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Abstract

Coherent oscillation of axions or axion-like particles may give rise to long-lived clumps, called ax-
ion stars, because of the attractive gravitational force or its self-interaction. Such a kind of con-
figuration has been extensively studied in the context of oscillons without the effect of gravity,
and its stability can be understood by an approximate conservation of particle number in a non-
relativistic effective field theory (EFT). We extend this analysis to the case with gravity to discuss the
longevity of axion stars and clarify the EFT expansion scheme in terms of gradient energy and New-
ton’s constant. Our EFT is useful to calculate the axion star configuration and its classical lifetime
without any ad hoc assumption. In addition, we derive a simple stability condition against small
perturbations. Finally, we discuss the consistency of other non-relativistic effective field theories
proposed in the literature.
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1 Introduction

Light scalar particles arise in numerous theories of physics beyond the Standard Model. A prime ex-

ample is the axion, typically realized as a pseudo Nambu-Goldstone boson (pNGB) of a broken U (1)
symmetry at some high cosmological scale [1–3]. Such particles are also natural candidates for the

particle nature of dark matter [4, 5].
Axions are produced early in the universe, and naturally occupy states with very high occupation

numbers, that coherently oscillate with dominant frequency ω ∼ mφ , where mφ is the axion mass.

Such states are well-described by a classical field. Owing to the smallness of mφ , higher-order contri-

butions to the oscillation frequencyωn ∼ n mφ are extremely rapid and are typically neglected at lead-

ing order. There now exists a standard procedure for deriving the low energy limit of the Klein-Gordon

equation for a real scalar field: one expands the relativistic fieldφ in a nonrelativistic wavefunctionψ

using the relation

φ(t ,x) =
1Æ

2mφ

�
e −i mφ tψ(t ,x) + e i mφ tψ∗(t ,x)

�
, (1.1)

and drops any term beyond leading order in rapidly oscillating factors e ±i mφ t . The resulting equation

of motion, generically a nonlinear Schrödinger equation, is both classical and non-relativistic.

Localized quasi-stable solutions to the classical, non-relativistic equations of motion are known as

oscillons [6–8] or boson stars.\1 Such objects can be supported by a balance of attractive and repulsive

forces, sometimes including gravity. The original solutions for gravitationally bound (but otherwise

non-interacting) boson stars were found by [11, 12], though self-interactions have been included in

recent years either in genericφ4 scalar theory [13–15], and also in the specific case of the axion poten-

tial [16, 17]. In the latter case then configurations are referred to as axion condensates, or more often,

axion stars.

There are certain applications in which the non-relativistic limit may be insufficient. Over the last

few years, a number of procedures have appeared for organizing corrections to the non-relativistic

limit, which can generically be referred to as non-relativistic effective field theories (NREFTs). One

such method was presented by some of the present authors (hereafter MTY) [8], in which the scalar

field was decomposed into non-relativistic and rapidly oscillating parts,φ =φNR+δφ. MTY presented

a scheme for integrating out δφ perturbatively in the self-interaction coupling. This gave rise to cor-

rections to the self-interaction couplings, as well as new terms in the equations of motion which were

higher-order in spatial gradients as well as time derivatives. The method of MTY thereby accounted

for all relevant relativistic corrections. Some relativistic corrections give imaginary terms in the EFT,

which leads to the decay of oscillon states [7,18–20]. The lifetime of an oscillon can be estimated from

the EFT and the result is consistent with the classical numerical simulation.

A different method for constructing the NREFT of a real scalar field was performed by Braaten, Mo-

hapatra, and Zhang (hereafter BMZ) [21], who matched relativistic scattering amplitudes at high ener-

gies to effective operators in the low energy theory, giving rise to modified self-interaction couplings.

The original work of BMZ did not take into account higher-order gradients and time derivatives, which

give important contributions at the same order in the EFT expansion as the self-interaction corrections

\1In this work, we will use these terms interchangeably, though the usual terminology is that boson stars are coupled to

gravity while oscillons are not. Sometimes the term oscillaton is used to refer to an oscillon coupled to gravity [9, 10].
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they calculated. In a recent update [22], they have presented a more complete NREFT which includes

these corrections as well.

Very recently, yet another method was presented by Namjoo, Guth, and Kaiser (hereafter NGK)

[23]. In this work, NGK defined the relativistic field using a nonlocal operator which generalized Eq.

(1.1), then expanded the wavefunction ψ and its conjugate ψ∗ as a tower of oscillating modes with

frequencies±n mφ . The equation of motion for the lowest order mode, taken to have frequency+mφ ,

was determined by integrating out the other modes.\2 It has been shown that, under appropriate field

redefinitions, the methods of MTY, BMZ, and NGK give rise to matching elements in the low-energy

S-matrix atψ6 order [23] and in the T-matrix atψ8 order [22].
A typical boson star is dilute and weakly bound, and as a result, relativistic corrections are ex-

tremely small. A theoretically ideal application in which relativistic corrections become important is

in a dense axion star; in this configuration, the binding energy of the axions is large and the radius

of the star is extremely small (close to the Compton wavelength of individual axions) [24]. This is a

clear scenario in which the approximation of neglecting rapidly oscillating terms breaks down badly,

and one must instead integrate out these modes. In [25], the leading nontrivial corrections to the

wavefunctions of dense axion stars were calculated by generalizing the field operator for the scalar to

include these fast-oscillating modes. The resulting self-interaction potential also agreed well with the

effective interactions calculated in [8] at ψ6 order. Importantly, in the dense axion star, gravity does

not play an important role, as the self-interactions terms dominate [20, 26], and so the application of

a non-gravitational NREFT was appropriate. This is not the case in a dilute axion star, where gravity

contributes at leading order. To analyze such states in an NREFT, gravity must be taken into account.

Thus, today there exist a plethora of methods of calculation in the NREFT of real scalar fields. It

is relevant to understand the consistency of the results between methods, and also to point out any

relevant advantages of one over another. In this note, we will clarify the general MTY procedure for

calculating corrections in NREFT [8]. We will argue for a number of advantages to this method as com-

pared to that of NGK or BMZ. One such advantage of the MTY method is that, as we will describe in this

note, it is straightforward to include the effect of gravity, though in all cases it gives rise to certain the-

oretical complications. A thorough treatment of the gravitational interaction is especially important

for understanding relativistic corrections to many classes of boson stars, where gravity contributes

importantly at leading order.

As the axion field is a Hermitian (real) scalar, there is no symmetry which protects axion stars

against number changing interactions. Nevertheless, there is an approximately conserved particle

number that renders the configuration extremely long-lived [8, 18]. The NREFT presented here ren-

ders the calculation of the classical decay rate for emission of high-energy particles extremely straight-

forward. As a concrete example, we apply this method to estimate the lifetime of dense axion stars.

One way to establish the consistency of an NREFT is to compare a numerical oscillon solution

and prediction by EFT; this was established for the MTY method in [8]. Another way to check the

consistency is to compare an exact solution and prediction by EFT. There are a few situations where

an exact solution is known; one example is spatially homogeneousφ4 theory, where the exact solution

is given by an elliptic function. We will compare this exact solution with the result from the MTY, BMZ,

\2As this paper was being finalized, an update to [23] appeared which clarified the expansion scheme in their method by

separating self-interaction, spatial derivative, and time derivative corrections.
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and NGK effective field theory calculations.

The paper is organized as follows. In Section 2, we present the calculation of relativistic corrections

in NREFT as an expansion in the small parameters of the theory, building on the MTY formalism of

[8]. In Section 3, we describe how to couple this theory to gravity, and compare corrections coming

from gravity to the other expansion parameters. We explain how to calculate the imaginary part of the

Lagrangian, which gives rise to decay processes even in the classical regime, in Section 4. Finally, we

compare various NREFT methods in Section 5, and we conclude in Section 6.

We use natural units throughout, where ħh = c = 1.

2 NR EFT without gravity

In this section, we explain the method of calculation in our NREFT, building on our original work [8].
The advantage of this method in the study of oscillons is sixfold: the calculation is easy and straightfor-

ward by using Feynman diagrams; the reason for (approximate) stability is clear; it is easy to calculate

the background configuration; it is straightforward to include the effect of gravity; the lifetime can be

calculated from the imaginary part of the Lagrangian ; and the higher order corrections in the small

parameter expansion become small. Each of these points will be illustrated in what follows.

We start from the following Lagrangian for a relativistic quantum field theory of a real scalar field

φ:

L = 1

2
(∂ φ)2− 1

2
m 2
φφ

2−Vint(φ
2), (2.1)

where we assume a Z2 symmetry for representative simplicity. The case without Z2 symmetry has

been discussed in Ref. [8], though in that work we did not include the effect of gravity. In this section,

we refine the method and clarify the expansion scheme of our NREFT. In Section 3, we will explain

how to include the effect of gravity.

2.1 Expansion scheme

We first decomposeφ into slowly and fast oscillating parts:

φ(t ,x) =
�
e −iωtψ1(t ,x) +h.c.

�
+δφ, (2.2)

where the frequency ω (' mφ) will be determined later. We sometimes expand the fast oscillating

parts as

δφ ≡
∑
n≥2

e −i nωtψn +h.c., (2.3)

where eachψn is assumed to be a slowly varying field.\3 Note that this is just a Fourier decomposition

and eachψn is the mode that has a positive frequency. The goal is to derive the EFT by assumingψ1

is the dominant mode (in the non-relativistic regime) and integrating out the other highly oscillating

modesψn>1.

