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Abstract

A rather minimal possibility is that dark matter consists of the gauge bosons of a
spontaneously broken symmetry. Here we explore the possibility of detecting the grav-
itational waves produced by the phase transition associated with such breaking. Con-
cretely, we focus on the scenario based on an SU(2)p group and argue that it is a case
study for the sensitivity of future gravitational wave observatories to phase transitions
associated with dark matter. This is because there are few parameters and those fixing
the relic density also determine the effective potential establishing the strength of the
phase transition. Particularly promising for LISA is the super-cool dark matter regime,
with DM masses above 100 TeV, for which we find that the gravitational wave signal
is notably strong. In our analysis, we include the effect of astrophysical foregrounds,
which are often ignored in the context of phase transitions.
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1 Introduction

Cosmological and astrophysical observations strongly suggest that, in contrast to the ordi-
nary substances found on Earth, baryons are not the dominant constituent of the matter
in the Universe [1]. Such non-baryonic matter is called dark because its interactions with
the Standard Model (SM) particles — particularly with photons — are constrained to be
very weak. This, along with the obvious fact that dark matter (DM) must be stable on
cosmological timescales, are the two most important properties of any DM candidate.

The first property is often invoked as an argument for the electroweak nature of DM
interactions. In fact, models where DM is directly coupled to the W or Z bosons naturally
explain the DM relic density by means of the thermal freeze-out of DM annihilations in the
Early Universe. Nevertheless, these scenarios have been dramatically constrained in the past
couple of decades by direct and indirect detection experiments, together with colliders, most
recently the LHC [2-4]. In contrast, models where DM is directly coupled to the Higgs and
not to the W or Z bosons are much less constrained by the aforementioned experiments,
especially in regimes where the DM is heavier than the Higgs boson. Interestingly, gravita-
tional waves (GWs) offer a new complementary way to probe the latter scenarios. This is
because they typically require the existence of additional scalar fields, which can potentially
trigger a first-order phase transition (PT) in the Early Universe and therefore the emission
of GWs [5-8]. Of course, DM can be probed in this way only if its properties are closely
related to the PT [9-11]. This is the subject of the present work.

In order to motivate a concrete choice for the DM model, we will invoke the second DM
property mentioned above, i.e. its stability. This is often ensured by imposing a discrete



symmetry in the DM sector. The most common examples being 75 symmetries or the so-
called R-parity in supersymmetric theories. Nevertheless, such symmetries are not known
to exist in naturelll Better-motivated scenarios are those where DM is stable as a result
of its own dynamics. In fact, this is exactly what happens with the stable particles of the
SM. For instance, proton stability follows from baryon number conservation, which is an
accidental symmetry due to the SU(3)c x SU(2)r, x U(1)y charges of the matter fields. An
incomplete list of examples of this type of scenarios include Minimal DM [12], spin-one DM
models [13-16] and QCD-like models of DM [17].

The previous observations motivate us to study the spin-one DM model proposed in |13],
in which the DM portal to the SM is the Higgs boson. Concretely, we extend the SM with a
dark SU(2)p local symmetry, under which all the SM particles are assumed to be singlets.
In addition, we postulate a dark scalar doublet which carries no SM charges and whose
vacuum expectation value (VEV) breaks the SU(2)p symmetry via a Higgs mechanism in
the dark sector, ensuring the theoretical consistency of the model containing massive spin-
one fields. After symmetry breaking, the particle content includes — besides the SM —
three mass-degenerate particles of spin-one and one dark Higgs boson. An accidental global
SO(3) symmetry remains after symmetry breaking which forbids the decay of the gauge
bosons. Collectively, these comprise our DM candidate, which only couples to itself, to the
SM Higgs h, and to the dark Higgs hp. The Higgs portal interaction allows hp to decay to
light SM particles, thus avoiding it becoming a DM component.

