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Abstract

Collinear and transverse momentum dependent (TMD) parton densities are obtained
from fits to precision measurements of deep inelastic scattering (DIS) cross sections at
HERA. The parton densities are evolved by DGLAP evolution with next-to-leading-order
(NLO) splitting functions using the parton branching method, allowing one to determine
simultaneously collinear and TMD densities for all flavors over a wide range in x, µ2 and
kt, relevant for predictions at the LHC. The DIS cross section is computed from the parton
densities using perturbative NLO coefficient functions.

Parton densities satisfying angular ordering conditions are presented. Two sets of
parton densities are obtained, differing in the renormalization scale choice for the argu-
ment in the strong coupling αs. This is taken to be either the evolution scale µ or the
transverse momentum qt. While both choices yield similarly good χ2 values for the fit to
DIS measurements, especially the gluon density turns out to differ between the two sets.

The TMD densities are used to predict the transverse momentum spectrum of Z–
bosons at the LHC.

1 Introduction
Parton density functions (PDFs) play an essential role for precise predictions of production
processes in hadronic collisions, obtained from the factorization of the cross sections in hard-
scattering process and PDFs, containing a non-perturbative input with perturbatively calcu-
lable evolution. The most advanced determination of parton densities come from the appli-
cation of DGLAP [1–4] evolution with next-to-leading order (NLO) [5,6] and next-to-next-to-
leading order (NNLO) [7, 8] splitting functions. The collinear parton densities as a function
of the longitudinal momentum fraction x and the evolution scale µ2 are obtained by several
groups, for example ABM [9], CTEQ [10], HERAPDF [11], NNPDF [12] and MRST [13]. The
different PDFs groups use the same DGLAP evolution, with ordering in virtuality and the
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same choice of the renormalization scale, but they differ in, for example, the treatment of
heavy flavors, and the experimental data sets which are used for the determination of the
starting distributions.

In Refs. [14, 15] a new method, the Parton Branching method (PB), was introduced to
treat DGLAP evolution. The method applies at exclusive level, and provides an iterative
solution of the evolution equations. It agrees with the usual methods to solve the DGLAP
equations for inclusive distributions, but it provides also additional features: in addition
to the standard ordering in virtuality, angular ordering can be applied with the necessary
change in the argument on αs [16, 17]. The transverse momentum at every branching vertex
can be calculated, leading to a natural determination of the transverse momentum dependent
(TMD) parton densities. The PB method uses the unitarity formulation of QCD evolution
equations [18] and is close in spirit to the works in [19–24]. As shown in Refs. [15, 25], it can
be applied to NLO and NNLO splitting functions.

In this article we present a determination of collinear and TMD parton densities at NLO
applying the PB method for the parton evolution. The initial parton distributions are deter-
mined from a fit to HERA I+II inclusive DIS cross section measurements [11]. An early fit
was presented in Ref. [15]. Here, we present results obtained with angular ordering, both
for collinear (integrated, iTMD) and TMD parton densities, and for different choices of the
renormalization scale in αs including a full treatment of experimental and model dependent
uncertainties. We show an application of these TMDs to the calculation of the transverse mo-
mentum of the Z-boson in Drell-Yan (DY) production at the Large Hadron Collider (LHC).

2 Parton Branching method and evolution equation
The PB method has been described in detail in Refs. [14, 15]. Here we limit ourselves to
recalling its main elements.

