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Anomalous dimensions and splitting functions beyond NNLO A. Vogt

1. Introduction

Up to power corrections, observables in ep and pp hard scattering can be schematically expressed as

Oep = fi ⊗ co
i , O pp = fi ⊗ fk ⊗ co

ik (1.1)

in terms of the respective partonic cross sections (coefficient functions) co and the universal parton

distribution functions (PDFs) fi (x,µ
2) of the proton at a scale µ of the order of a physical scale.

The dependence of the PDFs on the momentum fraction x is not calculable in perturbative QCD;

their scale dependence is given by the renormalization-group evolution equations

∂

∂ ln µ2
fi(x,µ

2) =

∫ 1

x

dy

y
Pik

(

y,αs(µ
2)
)

fk

(

x

y
,µ2

)

. (1.2)

The splitting functions Pik , which are closely related to the anomalous dimensions of twist-2

operators in the light-cone operator-product expansion (OPE), and the coefficient functions in

eq. (1.1) can be expanded in powers of the strong coupling as ≡ αs(µ
2)/(4π),

P = a
s
P(0)+ a2

s
P(1)+ a3

s
P(2) + a4

s
P(3)+ . . . , (1.3)

co
a = ano

s

[

c
(0)
o + a

s
c
(1)
o + a2

s
c
(2)
o + a3

s
c
(3)
o + . . .

]

. (1.4)

Together, the first three terms of eqs. (1.3) and (1.4) provide the NNLO approximation for the

observables (1.1). This is now the standard accuracy of perturbative QCD for many hard processes;

see refs. [1, 2] for the corresponding helicity-averaged and helicity-dependent splitting functions.

N3LO corrections have been obtained for inclusive lepton-hadron deep-inelastic scattering (DIS)

[3], Higgs production in proton-proton collisions [4,5], and jet production in DIS [6]. N4LO results

for inclusive DIS have been reported in refs. [7] (sum rules) and ref. [8] (low Mellin-N moments).

Using basic symmetries, the system (1.2) can be decomposed into 2nf −1 scalar ‘non-singlet’

equations and a 2×2 flavour-singlet system. The former includes 2(nf −1) flavour asymmetries of

quark-antiquark sums and differences, qi ± q̄i, and the total valence distribution,

q±
ns,ik = qi ± q̄i − (qk ± q̄k) , qv = ∑

nf

r=1 (qr − q̄r) . (1.5)

The singlet PDFs and their evolution are given by

q
s
=

nf

∑
r=1

(qr + q̄r) ,
d

d ln µ2

(

q
s

g

)

=

(

Pqq Pqg

Pgq Pgg

)

⊗

(

q
s

g

)

, (1.6)

where g(x,µ2) denotes the gluon distribution. Pqq differs from the splitting function P+
ns for the

combinations q+
ns,ik in Eq. (1.5) by a pure singlet contribution Pps which is suppressed at large x.

In this limit, the splitting functions Pqq and Pgg in the standard MS scheme are of the form

P
(n−1)

kk (x) =
xAn,k

(1− x)+
+ Bn,k δ (1−x) + Cn,k ln(1−x) + Dn,k + (1−x) -terms , (1.7)

where An,q and An,g are the (light-like) n-loop quark and gluon cusp anomalous dimensions [9].

These and the ‘virtual anomalous dimensions’ Bn,k are relevant well beyond the context of Eq. (1.2).

In this contribution we briefly report on recent N3LO (4-loop) results for the singlet splitting

functions in eq. (1.6), including the gluon cusp anomalous dimension A4,g [10], and on the first

N4LO (5-loop) calculations of the non-singlet splitting functions P±
ns . For the (more advanced)

status of the 4-loop non-singlet splitting functions the reader is referred to refs. [11–13].
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2. Low-NNN results for the N3LO singlet splitting functions

The results for N = 2 and N = 4 have been reported, in numerical form for nf = 4 flavours in QCD,

at the previous Loops & Legs Workshop [8]. In the meantime, the computations of four-loop DIS

with FORCER [14], which are conceptually straightforward extensions of the three-loop calcula-

tions in refs. [15], have been extended to N = 6 for P
(3)
qg and P

(3)
gg and to N = 8 for P

(3)
qq and P

(3)
gq .

