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Abstract

An overview is presented on the current status of main mathematical computation methods
for the multi-loop corrections to single scale observables in quantum field theory and the
associated mathematical number and function spaces and algebras. At present massless
single scale quantities can be calculated analytically in QCD to 4-loop order and single mass
and double mass quantities to 3-loop order, while zero scale quantities have been calculated
to 5-loop order. The precision requirements of the planned measurements, particularly at
the FCC-ee, form important challenges to theory, and will need important extensions of the
presently known methods.



1 Introduction

Precision calculations of radiative corrections in the Standard Model play an important role
in determining its fundamental parameters, like the particle masses, coupling constants and
mixing parameters and are important to reveal possible deviations due to new physics. These
calculations are very challenging and have to be more precise than the experimental accuracy to
be reached. At present the necessary calculations, both in the case of the physics at HERA and
the LHC, for typical quantities, last about one to two decades until the final results are obtained.
A similar and probably larger period is estimated to be necessary to meet the requirements at
a future circular collider, such as the FCC [1]. This includes both the necessary development of
new technologies, and to a lesser extent, also substantial computation times.

In this survey we will summarize the status reached in the field of analytic radiative cor-
rections mostly for inclusive single and double scale quantities, widely concentrating on QED
and QCD, and discuss the different techniques available at the higher loop level at present.
Currently we are at the beginning of a discussion of what is needed at the theoretical side to
meet the planned experimental accuracy for key processes, e.g. at the FCC-ee. This résumé of
computational methods is meant to be one asset to explore in which way these technologies have
to develop in the future, concerning the computational complexity and the different theoretical,
mathematical and computer algebraic methods, as far as this is currently foreseeable.

The mathematical representation of the one-loop case has been given by ’t Hooft and Veltman
in [2–4] during the 1970ies and the analytic representation of 5- and higher point functions were
given in [5–8] and references therein. Also the one-loop off-shell amplitudes are known in full
detail [9–11]. At general space-time dimensions these quantities are represented in terms of higher
hypergeometric functions, such as the hypergeometric function itself [12–14], Appell functions
[15–21] and the Lauricella-Saran functions [21–24]. For the multi-leg corrections, containing
more scales, mostly numerical methods have to be used at present, cf. [25] for a survey.

The most far reaching result on radiative corrections at LEP have been the complete O(α2)
QED corrections around the Z resonance [26], cf. also [27]. During the 1990ies most of the single
and some of the double scale two-loop corrections for different processes have been calculated in
QCD, cf. e.g. [28–30]. At the mathematical side, polylogarithms [31, 32] and Nielsen integrals
[33–36] were used, leading to complicated argument structures.

Around 19981 a more systematic account was needed to be able to perform more advanced
calculations and to simplify what has been reached at the 2-loop level. This led to the intro-
duction of the nested harmonic sums [38,39] and the harmonic polylogarithms [40]. Within this
framework various important massless [41–44] and massive [45–47] 3-loop corrections could be
calculated. In later computations extensions of these function spaces to generalized harmonic
polylogarithms [48, 49], cyclotomic harmonic sums and polylogarithms [50], and root-valued it-
erated integrals and finite weighted (inverse) binomial sums [51] were necessary. Finally, also
elliptic integrals [52] appear in massive Feynman integral calculations [53–61], and modular forms
and functions, see e.g. [62–64], play a role in describing the corresponding physical results. In
this paper we will mainly discuss zero-, one-, and a few two-scale processes. In general, processes
with more than two scales are important as well. However, the systematic mathematical study
of the corresponding analytic master integrals, beyond the one-loop case, is at the beginning
only.

The paper is organized as follows. In Section 2 we give an outline of a systematic way to
classify Feynman integrals. It will be given studying the structure of the associated system
of differential equations w.r.t. its degree of factorization. General computation methods are

1For computation techniques until 1998, see Ref. [37].
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summarized in Section 3. In Section 4 we describe a series of analytic integration methods
for Feynman diagrams. There are universal corrections to scattering processes, characterized
by logarithmic enhanced terms, which we describe in Section 5 using the structure function
method. It relies on the renormalization group equation for factorization. The different kind of
loop corrections can be presented by a series of function and special number spaces which will be
reviewed in Section 6. Here we will mainly concentrate on the spaces for first-order factorizing
systems. In Section 7 we will discuss non-first order factorizing systems and present an outlook
in Section 8.

2 A Systematic Way to Classify Feynman Integrals

Feynman parameter integrals can be calculated directly by applying successive binomial

(A(xi) +B(xi))
k =

k∑
l=0

(
k

l

)
Al(xi)B

k−l(xi), k ∈ N, (1)

and Mellin-Barnes [65,66]

1

((A(xi) +B(xi))λ
=

1

2πi

∫ +i∞

−i∞
dz

B(xi)
z

A(xi)λ+z
Γ(λ+ z)Γ(−z)

Γ(λ)
, λ ∈ R, λ > 0, (2)

decompositions of the integrand implemented in different packages [67–69]. Here {xi} denotes
the set of Feynman parameters and A and B are polynomials. These representations allow one
to perform all Feynman parameter integrals. The remaining Mellin-Barnes integrals (2) have to
be carried out using the residue theorem. In this way one obtains multi-sum representations,
as has been outlined in Ref. [70]. However, the remaining summation problems may turn out
to be very difficult to be solved using difference field and ring theory [71–83], algorithmically
implemented in the package Sigma [84,85]. It may even turn out that the corresponding nested
sums cannot be solved using difference field and ring theory in terms of indefinite nested sums de-
fined over hypergeometric products because the associated difference equation does not factorize
sufficiently.

It thus seems that there are apparently no general methods known a priori, to evaluate a
given general Feynman diagram analytically. Therefore we want to attempt at least to find
general classes first, for which the corresponding mathematical solution methods can be found
or be developed, along with classifying the different degrees of complexity.

One way to proceed is the following. In most of the present and future Feynman diagram
calculations one has to use the integration-by-part (IBP) method [86] to reduce the problem
to master integrals. There are various implementations of Laporta’s algorithm [87], as e.g.
[88–90] and others. Given such a system, the following definition will be convenient for further
considerations. An n×n system is said to decouple tomth order,m ≤ n, if the n linear differential
operators that contain the solutions of the corresponding unknown functions of the homogeneous
system factorize to irreducible factors where the maximal order among these factors is m. Note
that decoupling algorithms such as the cyclic-vector method provide such scalar equations for the
unknown functions [91, 92]. In our considerations below we will utilize Zürcher’s algorithm [93]
which might provide a refined version with several scalar equations. However, if the scalar
equations found by any of the available decoupling algorithms factorize linearly, the system
decouples to first-order, i.e., m = 1. In particular, the system is completely solvable in terms
of indefinite nested integrals (resp. indefinite nested sums in the recurrence case). This special
case will be considered in detail in Section 4.
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In this way, one can determine the degree of uncoupling of the system and a systematic
characteristics of sets of Feynman integrals can be given in terms of their master integrals. Here,
the decoupling has been carried out in x-space, with x being the variable of the differential
equations. One may now consider a map to N -space either by a formal power series Ansatz or
a Mellin transform and study the problem in terms of the corresponding system of difference
equations. Usually the uncoupling can be different here. There are cases know in which, e.g.,
1st order decoupling can be obtained in Mellin space [61] but not in x space and vice versa [94].
If possible, one should always consider both cases. First order factorizing systems can be always
solved in terms of iterative integrals or in N -space by indefinitely nested sums.