2.1 General features

The method is based on introducing a soft-gluon resolution scale zM into the QCD evolu-
tion equations to separate resolvable and non-resolvable emissions, and treating these via,
respectively, the resolvable splitting probabilities P (R)

ba (αs, z) and the Sudakov form factors

∆a(zM , µ
2, µ2

0) = exp

(
−
∑
b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0
dz z P

(R)
ba (αs, z)

)
. (1)

Here a, b are flavor indices, αs is the strong coupling at a scale being a function of µ′2 to
be specified in Section 3, z is the longitudinal momentum splitting variable, and zM < 1 is
the soft-gluon resolution parameter. The form factors (1) have the interpretation of proba-
bilities for non-resolvable branchings between the evolution scales µ0 and µ. The functions
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P
(R)
ba (αs, z) have the structure

P
(R)
ba (αs, z) = δbaka(αs)

1

1− z +Rba(αs, z) , (2)

where the first term on the right hand side contains the pole singularity in the soft-gluon
radiation region z → 1 and the second term contains logarithmic terms and analytic terms
for z → 1. The coefficients ka and Rba in eq. (2) have the perturbation series expansions

ka(αs) =
∞∑
n=1

(αs

2π

)n
k(n−1)
a , Rba(αs, z) =

∞∑
n=1

(αs

2π

)n
R

(n−1)
ba (z) . (3)

The explicit expressions for the n = 1 (LO) and n = 2 (NLO) contributions in the ex-
pansions (3) are given in [15]. The n = 3 (NNLO) contributions can be read from [7, 8] and
are used for NNLO calculations in the PB method in [25]. The integrals appearing in the
Sudakov form factors (1) are positive at LO, NLO and NNLO, while the functions (2) can
be negative at NLO and NNLO. The positivity of the integrals in eq. (1) is essential for the
application of the PB method.

The PB method allows one to take into account simultaneously soft-gluon emission in
the region z → 1 and transverse momentum q⊥ recoils in the parton branchings along the
QCD cascade. Its advantage is twofold: on one hand, in collinear distributions additional
QCD features can be studied such as the color radiation’s angular ordering, determined by
soft-gluon interferences, and its effects on factorization and renormalization scales; on the
other hand, the method can be applied to obtain transverse momentum dependent (TMD)
distributions.

The PB evolution equations for TMD parton densities Aa(x,k, µ2) are given by [15]

Aa(x,k, µ2) = ∆a(µ
2) Aa(x,k, µ2

0) +
∑
b

∫
d2q′

πq′2
∆a(µ

2)

∆a(q′2)
Θ(µ2 − q′2) Θ(q′2 − µ2

0)

×
∫ zM

x

dz

z
P

(R)
ab (αs, z) Ab

(x
z
,k + (1− z)q′,q′2

)
, (4)

in terms of the ∆a form factors (1) and P (R)
ba functions (2). The scale in αs is a function of q′2,

as discussed in Section 3. These equations can be solved by an iterative Monte Carlo method.
In this method every resolvable branching is reconstructed explicitly and the full kinematics
at the branching is taken into account.

The collinear parton densities fa(x, µ2) are related to the TMD densities by

fa(x, µ
2) =

∫
Aa(x,k, µ2)

d2k

π
, (5)

and are described as integrated TMD (iTMD). The evolution equations for iTMD densities
analogous to eq. (4) can be written as

fa(x, µ
2) = ∆a(µ

2) fa(x, µ
2
0) +

∑
b

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ

2)

∆a(µ′2)

∫ zM

x

dz

z
P

(R)
ab (z, αs) fb

(x
z
, µ′2

)
. (6)
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These equations have been shown to be equivalent to DGLAP evolution equations through
NLO [14, 15, 19, 20] and NNLO [25].

2.2 PB method and determination of initial distribution

The PB method has been implemented in the xFitter package [26] to allow fits to be made
to cross section measurements. A full Monte Carlo solution of the evolution equation for
every new set of initial parameters would be too time consuming to be efficient. Instead,
a method developed already in [27] is applied: first, a kernel Aba

(
x′′, µ2

)
is determined

from the Monte Carlo solution of the evolution equation for any initial parton∗ of flavor b
evolving to a final parton of flavor a; then this kernel is folded with the non-perturbative
starting distribution A0,b(x),

xfa(x, µ
2) = x

∫
dx′
∫
dx′′A0,b(x

′)Aintba
(
x′′, µ2

)
δ(x′x′′ − x)

=

∫
dx′A0,b(x

′) · x
x′
Aintba

( x
x′
, µ2
)
. (7)

The kernel Aintba includes the full parton evolution as in eq. (6), with Sudakov form factors
and splitting probabilities, and is determined with the PB method. In eq. (7) the kernel Aintba
is determined as a function of x, µ2 for the kt-integrated (iTMD) distributions.

