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Abstract

We compute the color-planar and complete light quark non–singlet contributions to the
heavy quark form factors in the case of the axialvector, scalar and pseudoscalar currents at
three loops in perturbative QCD. We evaluate the master integrals applying a new method
based on differential equations for general bases, which is applicable for all first order
factorizing systems. The analytic results are expressed in terms of harmonic polylogarithms
and real-valued cyclotomic harmonic polylogarithms.



Form factors are the matrix elements of local composite operators between physical states. In
perturbative Quantum Chromodynamics (QCD) these objects play a significant role in deter-
mining physical observables. In scattering cross-sections, they provide important contributions
to the virtual corrections. The massive form factors are of importance for the forward-backward
asymmetry of bottom or top quark pair production at electron-positron colliders and to static
quantities like the anomalous magnetic moment of a heavy quark and other processes. They
are also of importance to scrutinize the properties of the top quark [1, 2] during the high lumi-
nosity phase of the LHC [3] and the experimental precision studies at future high energy e+e−

colliders [4].
In this letter, we calculate both the color–planar and complete light quark non-singlet three-

loop contributions to the massive form factors for axialvector, scalar and pseudoscalar currents.
Our results for the vector current, including a detailed account of the techniques used in these
calculations, will be presented elsewhere [5]. The two-loop QCD corrections to the massive
vector, axialvector form factors, the anomaly contributions, and the scalar and pseudoscalar form
factors were first presented in [6–9]. In [10], an independent computation led to a cross-check
of the vector form factor, giving also the additional O(ε) terms in the dimensional parameter
ε = (4−D)/2. Recently, the contributions up to O(ε2) for all the massive two-loop form factors
were obtained in Ref. [11]. The color–planar contributions to the massive three-loop form factor
for the vector current have been computed in [12,13] and the complete light quark contributions
in [14]. The large β0 limit has been considered in [15].

Our notations follow those used in Ref. [11]. We consider the decay of a virtual massive boson
of momentum q into a pair of heavy quarks of mass m, momenta q1 and q2 and color c and d,
through a vertex Xcd, where Xcd = ΓµA,cd,ΓS,cd and ΓP,cd indicates the coupling to an axialvector,
a scalar and a pseudoscalar boson, respectively. Here q2 = (q1 + q2)2 is the center of mass energy
squared and the dimensionless variable s is defined by

s =
q2

m2
. (1)

The amplitudes take the following general form

ūc(q1)Xcdvd(q2) , (2)

where ūc(q1) and vd(q2) are the bi-spinors of the quark and the anti-quark, respectively. We
denote the corresponding UV renormalized form factors by FI , with I = A, S, P . They are
expanded in the strong coupling constant αs = g2

s/(4π) as follows

FI =
∞∑
n=0

(αs
4π

)n
F

(n)
I . (3)

The following generic forms for the amplitudes can be found by studying the general Lorentz
structure. For the axialvector current, it can be cast as

ΓµA,cd = −iδcd
[
aQ

(
γµγ5 FA,1 +

1

2m
qµγ5 FA,2

)]
, (4)

where σµν = i
2
[γµ, γν ] and aQ is the Standard Model (SM) axialvector coupling constant. Like-

wise, for the scalar and pseudoscalar currents, one has

Γcd = ΓS,cd + ΓP,cd = −m
v
δcd

[
sQ FS + ipQγ5 FP

]
, (5)
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where v = (
√

2GF )−1/2 is the SM vacuum expectation value of the Higgs field, with GF being the
Fermi constant, sQ and pQ are the scalar and pseudoscalar couplings, respectively. Finally, to
obtain the unrenormalized form factors, we multiply appropriate projectors as provided in [11]
and perform the trace over the color and spinor indices. For later purpose we denote by Nc the
number of colors, and nl and nh are the number of light and heavy quarks, respectively. We will
set nh = 1 in the following.