The resulting perturbative expansions of Pik(N,nf = 4) are approximately given by

Pqq(2,4) = −0.28294α
s

(

1 + 0.6219α
s
+ 0.1461α2

s
+ 0.3622α3

s
+ . . .

)

,

Pqq(4,4) = −0.55527α
s

(

1 + 0.6803α
s
+ 0.4278α2

s
+ 0.3459α3

s
+ . . .

)

,

Pqq(6,4) = −0.71645α
s

(

1 + 0.6489α
s
+ 0.4264α2

s
+ 0.3248α3

s
+ . . .

)

,

Pqq(8,4) = −0.83224α
s

(

1 + 0.6328α
s
+ 0.4235α2

s
+ 0.3121α3

s
+ . . .

)

, (2.1)

Pqg(2,4) = 0.21221α
s

(

1 + 0.9004α
s
− 0.1028α2

s
− 0.2367α3

s
+ . . .

)

,

Pqg(4,4) = 0.11671α
s

(

1 − 0.2801α
s
− 0.9986α2

s
+ 0.1297α3

s
+ . . .

)

,

Pqg(6,4) = 0.08337α
s

(

1 − 0.8389α
s
− 1.1501α2

s
+ 0.4417α3

s
+ . . .

)

, (2.2)

Pgq(2,4) = 0.28294α
s

(

1 + 0.6219α
s
+ 0.1461α2

s
+ 0.3622α3

s
+ . . .

)

,

Pgq(4,4) = 0.07781α
s

(

1 + 1.1152α
s
+ 0.8234α2

s
+ 0.8833α3

s
+ . . .

)

,

Pgq(6,4) = 0.04446α
s

(

1 + 1.3019α
s
+ 1.0516α2

s
+ 1.1270α3

s
+ . . .

)

,

Pgq(8,4) = 0.03116α
s

(

1 + 1.4309α
s
+ 1.1830α2

s
+ 1.3184α3

s
+ . . .

)

(2.3)

and

Pgg(2,4) = −0.21221α
s

(

1 + 0.9004α
s
− 0.1028α2

s
− 0.2367α3

s
+ . . .

)

,

Pgg(4,4) = −1.21489α
s

(

1 + 0.3835α
s
+ 0.1220α2

s
+ 0.2405α3

s
+ . . .

)

,

Pgg(6,4) = −1.62755α
s

(

1 + 0.3937α
s
+ 0.1697α2

s
+ 0.1902α3

s
+ . . .

)

. (2.4)

The corresponding analytic expressions for a general gauge group will be presented elsewhere.

The relative size of the N2LO and N3LO contributions to eqs. (2.1) – (2.4) is illustrated in

fig. 1 for αs = 0.2: The N3LO corrections are less than 1%, and less than 0.5% of the NLO results

except for Pgq, the quantity with the lowest LO values, at N ≥ 4.

The resulting low-N expansion for the singlet evolutions equations (1.6) is illustrated in fig. 2

for the sufficiently realistic order-independent model input

xq
s
(x,µ2

0 ) = 0.6 x−0.3(1− x)3.5
(

1+5.0 x0.8
)

,

xg(x,µ2
0 ) = 1.6 x−0.3(1− x)4.5

(

1−0.6 x0.3
)

(2.5)

with αs(µ
2
0 ) = 0.2 and nf = 4, which was already used in ref. [1]. The N3LO corrections are very

small at the standard renormalization scale µr = µ f ≡ µ0. They lead to a reduction of the scale de-

pendence to about 1% (full width) at N = 4 & N = 6 for the conventional range 1
4

µ2
f ≤ µ2

r ≤ 4 µ2
f .

Extending eqs. (2.2) and (2.4) to N = 8 would be extremely hard with the hardware and soft-

ware used to obtain these results; computing the N = 10 results in this way is virtually impossible.
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Figure 1: Moments of the singlet splitting functions at NNLO (lines) and N3LO (even-N points) for

αs = 0.2 and nf = 4, normalized to the respective NLO approximations.
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Figure 2: The dependence of the logarithmic factorization-scale derivatives of the singlet PDFs on the

renormalization scale µr at N = 2 (where the very small scaling violations of q
s

and g are related by the

momentum sum rule) N = 4 and N = 6 for the initial distributions (2.5).
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3. Quartic colour-factor contributions and the cusp anomalous dimensions

The computations of the four-loop splitting functions can be extended to higher N by using the

OPE, since there the complexity of the required self-energy integral increases by 2 for N → N +2

instead of by 4 in the case of DIS. For example, N = 16 has been reached for the complete N3LO

contribution to P+
ns . In the limit of a large number of colours nc, it was possible to reach N = 20,

which led to the determination of the all-N expressions and hence of P
±(3)

ns (x) in this limit [12].