To include also the transverse momentum, we define a new kernel Aba now depending
on x, kt, µ2 for the TMD distributions, with kt =

√
k2,

xAa(x, kt, µ2) = x

∫
dx′
∫
dx′′A0,b(x

′)Aba
(
x′′, kt, µ

2
)
δ(x′x′′ − x)

=

∫
dx′A0,b(x

′) · x
x′
Aba

( x
x′
, kt, µ

2
)
. (8)

The evolution of the kernel starts at x0 = 1 at µ2
0. For the TMD densities an intrinsic kt-

dependence is assumed, which for simplicity is taken as a Gauss distribution exp(−|k2
t |/σ2),

with σ2 = q2
0/2 for all flavors with the same value q0 = 0.5 GeV.

Technically, the results of the kernel evolution are stored in a grid of size 50 × 50(×50)
(for the TMD densities). The grid spacing is logarithmic, the x range is divided into 5 sub-
regions with logarithmic spacing: subregions of 10 bins are defined with the boundaries
xmin, 0.01, 0.1, 0.4, 0.9, 1 to ensure appropriate behavior for large x, where the parton densi-
ties (and the kernel) are varying rapidly.

In Fig. 1 we show the result of convoluting the starting distribution (here taken the bench-
mark parametrization of Ref [30]) with the kernel as given in eq.(7) for the integrated distri-
bution, and compare this with the prediction from a standard evolution program (QCDnum)

∗In practice, since the initial state partons can be only light quarks or gluons, it is enough to determine the
kernel Aba only for one initial state quark and a gluon.
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for different values of the evolution scale µ2. The kernel is evolved using NLO splitting func-
tions with resolution scale parameter zM , separating resolvable from non-resolvable branch-
ings, set to the value zM = 0.99999. Very good agreement is observed over the whole range.
Only the quark distribution shows differences at very large x of the order of a percent, which
come from the finite grid spacing in x of the kernel. In the phase space region relevant for
high precision physics at HERA and the LHC the differences are less than per mille.
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Figure 1: Comparison of the results from the convolution in eq.(7) with the prediction from QCD-
num [31] using the same input distributions, for d-quarks (left) and gluons (right) at different values
of the evolution scale µ2. The lower panels show the ratio of the parton density with the one pre-
dicted by QCDnum. The evolution is performed with NLO DGLAP splitting functions and setting
zM = 0.99999.

3 Parton densities obtained from fits to inclusive HERA DIS mea-
surements

The most recent and most precise measurements of the lepton-proton DIS cross section over
a wide range in x andQ2 were performed at HERA with a combination of the measurements
from the H1 and ZEUS collaborations [11]. These measurements are the basis for any deter-
mination of parton densities. In Ref. [11] a fit to the inclusive DIS measurements was per-
formed using DGLAP at LO, NLO and NNLO, resulting in the HERAPDF2.0 parton distri-
butions. These fits were performed with QCDnum [31] within the xFitter framework [26]
using a starting scale µ0 = 1.9 GeV2 and the renormalization and factorization scales set to
µ2
r = µ2

f = Q2. The light quark matrix elements were taken from QCDnum, the heavy-quark
contributions were obtained within the general-mass variable-flavor scheme RTOPT [32–34]
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for neutral current, while for charged current interactions the zero-mass approximation from
QCDnum was used. A total of 1145 data points of neutral-current and charged-current deep-
inelastic cross section measurements were used in the range of 3.5 < Q2 < 50000 GeV2 and
4 · 10−5 < x < 0.65.