We will consider two production regimes for the DM relic density. First, the standard
thermal freeze-out of DM annihilations into dark Higgs bosons. Second, a more exotic
possibility in which we assume a classically scale invariant potential for our model [18]. As
pointed out recently [19], this can result in a period of late-time inflation which sets the relic
density in a completely novel way. In both cases, a PT takes place in the early Universe from
a SU(2)p symmetric vacuum in which the would-be-DM is massless, to a vacuum in which
the dark gauge symmetry is broken and the DM is massive. The key point of our analysis
is that the parameters setting the relic density also enter the effective potential determining
the PT. As we will see, this allows us to find correlations between the GW signal and the
DM properties.

This study is timely, as much work is being done on understanding GWs from cosmo-
logical PTs in anticipation of LISA [8], and follow-up proposals such as BBO [20]. In our
analysis astrophysical foregrounds will be taken into account. These are mostly due to bi-
naries of white dwarfs and are crucial for estimating the signal-to-noise ratio at future GW
observatories [6,/7]. The paper is organized as follows. In Section , we present our DM
model and its phenomenology. In Section |3 we calculate the GW signal arising from the PT
for the standard and the classically scale invariant cases. We conclude in Section (4| by pre-
senting a summary and outlook for this work. Appendix [A]is devoted to details concerning
the effective potential, which determines the nature of the PT.

LCPT is the only SM discrete symmetry that is conserved.



2 DM as massive gauge bosons

2.1 The model

In this section we will describe the model and define notation. As mentioned in the in-
troduction, we consider an extension of the SM with a dark SU(2)p gauge symmetry [13],
under which all the SM particles are singlets. In addition to the dark gauge bosons AiDu
(1 =1,2,3), the model has a dark scalar doublet, Hp, which carries no SM charges. Hence,
the Lagrangian of the model is

1
L=Lsw—Fp Fp+ (DHp) (DHp) — 2 HLHp — My (HLHp)? — \s HLHp HTH, (1)

where Loy D —p2HYH — X\ (HTH)? and H is the SM scalar doublet. Here, Fp is the field
strength tensor of the SU(2)p gauge symmetry and D = d+igp7'- A’ /2 is the corresponding
covariant derivative. We write scalar doublets as
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where ¢ and 7 are the classical field values breaking the electroweak and the SU(2)p sym-
metries, respectively. In addition, h, hp, G* and G’ (i = 1,2, 3) are the corresponding Higgs
and Goldstone boson fields.

Symmetry breaking at tree level

In this case, the minimum of the potential associated with Eq. is located at (¢,n) =
(vg,vy), where v, = 246 GeV and

1 1
/ﬁ = -\ 1)35 — 5)\3 vg, u% = —)\2?12 - 5)\3%25- (3>

The mixing of the real scalars is captured by the usual angle

A
tan 20 = 3 Yo Uy

(4)
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For convenience we commit a small abuse of notation, and from now on also label the mass
eigenstates with h and hp, where m;, = 125 GeV. The mass eigenvalues are given by

m; = 2\ vi cos® 0 + 2\, vf] sin®§ — A3vg v, sin 26, (5)
m,ZLD = 2\ v; sin?0 + 2\, 1)72] cos® 0 + Azvg v, sin 20. (6)
All the dark gauge bosons obtain the mass, ma = gpv,/2. In fact, they transform as a

triplet under the accidental custodial SO(3) symmetry. Thus, there are four parameters in
the DM sector, which we take as my, gp, 6 and my,,.
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Figure 1: The dominant DM annihilation channels for m4 > my,, and 6 < 1.

