-
like and a glueball-like dilaton (the used parameters will be
discussed in the next section). Generally, the phase transition
quickly becomes supercooled with growingN and decreasing
dilaton mass, as found in previous studies of the confinement
phase transition focussing on the glueball, e.g. [12]. This ef-
fect is stronger for the glueball due to the different N -scaling
of its couplings. Overall, our results show that there is ample
parameter space for which the EWPT is sufficiently strong.

We will find in the next section that the parameters α0 and
β0 in Eq. (1) can significantly depend on χ. This effect is
already taken into account in Figs. 1 and 2 but turns out to have
little impact on the size of the tunnelling action and therefore
on the strength of the phase transition in most of the parameter
space. However, it strongly affects the tunnelling direction,
which controls the size of the CP-violating source that we now
discuss.

CP VIOLATION FROM VARYING TOP MIXING

A sufficient amount of CP asymmetry can be generated
during the EWPT from the phase variation of the top quark
Yukawa coupling [21]. This CP-violating source was consid-
ered previously in non-minimal CH models, where an addi-
tional singlet scalar field gives another contribution to the top
Yukawa [15], and in a 5D model [28]. However, here we do
not rely on these extra ingredients. In CH models, the fermion
masses originate from linear interactions between the elemen-
tary fermions qi and composite sector operators Oi:

yiq̄iOi. (9)

The dimensionless coefficients yi are assumed to be of order
one in the UV, where the mixings are generated. They run
subject to an RG equation with β-function γiyi + ciy

3
i /g

2
∗,

where ci are order-one coefficients and the scaling dimension
of the operator Oi is given by 5/2 + γi. The anomalous di-
mensions γi can remain sizeable over a large energy range due
to an approximate conformal symmetry (see e.g. [25]). The
RG evolution stops at the confinement scale ∼ χ, where the
operators map to composite states. This makes the mixings
yi dependent on χ. Integrating out the composite states, one
obtains the effective SM Yukawa couplings

λq[χ] ∼ yqL[χ] yqR[χ]/g∗ , (10)

where L and R denote the mixings of the left- and right-
handed elementary fermions, respectively. In this framework,
the SM fermion mass hierarchy is then explained by order-
one differences in the scaling dimensions of the operators in
Eq. (9). This also offers a natural way to make the top Yukawa
λt vary during the phase transition, as the condensation scale
then changes.

For the CP-violating source to be non-vanishing, how-
ever, λt needs to vary not only in absolute value but also in
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Figure 1: Examples of transition trajectories for different dilaton
properties. Solid lines show the tunnelling path to the release point,
while dotted lines indicate the subsequent rolling trajectory towards
the minimum of the potential at Tn, indicated by a bullet in each
case.

phase [21]. To achieve this, we will assume that the right-
handed top couples to two different operators in the UV:

y
(1)
tR t̄RO1 +y

(2)
tR t̄RO2 ⇒ λt ∼ ytL(y

(1)
tR +y

(2)
tR )/g∗. (11)

Provided that y(1,2)tR are complex andO1,2 have different scal-
ing dimensions (which we assume to be the case), the phase
of λt changes with χ. This provides a source of CP viola-
tion, but also has another crucial effect on the phase transition
which we now explain.

The largest contribution to the Higgs potential in CH mod-
els typically arises from the top quark mixings. We assume
that only one of the mixings y(1,2)tR , which we denote as y,
varies sizeably with the dilaton vev. Its one-loop contribution
to the coefficients α0 and β0 in Eq. (1) reads