The same data sets, kinematic ranges and hard-scattering coefficient functions, including
the heavy-quark treatment, are used in the fits described here. We use NLO DGLAP splitting
functions [5, 6] as well as NLO coefficient functions [35] for light quarks. For heavy quarks
we apply the general-mass variable-flavor scheme RTOPT [32–34] for neutral current, while
for charged current interactions the zero-mass approximation is used.

PB NLO αs(µ
2
i ) (Set 1)

χ2 d.o.f χ2/d.o.f
µ2

0 = 1.9 GeV2 1363.37 1131 1.21
PB NLO αs(q

2
t i) (Set 2)

χ2 d.o.f χ2/d.o.f
µ2

0 = 1.4 GeV2 1369.80 1131 1.21

Table 1: Values of χ2 for the different fits at NLO.

In the following we describe the parameters and the form of the starting distributions,
which follow the ones of HERAPDF2.0 [11]. The mass of the charm quark is set mc =
1.47 GeV, and mb = 4.5 GeV is used for the bottom quark mass. The strong coupling is
set to αs(M2

z ) = 0.118.
The parton distribution functions xA0(x) are parameterized in a general form at the start-

ing scale µ2
0 as

xA0(x) = AxB(1− x)C(1 +Dx+ Ex2). (9)

The parameterized PDFs are the gluon distribution, xg, the valence-quark distributions, xuv,
xdv, and the u-type and d-type anti-quark distributions, xŪ , xD̄. The relations xŪ = xū and
xD̄ = xd̄+ xs̄ are assumed at the starting scale µ0.

The following parameterizations are used for the different parton flavors:

xg(x) = Agx
Bg(1− x)Cg −A′gxB

′
g(1− x)C

′
g ,

xuv(x) = Auvx
Buv (1− x)Cuv

(
1 + Euvx

2
)
,

xdv(x) = Advx
Bdv (1− x)Cdv ,

xŪ(x) = AŪx
BŪ (1− x)CŪ (1 +DŪx) ,

xD̄(x) = AD̄x
BD̄(1− x)CD̄ . (10)

The quark-number sum rules and the momentum sum rule can be used to constrain the
normalization parameters, Auv , Adv , Ag, A

′
g. The B parameters are set BŪ = BD̄ for the sea

distributions. The strange-quark distribution is parameterized as a d-type sea with an x-
independent fraction, fs, xs̄ = fsxD̄ at µ2

0
with fs = 0.4. A further constraint was applied by

setting AŪ = AD̄(1− fs).
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In the next section we determine the free parameters of the initial distributions given by
eq. (10) via fits to the HERA DIS data in the range of Q2 > 3.5 GeV2 using NLO DGLAP
splitting functions within the PB method.

a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

qti, µi

qt i−1, µi−1

kt i−2, zi−2

kt i−1, zi−1

kti, zi

qt i−2, µi−2

Figure 2: Left: Branching process b→ a+ c. Right: Schematic view of a parton branching process.

The PB method allows the explicit calculation of the kinematics at every branching vertex
(see Fig. 2 left). Once the physical meaning of the evolution scale is specified in terms of
kinematic variables, the transverse momenta of the propagating and emitted partons can be
calculated. In Ref. [14] it was pointed out that angular ordering gives transverse momentum
distributions which are stable with respect to variations of the resolution parameter zM . In
angular ordering, the angles of the emitted partons increase from the hadron side towards
the hard scattering, as shown in Fig. 2 right. The transverse momentum qt i can be calculated
in terms of the angle Θi of the emitted parton with respect to the beam directions from qt,c =
(1− z)Eb sin Θ. Associating the angle (E sin Θi) with µi gives

q2
t,i = (1− zi)2µ2

i . (11)

In the following, we use the PB method to determine collinear (iTMD) and transverse
momentum dependent (TMD) parton densities using NLO DGLAP splitting functions for
two different scenarios: first we only apply the angular ordering condition for the calcu-
lation of the transverse momentum and keep the evolution scale µ2

i as the argument in αs

(Set 1); in a second scenario (Set 2), we use in eqs.(1,4,6) the transverse momentum |q2
t,i| as

the argument in αs, as suggested in Ref. [16, 17]. An additional parameter qcut needs to be
introduced in αs(max(q2

cut, |q2
t,i|)) to avoid the non-perturbative region, since with large z the

scale |q2
t,i| = (1 − z)2µ2

i can become very small. We take the default choice for this parame-
ter to be qcut = 1 GeV, and we estimate the model dependence with a variation around the
default choice.