Radiatively-induced symmetry breaking

An alternative possibility is to consider a classically scale invariant realisation of this model [18;
19], where the mass terms in Eq. are forbidden and symmetry breaking is achieved
through radiative effects. This is known as the Coleman-Weinberg mechanism [21,22]. We
will focus on v, at the TeV scale or above, in which case the the ¢ direction can be neglected
for analysing the breaking of the SU(2)p symmetry. Under these assumptions, £ D —\yn*/4,
where the coupling \; is evaluated at a sliding scale given by the value of the n field. The
running is obtained by integrating the corresponding  function, which gives

997 n
Ao(n) ~ 128§2Ln (%) . (7)

Here, we have neglected the contributions of Ay and A3 to the 5 function as well as the running
of gp. According to this, Ay becomes negative for field values below the integration constant
no. This signals the breaking of the SU(2)p gauge symmetry. In fact, the minimization
conditions on the corresponding potential (discussed in Appendix , to leading order in
A3, give v, = noe~"/* together with

2_9941:)2

Mhpy = 1953V and mj, = —Asv; . (8)

Furthermore, electroweak symmetry breaking is triggered via the cross quartic coupling A3
so that vy = v,\/—A3/(2A1). Note that all this requires A3 < 0. As in the previous case,
the dark gauge bosons obtain a mass m4 = gpv,/2. Notice also that, after accounting for
my, = 125 GeV and vy = 246 GeV, there are only two free parameters, which we choose as
my4 and gp. Before discussing DM production, we would like to emphasize that this scenario
is not simply a limit of the previous case when p; and py approach zero because here the
breaking of the symmetry does not occur at tree level. (For a detailed discussion on such a
limit, see [21].)

2.2 Relic density

We will consider two production regimes for the DM relic density: the standard freeze-out
scenario and super-cool DME| The latter only takes place for the classically scale invariant
case, i.e. when the gauge symmetry is broken radiatively. Details are given in section [3.3|
For the former case, we make the mild assumption that A3 and gp are large enough so that

20ther production mechanism for this model have been discussed in [23].



DM was in thermal equilibrium with the SM fields in the Early Universe. Freeze-out leads
to the observed dark matter abundance, Qh? ~ 0.12, when the corresponding cross section is
of the order 2.3 x 10726 cm?/s. This means that for given ma, my,, and 6, the relic density
fixes the dark coupling gp. We are interested in the regime in which m4 > 2m,,, so that
DM (semi-)annihilates into dark Higgs bosons. We make the further simplifying assumption,
ma > my,, and 0 < 1, so that the dominant annihilation channels are those shown in Fig. .
In this regime the correct relic density is achieved for,

ma ma
~0.9 % 4/ d v, ~22TeV | 9
9D A\ TTev ¢ U VT Tev )

A more accurate determination can be achieved by numerically solving the Boltzmann equa-
tions. Given the uncertainties of the gravitational wave spectrum, however, the use of Eq. @
is sufficient for our purposes.

2.3 Direct detection

The spin independent scattering cross-section of dark matter off nucleons is [13]

4 2 4 2 2
gp f=my v, 1 1 . 9
= —_— 20 10
7S Gan (my +ma)?v? < 2 ) S (10)
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where my denotes the nucleon mass and f ~ 0.3 is a constant that depends on the nucleon
matrix element. Working in the limit m4 > my, > m;, and substituting Eq. @D into og,
one finds og; oc mysin® 26, i.e. with no further dependence on the other DM parameters.

Then comparing to direct detection constraints — which also scale as o™ oc mpy for
mpm 2 100 GeV — we find current experiments such as XenonlT demand 6§ < 0.1 [24-26].

Future experiments such as LUX-Zepelin, will improve oi™t by two orders of magnitude and

therefore probe down to 6 ~ 0.01 [27-30].