2nd order decoupling systems will have 2F1-solutions, with usually more than three singular-
ities, cf. e.g. [54, 61]. Much less is known about genuine 3rd and higher order systems, which
are, however, expected to occur at higher loop order, or in the presence of more scales. The
computational methods to solve 1st order systems, cf. Section 4, 6, are different from those of the
2nd order systems, cf. Section 7. It is therefore expected that at larger degrees of non-decoupling
quite different mathematical methods are necessary for adequate analytic solutions of these ra-
diative corrections, and may not even be completely known in the mathematical literature w.r.t.
the function spaces covering the corresponding representation.

After a brief consideration of general computation methods for Feynman integrals, which are
standard by now, in the next section, we turn to the case of 1st order factorization systems.

3 General Computation Methods

The present higher loop integrals make it necessary to evaluate a large number of Feynman
integrals; their number will grow in future projects significantly. Currently there is no method
known for the renormalizable quantum field theories realized in nature to start from any more
compact structure. The generation of the Feynman diagrams, using packages like qgraf [95],
still seems to be possible as well as the calculation of the corresponding color structures using
Color [96]. Furthermore, standardized algorithms to obtain Feynman parameterizations exist,
cf. e.g. [97–99]. However, with growing complexity, to perform the Dirac- and spin-algebra
will be a challenge even to FORM [100–103]. These packages need steady maintenance and will
need further refinements. It will be indispensable to reduce the corresponding scalar (or tensor)
integrals to master integrals. Here, at present, we have a series of efficient algorithms like
Air, FIRE, Crusher, REDUZE [88–90, 104, 105]. These algorithms definitely will need further
extensions and improvements to face future problems. Before being able to embark to the
analytic calculation of master integrals one has to have numerical tools of sufficient accuracy
to evaluate the master integrals setting their remaining parameters to specific values. Here the
method of sector decomposition and related numerical methods are used, see e.g. [106–117].
These methods have also to be refined further to meet future tasks.

4 A Series of Analytic Integration Methods

We turn now to the analytic integration of Feynman integrals and master integrals, respectively.
In the following, we limit the consideration mainly to zero- and single scale processes. Most of
the methods lead to representations of nested finite and infinite sums, which have to be solved
applying summation techniques. These are therefore a central tool in the calculation of Feynman
integrals. Non of the methods, which we are going to discuss in the following, has a thorough
superiority over an other in case it can be applied. As experience in larger projects shows, one
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method is better suited for the calculation of certain diagrams than others. The differences in
run-time can sometimes be quite large and e.g. amount to different weeks compared to seconds.
Let us now turn to a series of specific integration methods.

4.1 The PSLQ method

The PSLQ method [118] is an integer algorithm with which a possible dependence between
certain constants, expressed by floating point numbers to a certain accuracy, can be determined.
To do this one starts with a certain accuracy of n digits and tries to find a first relation, usually
given by a sequence of rational numbers, with a certain denominator size. One then increases the
accuracy and checks whether the relation is found again. The method has no proof character,
however, it is able to establish approximate relations between constants at a high accuracy. If a
correct relation is found, one can proof it by rigorous methods later, which, however, is usually
by far more demanding. The well-know relation

Li3

(
1

2

)
=

7

8
ζ3 −

1

2
ζ2 ln(2) +

1

6
ln3(2) (3)

can be found already providing 9 digits. In this case one knows, that all participating numbers
in the r.h.s. are irrational. Usually one needs many more digits, however, cf. e.g. [119,120].

The method can be very efficiently used if one knows the set of numbers, by which the result
of a calculation is finally spanned. In intermediary steps many more unknown constants may
appear, which cancel in the final result. This has been very impressively demonstrated in the
calculation of the 5–loop β–function in QCD in Ref. [121], where for the master integrals even
large amounts of elliptic and probably trans-elliptic constants contribute, which all cancel finally.
It was expected, that the 5–loop β–function depends on ζ-values [122] only and then also known
by the results of Refs. [123,124].

Similarly, one makes use of this also in the method of arbitrarily high moments, Section 4.8.
E.g. for the calculation of the massive 3–loop operator matrix element (OME) A(3)

Qg(N), it is
known, that their moments depend on a series of ζ-values only, [125]. The master integrals and
the general N -result contain elliptic integrals [61], on the other hand.

The PSLQ-method provides a great heuristic algorithm to potentially simplify zero-scale
quantities in higher order loop calculations.

4.2 Guessing difference equations

Often it is easier to calculate a large series of zero-scale quantities, e.g. the Mellin moments,

G(N) = M[f(x)](N) =

∫ 1

0

dxxN−1f(x), (4)

of a sought single-scale quantity G(N) for general values of N . One therefore seeks ways to find
the associated difference equation [126] to the set of moments {G(2), G(4), ...., G(2m)},m ∈ N
[127–130]. The reason why one may hope to find a difference equation is that G(N) is a function
obeying a recurrence. This is the case for many objects in quantum field theory, as e.g. (massive)
operator matrix elements [125], but also single-scale Wilson coefficients, Ref. [43].

A possible algorithm to calculate the string of moments {G(k)|2mk=2} as input is described in
Section 4.8. One then applies the guessing algorithm [131], now also available in Sage [132],
exploiting the fast integer algorithms available there. At a critical number m a conjectured
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difference equation is obtained, the validity of which can be tested by shifting to a further number
of higher moments. This method has been applied in Ref. [133] to obtain from more than 5000
moments the massless unpolarized 3-loop anomalous dimensions and Wilson coefficients in deep-
inelastic scattering [41–43]. Recently, the method has been applied ab initio in the calculation
of 3-loop splitting functions [44] and the massive 2- and 3-loop form factor [44,134]. In the case
of a massive operator matrix element 8000 moments [135] could be calculated and difference
equations were derived for all contributing color and ζ-value structures. Using the summation
methods implemented in the package Sigma [84, 85] one can solve these difference equations,
whenever they are first order factorizing, or separate their first order factorizing parts, in case
they are not, cf. Section 4.9. In Section 4.8 we will describe in which way the corresponding
input-moments can be obtained.

4.3 Generalized hypergeometric functions

In calculating simpler Feynman integrals, or those with a partial factorization to simpler
structures, the Feynman parameter representations exhibit integrand structures of Euler Beta-
functions, the hypergeometric functions or their generalization [12–14] in general space-time
dimensions, e.g. D = 4 + ε. Up to the level of massless and single mass two-loop integrals,
cf. [28, 30,136,137], these representations are usually sufficient.