In general the higher-order application of the OPE in massless perturbative QCD is conceptu-

ally much more involved in the singlet case; for low-order treatments see refs. [16]. This situation

is far less severe for the contributions with quartic Casimir invariants,

d
(4)
xy ≡ d abcd

x d abcd
y (3.1)

where x,y labels the representations with generators T a
r and

d abcd
r =

1

6
Tr(T a

r T b
r T c

r T d
r + five bcd permutations) , (3.2)

which occur in the splitting functions for the first time at four loops. This effective ‘leading-order’

situation implies particular relations and facilitates calculational simplifications. These include

P
(3)
qq (N)+P

(3)
gq (N)−P

(3)
qg (N)−P

(3)
gg (N)

Q
= 0 (3.3)

(
Q
= denotes equality for the quartic Casimir contributions) for the colour-factor substitutions [8]

(2nf )
2 d

(4)
FF /na = 2nf d

(4)
FA /na = 2nf d

(4)
FF /nc = d

(4)
FA /nc = d

(4)
AA /na (3.4)

that lead to an N = 1 supersymmetric theory; for lower-order discussions see refs. [17]. Moreover

the off-diagonal quantities are found to be related by [10]

P
(0)
qg (N)P

(3)
gq (N)

Q
= P

(0)
gq (N)P

(3)
qg (N) . (3.5)

This second relation, which we have found empirically by inspecting our results, is consistent with

the implications of N = 1 supersymmetry for QCD conformal operators investigated in ref. [18].

It is also a special case of the structure predicted in ref. [19] from the conformal symmetry of QCD

at some non-integer space-time dimension D = 4−2ε .

We have used eqs. (3.4) and (3.5) partly to check the results of our diagrams calculations, and

partly to simplify our computational task at the highest values of N. In this manner, we have been

able to derive all d
(4)
xy contributions to the N3LO splitting functions at N ≤ 16. These results, and

the structurally interesting all-N expressions for the ζ5-terms, can be found in ref. [10].

Analogous to the non-singlet quantities analyzed in ref. [12], the moments of P
(3)
gg at N ≤ 16

facilitate numerical determinations of the quartic-Casimir contributions to the four-loop gluon cusp

anomalous dimension A4,g, recall eq. (1.7). The present status of A4,q and A4,g is collected in table 1.

The coefficients of A4,q which are known exactly have also been determined from the quark

form factor [20, 21]; the results are in complete agreement. Recently, the exact coefficient of

C 3
F nf has been obtained in ref. [22]. The only piece of A4,g known exactly so far is the CAn3

f

contribution [11,23]. For numerical results in N =4 maximally supersymmetric Yang-Mills theory

see ref. [24].

4
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quark gluon A4,q A4,g

C 4
F − 0 −

C 3
F CA − 0 −

C 2
FC 2

A − 0 −

CFC 3
A C 4

A 610.25±0.1

d
(4)
FA /NF d

(4)
AA /NA −507.0±2.0 −507.0±5.0

nf C 3
F nf C 2

FCA −31.00554

nf C 2
FCA nf CFC 2

A 38.75±0.2

nf CFC 2
A nfC

3
A −440.65±0.2

nf d
(4)
FF /NF nf d

(4)
FA /NA −123.90±0.2 −124.0±0.6

n2
f C 2

F n2
f CFCA −21.31439

n2
f CFCA n2

f C 2
A 58.36737

− n2
f d

(4)
FF /NA − 0.0±0.1

n3
f CF n3

f CA 2.454258 2.454258

Table 1: Fourth-order coefficients of the quark and gluon cusp anomalous dimensions determined from the

large-x limit (1.7) of the quark-quark and gluon-gluon splitting functions. The errors in the quark case are

correlated due to the exactly known large-nc limit. The numerical value of −31.00± 0.4 of ref. [12] for the

coefficient of nfC
3
F in A4,q has been replaced by the exact result of ref. [22]. This and the values for the n2

f

and n3
f coefficients have been rounded to seven digits. Entries left blank for A4,g have not been calculated

from diagrams so far, but are related to those for A4,q by Casimir scaling. Entries marked by ‘–’ do not exist.