3 Gravitational waves

3.1 Calculation of the spectrum

The first step is to derive the finite-temperature effective potential V (¢, n,T). We use well-
known techniques of thermal field theory, the details are given in appendix [A] We now
briefly discuss the procedure used to calculate the gravitational wave spectrum resulting
from a phase transition [§]. The crucial quantity is the O(3) symmetric Euclidean action Ss.
To calculate S3, we numerically find the bubble profile by solving the associated equations
of motion with the appropriate boundary conditions. Nucleation occurs at a temperature 7T,,
when the bubble nucleation rate in the horizon volume becomes comparable to the Hubble
parameter H. This happens when S3/T ~ 4Ln(T/H) [31)f] Having found T,,, it is trivial
to find the latent heat normalised to the radiation density, «, and the timescale of the

3For the PTs studied below, we have checked S3/T;, < Sy, where Sy is the O(4) symmetric action.
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Figure 2: An example of the gravitational wave spectrum when the symmetry breaking
occurs at tree level, together with the white-dwarf white-dwarf binary foreground, and LISA
and BBO sensitivity curves. Here we assume v, = 1.

transition 5 = —%(53 /T )|T . For the strongest of PTs, we expect the wall velocity to be
close to luminal, v, ~ 1. This is because the mean field potential typically satisfies,
V:V(¢n7nn>T:O) _V(%"’]O,T:O) (11>
T 2 2 1 2 2 0
+ ﬂ b;ﬁ [mb (¢n7 nn) - my (¢07 7)0):| + 5 f(ﬂ%ns [mf((bn? nn) - mf(¢0> 770)] <Y,

where (¢n,n,) is the true and (¢o, 7o) the false vacuum at 7,,. This is the Bodeker-Moore
(BM) criterion [32]. We shall make clear on our plots where the BM criterion holds and
what we assume regarding v,, when it does not.

Even when the BM criterion holds, however, the wall is not expected to runaway with
v — 00, due to the transition radiation effect from the gauge bosons . Therefore, provided
the gauge boson population has not been overly diluted by false vacuum inflation, energy
released in the transition is transfered to the radiation bath, in which sound waves
and magnetohydrodynamic turbulence [37,[38], rather than the bubble wall collisions
directly [39-44], lead to a gravitational wave signal. Determining o and /3 allows us to find
the spectral function of gravitational waves,

K2 Qaw(f) = h?pidpd%, (12)

where p,. is the critical density, and dpgw /df is calculated using the approximate formulas
from the literature ,. An example of the spectrum is shown in Fig. . We use estimated
sensitivity of the gravitational wave detectors to stochastic backgrounds, h?Qgens(f), for
LISA [§] and BBO [20]. The signal-to-noise ratio can be estimated using

N = 1 [ [1en (D) 13
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where t,,¢ is the time of observation in years. We assume t.,; = 5 throughout.

Confusion noise from astrophysical foregrounds may be an issue at these frequencies. We
shall compare to some estimates of the unresolvable components given in the literature. The
ensemble of white dwarf - white dwarf (WD-WD) binaries are thought to be the dominant
source of this foreground, exceeding the unresolvable neutron star - neutron star (NS-NS)
foreground [46,47]. In this work we restrict ourselves to the foreground from the extragalactic
WD-WD ensemble and use the central value given in [46]. We make this choice because, in
contrast to the extragalactic ensemble, it is thought the WD-WD Galactic foreground [48-50]
can be subtracted [51,/52]. The continuous extragalactic NS-NS foreground extends to higher
frequencies in the BBO band, however, it is thought that this can also be subtracted [53}/54].
We also adopt an alternative, foreground-limited, estimate of the signal-to-noise ratio

B h?Qaw(f) ’
SNRraL = \/tobs / [hmm( ERETE df, (14)

in which we attempt to naively capture the degradation of the sensitivity once the foreground,
h*Qra(f), is taken into account. The aim of introducing Eq. is to be able to roughly
capture, in a single number, whether the signal extends above the sensitivity and foreground
estimate. Whether such a PT signal could actually be separated from the astrophysical
foreground depends, of course, on a myriad of factors, e.g. the robustness of the estimates of
the amplitudes and spectral shapes of the signal and foreground, together with the confidence
in our knowledge of the instrumental noise. These are topics worthy of further study, but
we will not attempt to do them justice here. Nevertheless, we would like to remark that the
LISA SNRpqL value associated to the spectrum of Fig. [2] clearly illustrates the importance
of astrophysical foregrounds, even though they are often ignored in similar studies.