There is a hierarchy of p+1Fp functions, the first of which read

B(a1, a2) =

∫ 1

0

dt ta1−1(1− t)a2−1 (5)

2F1(a1, a2, b1;x) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

∫ 1

0

dt ta2−1(1− t)b1−a2−1(1− tx)−a1 (6)

3F2(a1, a2, b1;x) =
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0

dt ta3−1(1− t)−a3+b2−1 2F1(a1, a2, b1; tx). (7)

Here the parameters ai, bi are such, that the corresponding integrals exists, [138]. At 3-loop
order, there are topologies which can be well described by Appell functions [15–21, 139, 140],
cf. [141,142], e.g. the Appell F1 function. It has the integral representation

F1(a, b1, b2, c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

dt ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 ,

Re(c) > Re(a) > 0. (8)

All the p+1Fp functions have a single infinite sum representation, while the Appell-functions
are represented by two infinite sums. Meeting these structures a larger number of integrals is
mapped to these remaining sums only. In the physical applications the parameters ai, bi, ci, ... are
functions of the dimensional parameter ε, in which these quantities have to be expanded. One
finally obtains infinite sum representations, which have to be calculated using general summation
methods, cf. Section 4.9. There are also some other classes of named higher transcendental
functions, which obey multi-sum representations [18, 19, 21]. For more complicated integrand-
structures, however, one has to apply other techniques of integration, to which we turn now.

4.4 Mellin-Barnes integrals

All the higher transcendental functions being discussed in Section 4.3 have representations in
terms of Pochhammer-Umlauf integrals, see [12], and also by Mellin-Barnes integrals. It provides
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also the natural generalization for cases in which the representation in terms of special functions
is not known. Feynman parameter integrals usually exhibit denominators which are hyper-
exponential, i.e. are products of factors (Pj(xi))

λj , λj ∈ R, λj > 0. One may apply the Mellin-
Barnes decomposition (2) to them. Here one may use the packages and methods described
in [67–69, 143–145]. As outlined above, one obtains nested infinite sum representations after
applying the residue theorem. These sums have to be solved by applying summation techniques,
see Section 4.9. On the other hand, one may obtain numerical results also in performing the
Mellin-Barnes integrals numerically, cf. e.g. [69,143–145], which provides useful checks. In aiming
at an analytic result one should introduce Mellin-Barnes representations as little and as careful
as possible, to avoid to shift the solution of the problem widely to the summation techniques.

4.5 The method of hyperlogarithms

If a Feynman diagram has no pole terms in the dimensional parameter ε or can be made finite
by certain transformations splitting off its pole terms [146], it can be calculated under certain
conditions using the method of hyperlogarithms [147]. Since here the denominator of the Feyn-
man integral is a multinomial in the Feynman parameters xi ∈ [0, 1] one may seek a sequence
of integrations, such that the denominator always is a linear function (Fubini sequence) in the
integration variable under consideration. In this case the Feynman integral can be found as
a linear combination of Kummer-Poincaré iterated integrals, see Section 6.3. The method has
been first devised for massless scalar integrals in [147], for a corresponding code see [148]. The
method has been generalized to massive Feynman diagrams, also containing local operator in-
sertions in Ref. [149], extending its validity even to cases with no thorough multi-linearity. An
implementation can be found in [150].

4.6 The Almkvist-Zeilberger Algorithm

Feynman parameter integrals usually appear as multi-integrals over {xi|n1=1} ∈ [0, 1]n. Further-
more, in the single-variate case, they depend on a real variable x as I(x) or an integer variable
N as I(N), and usually will depend in addition on the dimensional parameter ε. One is now
interested in finding either an associated differential equation for I(x) or a difference equation
for I(N). The Almkvist-Zeilberger algorithm [151,152] allows to find these equations which are
of the form

m∑
l=0

Pl(x, ε)
dl

dxl
I(x, ε) = N(x, ε) (9)

m∑
l=0

Rl(N, ε)I(N + l, ε) = M(N, ε), (10)

where Pl, Rl are polynomials and N(x, ε),M(N, ε) denote potential inhomogeneities. Internally,
the equations (9, 10) are found by solving an underlying linear system of equations. The algo-
rithm transforms an n-fold integration problem into a single equation, which can then be solved,
by applying the techniques described in the subsequent sections. The bounds on m, given in the
literature, are usually much higher, than what is found in praxis. An optimized and improved
algorithm for the input class of Feynman integrals has been implemented in the MultiIntegrate
package [142, 153]. It can either produce equations of the form (9),(10) where the right hand
sides are zero, or it can provide inhomogeneous equations with further tactics to simplify the
inhomogeneous sides using tools introduced in the next subsections.

7



4.7 Differential equations

The reduction of Feynman integrals to master integrals by the IBP-relations may also be used
to obtain a system of ordinary differential equations in one of the parameters of the master
integrals, or a system of partial differential equations in the case of more parameters. The master
integrals may then be obtained as the solution of these systems under appropriate boundary
conditions, [154–157]. For single-variate systems one considers

d

dx

 f1
...
fn

 =

 A11 . . . A1,n
...

...
An1 . . . An,n


 f1

...
fn

+

 g1
...
gn

 , (11)

which may be transformed into the scalar differential equation
n∑
k=0

pn−k(x)
dn−k

dxn−k
f1(x) = g(x), (12)

with pn 6= 0, and (n − 1) equations for the remaining solutions, which are fully determined by
the solution f1(x).

An important class is formed by the 1st order factorizing systems, cf. Section 2, after applying
the decoupling methods [93,158] encoded in Oresys [91]. They appear as the most simple case.
One may transform the decoupled system into Mellin space and use the efficient solvers of the
package Sigma there, cf. Ref. [142] and Section 4.9.

The decoupled differential operator of (12) can be written in form of a non-commutative
product of first order differential operators and rational terms, which can now be integrated
directly. The result is given by iterative integrals, also using partial fractioning and integration
by parts to obtain representations in terms of proper letters,

f1(x) =
n+1∑
k=1

γkgk(x), γk ∈ C, (13)

gk(x) = h0(x)

∫ x

0

dy1h1(y1)

∫ y1

0

dy2h2(y2)...

∫ yk−2

0

dyk−1hk−1(yk−1)

∫ yk−1

0

dykqk(yk) (14)

with qk(x) = 0 for 1 ≤ k ≤ m. Further, γm+1 = 0 if ḡ(x) = 0 in (12), and γm+1 = 1 and
qm+1(x) being a mild variation of ḡ(x) if ḡ(x) 6= 0. Note that these solutions are also called
d’Alembertian solutions [159]. As the master integrals appearing in quantum field theories obey
differential equations with rational coefficients, the letters hi, which constitute the iterative inte-
grals, have to be algebraic, see Section 6. Given a differential equation (12), the d’Alembertian
solutions (13) can be computed with the package HarmonicSums [160]. More generally, also Liou-
villian solutions [161] can be calculated with HarmonicSums utilizing Kovacic’s algorithm [162];
this algorithms finds also Liouvillian solutions of second order differential equations. Summa-
rizing, representation (13) can be found in the 1st order decoupling case of a coupled system of
the form (11) for any basis of master integrals, cf. [142]2. If being transformed to the associated
system of difference equations, the same holds, if this system is also first order factorizing. The
solution of the remaining equations are directly obtained by the first solution.

The corresponding algorithms hold to all orders in ε, on the expense that it is necessary to
obtain higher order expansions to cancel the respective poles in the expansion of the coefficients.