As up to the third order [1], the corresponding quark and gluon entries in table 1 have the same

coefficients (for now: as far as they have been computed, and within numerical errors). We refer to

this (for now: conjectured) relation as generalized Casimir scaling.

Unlike for the lower-order coefficients, this relation does not have the consequence that the

values of A4,g and A4,q are related by a simple numerical Casimir scaling in QCD, i.e., a factor

of CA/CF = 9/4. However, this numerical Casimir scaling is restored in the large-nc limit of the

quartic colour factors, and therefore also in the overall large-nc limit, see also ref. [25].

The results in table 1 and the generalized Casimir scaling lead to the following numerical

results for the four-loop cusp anomalous dimensions in QCD, expanded in powers of αs/(4π):

A4,q = 20702(2) − 5171.9(2)nf + 195.5772n2
f + 3.272344n3

f , (3.6)

A4,g = 40880(30) − 11714(2) nf + 440.0488n2
f + 7.362774n3

f , (3.7)

where the number(s) in brackets indicate the uncertainty of the preceding digit(s). Combining these

results with the lower-order coefficients, one arrives at the very benign expansions

Aq(αs,nf =3) = 0.42441αs [1+0.72657αs +0.73405α2
s
+0.6647(2)α3

s
+ . . . ] ,

Aq(αs,nf =4) = 0.42441αs [1+0.63815αs +0.50998α2
s
+0.3168(2)α3

s
+ . . . ] ,

Aq(αs,nf =5) = 0.42441αs [1+0.54973αs +0.28403α2
s
+0.0133(3)α3

s
+ . . . ] (3.8)

5
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and

Ag(αs,nf =3) = 0.95493αs [1+0.72657αs +0.73405α2
s
+0.415(2)α3

s
+ . . . ] ,

Ag(αs,nf =4) = 0.95493αs [1+0.63815αs +0.50998α2
s
+0.064(2)α3

s
+ . . . ] ,

Ag(αs,nf =5) = 0.95493αs [1+0.54973αs +0.28403α2
s
−0.243(2)α3

s
+ . . . ] . (3.9)

The remaining uncertainties of the N3LO coefficients are practically irrelevant for phenomenolog-

ical applications. Note that, due to the breaking of the numerical Casimir scaling especially in

the n0
f parts of eqs. (3.6) and (3.7) and the cancellations between the terms without and with nf ,

the numerical Casimir scaling is completely broken for the N3LO terms in eqs. (3.8) and (3.9).

4. First results for the N4LO non-singlet splitting functions

Using the recent implementation [26] of the local R∗-operation [27], it is now possible, at least for

the lowest values of N, to extend the FORCER calculations of the splitting functions to the N4LO

contributions P(4) in eq. (1.3). The computational setup is similar to (but includes some efficiency

improvements upon) that used for the beta function and Higgs decays at five loops in refs. [28,29].

As a check specific to the present case, we have explicitly verified that P
(4)−

ns (N=1) vanishes

in a calculation with one power of the gauge parameter. We have then calculated P
(4)+

ns (N = 2) and

P
(4)−

ns (N = 3) for a general gauge group. The latter computation required an effort comparable to

that for the N4LO corrections to H → gg in the heavy top-quark limit refs. [29], the hardest calcu-

lation performed so far with the program of ref. [26]. An extension to N = 4 would be extremely

hard with the present tools; higher values of N are out of reach for now.

The analytic results will be presented elsewhere. Before turning to their numerical effects,

it is worthwhile to mention another, if not particularly strong check: besides rational numbers,

the moments of the N4LO splitting functions include values of Riemann’s ζ -function up to ζ7.