\3 We use a different unit of frequency for Fourier modes and a different normalization for ψn from those used in our

previous paper [8] so that the resulting NREFT is simpler.
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It is instructive to mention the implicit limitation of the mode expansion in Eq. (2.3) here. This

expansion of the relativistic component δφ is useful when we compute the classical NREFT, defined

by tree-level diagrams. Note however that this is not true if we would like to consider quantum effects

because the energy of δφ must be continuous in loop diagrams. For this purpose we have to stop the

decomposition of the scalar field at φ = (e −iωtψ1 +h.c.) +δφ. See Ref. [8] for the definition of δφ in

this case. The case of quantum decay for axion stars was also considered previously in [19].
Let us also clarify the role ofω here. In Sec. 2.2 we discuss how to get a stationary configuration of

ψ1. There we will takeω so that it factors out the time dependence ofψ1. Nevertheless we sometimes

keep both ∂tψ1 and ω, since one may also take ω → mφ and keep ∂tψ1 instead. The latter limit is

useful for computing scatterings of free ψ1 particles as done in Ref. [22]. We emphasize that both are

equivalent after solving the equation of motion for ψ1. We clarify that we do not need to include a

time-dependent term by hand in our EFT, as suggested in Ref. [22]. Such terms are already taken into

account in Ref. [8]. We demonstrate the equivalence of each EFT in Sec. 5 by comparing with an exact

solution in the limit of∇ψ1→ 0. Also, in Sec. 5.3.3, we explicitly show that our EFT contains the time

derivative term pointed out in Ref. [22], if one takesω→mφ and keeps ∂tψ1.

The EFT method is useful for the study of a clump of oscillating scalar field, like an oscillon or axion

star. In the non-relativistic regime, there are three possible small quantities in the equation of motion:

δx ≡
��∇2ψ1

��
���m 2

φψ1

���
� 1, (2.4)

δV ≡

���Vint(
��ψ1

��2)
���

m 2
φ

��ψ1

��2 � 1, (2.5)

δt ≡
�����
mφ −ω− i ∂tψ1

ψ1

mφ

������ 1. (2.6)

For each of them, we can assign pseudo parameters εx ,V ,t = 1 like

��∇2ψ1

��→ εx

��∇2ψ1

�� , (2.7)

Vint→ εV Vint, (2.8)

(mφ −ω)→ εt (mφ −ω). (2.9)

Then, we can systematically estimate relativistic modes by using an expansion in ε∗. As a result, a

term which is proportional to (εx )a (εt )b (εV )c in the resulting effective Lagrangian will have relative

size (δx )a (δt )b (δV )c , where a , b , c ∈Z are exponents of the expansion parameters. This fact supports

the validity of an expansion in ε∗, given that δ∗ are small.

There are certain oscillon solutions for which we find the following relation,

mφ(mφ −ω)∼ |∇
2ψ1|��ψ1

�� ∼
Vint(

��ψ1

��2)
��ψ1

��2 , (2.10)

which implies δt ∼ δx ∼ δV . In such a case, the resulting effective Lagrangian can be decomposed

into powers of a single expansion parameter (εV for example). In general, the EFT will contain higher
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derivative terms with respect to time, but we can use the equation of motion to remove them (see

Refs. [27, 28]).

Let us illustrate how to obtain the NREFT here. Our strategy to get the NREFT is straightforward:

keep the NR mode,ψ1, and integrate out the fast oscillating parts, δφ. The EFT action can be decom-

posed into kinetic, mass, and interaction parts

SN R = Skin+Smass+Sint. (2.11)

First of all, substituting this decomposition into Eq. (2.1), one may readily find that the kinetic term

plus the mass term become:

Skin+Smass =

∫

x

���∂tψ1− iωψ1

��2− ��∇ψ1

��2−m 2
φ

��ψ1

��2− 1

2
δφ

�
�+m 2

φ

�
δφ

�
(2.12)

=

∫

x

∑
n≥1

ψ†
n

�
2i nω∂t −m 2

φ +n 2ω2+∇2− ∂ 2
t

�
ψn , (2.13)

where
∫

x
=
∫

d 4 x is the spacetime volume integration. Note here that there are no cross terms among

different n ofψn . This is because theψn s are slowly oscillating by assumption, meaning that their time

dependence is weak compared to the exponential prefactor. To make this point clear, let us consider

the cross term of ψ†
n ′ and ψn for n 6= n ′. There, we expect terms proportional to e i (n ′−n )ωtψ†

n ′ψn . If

ψn andψn ′ are time independent, then the integral of such a term over time is proportional to a delta

function δ ((n ′−n )ω), which is nonzero only if n ′ = n . A weak dependence on time effectively shifts

this delta function, but in such a way that its argument is never zero, and so such terms integrate to

zero in this case as well. Hence, all the terms must appear in a pair ofψ†
n andψn .

Then we move on to the interaction term. To make our discussion concrete, let us consider the

following potential as an example:

Vint =
λ4

4!
φ4. (2.14)

The fact that ψn s are slowly varying compared to e −iωt is also essential for rewriting the interaction

term by means of our decomposition. Taking this into account, one can decompose the interaction

term into two parts:

Sint =−
∫

x

λ4

��ψ1

��4
4

+δS [ψ1,δφ], (2.15)
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Figure 1: The leading order diagram at ε2
V for the λ4φ

4 interaction is shown. A thick line represents the relativistic mode,

whose off-shell propagator is the inverse of the operator in parentheses in Eq. (2.13).

with

δS ≡−
∫

x

�
λ4

3!
ψ3

1e −3iωtδφ+
3λ4

2 ·3!

�
ψ2

1e −2iωtδφ2+
��ψ1

��2δφ2
�
+
λ4

3!
ψ1e −iωtδφ3

�
+h.c. (2.16)

−
∫

x

λ4

4!
δφ4 (2.17)

=−
∫

x

�
λ4

3!
ψ3

1ψ−3+
3λ4

3!

 
ψ2

1

∑
j≥4

ψ− jψ j−2+
��ψ1

��2∑
j≥2

��ψ j

��2
!
+
λ4

3!
ψ1

∑

i , j ,k 6=±1
i+ j+k=−1

ψiψ jψk

�
+h.c. (2.18)

−
∫

x

λ4

4!

∑

i , j ,k ,l 6=±1
i+ j+k+l=0

ψiψ jψkψl . (2.19)

Here we have adopted the following notationψ−n =ψ†
n . The second term, δS , represents the interac-

tion between the NR modeψ1 and the relativistic modes contained in δφ. In the second equality, we

have used the mode expansion ofδφ given in Eq. (2.3) which is useful to derive the NREFT in the clas-

sical case. Terms with uncompensated e ±i nω t prefactors, e.g. e −4 iω tψ4
1, all integrate to zero, because

of the slow time dependence ofψn (see the discussion surrounding Eq. (2.13)).

Now we are in a position to integrate out the relativistic mode δφ. The only diagram that con-

tributes up to ε2
V is depicted in Fig. 1, namely a 3-to-3 process mediated by one relativistic particle:

δS ⊃−
∫

x

λ2
4

(3!)2
ψ†

1
3 1

9ω2−m 2
φ +6iω∂t +∇2− ∂ 2

t + iε
ψ3

1+O (ε3
V ,ε2

V εt ,ε2
V εx ) (2.20)

=−
∫

x

λ2
4

8(3!)2

��ψ1

��6
m 2
φ

+
�
imaginary part

�
+O (ε3

V ,ε2
V εt ,ε2

V εx ). (2.21)

Note that the propagator for the internal line is off-shell, and can be read off from the expression of

Eq. (2.13). Also, note that there exists a cut contribution that represents the production of relativistic

particles. We will come back to this point in Sec. 4 later, but for now just recognize that we have an

imaginary part in our EFT.

To sum up, the resulting EFT forψ1 takes the form of

SNR =

∫

x

���∂tψ1− iωψ1

��2− ��∇ψ1

��2−m 2
φ

��ψ1

��2−Veff(
��ψ1

�� ,ω)− i Γ [ψ1],
�

. (2.22)
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where Γ [ψ1] represents the imaginary part of the action, which is responsible for the lifetime of clumps;

this will be discussed in Sec. 4. Note that each term of the resulting EFT must contain the same num-

ber of ψ1 and ψ†
1. This, again, owes to the slow oscillation of ψ1 compared to e iω t : a vertex like

ψn ′
1 (ψ

†
1)

n e −iω(n ′−n )t integrates to zero unless n = n ′.\4 Consequently, the final result just depends on��ψ1

��.
For example, if the original interaction term is given by Eq. (2.14), the effective potential is

Veff(
��ψ1

�� ,ω)
��
ε2

V
=
λ4

(2!)2
��ψ1

��4+ 1

8

λ2
4

(3!)2m 2
φ

��ψ1

��6 , (2.23)

up to ε2
V . As there are no corrections of the orders of εV εx or εV εt , the corrections involving εt or εx

start from ε2
V εt or ε2

V εx :

Veff(
��ψ1

�� ,ω)
��
ε2

V εt ,ε2
V εx
=

1

8

λ2
4

(3!)2m 2
φ

ψ∗31 D3ψ
3
1, (2.24)

where we defined derivative operators as

Dn ≡− ∇2

(n 2−1)m 2
φ

+
n 2

(n 2−1)

�
m 2
φ −ω2

m 2
φ

�
+
−2nωi∂t + ∂ 2

t

(n 2−1)m 2
φ

. (2.25)

The corrections up to ε3
x ,V ,t is calculated in appendix A.

Before leaving this section, we would like to emphasize that the calculation of the effective po-

tential in this method is extremely straightforward. One can derive the EFT corrections directly using

Feynman diagrams, or by considering the ψn>1 as perturbations on the equation of motion for ψ1;

both formulations give identical results. We illustrate the calculation procedure more fully in appendix

B, where we compute the effective potential at O (ε3).