In the first case, the integrated parton density, and the initial parameters, will be the
same (up to numerical precision) as the ones obtained by HERAPDF2.0, and we use this as a
benchmark of the whole method. In the second case, even the integrated parton distributions
differ, because of the different scale in αs. In both cases a reasonably good fit is obtained with
χ2/ndf ∼ 1.2, as for HERAPDF2.0. In Tab. 1 details of the fits are given. The starting scale µ2

0
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Figure 3: Parton densities for different values of the scale µ2 = Q2. The different choices for the
renormalization scale in αs are shown. The red band shows the experimental uncertainty, the yellow
band the model dependence. The green band shows the uncertainty coming from the variation of the
parameter qcut in Set 2.

is chosen differently for the 2 scenarios: for Set 1 we chose (as in HERAPDF) µ2
0 = 1.9 GeV2

while for Set 2 we chose µ2
0 = 1.4 GeV2, which gave the best χ2/ndf . The values of the

parameters at the starting scale µ2
0 are given in Tab. 3.

3.1 Collinear Parton Densities (iTMD)

The fits to HERA measurements are performed using χ2 minimization, as in the case of
the HERAPDF fits, implemented in xFitter [26]. The definition of χ2 includes systematic
shifts, a treatment of correlated and uncorrelated systematic uncertainties. In total 162 sys-
tematic uncertainties plus procedural uncertainties from the combination of H1 and ZEUS
are treated as correlated uncertainties.

The experimental uncertainties of the resulting parton densities are determined with the
Hessian method [36] (as implemented in xFitter ) with ∆χ2 = 1. The model dependence
of the PDF fits is obtained by varying charm and bottom masses and the starting scale of the
evolution µ2

0. For Set 2 also the parameter qcut is varied. The central values and the range of
variation is given in Tab. 2.
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In Fig. 3 the Ū -type quark and gluon densities are shown as functions of x for different
values of the evolution scale µ2 = Q2 including the experimental uncertainties (red band)
and the uncertainties coming from the model dependence (yellow band). For Set 2 the un-
certainty of the parameter qcut is shown as the green band. Although the fits (Set 1 and Set 2)
to HERA I+II data are of similar quality, the resulting parton distributions, especially for
the gluon, are significantly different. With increasing evolution scale, however, they become
more and more similar. In Fig. 4 the total uncertainties (experimental and model) of the
parton densities are shown.
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Figure 4: Total uncertainties (experimental and model uncertainties) for the two different sets at
different values of the evolution scale µ2.

In Fig. 5 we show predictions for the inclusive DIS cross section and the inclusive charm
cross section obtained from the two different parton distributions, and compare them with
the measurements from HERA [11, 37]. While the inclusive DIS cross section is well de-
scribed, the prediction using Set 2 differs from inclusive charm measurement at low Q2 and
small x. For values x > 0.001 all predictions agree reasonably well with the data. It has been
checked explicitly that including the charm measurements in the fits does not significantly
change the fit result (the charm data have too large an uncertainty compared to the precise
inclusive measurements).
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Figure 5: Measurement of the reduced cross section obtained at HERA compared to predictions
using Set 1 and Set 2. Upper row: inclusive DIS cross section [11], lower row: inclusive charm pro-
duction [37].

3.2 Transverse Momentum Dependent Parton Densities (TMD)

TMD parton densities can be obtained via the PB method once the relationship between
kinematical variables and evolution scale µ is specified, and the transverse momentum at
each individual branching is calculated with eq. (11). The parameters for the starting distri-
butions are obtained for the collinear parton densities by a fit to inclusive DIS cross section
measurements, as described previously. The TMD parton densities are then obtained from a
convolution of the TMD kernel with the starting distribution, as given in eq. (8).