α[χ] = cα
3y2[χ]g2∗

(4π)2
f4, β[χ] = cβ

3y2[χ]g2∗
(4π)2

f4
(
y[χ]

g∗

)pβ
,

(12)
where cα and cβ are free parameters of our effective field the-
ory, expected to be of order one. Furthermore, pβ = 0, 2
depending on the structure of the elementary-composite mix-
ings [23, 32] (we choose pβ = 0 for definiteness). Note that
the contributions from the top mixings are somewhat larger
than the coefficients α0 and β0 in Eq. (1) which reproduce the
observed Higgs mass and vev. This points to the well-known
tuning required to obtain the observed Higgs mass and vev
in CH models: Additional contributions to α0 and β0 must
partially cancel those in Eq. (12). However, we can expect
this cancellation to happen only when the mixings have their
values today and thus, as the mixings depend on χ, only for
χ = χ0. In order to take this into account, we make the re-
placement [23]

α0 → α0+(α[χ]−α[χ0]), β0 → β0+(β[χ]−β[χ0]) (13)

in Eq. (1). Furthermore, since the mixings explicitly break
the conformal invariance of the CH sector, we include an ad-
ditional contribution ∝ y2χ4 in the dilaton potential (which
only plays a subdominant role though).
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Figure 2: Black solid (red dashed) contours are for a glueball (meson) dilaton. In the red dashed region, there is no phenomenologically
viable EW minimum for the case of the meson dilaton. We also show the values of the cutoff m∗ = g∗f . The chosen mass range satisfies
current experimental constraints [29]. Left: Phase-transition strength h[Tn]/Tn. The baryon asymmetry for a meson (glueball) like dilaton
is |ηB | × 1010 ∼ 7 (3) (a), 2 (6) (b). Center: Average Higgs vev during the phase transition relative to the condensate scale today, havg/f .
Right: Imaginary part of the top Yukawa as a function of the present value of y/g1/2∗ and its anomalous dimension γy for |βy| = γyy, a
complex phase arg βy = 0.1 and ytL =

√
g∗. The current and near future experimental sensitivities correspond respectively to approximately

2× 10−2 [30] and 2× 10−4 [31]. The green bullet indicates the values used for the left and centre plots.

To have the minimum of the Higgs potential at h0 � f
at present times requires that |α0/β0| � 1. From Eq. (12),
on the other hand, we see that generically |α[χ]/β[χ]| & 1.
This is a manifestation of the required tuning mentioned be-
fore. For χ somewhat away from χ0, the contributions in
Eq. (12) typically dominate over α0 and β0 in Eq. (13) and
the Higgs potential instead has a global minimum at h = 0
(for cα,β > 0) or h = fπ/2 (for cα,β < 0). This minimum
leads to a valley in the Higgs-dilaton potential which can at-
tract the tunneling trajectory during a first-order phase transi-
tion. How closely the tunneling trajectory follows this valley
is controlled by its relative depth (in particular determined by
mχ and N ) and the value of χ for which it becomes deeper
than the valley along h = h0 that results from the tuned Higgs
potential (1) (influenced by |cα,β |, γy, y[0], y[χ0]). Different
tunnelling trajectories are shown in Fig. 1. The form of the
trajectory has major implications for EW baryogenesis. In
particular, trajectories which closely follow h = 0 need to be
avoided since the top mass and thus the CP-violating source
vanish along such trajectories. This can also happen for tra-
jectories which closely follow h = fπ/2, however, since the
fermion masses are ∝ sin[h/f ]1+m cos[h/f ]n [33] with m,n
being model-dependent, and therefore vanish at h = fπ/2 if
n 6= 0.

The top mixings are already quite large at χ = χ0 to ensure
a large top Yukawa. Provided that the anomalous dimension
γy for the mixing y is negative, it grows for decreasing χ until
it reaches a fixed point whose size is controlled by the constant
cy in the β-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose γy = −0.3 and fix cy so that
y[0] = 0.4g∗ in the unbroken phase, while y[χ0] = 0.6

√
λtg∗

in the broken phase. We also set cα = cβ = −0.3 in which
case the detuned valley is along h = fπ/2. We have cal-
culated the action of O(3)-symmetric bubbles for tunneling
along straight lines with constant Higgs vev h which well ap-

proximates the exact tunneling paths (cf. Fig. 1). In the central
panel of Fig. 2, we plot the Higgs vev havg which minimizes
the action at the transition temperature. We see that, depend-
ing on mχ and N , different trajectories are possible for the
meson case. In contrast, the glueball-like dilaton either fol-
lows h = 0 or h = fπ/2 with a sharp transition in between.
Notice that in the case of h = fπ/2 the CP-violating source
is non-vanishing only in models with n = 0.