2.2 Stable configuration

If we neglect the imaginary part of the action, there is a global U(1) symmetry and the particle number

of the fieldψ1 is conserved. In Ref. [29], Coleman showed that there is a stable configuration in such

a complex scalar field theory with a U(1) symmetry under some conditions. The stable solution is

known as a Q-ball. Therefore scalar clumps in a real scalar field theory, like oscillon and axion star,

can be understood as a projection of a Q-ball by the decomposition of Eq. (2.2). That is, neglecting

higher-order modes which give rise to decay, the NR oscillon field is

φN R = 2 Re
�
e −iω tψ1

�
, (2.26)

which is the projection on the real axis of the U(1)-symmetric Q-ball [30].
Suppose that the number of particles in a system is given by Q , defined as

Q = i

∫

x

�
ψ†

1 (∂t − iω)ψ1−ψ1 (∂t + iω)ψ†
1

�
. (2.27)

\4 As long as the decay rate is suppressed, the frequency is sharply peaked and we expect this separation works well. As

we will see in Section 4, the decay rate is strongly suppressed whenω 'mφ . On the other hand, whenω�mφ , the modes

are no longer widely separated.
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The most stable and energetically favourable configuration of the scalar fieldψ1 can be calculated by

minimizing the energy with its number fixed. Hence we should minimize

S̃NR =

∫

x

���∂tψ1− iωψ1

��2+
��∇ψ1

��2+m 2
φ

��ψ1

��2+Veff(
��ψ1

�� ,ω)
�

+ω′
�

Q − i

∫

x

�
ψ†

1 (∂t − iω)ψ1−ψ1 (∂t + iω)ψ†
1

��
, (2.28)

whereω′ is a Lagrange multiplier. This can be rewritten as

S̃NR =

∫

x

���∂tψ1

��2+
��∇ψ1

��2+ (m 2
φ −ω2)

��ψ1

��2+Veff(
��ψ1

�� ,ω)
�
+ωQ , (2.29)

where we setω=ω′. The first term is positive definite, so that it is minimized when ∂tψ1(x , t ) = 0. In

other words, in the stable configuration we defineω so that ∂tψ1(t , x) = 0.

Assuming spherical symmetry, we can determine the spatial dependence of ψ1 by the following

equation of motion:

∂ 2ψ1

∂ r 2
+

2

r

∂ ψ1

∂ r
− (m 2

φ −ω2)ψ1− ∂ Veff

∂ ψ†
1

= 0, (2.30)

where r = |x| is the radial coordinate. The boundary condition is ψ1 = 0 for r →∞ and ∂rψ1 = 0 at

r = 0. The condition for a solution to exist is as follows [29]:

− ∂ 2Veff

(∂ ψ1)(∂ ψ∗1)
(0)<m 2

φ −ω2 <−Minψ1


Veff(

��ψ1

�� ,ω)
��ψ1

��2


 , (2.31)

where Minψ1
[Veff/

��ψ1

��2] represents the minimum of Veff/
��ψ1

��2 as a function of
��ψ1

��. The solution of

Eq. (2.30) is referred to as a Q-ball in the literature.

Given ∂tψ1 = 0, the frequencyω and the particle number Q are related by

Q =

∫

x

2ω
��ψ1

��2 . (2.32)

We can easily show that (see e.g. [31])

∂ E

∂Q
=ω, (2.33)

which means that the chemical potential inside of the Q-ball is equal toω. Therefore, ifω<mφ , the

Q-ball is stable compared with the free particle state. In addition, the stability condition against small

perturbations is simply given by [32–34]

ω

Q

dQ

dω
< 0. (2.34)

We derive this condition, even when gravitational interactions are included, in appendix C.

Remembering Eq. (2.2), we can understand the oscillon configuration as a projection of a Q-ball,

whose stability is guaranteed by a particle-number conservation. Note that we can determine the con-

figuration of clumps from Eq. (2.30), which can be solved numerically by using the shooting method.

The condition for the existence of clumps is also clear through Eq. (2.31). These are some of the advan-

tages of our EFT compared with others used in the literature in the context of bound states of scalars.
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3 NREFT including the effect of gravity

3.1 Effect of gravity on the scalar field

Here we discuss the inclusion of gravity on the oscillon. The starting point is to promote the spacetime

derivatives in the equation of motion to covariant derivatives,

�φ−m 2
φφ−

∂ Vint

∂ φ
= 0, (3.1)

where �φ = g µν∂µ∂νφ − g µνΓσµν∂σφ is the covariant d’Alembertian operating on φ. Since we are in-

terested in a spherically symmetric configuration, the metric around the oscillon can be written as

ds 2 = A(t , r )dt 2−B (t , r )dr 2− r 2
�
dθ 2+ sin2θ dϕ2

�
, (3.2)

where A(t , r ) and B (t , r ) are functions determined by the Einstein equation.

The energy-momentum tensor of the (relativistic) scalar field is given by

Tµν = ∂µφ∂νφ− 1

2
gµνg ρσ∂ρφ∂σφ− gµνVint(φ). (3.3)

The action of the scalar field is then given by

S (grav) =

∫

x

p−g
�

1

2
g µν∂µφ∂νφ− 1

2
m 2
φφ

2−V (φ)
�

(3.4)

=

∫
dt dr 4πr 2

p
A B

�
1

2A
(∂tφ)

2− 1

2B

�
∂ φ

∂ r

�2

− 1

2
m 2
φφ

2−Vint(φ)

�
. (3.5)

The EFT action forψ1 takes the form of

S
(grav)
NR =

∫
dt dr 4πr 2

p
A B

�
1

A

��∂tψ1− iωψ1

��2− 1

B

����
∂ ψ1

∂ r

����
2

−m 2
φ

��ψ1

��2−Veff(
��ψ1

�� ,ω)− i Γ [ψ1]

�
,

(3.6)

where Veff should be calculated as in the previous section. The gravitational corrections come through

the factors of A and B in Eq. (3.6).

We can write the energy-momentum tensor of the scalar field in the form of

T µν = diag
�
ρ,−pr ,−p⊥,−p⊥

�
, (3.7)

where ρ is the energy density, pr is the radial pressure, and p⊥ is the tangential pressure [12], which

in general are understood to be functions of the radial coordinate r as well as time t . The t t - and

r r -components of Einstein’s equations lead to [35]

A(t , r ) = exp

�
−2G

∫ ∞

r

dr ′

r ′2
�
M (t , r ′) +4πpr r ′3

��
1− 2G M (t , r ′)

r ′

�−1�
, (3.8)

B (t , r ) =
�

1− 2G M (t , r )
r

�−1

, (3.9)

M (t , r )≡
∫ r

0

d r ′4πr ′2ρ. (3.10)

10



where G = MP
−2 is the Newtonian gravitational constant and MP is the Planck mass. The θθ - and

ϕϕ-components of Einstein’s equations are automatically satisfied when the above equations and the

equation of motion of the scalar field are satisfied.

3.2 NR EFT with gravity corrections

Now we assume that the effect of gravity is small and provide an expansion scheme. At leading order,

we write A(r ) = 1−2Ψ(r ) and B (r ) = 1+2Φ(r ), and define the small parameter

δg ≡Ψ� 1. (3.11)

We define the expansion in terms ofΨ because, as we will see below, at leading orderΦ decouples from

the equations and only Ψ is relevant. At higher order, we need to include Ψ and Φ. The parameter

controlling the size of gravity corrections is Newton’s gravitational constant, so we introduce a pseudo

parameter εg = 1 via

G → εg G , (3.12)

as we did with the other corrections.

When we define ρ and pr by Eq. (3.7), they are determined by the scalar field as

ρ =ω2
��ψ1

��2+
����
∂ ψ1

∂ r

����
2

+m 2
φ

��ψ1

��2+Veff

= 2m 2
φ

��ψ1

��2× �1+O (εx ,V ,t )
�

, (3.13)

pr =ω
2
��ψ1

��2+
����
∂ ψ1

∂ r

����
2

−m 2
φ

��ψ1

��2−Veff

=m 2
φ

��ψ1

��2×O (εx ,V ,t ). (3.14)

From Eqs. (3.8) and (3.9), the gravitational potentials Φ and Ψ are determined as

Ψ(t , r ) =G

∫ ∞

r

dr ′

r ′2
�
M (t , r ′) +4πpr r ′3

�
, (3.15)

Φ(t , r ) =
G M (t , r )

r
, (3.16)

at the leading order in εg .\5 At the leading order in εg ,x ,t , the effective action and Lagrangian is simply

given by

S =

∫
dt dr (4πr 2)Leff, (3.17)

Leff =
��∂tψ

��2−
����
∂ ψ

∂ r

����
2

−m 2
φ(1−2Ψ)|ψ|2−Veff(|ψ|,ω)− 1

8πG

�
∂ Ψ

∂ r

�2

, (3.18)

\5 The tangential pressure p⊥ is relevant in the θθ -component of Einstein equation, but it can be obtained from the com-

bination of Eqs. (3.15), (3.16), and equation of motion. So we do not need to write down that equation [36].
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whereψ≡ e −iω tψ1 and we impose a boundary condition Ψ(r →∞) = 0. The equations of motion of

this system are given by

∂ 2
t ψ−

∂ 2ψ

∂ r 2
− 2

r

∂ ψ

∂ r
+m 2

φ(1−2Ψ)ψ+
∂ Veff

∂ ψ†
= 0, (3.19)

1

4πG

�
∂ 2Ψ

∂ r 2
+

2

r

∂ Ψ

∂ r

�
=−2m 2

φ |ψ|2. (3.20)

Note that the time derivative part equivalent to the one obtained from a free field theory, and the

conserved charge Q is defined as usual by Eq. (2.27).