2This algorithm has been applied in many massive 3-loop calculations so far, cf. [135] for a survey, and also
in [163].
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This algorithm has some relation to the method of hyperlogarithms, cf. Section 4.5. For an
implementation see Ref. [134]. For the solution of 1st order decoupling systems also algorithms
given in [164] are useful.

In the multi-variate case, the ε-representation of a linear system of partial differential equa-
tions

∂mf(ε, xn) = Am(ε, xn)f(ε, xn) (15)

is important, as has been recognized in Refs. [165, 166], see also [167]. One considers the well-
known zero-curvature representations [168,169]

∂nAm − ∂mAn + [An, Am] = 0, (16)

with [A,B] a Lie bracket [170]. The matrices An can now be transformed (in the general non-
Abelian case) by

A′m = B−1AmB −B−1(∂mB), (17)

see also [168,169]. One now intends to find a matrix B to transform (15) into the form

∂mf(ε, xn) = εAm(xn)f(ε, xn), (18)

if possible. This then allows solutions in terms of iterative integrals. The corresponding system
(15), therefore, has also to belong to the first order factorizing case. A formalism for the basis
change to the ε-basis has been proposed in [171] and implemented in the single-variate case
in [172, 173] and in the multi-variate case in [174]. In this description one has the advantage to
work at equal weight, which avoids necessary deeper expansions in ε needed otherwise.

4.8 The method of arbitrarily high moments

Standard procedures like Mincer [175]3, MATAD [180] or Q2E [180, 181] allow the calculation of
a comparable small number of Mellin moments of a given quantity only, because the resources
needed by these algorithms grow exponentially. Alternatively, one may think of using difference
equations for the master integrals of a physical problem in Mellin space to calculate the integer
moments of the physical quantity studied to obtain higher and higher moments. This has been
pursued in Ref. [182] and the formalism also applies when only ordinary differential equations
are available for the master integrals. Furthermore, here we need not to know the degree of
decoupling of the corresponding system, which can be rather high.

The most extensive system having been studied using this method so far led to 8000 moments
[135] after several weeks of computation time. In applications the structure of the Mellin moments
is usually mathematically much simpler than the corresponding general expressions in x and N
space. They are given by rational numbers and are labeled by special constants, like MZVs.
Furthermore, the physical quantity to be calculated can turn out to be structurally less complex
than the master integrals. Moreover, unlike the latter, one has to calculate it only to O(ε0).

Finally, one projects onto color factors and special constants to obtain rational sequences.
They are used as input to guessing to seek for a closed form difference equation in all cases.
We could achieve this also in all the complex cases mentioned. The final step consists now

3See also [176, 177] for Baikov’s method, which allowed a large number of calculations up to the 5-loop level
as e.g. [123]. For the solution of important 4-loop problems Forcer [178] and the R∗ [179] method have been
developed.
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in solving these difference equations using the methods of the package Sigma. For a series of
difference equations a solution has been found. In others only the 1st order factorizing factors
were obtained, leaving remainder 4th order systems, which are further investigated using the
methods described in Section 7. Here the last system decoupled into two 2× 2 systems.

The method of arbitrarily high moments is a rather global one. E.g. in 1st order factorizable
systems like they appear in massless calculations, e.g. for the 3 loop anomalous dimensions [44]
and related quantities, the method is fully automated.

4.9 Summation Techniques in ΠΣ-Fields and Rings

As described in Sections 4.3 and 4.6, the evaluation of Feynman integrals can be often reduced to
the problem to simplify multiple sums defined over hypergeometric products, harmonic numbers
and generalizations thereof [39,49–51,158,183]; see also Section 6. Given such a sum representa-
tion, symbolic summation algorithms in the setting of difference rings and fields [71–83] can be
utilized to derive an alternative representation in terms of indefinite nested sums defined over hy-
pergeometric products. Special cases of these sums are enumerated in Section 6. More precisely,
using the Mathematica package Sigma [84,85] the following three steps lead often to the desired
simplification: (1) compute a linear recurrence relation for the sum using the creative telescoping
paradigm [184] in the setting of difference rings, and (2) solve afterwards the recurrence in terms
of d’Alembertian solutions [159, 185]. This means that one finds all solutions that can be given
in terms indefinite nested sums defined over hypergeometric products. Note that all the sums
from Section 6 are covered. Finally, in step (3) one tries to combine the solutions to derive a
simpler representation of the original input sum. The package EvaluateMultiSums [186, 187]
based on Sigma combines all these steps and variants thereof in a very efficient way to carry out
such simplifications automatically. Here one works from inside to outside: one considers first
the innermost definite sum and transforms it with the above method to an expression in terms
of indefinite nested sums. Afterwards, one treats the next definite summation quantifier and
transforms this sum to an expression in terms of indefinite nested sums, etc.

A crucial step for the above approach is that in a preprocessing step one first gets rid of
the dimensional parameter ε by expanding first the summand of the multiple sum w.r.t. ε,
i.e., computes the first coefficients of its Laurent series expansion and by applying afterwards
the summation quantifiers to each of the coefficients. Only then the summation technologies
described above are applied to the summations of the coefficients up to the desired order. Alter-
natively, there are algorithms available that can compute directly for a multiple sum a recurrence
of the form (10) depending also on ε. In particular, if the summand consists of a product of
hypergeometric products, one can utilize WZ-summation theory [188]; for refined methods and
an efficient implementation we refer to the MultiSum package [189]. This approach can be con-
sidered as the discrete version of the Almkvist-Zeilberger algorithm introduced in Section 4.6.
Note that one can use also holonomic summation algorithms [190, 191] to derive recurrences of
the form (10); for a generalized version combining the holonomic and difference ring approach
we refer to [192] and references therein. Finally, one can use Sigma’s recurrence solver described
in [70]. Suppose that one is given a recurrence of the form (10) where the inhomogeneous part
is given as an ε-expansion; more precisely, the first coefficients are given in terms of indefinite
nested sums defined over hypergeometric products. Then together with the first initial values
of the Feynman integral I(N), which is a solution of (10), one can decide constructively if the
coefficients of the ε-expansion of I(N) can be again given in terms of indefinite nested sums
defined over hypergeometric products. Note that Sigma’s recurrence solver can be also utilized
to solve recurrences coming, e.g., from the Almkvist-Zeilberger algorithm; see Section 4.6.
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In many applications, the transformation of Feynman integrals yields an enormous expression
consisting of up to thousands of multiple sums. To simplify these sums successively using these
summation tools is not only problematic because of time restrictions, but also because of the
following intrinsic problem: The scattered sums themselves cannot be simplified in terms of
indefinite nested sums, but only a suitable combination of them can be simplified in this way.
In order to bypass these problems, the package SumProduction [187,193] built on Sigma can be
utilized: it reduces the sum expressions to compact forms where the arising sums are merged
appropriately. Afterwards EvaluateMultiSum can be applied to this optimized expression within
reasonable time and without dealing with sums that cannot be handled within the difference
ring setting.