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of mχ and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [21].
The results are indicated for a few benchmark points, assum-
ing a bubble wall velocity of 0.01 (the baryon asymmetry in-
creases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (11) having a
complex phase arg y

(1)
tR = arg y[χ] = 0.1 and the remaining

mixings being fixed as y(2)tR ' 0.4
√
λtg∗ and ytL =

√
λtg∗.

Note that even in the region where h[Tn]/Tn & a few, we can
expect subsonic velocities as a sizeable friction comes from
the large number of degrees of freedom becoming massive
when they go through the bubble wall. Our baryon asymmetry
values (which should only be taken as indicative given order
one uncertainties) are typically 2 to 8 times bigger than the
observed value ηB ∼ 8.5 × 10−11. In contrast with phase
transitions studied so far, our Higgs vev grows very large
during the EWPT before decreasing, and since ηB scales as
the integral of (h/T )2 over the bubble wall, this leads to a
large baryon asymmetry. Furthermore, we find that the bub-
ble wall width Lw is small, also contributing to a large baryon
asymmetry. However, we actually enter a regime where the
derivative expansion used in the EW baryogenesis formalism
(LwT � 1) [21] starts to break down.
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EXPERIMENTAL SIGNATURES

Our predictions can be divided into two types - those re-
lated to the phase-transition strength (only weakly sensitive
to the y running), and those related to the transition path and
CP violation (strongly sensitive to the y running). For the
former, our testable prediction is the correlation between the
dilaton mass and the strong-sector coupling, from the require-
ment of a strong enough EWPT, see Fig. 2. As for the latter,
the running mixing y can have a measurable effect on both the
Higgs and the dilaton phenomenology, as well as on observ-
ables which are indirectly sensitive to the couplings of h and
χ. Many of these effects arise from the term responsible for
the top mass, which in the meson case with n = 0 reads

λt[χ]χ sin
h

f
t̄LtR ⊃ t̄LtR h

(
λ0t
χ

f
+ βλt

χ− f
f

)
, (14)

where λ0t is the SM top Yukawa coupling, and for one vary-
ing mixing we have βλt ∼ βy (see Eq. (10)). This expression
needs to be rewritten in terms of the mass eigenstates, rotated
with respect to h and χ with an angle which also depends on
βy , since y enters into the scalar potential (8). Importantly,
once λ0t is chosen to be real, its β-function is complex, as
required by the varying Yukawa phase. The highest sensitiv-
ity to the resulting complex couplings comes from measure-
ments of the neutron electric dipole moment [34]. These re-
strict modifications of the CP-odd top Yukawa coupling to be
. 2× 10−2 at 95% CL [30], with a prospect of gaining about
two orders of magnitude in sensitivity in the near future [31].
In the right panel of Fig. 2, we show how the CP-odd tth cou-
pling depends on y[χ]. Constraints will be more stringent for
the meson dilaton than for the glueball. The forthcoming ex-
periments are expected to probe a significant fraction of our
parameter space.

In the longer term, future colliders can probe deviations
in the Higgs couplings arising from the mixing with the
dilaton [35] and a stochastic background of gravitational
waves peaked in the milli-Hertz range can be searched for at
LISA [5, 35].

In summary, our results strongly support the viability of
EW baryogenesis and motivate further studies in concrete cal-
culable realizations of CH models. In a forthcoming paper
[35], we extend this analysis to other possible sources of CP
violation, such as from the interplay of the top and charm
mixings, and discuss the resulting relations between CP viola-
tion, flavour symmetries and the structure of the elementary-
composite mixings.
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