The way to obtain a Q -ball (or an axion star) configuration is as follows. For a given ω, we can

define three dimensional action

S3(ω)≡
∫

x

��∇ψ
��2+

�
m 2
φ(1−2Ψ)−ω2

�
|ψ|2+Veff(|ψ|2) +

(∇Ψ)2
8πG

. (3.21)

Then, the bounce solutionψ(x) of S3(ω) corresponds to the Q -ball solution e −iωtψ(x). S3(ω) can be

regarded as a three dimensional action for two coupled scalar fields ψ and Ψ which have canonical

kinetic terms, and the potential is given by

VS3
=
�
m 2
φ(1−2Ψ)−ω2

�
|ψ|2+Veff(|ψ|2). (3.22)

The existence of the bounce solution is ensured by the following three conditions (see [37] for more

details):

• The potential VS3
is non-negative in an open neighborhood which includes the originψ,Ψ = 0;

• The potential VS3
becomes negative for someψ, Ψ;

• The effective potential Veff(|ψ|) satisfies lim|ψ|→∞
Veff
|ψ|6 ≥ 0.

In general, the solution with the minimal action is ensured to be O (3) symmetric in space even when

there are a lot of fields. The first condition is satisfied if and only if mφ −ω > 0. The second condi-

tion is automatically satisfied because in the large Ψ limit, the potential becomes negative. The third

condition is satisfied as long as the potential is not so pathological. Note that these conditions do not

ensure the validity of the perturbative analysis. For example, the obtained solution may have a large

Ψ =δg ∼O (1). We need to check the validity of perturbations separately.

The relevant question here is whether the obtained solution is stable against small perturbations

or not. Even with the gravitational interaction, stability is ensured provided that

ω

Q

dQ

dω
< 0, (3.23)

which is both a necessary and sufficient condition. We prove this condition in appendix C. Note that

ω is still given by Eq. (2.33).
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3.3 Discussion about expansion parameters

We may roughly estimate the small parameters of the EFT as\6

δx ∼ (∇φ)
2

m 2
φφ

2
∼ 1

(mφ R )2
, (3.24)

δV ∼ λ4φ
4

m 2
φφ

2
∼ λ4φ

2

m 2
φ

, (3.25)

δg ≡Ψ ∼ 1

MP
2

∫
m 2
φφ

2

r
d3r ∼

m 2
φφ

2

MP
2

R 2, (3.26)

where R is the size of the oscillon, and we took the self-interaction potential from Eq. (2.14). The total

oscillon mass can be estimated as M ∼m 2
φφ

2 R 3, which implies

δx ∼ 1

(mφ R )2
, δV ∼ λ4 M

m 4
φ R 3

, δg ∼ M

MP
2 R

. (3.27)

The size of these parameters determines which EFT corrections become important.

We can build intuition about this by looking at stable bound states. Suppose λ4 < 0 (attractive

force). Then a bound state can be supported by a balance of the kinetic pressure against the gravi-

tational and self-interaction terms in the equation of motion (this is the standard picture of a boson

star). If δV �δx ∼δg , then kinetic pressure supports the state against gravity. In this regime we have

M ∼
�

MP

mφ

�2
1

R
, (gravitating) (3.28)

which is the standard mass-radius relation for a boson star with no self-interactions [11, 12, 38]. On

the other hand, if δg �δV ∼δx , then we have

M ∼
m 2
φ

|λ4| R , (self-interacting) (3.29)

which is the mass-radius relation for non-gravitating boson stars [14,15]. These non-interacting (non-

gravitating) states are stable (unstable) under perturbations. If all three terms are of similar order

δx ∼δV ∼δg , we have a transition region which includes a critical (maximum) mass at

Mc ∼ MPp|λ4|
, (3.30)

corresponding to a radius of

Rc ∼
p|λ4|MP

m 2
φ

, (3.31)

reproducing the standard results [14, 17].
This raises another important point about the EFT. When we compute corrections at some order

in εx ,V ,t , this corresponds to corrections of size δx ,V ,t at this order. If δg is as large as the other small

\6We will ignore δt for the purposes of this section.
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parameters in the problem (as in a stable boson star), then it is not consistent to neglect corrections

at higher order in δg . Another way to say this is that, if gravity contributes in the equation of motion,

then post-Newtonian corrections proportional to Ψ2 in the equations will be as important as those

proportional to∇4φ, λ2
4, etc., which are the ones calculated in all formulations of scalar EFT we have

been discussing [8, 21, 23, 25]. The application of these EFTs beyond leading order, in a system where

gravity contributes in an important way in the equations of motion, is not correct. Therefore, we need

to compute corrections coming from the gravity effect εg up to the same order with εx if we consider

the case where the clump forms due to the gravitational interaction. We leave a full analysis of higher-

order gravitational corrections to future work.

3.4 Numerical results

Here we show a numerical result for an axion star, where the interaction potential is given by a rela-

tivistic periodic potential minus the mass term,

Va (φ) =m 2
φ f 2

a

�
1− cos

�
φ

fa

��
−

m 2
φ

2
φ2 ≈ λ4

4!
φ4+

λ6

6! m 2
φ

φ6. (3.32)

In general, such a potential will have contributions at every even power of the fieldφ, but for simplicity

we will truncate atφ6. This is the minimal axion potential for which a dense axion star solution exists

[26]. The coefficients areλ4 =−
p
λ6 =−(mφ/ fa )2, where fa is an axion decay constant. In this section,

we use the EFT contributions from the φ6 potential, which we calculate in appendix A, and we take

into account ε2
V as well as εg corrections, but neglect higher orders in εx and εt .

In order to perform numerical simulations, it is convenient to rescale variables and fields such that

they are dimensionless. We adopt the following rescaling:

ψ(r ) =
m 2
φ

MP |λ4| φ̄(r̄ ), (3.33)

r =

p|λ4|MP

m 2
φ

r̄ , (3.34)

Q =
MP

mφ

p|λ4|
Q̄ , (3.35)

Ψ(r ) = g f (r̄ ) +
1

2

�
1− ω

2

m 2
φ

�
, (3.36)

where we define

g ≡
m 2
φ

M 2
P |λ4|

=
�

fa

MP

�2

. (3.37)

The equations of motion are given by

φ̄′′+
2

r
φ̄′+2 f φ̄+

1

2
φ̄3− 3g

32
φ̄5 = 0, (3.38)

f ′′+
2

r
f ′+8πφ̄2 = 0, (3.39)
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Figure 2: Plots for the radius (upper panel) and mφ −ω (lower panel) as a function of charge for the axion star with g = 10−4

(blue line) and 10−6 (yellow line). The thick lines represent the dilute axion star, the thin lines represent the dense axion star,

and the dashed lines represent the unstable transition branch of solutions.
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where the prime denotes the derivative with respect to r̄ . The boundary conditions are now given by

φ̄′(0) = 0, φ̄(∞) = 0, (3.40)

f ′(0) = 0, f (∞) = 1

2g

�
ω2

m 2
φ

−1

�
. (3.41)

We numerically solve the equations of motion (3.38) and (3.39) with various initial conditions.

Then we calculate the total charge (i.e., the total particle number Q ) and the radius R of the configu-

ration. Note that we define the radius as the one at which 90% of the energy is enclosed. The resulting

phase diagram is shown in Fig. 2, where we take g = 10−4 and 10−6. In the plot, we show the rescaled

quantities R̄ and Q̄ , defined by the rescaling of Eqs. (3.34) and (3.35)

For a large radius, the gravity effect dominates and we obtain R ∝ 1/Q , which is consistent with

Eq. (3.28). This branch is shown as thick lines in Fig. 2. As R̄ decreases and reaches to O (1) (see

Eq. (3.31)), the oscillon enters into the regime of dQ/dω > 0 and becomes unstable. This is shown

as dashed lines in the figure. There is another stable branch in the phase diagram, shown as thin solid

lines, where the radius is of the order of (but is still larger than) m−1
φ . The solution in this regime has

been well studied in the context of oscillons, where the gravity effect is negligible. In the context of

axion clumps, it is sometimes called a dense axion star [24] or axiton [39]. A typical radius of an axion

star can be estimated as R̄ ∼pg /δx from the dimensional analysis. For the dense axion star, δx is

smaller but not much smaller by many orders of magnitude than unity. Therefore we expect R̄ ∼pg

for the dense axion star, which is consistent with our numerical results.

If gravity is absent, the condition for the existence of axion star solutions is given by Eq. (2.31).

We find that it cannot be satisfied unless mφ −ω is not so suppressed; near the right endpoint of

Fig. 2,\7 the expansion parameters are not small and the non-relativistic expansion may not be a good

approximation. It is not directly clear how next-to-leading order corrections would affect the endpoint

of axion star solutions. In addition, the decay rate in this regime is not suppressed, as we will see in

the next section. Our numerical results show that it becomes difficult to find a long-lived dense axion

star solution if we take smaller g .

Our results are broadly consistent with the ones in previous literature, as in most works the authors

ignore εx and εt corrections (as we did in this section) [24, 41, 42]. A leading-order analysis of the first

nontrivial harmonic in a dense axion star was performed in [20], whereas all leading-order relativistic

corrections were taken into account in [25]. Here we have taken into account the leading order rela-

tivistic corrections at O (ε2
V ) and our calculation can be applicable to relatively largeψ1, which is the

case for the dense axion star branch with a large Q̄ . Of course, any leading-order analysis will break

down for the very strongly-bound regime of dense axion stars, where mφ−ω is no longer small. In our

analysis, stability against small perturbations is also confirmed in both dilute and dense branches, as

seen in the lower panel of Fig. 2, which is in very good agreement with the stability analysis of [25].

\7 Strictly speaking, we can find a solution for an arbitrary large Q . In the limit of Q →∞, the frequencyω approaches to

some constant value [40]. We denote the endpoint referring to this constantω.
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Figure 3: The n to n process mediated by one relativistic particle is shown. The off-shell propagator for the internal line is

determined by Eq. (2.13).