3.2 Symmetry breaking at tree level

As discussed above, in this case the DM production proceeds via the standard freeze-out
mechanism. Interesting for us is the regime with a large gp, as this will lead to a strong phase
transition. This pushes us to large m4 and v,, see Eq. @D, and the dark phase transition
will generally occur prior to the EW one. Thus the task of studying the phase transition
reduces to one dimension in field space. We have seen an example of the gravitational wave
spectrum, together with the dominant foreground, in Fig. 2] We have also fixed 6 to 0.1
and 0.01 (motivated by present and future direct detection constraints), scanned over the
parameters my4 and my,,, and calculated the GW signal. The result is shown in Fig. [3|

The plot can be understood as follows. A larger DM mass, m 4, requires a larger gauge
coupling in order to return the observed DM density. This results in a stronger phase
transition from the one-loop effects of the gauge bosons. Similarly, in analogy with the SM,
a lighter dark Higgs — corresponding to a smaller quartic A\ — also leads to a stronger
transition because the broken phase minimum is shallower. Nevertheless, for particularly
large values of m4/my,,, the one-loop effects can raise the broken phase minimum too far,
resulting in the Universe becoming stuck in the symmetric phase. The latter can either be
a false or true minimum, corresponding to the orange and red shaded regions of the figure
respectively. We expect the allowed parameter space to be increased somewhat, into the
orange region, if Sy nucleation at lower temperatures were to be taken into account.

8
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Figure 3: The parameter space returning a significant BBO or LISA signal, SNR > 5, when
the symmetry breaking occurs at tree level (standard potential). For LISA we assume v,, = 1
as the BM criterion is fulfilled roughly in this region. For BBO we show contours assuming
vy = 0.1 and 1. Only the strongest transitions, close to the point at which no transition
occurs at all, can be probed by LISA in this case. In contrast BBO can probe a substantial
fraction of the parameter space with a strong first order phase transition. Here we show the
SNR with no foreground. If the foreground is included the BBO area remains practically
unchanged, while the already small LISA area is approximately halved.

3.3 Radiatively-induced symmetry breaking: standard freeze-out
and super-cool DM

Another possibility is to impose classical scale invariance on the theory, as explained above.
This scenario with our field content has been studied in [18,]19]. Such a potential typically
exhibits a large amount of supercooling [55H-73]. This is because, lacking a mass term, the
T = 0 potential is very flat in field space. Furthermore, the positive thermal corrections from
the gauge bosons will lead to a barrier being present for any finite 7. Somewhat counter
intuitively, a smaller gp actually leads to more supercooling because the 7" = 0 potential
becomes shallower, as shown in Fig. [l The thermal barrier also becomes smaller, but the
shallower potential ends up being the more important effect.

Of importance for the DM relic density in this scenario, is not just the DM annihilation
cross section, but also the details of the phase transition. In particular the nucleation
temperature, T,,, the temperature when inflation starts, T}, and the reheating temperature,
Tru. The latter two quantities are calculated following the methods in [19].

Furthermore, due to the large amount of supercooling, the PT may actually not take
place before the temperature falls to 7' ~ Aqep. In this particular case, the SU(2)p PT
is induced by QCD effects [55,/57,69,/72]. Our calculation of the nucleation temperature,
ignoring the QCD trigger for now, is shown in Fig.
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Figure 4: Left: the classically scale invariant potential (7" = 0) with v, = 2 TeV and two
choices of the gauge coupling. Right: the nucleation temperature as a function of the gauge
coupling in the classically scale invariant case, for a fixed nucleation condition S3/T" = 142,
and ignoring QCD effects.

As a result, in the classical invariance scenario two distinct possibilities for the relic
density can play out.

e Regime (i): standard freeze-out.