Besides the simplification of multiple sums, the difference ring approach can be also used
to solve coupled systems of differential and difference equations [142, 194, 195]. More precisely,
given a finite number of Feynman integrals F1(N), . . . , Fn(N) depending on a Mellin variable N
which are determined by a system of linear difference equations equipped with sufficiently many
initial conditions, the package SolveCoupledSystem decides algorithmically if the Feynman inte-
grals can be expressed in terms of indefinite nested sums defined over hypergeometric products.
Internally, the following machinery is applied. (1) Zürcher’s algorithm [93] implemented in the
package OreSys [91] is used to decouple the system to one scalar recurrence that characterizes
one of the given Feynman integrals, say F1(N), together with explicitly given linear combinations
of F1(N) (and possible shifts) describing the remaining integrals F2(N), . . . , Fn(N) (sometimes
one obtains several scalar recurrences for a subset of the given integrals). (2) Then using Sigma’s
recurrence solver one can decide constructively if the Feynman integral F1(N) (or the coefficients
of the ε-expansion of F1(N)) can be written in terms of indefinite nested sums. If this is not
possible, it follows that also F2(N), . . . , Fn(N) cannot be expressed in terms of indefinite nested
sums. However, if it is possible, also F2(N), . . . , Fn(N) can be assembled to expressions in terms
of indefinite nested sums using the linear combination of F1(N) (and its shifted versions).
In addition, this method can be generalized to solve coupled systems of differential equations
coming from IBP methods [86–90]; see also Sections 2, 4.7. Here one assumes that the Feynman
integrals f1(x), . . . , fn(x) can be given in the power series representations

fi(x) =
∞∑
N=0

Fi(N)xN

for i = 1, . . . , n. Then given a coupled system of linear differential equations of the form4 (11) in
the f1(x), . . . , fn(x), one can decide constructively, if the coefficients F1(N), . . . , Fn(N) (or the co-
efficients of their ε-expansions) can be represented in terms of indefinite nested sums. Internally,
this problem can be reduced to the problem to solve a coupled system of difference equations
as follows. Comparing coefficients w.r.t. xN , the coupled system of differential equations in the
f1(x), . . . , fn(x) yield a coupled system of linear difference equations in the F1(N), . . . , Fn(N),
and afterwards the above algorithm is applied; compare [142, 194, 195]. Alternatively, one can
first decouple the coupled system of linear differential equations, afterwards transforms the scalar
differential equation to a scalar recurrence by comparing coefficients w.r.t. xN , and finally one
applies Sigma to solve the scalar recurrence. For further details we refer to [196].

4In addition, we assume that the the inhomogeneous parts gi(x) in (11) are given in power series representations
were the coefficients can be written in terms of indefinite nested sums defined over hypergeometric products.
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5 Factorizing Corrections: The Structure Function Method

In the case of radiation off (meta)stable massive fermions, like the charged leptons and heavy
quarks of massm, the logarithmically enhanced contributions can be determined by the renormal-
ization group equations [197,198] describing the factorization of the process of the corresponding
scattering cross section

σ(s) = C

(
s

µ2

)
⊗ A

(
µ2

m2

)
, (19)

neglecting power corrections. Here s denotes the CMS energy squared and ⊗ the Mellin convo-
lution

A(x)⊗B(x) =

∫ 1

0

dx1

∫ 1

0

dx2δ(x− x1x2)A(x1)B(x2). (20)

One calls the corrections due to the function A(x) factorizing, because of its connection to C(x)
by a Mellin convolution, which factorizes, if considered in Mellin space, via

M[A(x)⊗ C(x)](N) = M[A(x)](N) ·M[C(x)](N). (21)

Both the coefficient function C(x) and the operator matrix elements A(x) obey a series expansion
in the coupling constant a = α/(4π),

A(x) =
∞∑
k=0

ak
k∑
l=0

Ak,l(x) lnl
(
µ2

m2

)
(22)

C(x) = δ(1− x) +
∞∑
k=1

ak
k∑
l=0

Ck,l(x) lnl
(
s

µ2

)
, (23)

such that in the expansion of σ(s) the dependence on the factorization scale µ vanishes and all
logarithmic terms depend on the ratio s/m2 only, see e.g. [199]. Here the expansion coefficients of
the coefficient function Ck,l are process dependent, while the ones of the operator matrix elements
Ak,l are process independent. Since the decomposition (19) has been studied for deep-inelastic
structure functions first one calls this representation also the structure function method.

Let us consider the QED corrections in the inclusive case as an example. The leading order
corrections are of O((a ln(s/m2))k). These are universal. For the QED corrections, initial- and
final state corrections have been calculated to various processes, including light fermion emission,
in Refs. [200–206] up to O((a ln(s/m2))5) in the unpolarized and polarized case. One may as well
treat sub-leading logarithms, as lined out in Refs. [26, 27, 207], see also [208]. These corrections
are no longer universal, but depend on the different contributing subprocesses of the observable
considered. The structure function method only applies to situations in which power corrections
of O(m2/s) can be safely neglected.

6 Function Spaces for First Order Factorizing Systems

When solving first order factorizing systems it is not known a priori, which particular alphabet
will span the function (distribution) space of the solutions. All what is known is the structure
of the coefficients of the respective determining differential or difference equation and that the
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letters of the alphabet will result from them. In Section 4 we have outlined a series of solution
algorithms which finally also determine the corresponding alphabets. In the following we will
concentrate on the cases which have been found in quantum field theory so far. Usually the
letters appearing in the different subsets may even appear combined in applications5. All the
functions described in the following and their mutual relations are implemented in the package
HarmonicSums [38, 39,49–51,153,160,209,210].

6.1 Harmonic sums and harmonic polylogarithms

Next to purely rational functions in either the Mellin variable N or the momentum-fraction
variable x ∈ [0, 1], one obtains the nested harmonic sums [38,39]

Sb,~a(N) =
N∑
k=1

(sign(b))k

k|b|
S~a(k), ai, b, N ∈ N\{0}, S∅ = 1, (24)

and the harmonic polylogarithms [40]

Hb,~a(x) =

∫ x

0

dyfb(y)H~a(y), b, ai ∈ {−1, 0, 1}, H∅(x) = 1, (25)

with the letters

f−1(x) =
1

1 + x
, f0(x) =

1

x
, f1(x) =

1

1− x
. (26)

There are subsets of (24), like the non-alternating harmonic sums with ai, b > 0, and of (25)
with the alphabets {0, 1} and {0,−1}, the Nielsen integrals [33–36]. A subset of the latter are
the canonical polylogarithms [31,32].6

Both function spaces form shuffle algebras in the case of the functions, cf. [212, 213], and
quasi-shuffle algebras in case of the sums, cf. [212–214]7,

Sa(N)

∃

Sb1,...,bm(N) = Sa,b1,...,bm(N) + Sb1,a,...,bm(N) + ...+ Sb1,...,bm,a(N) (27)
Ha(x) ·Hb1,...,bm(x) = Ha(x)

∃

Hb1,...,bm(x) = Ha,b1,...,bm(x) +Hb1,a,...,bm(x) + ...+Hb1,...,bm,a(x)

(28)

and form Hopf-algebras [215–217], which also form the basis of renormalizable quantum field
theories [218–221]. The bases of these algebras can be counted using Lyndon words [222, 223]
and by using Witt formulae [224,225]. Sum products obey quasi-shuffle relations as

Sa(N) · Sb1,...,bm(N) = Sa(N)

∃

Sb1,...,bm(N) + Sa1∧b1,b2,...,bm(N) + Sb1,a1∧b2,b3,...,bm(N)

+...+ Sb1,...,bm−1,a1∧bm(N), (29)

with a∧b = sign(a)sign(b)(|a|+|b|). It has been shown in [226] that the existing relations given in
the quasi-shuffle algebra coincide with the relations in the ring of sequences when one evaluates

5For previous surveys see Refs. [158,183].
6Some integration methods may lead to very sophisticated argument structures of polylogarithms, harmonic

polylogarithms and related functions. The method of the symbol [211] can be used to simplify, and to essentially
compactify the corresponding expressions.