4 Classical decay rate

The number conservation is approximate and is violated by relativistic particle production, which

leads to a finite lifetime for these localized clumps. Their lifetime can therefore be estimated from the

imaginary part of the Lagrangian in the EFT, which is calculated by cutting relativistic propagators as

done in Ref. [8]. An analysis of quantum decay for axion stars was performed by [19].
Let us first confirm that the imaginary part Γ of the action breaks the charge conservation. Taking

a time derivative of Eq. (2.32), we readily get

Q̇ = 2ω

∫

x

�
ψ̇†

1ψ1+ψ
†
1ψ̇1

�
(4.1)

'
∫

x

�
ψ†

1

δΓ

δψ†
1

+h.c.

�
, (4.2)

which clearly shows that Γ breaks the approximate number conservation. Note that there is no time

dependence onψ1 for the stable configuration if we neglect Γ .

Now we are in a position to evaluate how Γ depends onψ1. Since we focus on a classical NREFT,

the relevant cutting diagrams which yield Γ must be tree-level. (We will comment on quantum loop

diagrams shortly.) Motivated by this observation, we consider an n to n process mediated by one

relativistic particle. See also Fig. 3. To be concrete, we consider a potential of the form

Vn (φ) =
λn+1

(n +1)!m n−3
φ

φn+1, (4.3)

in the original relativistic theory. After using the EFT expansion of Eq. (2.2), this term gives

L ⊃ λn+1

n !m n−3
φ

ψn
1 e −i nωtδφ+h.c., (4.4)

where δφ represents relativistic modes collectively. Classical decays of this type were first considered

in the context of axion stars in [18].
The imaginary part appears when the relativistic propagator hits the pole of

∫

x

λ2
n+1�

n !m n−3
φ

�2ψ
n
1

1

n 2ω2+∇2−m 2
φ + iε

ψ†
1

n , (4.5)
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where we have taken ∂tψ1 = 0 for the stable configuration, and we use the Feynman boundary condi-

tion for the relativistic propagator.\8 It is clear that, ifψ1 is homogeneous, there is no pole and hence

no imaginary part. Thus, the decay rate strongly depends on howψ1 localizes in space. This is why we

first discuss the profile ofψ1 by neglecting Γ . This procedure can be justified a posteriori if the decay

from Γ is much slower than the typical formation time scale of classical lumps. In other words, if this

is the case, one may assume that the scalar field can track the stable solution during the course of its

slow decay. Note in addition that this is a fully relativistic phenomenon which cannot be captured by

any finite expansion in terms of spatial derivatives of the propagator in Eq. (4.5).

To see the structure more clearly, we move to the Fourier space. Then the imaginary part of the

action Γ gives rise to a decay rate Γn→1 =
∫

d 3 x Γ . Then Eq. (4.2) from this particular diagram can be

evaluated as

i Γn→1 =−πi
λ2

n+1

(n !m n−3
φ )2

��ψ1

��2n
∫

p

�� jn (p)
��2δ

�
p2−n 2ω2+m 2

φ

�
, (4.7)

Q̇n→1 = 2nΓn→1, (4.8)

which was computed in detail in [8] (though we have chosen a different normalization for the interac-

tion term). We have factorized a typical amplitude of the profile asψ1(x) =ψ1 j (x), and defined

jn (p)≡
∫

x

e −ip·x � j (x)
�n

. (4.9)

Now it is obvious that the classical decay rate is non-zero if jn (p)has a non-zero value for p =
Ç

n 2ω2−m 2
φ ,

which originates from a spatial gradient of the localized lump.

We can calculate Q̇n→1 numerically by taking a Fourier transformation for the configuration of

clump derived from Eq. (2.30). One may assume that the profile is approximated by the Gaussian:

ψ1(x) =ψ1e −r 2/2R 2
, (4.10)

in which case we can analytically calculate Eq. (4.9):

jn (p) =

�
2πR 2

n

�3/2

e −R 2p2/2n . (4.11)

Substituting this into Eq. (4.8), we can evaluate the decay rate:

Q̇n→1 =−ω
q

n 2− (mφ/ω)2
32π5λ2

n+1

n 2(n !)2
(mφR )6

���ψ1

��
mφ

�2n

exp

�
−

n 2−m 2
φ/ω

2

n
(Rω)2

�
. (4.12)

\8 Strictly speaking, we would like to study the dynamics ofψ1 and hence it is more appropriate to take the closed-time-

path formalism. Then this term looks like
∫

x

λ2
n+1

2
�
n !m n−3

φ

�2

�
ψn

1
(+)−ψn

1
(−)� 1

(nω+ iε)2+∇2−m 2
φ

1

2

�
ψ†

1

n (+)
+ψn

1
(−)�+h.c., (4.6)

where± denotes the fields residing on the upper/lower contour in the closed-time-path formalism as mentioned in Ref. [8].
The equation of motion forψ1 can be derived by taking a derivative with respect toψ1 and thenψ(+)1 =ψ

(−)
1 . See Ref. [8] for

more details. Although the propagator for the relativistic mode here is the retarded one, one can show that the result coin-

cides with Eq. (4.5) for vacuum of the relativistic mode where Gret =GFyn holds. Here Gret/Fyn represents the retarded/Feynman

propagator.
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One can clearly see that the rate is suppressed for Rω ' R mφ � 1 which is nothing but the non-

relativistic condition Eq. (2.4). Thus, our treatment is justified a posteriori. For a larger n , it is not easy

to produce the relativistic particles because we need more energy to hit the pole. This is the case of

the Gaussian profile, but it is possible to use other profiles to calculate the decay rate. Importantly,

the decay rate depends on the tail of the momentum distribution, and so a compact function will give

an incorrect result. It is not difficult to use the exact numerical solution of Eq. (2.30) for the oscillon

profile; this was what was done in [18]. The result is parametrically similar to what we have estimated

in Eq. (4.12) using the Gaussian ansatz.\9

One non-trivial example is the case when the profile is rather flat [40]. In such a case, jn (p ) can

become zero at a certain radius. As a result, the configuration stays almost all time at the point where

the lowest jn , becomes zero since the decay rate is highly suppressed at that point [8]. Note in addition

that the decay rate is proportional to exp[−O (δ−1
x )] and such effects can not be realized by any order

of ε (or δ) expansions. In this sense, this decay process can be regarded as a kind of non perturbative

one.

Here, let us estimate a typical time scale due to this classical decay by using a Gaussian profile. In

that case we have δx ≡ 1/(mφR )2 � 1, where R is the radius parameter in the Gaussian profile. The

total number of particles is given by 2Q ' 4π
p
πR 3mφ |ψ1|2. In addition, we define

δVn
≡ λn+1|ψ1|n+1

(n +1)!m n−3
φ

· 1

m 2
φ |ψ1|2

� 1, (4.13)

where we used the potential Vn of Eq. (4.3). Note that δx ¦ δVn
is expected from the equation of

motion. Then, we have the following expression for the typical time scale for decay:

1/Ttyp ≡
����
Q̇

Q

����
n→1

' 4π4

n 2

√√n 2−1

π

Æ
δVn

�
δVn

δx

�3/2

exp

�
−n 2−1

nδx

�
×mφ . (4.14)

If δx is not so suppressed, this decay process may determine the fate of the configuration.

Now we shall consider the axion star, which is numerically calculated in Sec. 3.4. In this case, the

typical value of δx can be estimated from the top panel Fig. 2 because

δx ∼ 1

(mφR )2
(4.15)

=
λ4M 2

P

(mφR̄ )2
=

g

R̄ 2
. (4.16)

Using δx ∼ δt =
��mφ −ω

��/mφ , one can also read it from the bottom panel of the figure. In the dense

axion star branch, it is easy to see thatδt is of order 0.1−1 and hence by examining Eq. (4.14), we expect

that these objects would decay before the present epoch. This was concluded also in the analysis of

[18,20]. On the other hand, in the dilute axion branch,δt is many orders of magnitude smaller. We can

see in Figure 2 that the ratio of δt in the dilute branch compared to that of the dense branch is smaller

\9In [18], the expansion parameter was taken to be∆=
q

1−ω2/m 2
φ∝δt , and the resulting decay rate was proportional

to a factor of exp (−1/∆). With the approximate relation δx ∼ (R mφ )−2 ∼ (Rω)−2 and δt ∼ δx from the equation of motion,

one finds the same exponential dependence exp (−1/δt ) in Eq. (4.12). Because this term dominates the behavior of the

decay rate, we take this level of agreement to be sufficient.
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than g = ( fa/MP )2. Since we expect g ∼ 10−6 for the GUT-scale axion or g ∼ 10−14 for the (standard)

QCD axion, the lifetime of dilute axion star is much longer than the present age of the universe because

of the exponential factor in the decay rate. Therefore we conclude that dilute axion stars can survive

until the present, if they formed in the early universe. The decay rate can be significantly larger when

g is larger, as in models of Fuzzy Dark Matter [43].
Finally, we comment on quantum decay of oscillons. In this work, we have discussed the classical

decay of oscillons via relativistic corrections, where the gradient term hits the pole of the propagator in

the tree-level diagram. One may calculate loop diagrams to take into account quantum corrections in

the EFT. Then there are some corrections to the imaginary term of the EFT from the cutting diagrams,

which represent quantum decay of oscillon. If the decay rate is sufficiently small, it can be roughly

estimated as the elementary decay rate of scalar field times the number of particles inside the oscillon.

However, if the decay rate is sufficiently large, the statistics of daughter particles may become relevant.

If the daughter particle is fermionic and obeys Fermi-Dirac statistics, its production rate from the

surface of the oscillon has an upper bound by the Pauli exclusion principle [44, 45]. If the decay rate

is saturated, it is proportional to the number of degrees of freedom for particles that interact with the

oscillon.

On the other hand, if the daughter particle is bosonic and obeys Bose-Einstein statistics, its pro-

duction rate may be enhanced by the Bose-enhancement effect [7, 46]. The latter effect may lead to

an interesting observable effect for axion star [47]. The classical decay discussed in this paper could

in principle have been affected by the Bose-enhancement effect. However, the effect is relevant only

if the production rate is sufficiently larger than the escape rate of daughter particles. Therefore this

enhancement effect is not important for the classical decay via the self-interaction.