Since we use dimensional regularization [16], one important point is to define a proper de-
scription for the treatment of γ5. Both the color-planar and complete nl contribution belong to
the so-called non-singlet case, where the axialvector or pseudoscalar vertex is connected to open
heavy fermion lines. Hence, both γ5-matrices appear in the same chain of Dirac matrices, which
allows us to use an anti-commuting γ5 in D space-time dimensions, with γ2

5 = 1. This is implied
by the well-known Ward identity,

qµΓµ,nsA,cd = 2mΓns
P,cd , (6)

which in terms of the form factors, takes the form

2F ns
A,1 +

s

2
F ns
A,2 = 2F ns

P . (7)

Here ns denotes the non-singlet contributions. For convenience, we introduce the kinematic
variable [17]

x =

√
q2 − 4m2 −

√
q2√

q2 − 4m2 +
√
q2

↔ s =
q2

m2
= −(1− x)2

x
, (8)

which we use in the following. In particular, we focus on the Euclidean region, q2 < 0, corre-
sponding to x ∈ [0, 1[.

Figure 1: The color-planar topologies

Figure 2: The nl topologies

The Feynman diagrams for the different form factors are generated using QGRAF [18], the color
algebra is performed using Color [19], the output of which is then processed using Q2e/Exp [20,21]
and FORM [22, 23] in order to express the diagrams in terms of a linear combination of a large
set of scalar integrals. These integrals are then reduced using integration by parts identities
(IBPs) [24, 25] with the help of the program Crusher [26] to obtain 109 master integrals (MIs),
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out of which 96 appear in the color-planar case. In the color-planar limit, the families of integrals
can be represented by eight topologies, shown in Figure 1, whereas for the complete light quark
contributions, three more topologies, cf. Figure 2, are required 1.

Finally, the master integrals have to be computed. For this we use the method of differential
equations, see also [27–30]. The corresponding differential equations are obtained from the IBP
relations. Here a central question is whether the corresponding linear system of differential
equations is first order factorizable or not. Using the package Oresys [31], based on Zürcher’s
algorithm [32, 33], we have proved that the present system is indeed first order factorizable in
x-space. Without any need to choose a special basis, one is therefore in the position to solve
the system in terms of iterated integrals of whatsoever alphabet, cf. Ref. [5] for details. The
differential equations are solved order by order in ε successively, starting at the leading pole
terms ∝ 1/ε3. The successive solutions in ε contribute to the inhomogeneities in the next
order. We compute the master integrals block-by-block, where for an m × m system a single
inhomogeneous ordinary differential equation of order m or less is obtained, which we solved
using the variation of constant. The other m − 1 solutions result from the former solution
immediately. The boundary conditions can be determined by a separate calculation at x = 1.
The calculation is performed by intense use of HarmonicSums [34–40], which uses the package
Sigma [41,42]. We finally have checked all master integrals numerically using FIESTA [43–45].

In the present case, the emerging harmonic polylogarithms stem from the inhomogeneities,
adding further letters which result from the rational coefficients in the differential equations.
They are obtained by partial fractioning as the k-th powers of letters, k ∈ N, which have to be
transformed to the letters by partial integration in case. This method has some relation to the
method of hyperlogarithms [46,47]. One obtains up to weight w=6 real-valued iterated integrals
over the alphabet

1

x
,

1

1− x
,

1

1 + x
,

1

1− x+ x2
,

x

1− x+ x2
, (9)

i.e. the usual harmonic polylogarithms (HPLs) [48] and their cyclotomic extension [34], including
the respective constants in the limit x → 1, i.e. the multiple zeta values (MZVs) [49] and the
cyclotomic constants [34,50]. In case of the iterated integrals we apply the linear representation.
For a numerical implementation the use of the shuffle algebra [51] implemented in HarmonicSums

reduces the number of functions accordingly. In the MZV and cyclotomic case there are proven
reduction relations to weight w = 12 [49] and w = 5 [50], respectively, which we have used. The 64
cyclotomic constants which appear up to w = 5 reduce to 18. At w = 6 124 cyclotomic constants
remain at the moment. Note that there are more conjectured relations, cf. [52], based on PSLQ
[53]. If these conjectured relations are used, only multiple zeta values remain as constants in
all form factors using our real representation for the cyclotomic harmonic polylogarithms. The
analytic result for the different form factors in terms of HPLs and cyclotomic HPLs [34,48] can
be analytically continued outside x ∈ [0, 1[ by using the mappings x→ −x, x→ (1−x)/(1+x)
on the expense of extending the cyclotomy class in cases needed.