7The property to form a shuffle algebra is quite general and it will apply also to the other function spaces
discussed below.
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the elements to sequences. To both spaces there is a single space of special constants associated,
which is obtained in the limit N → ∞ in case of the sums and x → 1, provided the limits
exist. These are the multiple zeta values (MZVs) [122]. There are more relations between these
constants, than between the nested sums and the iterated integrals. For the alphabets {0, 1}
the relations were given up to w = 22 and for {−1, 0, 1} to w = 12, respectively, in Ref. [122].
One may add the symbol σ0 :=

∑∞
k=1(1/k) to the set formally, expressing the respective degree

of divergence. For the set {−1, 0, 1} the basic constants through polynomials of which all other
constants can be obtained are{

σ0, ln(2); ζ2; ζ3; Li4

(
1

2

)
; ζ5,Li5

(
1

2

)
; Li6

(
1

2

)
; ζ7,Li7

(
1

2

)
, σ−5,1,1, σ5,−1,−1; ...

}
(30)

from weight w = 1 to 7. Here

ζk =
∞∑
l=1

1

lk
, k ∈ N, k ≥ 2; Lik(x) =

∞∑
l=1

xl

lk
, |x| ≤ 1; σa,b,c = lim

N→∞
Sa,b,c(N). (31)

The Mellin transform maps the elements of both spaces, i.e. the Mellin transform of a
harmonic polylogarithm can be represented by a linear combination of nested harmonic sums
and their values in the limit N →∞, e.g.

M[H0,1,1(x)](N) = −S1,1(N)

N2
+
ζ3
N

. (32)

Applying the quasi-shuffle relations one may further reduce

S1,1(N) =
1

2

[
S2
1(N) + S2(N)

]
. (33)

The harmonic sums can be analytically continued from N ∈ N to N ∈ C for even resp. odd
moments using their representation in terms of Mellin transforms. The latter are expanded into
factorial series [227,228] and factors of S1,...,1(N), given by polynomials of poly-gamma functions
and MZVs. Due to this one may differentiate harmonic sums for N and derive besides the
quasi-shuffle relations structural relations [229,230]. Approximate numerical representations for
the analytic continuation of harmonic sums have also been obtained [231–233]. It finally can be
shown that the inclusive 2-loop results in the massless and single-mass case, neglecting power
corrections, can be expressed by only six harmonic sums [234,235]

S1(N), S2,1(N), S−2,1(N), S−3,1(N), S2,1,1(N), S−2,1,1(N), (34)

see also [229, 230]. Harmonic sums and polylogarithms are also implemented in the packages
summer [38], harmpol [40] and HPL [236]. Precise numerical representations of harmonic sums
were given in [237,238].

6.2 Cyclotomic harmonic sums and harmonic polylogarithms

An extension of the harmonic sums and polylogarithms are the cyclotomic harmonic sums and
harmonic polylogarithms, the properties of which have been studied in Ref. [50]. The cyclotomic
harmonic polylogarithms are the iterated integrals over the alphabet{

1

x
,

xl

Φk(x)

∣∣∣∣
0≤l≤ϕ(k)

}
, (35)
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with Φk(x) the kth cyclotomic polynomial consecutively found by factorizing (xN − 1) and
ϕ(k) the totient function. Iterated integrals of these letters are called cyclotomic harmonic
polylogarithms, where Φ1(x) = 1/(1 − x),Φ2(x) = 1/(1 + x),Φ3(x) = 1/(1 + x + x2),Φ4(x) =
1/(1 + x2) and Φ6(x) = 1/(1 − x + x2). The Mellin transform of x/(1 − x + x2) for n = 6N is
given by

M

[
x

1− x+ x2

]
(6N) =

(
4 + 38N − 47N2 + 127N3 + 90N4 − 1404N5 − 1080N6

)
12N(2N − 1)(2N + 1)(3N − 1)(3N + 2)(6N − 5)(6N + 1)

+
2π

3
√

3(6N − 5)
+

1

6N − 5

[
1

3

N∑
k=1

1

1 + 2k
+

1

2

N∑
k=1

1

2 + 3k

+
N∑
k=1

1

1 + 6k
− 1

6
S1(N)

]
, (36)

as an example. Here cyclotomic harmonic sums such as
∑N

k=1
1

2+3k
emerge, i.e. harmonic sums

exhibiting a cyclic pattern of missing terms in their summands. New special constants are
obtained from the cyclotomic harmonic sums in the limit N →∞ and the cyclotomic harmonic
polylogarithms for x→ 1. One of these is Catalan’s constant

C =
∞∑
l=0

(−1)l

(2l + 1)2
. (37)

Cyclotomic harmonic polylogarithms contribute to the massive form factors at 3-loop order
[134, 239]. Real-valued cyclotomic harmonic polylogarithms can be decomposed into complex-
valued generalized harmonic polylogarithms by partial fractioning. Expressions based on the
latter representations are often more complicated to deal with. One example is the significantly
extended ground field in case of sum-representations of their Mellin transforms, which gives
preference to the real representations.

6.3 Generalized harmonic sums and harmonic polylogarithms

Generalized harmonic polylogarithms were introduced as iterated integrals by Kummer [240]
and also studied by Poincaré [241], see also [242–244]. These functions emerged in higher loop
calculations in [48,119] and the properties of them have been detailed in Ref. [49]. One considers

Gb,a1,...,am(x) =

∫ x

0

dy gb(y)Ga1,...,am(y), b, ai ∈ C, G∅ = 1, (38)

with

gc(x) =
1

x− c
. (39)

Any function 1/P (x), with P (x) a polynomial with coefficients in C can be decomposed into
letters gc(x). Therefore, the framework of generalized harmonic polylogarithms is very general.
The Mellin transform of (38) leads to linear combinations of the associated nested sums,

Sc,d1,...,dm(b, a1, ..., am;N) =
N∑
k=1

bk

kc
Sd1,...,dm(a1, ..., am; k), c, dk ∈ N\{0}, b, ai ∈ C, S∅ = 1. (40)
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Likewise, special associated numbers are obtained in the limits N → ∞, x → 1, if the limits
exist. In single scale applications in quantum field theory the letters in (38) are often rational
numbers, respectively roots of unity, in the cyclotomic case, however, due to general polynomial
structures also other algebraic numbers may occur. In the presence of more than one scale
they are general complex numbers. Calculating the massless 3-loop Wilson coefficients for deep-
inelastic scattering, generalized harmonic sums appeared in intermediary steps but canceled in
the finite results [43]. This applies also to the case of the NF -terms for the 3-loop massive
OMEs [46, 245]. However, in the 3-loop pure-singlet massive OME [246] generalized harmonic
sums contribute. Relations for generalized harmonic polylogarithms are also implemented in
the packages nestedsums [247] and Xsummer [248]. A numerical implementation for generalized
harmonic polylogarithms has been given in [249].