5 Comparison with other works

In this section we will discuss other methods for calculating relativistic corrections in NREFT.

5.1 Method proposed by Namjoo, Guth, and Kaiser

In Ref. [23], NGK proposed an EFT by defining the scalar field with a nonlocal operator, giving rise

to an equation of motion with only first-order time derivatives. In this case, the denominator of the

propagator is linear in the energy, resulting in propagation which is only forward in time. In other

words, in their EFT one integrates out part of the non-relativistic mode with frequency∼−mφ . On the

other hand, our EFT contains the second-order time derivatives and integrates out only modes with

high frequencies >
��mφ

��. Though the results agree at the level of T- and S-matrix elements [22, 23],
our method has the advantage of increased computational efficiency and smaller corrections beyond

the leading order. In this section, we consider a polynomial potential with φ4 and φ6 order terms,

although in [23] onlyφ4 was considered. For the purposes of comparison, the relevantφ6 corrections

in the MTY method of the EFT are shown in appendix A.
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5.1.1 Canonical transformation

The Hamiltonian of the relativistic theory (A.1) is given by

H = 1

2
π2+

1

2

�
∇φ

�2
+

1

2
m 2
φφ

2+
λ4

4!
φ4+

λ6

6!m 2
φ

φ6, (5.1)

where π is the canonical momentum. The canonical variables are φ and π. The Hamiltonian can be

rewritten in terms of new canonical variablesψ and iψ∗ by the following canonical transformation:

φ(t ,x) =
1Æ

2mφ

P −1/2
�
e −i mφ tψ(t ,x) + e i mφ tψ∗(t ,x)

�
, (5.2)

π(t ,x) =−i

√√mφ

2
P 1/2

�
e −i mφ tψ(t ,x)− e i mφ tψ∗(t ,x)

�
. (5.3)

whereP is defined by

P ≡
√√√1− ∇2

m 2
φ

. (5.4)

This should be included since otherwise the equation of motion ofψdepends on the spatial derivative

ofψ∗ [23]. Note for future reference that the dimension ofψ in the normalization of NGK differs from

that of Eq. (2.2) by a factor of
p

mφ .

This canonical transformation can be done by the following generating function F [φ,ψ, t ]:

F [φ,ψ, t ] = i mφφ
2− i

Æ
2mφe −i mφ tψφ+

i

2
e −2i mφ tψ2, (5.5)

which satisfies

∂ F [φ,ψ, t ]
∂ φ

=π, (5.6)

−∂ F [φ,ψ, t ]
∂ ψ

= iψ∗. (5.7)

Hence the new HamiltonianH ′ is given by

H ′[ψ,ψ∗] = H [φ,π] +
∂ F [φ,ψ, t ]

∂ t
(5.8)

= mφψ
∗ (P −1)ψ+

λ4

4!
φ4[ψ,ψ∗] +

λ6

6!m 2
φ

φ6[ψ,ψ∗], (5.9)

where φ and π should be rewritten in terms ofψ andψ∗ by using Eqs. (5.2) and (5.3). This is similar

to the Hamiltonian in the non-relativistic field theory if we expandP by using ∇2/m 2
φ � 1.

The Lagrangian is therefore given by

L = i

2

�
ψ̇ψ∗−ψψ̇∗�−mφψ

∗(P −1)ψ− λ4

4!
φ4[ψ,ψ∗]− λ6

6!m 2
φ

φ6[ψ,ψ∗]. (5.10)

As a result, the equation of motion looks like a Schrödinger equation in quantum mechanics. Since we

have just used the canonical transformation, the commutation relations for ψ and iψ∗ are the same

as those forφ and π. Up to now, the calculations are exact.
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5.1.2 Expansion scheme

Following Ref. [23], we decomposeψ(t ,x) as

ψ(t ,x) =
∑

ν=0,±1,±2,...

ψν(t ,x)e iνmφ t , (5.11)

where each of theψν(x, t ) is assumed to be slowly varying. The modes with odd ν do not play any role

in the following analysis because of the Z2 symmetry in the original Lagrangian.

Here, we note that the zero point energy is shifted by an amount of mφ by the canonical transfor-

mation. Hence theψ0 represents the non-relativistic field whose kinetic energy is much smaller than

its rest mass. Its rest energy m is removed from the Hamiltonian by the constant shift. So one may

expect that the non-relativistic Lagrangian forψ0 can be constructed by integrating outψν with ν 6= 0.

However, we should note that the modes ψν with ν ≥ 2 represents components of the original

scalar field that have negative frequencies. In particular, the modeψ2 satisfies i ψ̇2+mφψ2 =−mφψ2,

where a factor of mφ comes from the constant shift of the Hamiltonian. This means that the EFT of

ψ0 includes a contribution from integration of the modeψ2 with frequency of order −mφ . This leads

to a large correction at the first nontrivial order.

To integrate out relativistic modes, we introduce a pseudo parameter ε and expandψν (ν 6= 0) as

ψν(t ,x) =
∞∑

n=1

εnψ(n )ν (t ,x). (5.12)

We assume that ψ0 is the zeroth order for ε. Then the equation of motion can be expanded by this

small parameter. The result is given by

i ψ̇0 = (leading terms) +
3λ4

4!m 2
φ

�
ψ2

0ψ2+2ψ∗0ψ0ψ
∗
2+ψ

∗2
0 ψ−2+ψ

∗2
0 ψ

∗
4

�

+
15

4

λ6

6!m 5
φ

�
ψ4

0ψ4+ψ
4
0ψ
∗
−2+4ψ∗0ψ

3
0ψ2+6ψ∗30 ψ0ψ

∗
2

+4ψ∗30 ψ0ψ−2+4ψ∗30 ψ0ψ
∗
4+ψ

∗4
0 ψ−4+ψ

∗4
0 ψ

∗
6

�
, (5.13)

at the first order of ε (= 1). Here and hereafter, we set P = 1 for simplicity and focus only on the

effective potential. The relativistic modes can be rewritten in terms ofψ0 by using ψ̇ν�mφ

��ψν
��:

ψ−4 =
1

4
c6ψ

5
0, ψ−2 =

1

2
c4ψ

3
0+

5

2
c6ψ

∗
0ψ

4
0, (5.14)

ψ2 =−3

2
c4ψ

∗2
0 ψ0−5c6ψ

∗3
0 ψ

2
0, (5.15)

ψ4 =−1

4
c4ψ

∗3
0 −

5

4
c6ψ0ψ

∗4
0 , ψ6 =−1

6
c6ψ

∗5
0 , (5.16)

where we define

c4 =
λ4

4!m 3
φ

, c6 =
3

4

λ6

6!m 6
φ

. (5.17)
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Substituting these into Eq. (5.13), we obtain the effective potential as

Veff(
��ψ1

��)
��
ε2

V
=

λ4

(2!)2

 ��ψ0

��2
2mφ

!2

+
λ6−17/8λ2

4

(3!)2m 2
φ

 ��ψ0

��2
2mφ

!3

−11
λ4λ6

(4!)2m 4
φ

 ��ψ0

��2
2mφ

!4

− 131

6

λ2
6

(5!)2m 6
φ

 ��ψ0

��2
2mφ

!5

. (5.18)

This is different from Eq. (A.2) even if we take into account the difference of the normalization of ψ

(
��ψ0

��2 /2mφ↔
��ψ1

��2). In particular, the signs of first order corrections in NGK and MTY are the op-

posites of each other.

However, if we do not integrate outψ2, we obtain

i ψ̇0 = (interaction terms withψ2) + Ṽeff(ψ0). (5.19)

We found that the effective potential Ṽeff is equivalent to Eq. (A.2) when we take into account the dif-

ference of the normalization ofψ. We expect that the form of the equation of motion can be factorized

into a combination ofψ0 andψ2, and then the resulting effective potential is given by the same form

as Ṽeff and given by Eq. (A.2). This is consistent with the fact thatψ2, which is a fast oscillating mode

from the standpoint of NGK, is a non-relativistic mode from the standpoint of MTY.\10

5.2 Method proposed by Braaten, Mohapatra, and Zhang

Here we explain the method proposed by BMZ in Ref. [21, 22].
They first write down the effective Lagrangian

Leff =
i

2

�
ψ̇ψ∗−ψψ̇∗�− 1

2mφ
∇ψ∗ ·∇ψ−

∞∑
n=2

λ′2n

(n !)2

�
ψ∗ψ
2mφ

�n

. (5.20)

The effective coupling constants λ′2n are determined by the following procedure. First, they calculate

the scattering amplitudes which have only non-relativistic particles in the external lines by using the

original relativistic Lagrangian and the effective Lagrangian. Then compare the results and determine

λ′2n so that the results are consistent. Note that the vertex factor in the EFT is given by λ′2n/2
n . In

addition, there should be an additional factor
p

2
m

for the diagram with m external legs in the EFT to

compare the amplitude with the one calculated by the original theory.

It is important that the contribution to the amplitude from the non-relativistic internal line in the

EFT has a different meaning from the one calculated in the original theory. This is because in the

non-relativistic EFT the denominator of the propagator is linear in the energy, resulting in propaga-

tion which is only forward in time. The resulting EFT is therefore equivalent to the one calculated in

Ref. [23]. In fact, we have checked that the effective potential calculated in Ref. [21] (i.e. Eq. (5.18)) is

consistent with the one calculated in Ref. [23] at least for the coefficients of λ2
4, λ4λ6, and λ2

6.