The UV renormalization of the form factors has been performed in a mixed scheme. We
renormalize the heavy quark mass and wave function in the on-shell (OS) renormalization scheme,
while the strong coupling constant is renormalized in the MS scheme, which is given by setting
the universal factor Sε = exp(−ε(γE − ln(4π)) for each loop order to one at the end of the
calculation. The required renormalization constants are well known and are denoted by Zm,OS

[54–58], Z2,OS [54–56, 59] and Zas [60, 61] for the heavy quark mass, wave function and strong
coupling constant, respectively. For all the cases, the renormalization of the heavy-quark wave

1Only sub-topologies with a maximum of eight propagators contribute.
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function and the strong coupling constant are multiplicative, while the renormalization of massive
fermion lines has been taken care of by properly considering the counter terms. For the scalar
and pseudoscalar currents, the presence of the heavy quark mass in the Yukawa coupling employs
another overall mass renormalization constant.

The infrared (IR) singularities of the massive form factors can be factorized [62] as a mul-
tiplicative renormalization factor. Its structure is constrained by the renormalization group
equation (RGE), as follows,

FI = Z(µ)F fin
I (µ) , (10)

where F fin
I is finite as ε→ 0. The RGE for Z(µ) reads

d

d lnµ
lnZ(ε, x,m, µ) = −Γ(x,m, µ) , (11)

where Γ is the corresponding cusp anomalous dimension, which is by now available up to three-
loop order [63, 64]. Notice that Z does not carry any information regarding the vertex. Both Z
and Γ can be expanded in a perturbative series in αs as follows

Z =
∞∑
n=0

(αs
4π

)n
Z(n) , Γ =

∞∑
n=0

(αs
4π

)n+1

Γn (12)

and one finds the following solution for Eq. (11)

Z = 1 +
(αs

4π

)[Γ0

2ε

]
+
(αs

4π

)2
[

1

ε2

(Γ2
0

8
− β0Γ0

4

)
+

Γ1

4ε

]

+
(αs

4π

)3
[

1

ε3

(
Γ3

0

48
− β0Γ2

0

8
+
β2

0Γ0

6

)
+

1

ε2

(
Γ0Γ1

8
− β1Γ0

6

)
+

1

ε

(
Γ2

6

)]
+O(α4

s) . (13)

Eq. (13) correctly predicts the IR singularities for all massive form factors at the three-loop level.
We finally obtain the color–planar and the complete light quark non–singlet (nl) contributions

for the three-loop massive form factors for the same currents as before. Since the expressions
are very long, we provide them as supplemental material along with this publication only.
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Figure 3: The O(ε0) contribution to the axialvector three-loop form factors F
(3)
A,1 (left) and F

(3)
A,2

(right) as a function of x. Dash-dotted line: leading color contribution of the non-singlet form factor;
Full line: sum of the complete non-singlet nl-contributions for nl = 5 and the color-planar non-singlet
form factor; Dashed line: large x expansion; Dotted line: small x expansion.
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In Figures 3–4 we illustrate the behaviour of the O(ε0) parts of the different form factors
as a function of x ∈ [0, 1]. We also show their small- and large-x expansions. The latter
representations are obtained using HarmonicSums. The different limits are characterized as
follows :
Low energy region (x → 1): In the space-like case (q2 < 0) we expanded the form factors,
redefining x = eiφ, φ = 0.
High energy region (x → 0): Here we expand the form factors up to O(x4). The chirality
flipping form factors FV,2 and FA,2 vanish and the effect of γ5 gets nullified in this limit implying
FV,1 = FA,1 and FS = FP .

Threshold region (x→ −1): Here expansions of the form factors in β =
√

1− 4m2

q2
describe the

dominant terms.
For the numerical evaluation of the HPLs and the cyclotomic HPLs we use the GiNaC-package
[65,66].
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Figure 4: The O(ε0) contribution to the scalar and pseudoscalar three-loop form factors F
(3)
S (left)

and F
(3)
P (right) as a function of x. Dash-dotted line: leading color contribution of the non-singlet

form factor; Full line: sum of the complete non-singlet nl-contributions for nl = 5 and the color-planar
non-singlet form factor; Dashed line: large x expansion; Dotted line: small x expansion.

We performed a series of further checks. The Ward identity (7) has been checked by an explicit
calculation. By maintaining the gauge parameter ξ to first order, a partial check on gauge invari-
ance has been obtained. After αs-decoupling the UV renormalized results satisfy the universal
IR structure, confirming again the correctness of all pole terms. Finally, we compared our results
with those of Ref. [67], which has been obtained using partly different methods, and agree by
adjusting the respective conventions.
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