6.4 Binomial and inverse binomial sums and square-root valued iter-
ated integrals

At the next level of complexity, square-root valued letters of a quadratic form with integer
coefficients for iterated integrals emerge. Examples are

1

(2 + x)
√
x− 1

4

,
1

(1 + x)
√
x
√

8− x
, (41)

cf. [51]. They are related to binomial and inverse binomial structures of the following kind(
2N

N

)
=

4N

π
M

[
1√

x(1− x)

]
(N),

1

N

(
2N

N

) =
1

4N
M

[
1

x
√

1− x

]
(N) (42)

in Mellin space. In Ref. [51] a large number of these letters, characterized by different classes,
have been studied.

In general, the Mellin transform of the iterated integrals of these square-root valued letters
are related to nested sums containing (inverse) binomial weights in front of generalized harmonic
sums, like

N∑
i=1

(
2i

i

)
(−2)i

i∑
j=1

1

j

(
2j

j

)S1,2

(
1

2
, 1

)
(j) =

∫ 1

0

dx
(−x)N − 1

x+ 1

√
x

8− x

[
Hw12,1,0(x)− 2Hw13,1,0(x)

−ζ2 (Hw12(x)− 2Hw13(x))
]
− 5ζ3

8
√

3

∫ 1

0

dx
(−2x)N − 1

x+ 1
2

√
x

4− x
+ c1

∫ 1

0

dx
(−8x)N − 1

x+ 1
8

√
x

1− x
,

(43)

c1 =
1

π

∞∑
j=1

1

j

(
2j

j

)S1,2

(
1

2
, 1

)
(j) ≈ 0.10184720 . . . , (44)

with Hb,~a(x) =
∫ 1

x
dyfb(y)H~a(y). Algorithms to compute the (inverse) Mellin transform in terms

of indefinite nested sums/integrals are available in HarmonicSums [160]; note that these algo-
rithms are based on linear recurrence and differential equation solving as described in Subsec-
tions 4.7 and 4.9. Infinite (inverse) binomial sums depending on one parameter ξ ∈ C have been
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also studied in [250, 251]. Finite binomial sums appear in various massive calculations, see e.g.
Refs. [142,252,253].

In this context also new special constants are appearing, as e.g.

arccot(
√

7), Lin

(
−1

4

)
, (45)

and many others.
One may think of to rationalize the root-valued letters in trying to map the problem to

Kummer-Poincaré iterated integrals. This is indeed possible for a series of cases. Concerning
all the cases discussed in Ref. [51], a successful transformation could, however, not be found,
cf. [254].

Finally, we would like to mention, that some elliptic solutions in x space are hypergeometric
in N -space. The Mellin transform of the following elliptic integrals of the first and the second
kind obey [61,183]

M[K(1− z)](N) =
24N+1

(1 + 2N)2
(

2N

N

)2 , M[E(1− z)](N) =
24N+2

(1 + 2N)2(3 + 2N)

(
2N

N

)2 . (46)

Eqs. (46) show that square-root valued iterated integrals and (inverse) binomial sum represen-
tations already have a close relation to elliptic integrals, cf. Section 7.

6.5 Square-root valued iterated integrals: two scales

In two-scale problems, which factorize at first order, the Feynman integrals can be represented
in terms as iterated integrals of the kind

Gl,k1,...,km(η;x) =

∫ x

0

dy hl(y, η)Gk1,...,km(η; y), G∅ = 1, (47)

where l, ki label the respective letters and η denotes the ratio of the two scales. The func-
tions hl(y, η) are rational or square-root valued in known examples [255–257]. The associated
N -representations are obtained again by a Mellin transform. In some cases one finds sum rep-
resentations, usually of generalized binomially weighted sums. However, there are also cases
in which the N -space solution has no nested sum-product representation but contains higher
transcendental functions in N , [256]. A typical iterated integral of the kind (47) is given by

G

[{ √
(1− x)x

1− x(1− η)
,

1

1− x

}
, z

]
=

1

(1− η)2

[
−i

[
ηLi2

(
−
(√

1− z + i
√
z
)2)

+
√
ηLi2


(

1− i
√
z√

1−z

)√
η

√
η − 1

−√ηLi2

(

i
√
z√

1−z + 1
)√

η
√
η − 1

−√ηLi2

(

1− i
√
z√

1−z

)√
η

√
η + 1


+
√
ηLi2


(

i
√
z√

1−z + 1
)√

η
√
η + 1

+ Li2
(
−
(√

1− z + i
√
z
)2)]

+ (η − 1)
√

(1− z)z

+i(η + 1) arcsin2
(√

z
)

+ (1− η) arcsin
(√

z
)

+ 2(η + 1) ln(2) arcsin
(√

z
)

+ ln(1− z)

×

[
(1− η)

√
(1− z)z + 2

√
η arctan

( √
ηz

√
1− z

)]
+ ln

(
1−√η
√
η + 1

)(
π
√
η − 1

2
i(η + 1)ζ2
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−2
√
η arctan

(√
1− z√
z

))]
, (48)

with the letters
√

(1− x)x/(1− x(1− η)) and 1/(1− x), cf. [257]. The associated constants are
functions of η. Furthermore, also usual harmonic polylogarithms at new algebraic arguments
contribute, cf. [257].

7 Non First Order Factorizing Systems

At higher and higher orders in perturbation theory, at least in the massive case, the system of
differential equations for the master integrals will not exhibit first order factorizations at a certain
level of complexity. In various cases this will be not the case for the associated system of difference
equations, through a Mellin transform, either. There are a series of well-known examples in the
literature as the sun-rise integral, cf. e.g. [53,55–59], the kite-integral [60,258], the 3-loop QCD-
corrections to the ρ-parameter [61], and the 3-loop QCD corrections to the massive operator
matrix element AQg [135], to which non first order factorizing systems contribute.

In decoupling the corresponding system of differential equations [93, 158] one obtains 2nd
order factors of the associated scalar equations, which cannot be reduced further. More precisely,
this associated scalar differential equation of order two contains more than three singularities. It
is formally a Heun differential equation [259]. One can write the corresponding solution also using
2F1-functions with rational argument [61, 260] and rational parameters. It is now interesting to
see whether these solutions can be expressed in terms of complete elliptic integrals, which can be
checked algorithmically using the triangle group [261]. In the examples mentioned before one can
find representations in terms of complete elliptic integrals of the first and second kind, K and E,
cf. [52, 138]. A related question is, whether an argument translation allows for a representation
through only K. This is possible under certain conditions, cf. [262,263]. In the case of the 3-loop
QCD-corrections to the ρ-parameter, however, this is not possible.