In Fig. 6 we show the TMD parton densities for ū-quarks and gluons as a function of the
transverse momentum kt =

√
k2 for different values of the evolution scale µ = 10 (100) GeV

and different values of x for Set 1 and Set 2. One can clearly see that both sets give identical
results for larger kt, while they are different for small kt, a consequence of the different scale
choices for the argument of αs.

In Fig. 7 the parton densities for all flavors are shown as a function of kt for different
values of the evolution scale µ = 10, 100, 1000 GeV. The large scales are relevant for phe-
nomenology at the LHC, and it is interesting to observe that the transverse momenta extend
to very large values, up to the values of the factorization scales (for µ = 1 TeV the transverse
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Figure 6: Transverse Momentum Dependent parton densities (PB-NLO-2018-Set1 and PB-NLO-2018-
Set 2) as a function of kt for different scales µ. Upper row shows the densities for ū, lower row the
densities for gluons for two different values of x.

momenta extend to kt ∼ 1 TeV). However, the large kt values are suppressed compared to
smaller ones. The different quark flavors show a different behavior at small kt, coming es-
sentially from the no-branching probability (first term in eq.(6)), while they are very similar
at larger kt, a result of perturbative splittings (second term in eq.(6)).

In Fig. 8 the gluon and ū densities as a function of the transverse momentum are shown
for µ = 100 GeV and x = 0.01 together with the uncertainty bands obtained from the fits. The
panels show the uncertainties coming from the experimental sources as well as the total un-
certainty coming from experimental and model sources separately. Although only collinear
splitting functions are used, and the fit was obtained with collinear parton densities, a kt
dependence of the uncertainties is obtained, which comes from the different contributions
to the spectrum. The experimental uncertainties are small over the whole range, while the
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Figure 7: Transverse Momentum Dependent parton densities (PB-NLO-2018-Set1 upper row and
PB-NLO-2018-Set2 lower row) as a function of kt for different scales µ at x = 0.01 for all flavors.

model dependent uncertainties dominate.
The resulting TMD parton densities, PB-NLO-2018-Set1 and PB-NLO-2018-Set2, includ-

ing uncertainties are available in TMDLIB [38] and TMDPLOTTER [39, 40].

4 Application to Z-boson production at the LHC
The transverse momentum spectrum of Z bosons in Drell-Yan (DY) production at small val-
ues of transverse momentum qT cannot be described by fixed-order perturbative calcula-
tions, and resummation of soft gluon emissions to all orders in αs is needed. See e.g. [41] for
a recent discussion. The DY qT spectrum can be described by the CSS method [42–45] using
TMD factorization at small qT [46, 47], or by parton showers within Monte Carlo event gen-
erators [24]. The ATLAS and CMS experiments at the LHC have measured the qT spectrum
of the Z-boson [48–50].

The TMD distributions obtained from HERA DIS measurements can be used to predict
the DY qT spectrum of the Z-boson at LHC energies. Since we are interested in the low-qT
region, we use the LO expression forZ production matrix elements. In practical terms we use
a LHE (Les-Houches Event) file [51] obtained from the PYTHIA MC event generator [52] with
on-shell initial partons. The transverse momentum of the initial state partons is calculated
according to the TMDs and added to the event record in such a way that the mass of the
produced DY pair is conserved, while the longitudinal momenta are changed accordingly.
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Figure 8: Transverse Momentum Dependent parton densities (ū upper row, gluon lower row) from
Set 1 and Set 2 as a function of kt for µ = 100 GeV at x = 0.01. In the lower panels we show the
relative uncertainties coming from experimental uncertainties as well as the total of experimental and
model uncertainties.