\10As this paper was being finalized, an update to [23] appeared which contained a discussion of some of these issues, and

where the authors performed a comparison of these methods as well.
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5.3 Consistency check

Here we check the consistency of EFTs: [8](MTY) and [21–23](BMZ-NGK). Since each EFT defines the

dominant non-relativistic part in a different way, we should be careful about how to compare different

EFTs. One way may be to compare some physical quantities predicted by EFTs which are truncated

at the same εn order. For example, EFT can predict the frequency-dependent total energy of oscillons

E (ω), which is an important physical quantity. We expect the difference of the physical quantities to

be O (εn+1).
Below, we will show such a consistency check of the effective theory at O (ε3

V ) in [8] (MTY) and

[21–23] (BMZ-NGK). We consider a simple setup where there is only the quartic coupling and no spatial

dependence for simplicity. The Lagrangian and equation of motion are then given by

−L = 1

2
φ(∂ 2

t +m 2
φ)φ+

λ4

4!
φ4, (5.21)

φ̈+m 2
φφ+

λ4

3!
φ3 = 0, (5.22)

where the dot denotes derivative with respect to time. If the amplitude ofφ is given by a ×mφ with a

being some dimensionless number, the frequency of oscillationω can be written as

(ω/mφ) =
π

2

p
1+ (λ4/3!)a 2

K (k 2)
, (5.23)

k 2 =
(λ4/3!)a 2

2(1+ (λ4/3!)a 2)
, (5.24)

where K (k 2) is elliptic integral of the first kind and given by

K (k 2) =
π

2

∞∑
n=0

� (2n −1)!!
(2n )!!

�2

k 2n . (5.25)

Note that in the limit λ4→ 0, we recoverω/mφ = 1.

For this system, we can use each EFT to estimateω. The procedure is as follows. First, we fix the

amplitude of the dominant mode (ψ1 in MTY and ψ0 in BMZ-NGK) to some constant value. Then,

by using the equations of motion derived from each EFT, we can estimate ω. On the other hand, we

can also estimate the amplitude a which is modified by fast oscillating modes. Then, we can use the

frequency formula above Eq. (5.23) to estimate ω. If ω derived from an EFT and the one from the

frequency formula are the same, the EFT can be regarded as a consistent one.

Below, we estimateω up to third order in the λ4 expansion by using formula Eq. (5.23) and EFT in

MTY and BMZ-NGK. We will see that both EFTs can reproduce the correct result at least to third order

in λ4. This means that if we make a prediction of amplitude dependent frequencyω(a ) by using both

EFTs at ε3, the difference appears at ε4. This fact supports the consistency of both EFTs.

5.3.1 MTY

We fix the amplitude of the non-relativistic field to be |ψ1|/mφ = 1 in order to set a = 1+O (λ4). This

choice is just for representational simplicity. For any value of |ψ1|, we can do the same procedure and

see consistency.
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At the order of O (λ2
4), there exist the following fast oscillating modes:

φ− [ψ1e −iωt +h.c.]
mφ

=

�
(λ4/3!)

32

����
ψ1

mφ

����
3

− 9(λ4/3!)
128

((ω/mφ)−1)

����
ψ1

mφ

����
3

+
3(λ4/3!)2

512

����
ψ1

mφ

����
5
�

× cos(3ωt )

+
(λ4/3!)2

1024

����
ψ1

mφ

����
5

cos(5ωt ) +O (λ3
4). (5.26)

As a result, when we evaluate the expression at |ψ1/mφ |= 1, the total amplitude is shifted as

a = 1+
(λ4/3!)

32
− 9(λ4/3!)

128
((ω/mφ)−1) +

7(λ4/3!)2

512
+O (λ3

4). (5.27)

Then, the frequency formula Eq. (5.23) gives

ω/mφ = 1+
3

8
(λ4/3!)− 15

256
(λ4/3!)2+

123

8192
(λ4/3!)3+O (λ4

4). (5.28)

On the other hand, our EFT gives

2(ω/mφ −1) + (ω/mφ −1)2 =
3(λ4/3!)

4

����
ψ1

mφ

����
2

+
3(λ4/3!)2

128

����
ψ1

mφ

����
4

− 27(λ4/3!)2

512
((ω/mφ)−1)

����
ψ1

mφ

����
4

+
3(λ4/3!)3

512

����
ψ1

mφ

����
6

+O (λ4
4). (5.29)

Note here that the term proportional to (ω/mφ−1) comes from the interaction at ε2
V εt . This is exactly

the same term pointed out in Ref. [22]. We will also clarify this point in Sec. 5.3.3. One may readily

solve this equation at |ψ1/mφ |= 1 to give

ω/mφ = 1+
3

8
(λ4/3!)− 15

256
(λ4/3!)2+

123

8192
(λ4/3!)3+O (λ4

4), (5.30)

which is consistent with the exact result given in Eq. (5.28).

5.3.2 BMZ-NGK

We fix |ψ0|/m 3/2
φ = 1/

p
2 in order to set a = 1+O (λ). As before, this choice is just for representational

simplicity. At O (λ2
4), there are ν=−4,−2, 2, 4, 6 modes inψ (Note that some of these modes are mixed

with the non-relativistic mode in MTY sense). Taking their contributions into account, the total am-

plitude becomes

a = 1− 5(λ4/3!)
32

+
3(λ4/3!)

128
((ω/mφ)−1) +

91(λ4/3!)2

1024
+O (λ3

4). (5.31)

Then, the frequency formula Eq. (5.23) gives

ω/mφ = 1+
3

8
(λ4/3!)− 51

256
(λ4/3!)2+

1419

8192
(λ4/3!)3+O (λ4

4). (5.32)
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On the other hand, this EFT predicts

(ω/mφ −1) =
3(λ4/3!)

8
− 51(λ4/3!)2

256
+

81(λ4/3!)2

1024
(ω/mφ −1) +

147(λ4/3!)3

1024
+O (λ4

4). (5.33)

Now one can solve this equation easily

ω/mφ = 1+
3

8
(λ4/3!)− 51

256
(λ4/3!)2+

1419

8192
(λ4/3!)3+O (λ4

4), (5.34)

which is consistent with the exact result given in Eq. (5.32).

Finally let us comment on the size of corrections. Since MTY and BMZ-NGK are based on different

expansion schemes, the sizes of fast oscillation modes are also different. The size of fast oscillation

modes are estimated as a ratio of the strength of the source and the size of the propagator. In general,

the size of the propagator in MTY is larger than that in BMZ-NGK. This is in part because the size of

the propagator in MTY is proportional to n 2−1 with nω being the frequency of fast oscillation modes

while that of BMZ-NGK is given by n . As a result, corrections to the effective action in MTY becomes

smaller than that in BMZ-NGK. For example, comparing the size of corrections in Eq. (5.30) and Eq.

(5.34), we can see that at higher orders, the corrections become increasingly large in the method of

NGK compared to MTY. This is one advantage supporting the use of the method of MTY, whose higher

order corrections are relatively small.

5.3.3 On interaction with time derivative

In Ref. [22], they argued that there is an error in MTY [8], namely there is a missing term with a time

derivative. However, as we have seen in Sec. 5.3, both EFTs give the same result, which suggests their

claim is incorrect. In this section, we clarify that our EFT contains the required term. We explicitly

show that the interaction with a time derivative arises if one would like to match the EFT with scatter-

ings of NR free particles as done in Ref. [22].
First, we illustrate how to derive the interaction term proportional to (ω−mφ) in the case of the

stationaryψ1 in Sec. 2.2. Let us start from Eq. (2.20). Thanks to ∂tψ1 = 0, one finds

−
∫

x

λ2
4

(3!)2
ψ3

1

1

9ω2−m 2
φ +∇2+ iε

ψ†
1

3 =−
∫

x

λ2
4

8(3!)2

�
1− 9(ω/mφ −1)

4

� ��ψ1

��6
m 2
φ

+ · · · . (5.35)

The second term represents the correction at ε2
V εt which gives the term proportional to (ω−mφ) in

Eq. (5.29).

Now let us confirm that the same term can be reproduced even if we takeω→mφ but keep ∂tψ1 6=
0 as done in Ref. [8]. This limit is useful if one would like to compute the scattering amplitude of free

NR particles rather than to obtain the stationary solution. One easily gets

−
∫

x

λ2
4

(3!)2
ψ†

1
3 1

8m 2
φ +6i mφ∂t +∇2− ∂ 2

t + iε
ψ3

1 =−
∫

x

λ2
4

��ψ1

��4
8(3!)2m 2

φ

 
��ψ1

��2− 9

8

ψ†
1i
←→
∂t ψ1

mφ

!
+ · · · . (5.36)

The second term is nothing but the one pointed out in Ref. [22], which is clearly included in our EFT. We

can also see that this expression is equivalent to Eq. (5.35) if one replacesψ1(t ,x)with e −i (ω−mφ )tψ1(x).
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6 Conclusion

We have provided a method to construct a classical NREFT in a scalar field theory including the effect

of gravity. There are several advantages in our EFT:

• the calculation is easy and straightforward by using Feynman diagrams;

• the reason of (approximate) stability is clear;

• it is easy to calculate the background configuration;

• it is straightforward to include the effect of gravity;

• the lifetime can be calculated from the imaginary part of the Lagrangian in the NREFT;

• the higher order corrections become relatively small.

We have clarified an expansion scheme for gravitational corrections as well as relativistic corrections.

Since the gravitational potential has a radial dependence, we need to solve coupled differential equa-

tions to determine the oscillon profile.

Since the number of particles is approximately conserved in the NREFT, the oscillon can be under-

stood as a projection of a Q-ball onto the real axis. Then its (quasi-)stability can be understood by the

approximate conservation of the number of particles in the NREFT. If the gradient energy hits the pole

of the propagator of the relativistic field, it gives imaginary terms in the Lagrangian of the EFT. This

leads to the emission of relativistic particles and hence the decay of the oscillon. We have checked

that the lifetime is exponentially suppressed with a large exponent which is inversely proportional to

a small expansion parameter.

We have also discussed stability against small perturbations and see that the Q-ball analogy works

well. As a result, we have found even with gravitational interaction, a necessary and sufficient condi-

tion for the stability against small perturbations is simply given by dQ/dω< 0.