A homogeneous 2F1-solution ψ
(0)
k (x), k = 1, 2 of the 2nd order differential equation is repre-

sented by the integral (6), which cannot be rewritten such, that it depends on x just through
the integral boundaries. This integral is therefore non-iterative w.r.t. x. The inhomogeneous
solution reads

ψ(x) = ψ
(0)
1 (x)

[
C1 −

∫
dxψ

(0)
2 (x)

N(x)

W (x)

]
+ ψ

(0)
2 (x)

[
C2 +

∫
dxψ

(0)
1 (x)

N(x)

W (x)

]
, (49)

with N(x) and W (x) the inhomogeneity and the Wronskian and C1,2 are the integration con-
stants. Through partial integration the ratio N(x)/W (x) can be transformed into an iterative
integral. Since ψ(0)

k (x) cannot be written as iterative integrals, ψ(x) is obtained as an iterative
non-iterative integral [61, 264] of the type

Ha1,...,am−1;am,Fm(r(ym)),am+1,...aq(x) =

∫ x

0

dy1fa1(y1)

∫ y1

0

dy2...

∫ ym−1

0

dymfam(ym)Fm[r(ym)]

×Ham+1,...,aq(ym), (50)

with r(x) a rational function and Fm a non-iterative integral. Notice, that more than one
non-iterative integral can contribute and Fm denotes any non-iterative integral, implying a very
general representation, cf. [61].8 In Ref. [266] an ε-form for the Feynman diagrams of elliptic cases

8This representation has been used in a more special form also in [265] later.
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has been found recently. However, transcendental letters contribute here. This is in accordance
with our earlier finding, Eq. (50), which, as well is an iterative integral over all objects between
the individual iterations and to which now also the non-iterative higher transcendental functions
Fm[r(ym)] contribute.

One may obtain fast convergent representations of H(x) by overlapping series expansions
around x = x0 outside possible singularities, see Ref. [61] for details.

Because in many cases elliptic solutions are obtained one may transform the kinematic vari-
able x occurring as K(k2) = K(r(x)) into the variable q = exp[iπτ ] analytically with

k2 = r(x) =
ϑ4
2(q)

ϑ4
3(q)

, (51)

by applying a higher order Legendre-Jacobi transformation. Here ϑl, l = 1, ..., 4 denote Jacobi’s
ϑ-functions and Im(τ) > 0. In this way Eqs. (49) and (50) are rewritten in terms of the new
variable. The integrands are given by products of meromorphic modular forms, cf. [62–64], which
are given by linear combinations of ratios of Dedekind’s η-function

η(τ) = q
1
12

∞∏
k=1

(1− q2k) . (52)

Depending on the largest multiplier k ∈ N, km, of τ in the argument of the η-function, the solution
transforms under the congruence subgroup Γ0(km). One can perform Fourier expansions in q
around the different cusps of the problem, cf. [267, 268]. This representation is a uniform one
w.r.t. the singularities if compared to the former 2F1-representation. In the latter only three
singularities of the problem are encoded in the 2F1-function, while all others are implied by the
argument r(z) in an asymmetric way.

In the case that the occurring modular forms are holomorphic, one obtains representations
in Eisenstein series with character, while in the meromorphic case additional η-factors in the
denominators are present. In the former case the q-integrands can be written in terms of elliptic
polylogarithms in the representation

ELin,m(x, y) =
∞∑
k=1

∞∑
l=1

xk

kn
yl

lm
qkl (53)

and products thereof, cf. [58]. The corresponding q-integrals can be directly performed. The
solution (49) usually appears for single master integrals. Other master integrals are obtained
integrating further other letters, so that finally representations by H(x) occur. Iterated modular
forms, resp. Eisenstein series, have been also discussed recently in [269,270].

For systems of differential equations which factorize to 3rd or higher order much less is know.
Formally, the representation Eq. (50) also applies there. However, one will be also interested in
the more specific properties of these systems having finally concrete cases at hand.

8 Outlook

Various powerful computation methods exist to solve massless and massive problems in quan-
tum field theory to 4- and 5-loop order analytically for a low number of external legs and scales
involved. The mathematical understanding of the associated solution spaces made substantial
progress during the last two decades and the computer-algebraic methods gained orders of mag-
nitude during a similar period. One now has to see which structures have to be revealed next,
going to even higher orders and/or allowing for more scales.
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Despite the fact that a systematic classification for sets of Feynman integrals can be obtained
through their degree of decoupling of the associated systems of differential equations, cf. Sec-
tion 2, just the use of differential equations makes it difficult to obtain closed form analytic
solutions. This is due to the fact, that this approach is a rather inclusive one, as also others.
Already in early studies of elliptic solutions, see e.g. [54], dispersive representations have been
used. As well-known, cuts allow access to the specific integrand structures and, e.g., the elliptic
solutions for the respective integrals were easily obtained.9 The cut-representation is equivalent
to a Hilbert-transform [272–274]

F (s) =

∫ +∞

−∞

dt

t− s
f(t) (54)

splitting off one corresponding integral. In more involved cases, one might want to apply even
multiple cuts to reveal the corresponding class of integrals. In this way, the dispersive approach,
[275], will form an important asset also to many key problems to be dealt with in the future.
In the practical calculation of Feynman diagrams, the general Hopf-algebra structure [218–221]
implied by the renormalization of the corresponding quantum field theory may play a role.
In general, however, all information is encoded in the specific multi-variate hyper-exponential
structure of the individual integrand of the graph itself, which decides on its mathematical result
and the wider class of mathematical structures to which it will finally belong. Experience shows
that it is often rather difficult to determine the latter a priori, since these specific structures only
unfold in course of the different integrations in most of the interesting cases.

One can imagine that more involved Feynman diagrams could lead to Abel-integrals [276].
Also integrals related to K3-surfaces [277] are expected. The development in the field of zero-
and single-scale quantities during the last 25 years let us expect a rich host of mathematical
structures to be unrevealed and techniques to be discovered and designed going to even higher
loop orders and allowing to study also cases in which a few more invariants are present during
the decades to come.

The theoretical predictions for the measurements planned at the FCC have to have an ac-
curacy below the experimental errors which can be achieved. This will require at least one
order of magnitude better complete calculations in the respective quantum field theory, and in
some important cases even more. To achieve this will require important improvements of what
is technically possible at present, also in case of analytic calculations. The present experience
has to be maintained for the future and to be significantly extended. This will also require an
even closer cooperation between physicists and mathematicians and will include the solution of
unprecedented tasks within computer algebra as well. As experience tells, these enormous tasks
are by far not self-organizing and are of very long term nature to be taken into account in the
thorough planning of this collider project. Large-scale and long-term research of this kind is
therefore often performed with a strong involvement of leading international research centers.
A series of important calculations for HERA and the LHC spanned over two decades, which is
setting a lower bound to what will be needed at the FCC. A substantial theoretical community
will be needed to solve these tasks. In observing the fantastic, strongly interdisciplinary leaps
forward having been made since the late 1980ies, it seems to be possible, but a great effort is
needed to master this adventure. The theoretical and mathematical insight which will be gained
will be very large. The task is indispensable, however, to be able to interprete the experimental
precision measurements at a facility like the FCC.
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