This procedure is implemented in the CASCADE package [53, 54] (version 2.4.X) where
events in HEPMC [55] format are produced, for further processing with Rivet [56]. The
importance of the proper inclusion of transverse momentum effects from parton showers
has been pointed out in Ref. [57,58]. With the TMD distributions described here, these effects
can be included already at the level of the cross section calculation.

In Fig. 9 (left) we show the predictions for the transverse momentum spectrum of the
Z-boson obtained with the two TMD distributions, compared with the measurements of AT-
LAS [50]. The uncertainties coming from experimental and model sources are shown for
both Set 1 and Set 2 with the colored bands (Fig. 9 left); the experimental and full uncertain-
ties are shown for Set 2 in Fig. 9 (right). The difference between the full and experimental
uncertainties from the fit is very small.

In general the shape of the spectrum is described by both TMD fits. The TMD Set 2,
applying the transverse momentum as the renormalisation scale (instead of the evolution
scale µ), provides a significantly better description of the transverse momentum spectrum of
the Z-boson, coming from the different kt spectrum of the TMD already visible in Fig. 6. One
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Figure 9: Transverse momentum qT spectrum of Z-bosons obtained from the two TMDs, compared
with measurements from [50]. Left: comparison of predictions using Set 1 and Set 2 including the
full (experimental and model) uncertainties. Right: prediction using Set 2, with experimental and full
uncertainties separated (the difference is very small).

should note that no adjustment of any parameter is made, and that the TMDs are entirely
constrained by the fits to inclusive DIS data.

5 Conclusion
The parton branching method has been used to determine a first complete set of collinear
and TMD parton densities from fits to precision DIS data over a large range in x and Q2 as
measured at HERA. The parton densities are obtained with NLO DGLAP splitting functions
and 2-loop αs with αs(MZ) = 0.118. The renormalisation scale in the evolution has been
chosen to be the evolution scale µi (Set 1) or the transverse momentum qt i (Set 2). Two
different collinear and TMD sets are obtained for these different choices, both giving a similar
χ2/ndf = 1.2. The obtained parton densities are valid over a wide range in x and scale µ, up
to the multi-TeV scale, relevant for LHC physics.

Experimental uncertainties of the fit are obtained using the Hessian method with ∆χ2 = 1
and model dependent uncertainties are determined.

The obtained TMDs are applied to calculate the transverse momentum spectrum of the
Z-boson in DY production at LHC energies. Good agreement with the measurement is ob-
served if angular ordering is applied. The uncertainties of the prediction come only from the
TMD uncertainties determined in the fit to HERA measurements.

For the first time, precision DIS measurements have been used to obtain both collinear
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and TMD parton densities, including uncertainties, over a wide range in x and µ values,
which are relevant for LHC and future collider phenomenology as well as for low-energy
and small-kt physics.

Central Lower Upper
value value value

Set 1 µ2
0 (GeV2) 1.9 1.6 2.2

Set 2 µ2
0 (GeV2) 1.4 1.1 1.7

Set 2 qcut (GeV) 1.0 0.9 1.1
mc (GeV) 1.47 1.41 1.53
mb (GeV) 4.5 4.25 4.75

Table 2: Central values and change ranges of parameters for model dependence

Set 1
A B C D E A′ B′ C ′

xg 4.32 −0.015 9.15 1.040 −0.166 25
xuv 4.07 0.714 4.84 13.5
xdv 3.15 0.806 4.07
xŪ 0.107 −0.173 8.05 11.8
xD̄ 0.178 −0.173 4.89

Set 2
xg 0.42 −0.047 0.96 0.008 −0.58 25
xuv 2.49 0.65 3.44 13.7
xdv 2.02 0.75 2.47
xŪ 0.14 −0.16 5.29 1.5
xD̄ 0.24 −0.16 5.83

Table 3: Parameter values of the initial distributions at NLO. The parameter C ′ = 25 was fixed, as in
HERAPDF2.0. The parameters correspond to a starting scale µ2

0 = 1.9(1.4) GeV2 for Set 1 (Set 2).
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