As an example, we have considered an axion-like potential and found oscillon solutions taking

into account the gravity effect. Our results are consistent with the ones in the literature, but can be

extended to the regime where relativistic corrections become relevant. We have found that a long-

lived oscillon solution is absent in the limit where the gravity effect vanishes. The lifetime of axion

stars can be estimated from these results and we have found that it is much shorter than the present

age of the universe for the dense axion star but is much longer for the dilute axion star (in accordance

with the previous results of [18]). We have concluded that dilute axion stars survive until the present

day for realistic parameters of axion.

We also discuss the consistency of our EFT with the ones proposed by BMZ and NGK in Refs. [21–

23]. As they have shown in those papers, we have checked that all of the EFTs are consistent, though

depending on the application, different approaches have different advantages. In particular, one of

the relatively low-frequency modes is integrated out in the EFTs of BMZ and NGK, but is not integrated

out in our EFT. Since the low-frequency mode gives a large correction to the NREFT, our method ob-

tains a smaller correction than that of BMZ and NGK. Even if we do not integrate out that relatively

low-frequency mode, we can easily calculate the profile of scalar field configuration by solving the

equation of motion numerically.
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We have pointed out that, in a system where gravity contributes at leading order in the equation of

motion, it is not consistent to account for relativistic corrections without taking into account correc-

tions to the gravitational interaction as well. This is the situation in a typical dilute boson star, where

gravity is one of the dominant forces determining the bound state configuration. The EFT we have

presented here, as well as that of NGK [23] and BMZ [22], does not calculate corrections to the gravi-

tational interaction. Interestingly, these corrections can give rise to new interactions and potentially

new decay diagrams mediated by gravity and self-interactions. We leave a full analysis of this topic for

a future work.
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A Corrections forφ6 theory

Here, we show corrections up to O (ε3) for aφ6 theory, where the relativistic potential is given by

Vint(φ
2) =

λ4

4!
φ4+

λ6

6!m 2
φ

φ6. (A.1)

The effective potential is
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up to ε3
V .

The corrections involving εt or εx start from ε2
V εt or ε2

V εt :
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where Dn is defined by Eq. (2.25).

B Construction up to ε3 order

Here, as an illustration, we show how to construct the effective Lagrangian by adopting a concrete

example where the potential is given by λ4φ
4/4! and there is no gravitational interaction. We assume

δt ∼δx ∼δV and will construct the effective Lagrangian up to ε3 order.
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Diagrammatic derivation. First we list all the interaction vertices after the decomposition given in

Eq. (2.2). The interactions between the NR mode and relativistic mode are given by
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and their conjugates. There also exists a self interaction for the relativistic mode,

 †
1e

i!t

 †
1e

i!t

 †
1e

i!t  1e
�i!t

 1e
�i!t

 1e
�i!t

(1)

 1e
�i!t

 1e
�i!t

 1e
�i!t

�� =
�4

3!
 3

1e�3i!t��,

 1e
�i!t

 1e
�i!t

��

�� =
�4

2 · 3!
 2

1e�2i!t��2, (2)

 1e
�i!t

 †
1e

+i!t

��

�� =
�4

2 · 3!
| 1|2 ��2,

 1e
�i!t

��

��

�� =
�4

3!
 1e

�i!t��3, (3)

��

��

��

�� =
�4

4!
��4. (4)

1

(B.2)

See also Eqs. (2.16) and (2.17).

Then, to get the NREFT, all one has to do is to integrate out the relativistic mode δφ. Throughout

this paper, we focus on the classical NREFT, and hence all the diagrams that will be integrated out

must be tree diagrams. The leading order term in the coupling expansion is obtained from
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where we dropped terms of higher order than ε3 and also the imaginary part in the second line. The
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next to leading order term involves three vertices as depicted below
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where again we dropped terms of higher order than ε3 and also the imaginary part. To sum up, the

effective potential up to ε3 is given by

V (ε
3)

eff =
λ4

4

��ψ1

��4+ λ2
4

8(3!)2
��ψ1

��6+ 3λ3
4

32(3!)3m 4
φ

��ψ1

��8

− λ2
4

8(3!)2m 2
φ

�
9

4

��ψ1

��4ψ1

�
ω

mφ
−1+

i
←→
∂t

2mφ

�
ψ1+ψ

†
1

3 ∇2

8m 2
φ

ψ3
1

�
. (B.5)

Derivation from EoM. Here we present another way to derive the NREFT which is essentially equiv-

alent but still useful. Starting from the equation of motion (EoM), we solve δφ order by order in terms

of εV . In this case, the original EOM is given by
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We decomposeφ as

φ(t ,x) =
∑
n>0
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and assumeψ1 dominatesφ. Then, at εV order, we have
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and the resulting solution is
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By substituting φ = [e −iωtψ1 + e −3iωtψ
(ε1

V )
3 +h.c.] into EOM, we obtain the EOM at ε2

V order. In this

order, onlyψ
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3 contributes to effective action at O (ε3). We have
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Then, by substituting φ = [e −iωtψ1 + e −3iωt (ψ(εV )
3 +ψ

(ε2
V )

3 ) + h.c.] into EOM, we obtain the effective

EOM forψ≡ e −iωtψ1
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Then, we can obtain the effective action at O (ε3) order:
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C The stability condition against small perturbations

Here, we derive the stability condition against small perturbations when gravitational interactions are

included. We fundamentally follow stability discussions done in [33,34]. The Lagrangian of the system

can be written as \11

L = |ψ̇|2−ω2|ψ|2−S3(ω) (C.1)

≡ K −S3(ω), (C.2)
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where K denotes a kinetic term and Ψ is a gravitational potential. The dot denotes derivative with

respect to time. Suppose that the Q-ball solution is given by e −iωtσ(r )/
p

2 where σ(r ) is a real func-

tion. S3(ω) is stationarized by the Q-ball solution σ(r )/
p

2. In second order in fluctuations, we can

find eigenvectors and eigenvalues:
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We normalize them as follows
∫

x

�
δψ†

a δΨ†
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��δψb
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�
=δa b . (C.5)

Note that real and imaginary parts of δψ are separated. We decompose functional space into real

and imaginary directions as δψ = δψR + iδψI . We know that S3(ω) has one negative mode in real

\11 We restrict ourselves to the effective theory at leading order in εg ,x ,t because in that case the derivative parts in the

effective action remain in canonical forms.

31



direction. Below, we assume S3(ω) has only one negative mode, which is ensured if the Q-ball solution

is a solution of the equation of motion with the minimal action S3. In addition, there are four zero

modes for S ′′3 : three of them are related to spatial shift which we denote δψS ,k (k = 1, 2, 3) and one of

them corresponds to a U (1) shift which we denote δψθ . δψS ,k are a real function and δψθ is a purely

imaginary function. We remove such zero modes from δψ space and treat them in a different way.

Since the real direction has one negative mode, the stability is non trivial. We concentrate on eigen-

vectors with a real δψa . As we will see, the negative mode can be shifted to a positive mode due to the

mixing with the zero mode. We consider fluctuations in the real direction and a zero mode\12:

ψ=
1p
2

e −iωt−iθ (t ) �σ(r ) +δψR (x)
�

, (C.6)

where θ (t ) denotes some real function, which is a zero mode in S3.

What is non trivial here is the mixing between the zero mode θ (t ) and the real direction in K . We

can solve the equation of motion for θ̇ and the resulting kinetic term becomes
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We expand the vector (σ(r ), 0)t in terms of eigenvectors:
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Here δψa are real functions in eigenmodes. We define matrix B and C as

Ba b ≡
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For (σ(r ), 0)t , we expect
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We expand δψ as follows
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For ca (t ), the Lagrangian can be written as
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∑

a

σa ca (t ), (C.16)

(C.17)

\12δψS ,k do not contribute to this analysis (see [33, 34]).
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Since Ba b is a positive matrix, the minimal eigenvalue of the following matrix

Ma b ≡λaδa b +
4ω2

I
σtσ, (C.18)

determines the stability. If the minimal eigenvalue is positive, we expect that Q-ball configuration

is stable against small perturbations. On the contrary, if the minimal eigenvalue is negative, Q-ball

configuration becomes unstable agains small perturbations. We denote the eigenvalues of M by {Λa },
and require that (Λ1 <Λ2 < ...) and also (λ1 <λ2 < ...) are different. \13 Then, we have
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Here, we use the relation

det |Î +u u t |= 1+u t u , (C.20)

with u being some vector. Note that
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These relations ensure that there is only one Λa between λa and λa+1. Note that λa has only one

negative mode which we denote λ1. The condition Λ1 > 0 is now equivalent to

G (0)< 0. (C.22)

As is in [33, 34], we can connect G (0) and dQ/dω and show that the stability condition is given by

ω

Q
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Below, we derive G (0) = ωQ
dQ
dω .

First, we note thatσ(ω) is a solution to the equation of motion derived by S3(ω). Taking the deriva-

tive of the equations of motion forψ and Ψ with respect toω, we have
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Multiplying
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a σa on 1
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�
σ
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Since δψa and ∂ σ/∂ ω do not contain the zero mode of S3, we can multiply the inverse matrix of S3 in

(C.24) and (C.25). Then, we have

\13One may worry about the degeneracy of eigenmodes. However, if we deform the potential infinitesimally, such a degen-

eracy is broken in general. The physical results are expected to be unaffected by such an infinitesimal deformation.
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Multiplying
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where we use (C.13). On the other hand, by differentiating Q =ω
∫
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σ2 with respect toω, we have
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Taken together, we have

ω

Q

∂Q

∂ ω
= 1+

4ω2

I

∑
a

σaσa

λa
=G (0). (C.29)

Therefore, we conclude that stability is ensured when Eq. (C.23) is satisfied.
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