Consistent with the ‘no-π2 theorem’ for Euclidean physical quantities [30], the ζ6 terms disappear

when the MS splitting functions are converted to physical evolution kernels for structure functions

in DIS, and the ζ4 terms disappear after transforming to a renormalization scheme in which the

N4LO beta function does not include ζ4-terms, such as MINIMOM in the Landau gauge [31, 32].

Our new results for N = 2 and N = 3 lead to the numerical MS expansions

P+
ns(2,0) = −0.2829α

s
(1 + 1.0187α

s
+ 1.5307α2

s
+2.3617α3

s
+4.520α4

s
+ . . . ) ,

· · ·

P+
ns(2,3) = −0.2829α

s
(1 + 0.8695α

s
+ 0.7980α2

s
+0.9258α3

s
+1.781α4

s
+ . . . ) ,

P+
ns(2,4) = −0.2829α

s
(1 + 0.7987α

s
+ 0.5451α2

s
+0.5215α3

s
+1.223α4

s
+ . . . ) ,

P+
ns(2,5) = −0.2829α

s
(1 + 0.7280α

s
+ 0.2877α2

s
+0.1512α3

s
+0.849α4

s
+ . . . ) (4.1)

and

P−
ns(3,0) = −0.4421α

s
(1 + 1.0153α

s
+ 1.4190α2

s
+2.0954α3

s
+3.954α4

s
+ . . . ) ,

· · ·

P−
ns(3,3) = −0.4421α

s
(1 + 0.7952α

s
+ 0.7183α2

s
+0.7605α3

s
+1.508α4

s
+ . . . ) ,

P−
ns(3,4) = −0.4421α

s
(1 + 0.7218α

s
+ 0.4767α2

s
+0.3921α3

s
+1.031α4

s
+ . . . ) ,

P−
ns(3,5) = −0.4421α

s
(1 + 0.6484α

s
+ 0.2310α2

s
+0.0645α3

s
+0.727α4

s
+ . . . ) . (4.2)
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Here we have included nf = 0 besides the physically relevant values, since it provides useful infor-

mation about the behaviour of the perturbation series. The N4LO coefficients in (4.1) and (4.2) are

larger than one may have expected from the NNLO and N3LO contributions.

It is interesting in this context to consider the effect of the quartic group invariants. For exam-

ple, the nf = 0 coefficients in eqs. (4.1) and (4.2) at N3LO and N4LO can be decomposed as

2.3617 = 2.0878 + 0.1096d
(4)
FA /nc

4.520 = 3.552 − 0.0430d
(4)
FA /nc + 0.0510d

(4)
AA /na (4.3)

and

2.0954 = 2.0624 + 0.0132d
(4)
FA /nc

3.954 = 3.371 − 0.0171d
(4)
FA /nc + 0.0371d

(4)
AA /na (4.4)

with d
(4)
FA /nc = 5/2 and d

(4)
AA /na = 135/8 in QCD, see, e.g., app. C of ref. [32]: Without the rather

large contributions of d
(4)
AA , which enter at N4LO for the first time, the series would look much

more benign with consecutive ratios of 1.4 to 1.6 between the N4LO, N3LO, NNLO and NLO

coefficients. This sizeably d
(4)
AA contribution (∼ n2

c + 36) also implies that the leading large-nc

contribution provides a less good approximation at N4LO than at the previous orders.

The numerical impact of the higher-order contributions to the splitting functions P±
ns on the

N = 2 and N = 3 moments of the respective PDFs (1.5) are illustrated in fig. 3. At αs(µ
2
f ) = 0.2

and nf = 4, the N4LO corrections are about 0.15% at µr = µ f , roughly half the size of their N3LO

counterparts. Varying µr up and down by a factor of 2 – the required additional terms for the

splitting functions can be found to N4LO, e.g., in eq. (2.9) of ref. [33] – one arrives at a band with

a full width of about 0.7%. The N3LO and N4LO corrections are about twice as large at a lower

scale with αs(µ
2
f ) = 0.25 and nf = 3.
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Figure 3: Left and middle panel: the renormalization-scale dependence of the logarithmic factorization-

scale derivatives of the PDFs q+
ns at N = 2 and q−

ns at N = 3 at our standard reference point with αs(µ
2
f ) = 0.2

and nf = 4. Right panel: the corresponding N = 3 results at a lower scale with αs(µ
2
f ) = 0.25 and nf = 3.
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