(ia). T, > Aqep. There is a large thermal abundance of massive gauge bosons after
the phase transition, i.e. if Try/ma and gp are large enough to bring (or keep) the
gauge bosons in thermal equilibrium. Therefore, following the phase transition, the
relic density is set through the usual freeze-out mechanism. Typically this occurs for
gauge couplings gp ~ 1 and my = 1.2 TeV.

(ib). T,, < Aqep. This is similar to above, except the sequence of PTs is switched.
Most of the parameter space corresponding to this regime has been ruled out by direct
detection |19], except for the mass range 0.9 TeV < my < 1.2 TeV.

e Regime (ii): super-cool DM.

(iia). T,, > Aqcp. There is sufficient supercooling for a period of late time inflation
to take place. Before the phase transition, the gauge bosons are massless and have a
large abundance. This abundance is diluted away by the period of late time inflation.
The relic density in principle consists of the diluted, now super-cool, population of
gauge bosons, together with an additional sub-thermal component created through
scatterings after reheating. Numerically, however, we find the sub-thermal population
is negligible in the parameter space corresponding to this regime, leaving the DM relic
abundance set by the super-cool population of gauge bosons. The parameter space
here corresponds to gp ~ 1 and my = 370 TeV.

(iib). T,, < Aqep. This is again conceptually similar to above except the PTs are
switched. The sub-thermal DM population is now important for a large range of the
parameter space, which corresponds to gp < 1 and my < 370 TeV.

In all regimes, once the relic density constraint is used, we are left with one free parameter
which we take to be my. Here we wish to point out, supported by our calculations, that

10
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Figure 5: Left: the key phase transition parameters in regime (ia) of the scale invariant
case. Right: The SNR for LISA and BBO. The Bodeker-Moore criterion, showing v,, >~ 1,
is satisfied for m4 < 3.8 TeV. Above this we still assume v,, &~ 1, though it could be lower,
which would reduce the SNR.

large portions of the parameter space of the classically scale invariant scenario can be probed
through GW observatories. We shall now discuss the GW signal in each regime in turn.

Regime (ia)

The GW signal in this regime has previously been discussed in [18]. Here we provide our
own — updated and expanded — calculation for completeness. For simplicity we assume
the spectrum is given by the sum of the sound wave and turbulent contributions over the
entire regime. Below my4 < 1.8 TeV this may not be a good approximation, as the initial
population of gauge bosons is reduced by late inflation by a factor > 100, meaning the plasma
contribution may be negligible. Nevertheless, the PT is strong enough for m4 < 1.8 TeV to
be observable even with the scalar field contribution. The key phase transition parameters
are shown in Fig. [5] together with the foreground-free and foreground-limited signal-to-noise
ratios. Note reheating is efficient in this regime: there is no period of matter domination
immediately following the PT, as the decay rate of the inflaton is sufficiently large, I' > H.

As can be seen from Fig. [5] LISA can probe DM masses in this regime up to my ~ 4
TeV, even in the presence of the WD-WD foreground. This is competitive with projections
for future direct detection experiments [27-30], which can probe up to my4 ~ 2 TeV [19)].
(The current direct detection constraint demands m, 2 0.9 TeV [19,[24-26].) The BBO
proposal could test the entire parameter space shown here, well into what corresponds to
the neutrino floor for direct detection experiments. Note for m4 < 1.2 TeV we find ourselves
in regime (ib), which is discussed below.

Regime (iia)

Following the methods in [19], we find this regime corresponds to parameters gp ~ 1 and
my 2 370 TeV. Notice that these DM masses are well above the usual unitarity constraint
from the thermal freeze-out of DM [74}|75], which does not take place here. Numerically the

11
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Figure 6: Left: The temperature when inflation starts, 7Ti.q, and the reheating temperature,
Try, in regime (iia). The ratio (Tina/Tru) determines the amount of additional redshifting
of the signal due to the matter dominated reheating period following the PT. Right: the
detectability of the GW signal in regime (iia). Here the BM criterion holds over the entire
range.

required gp grows slowly, from gp = 0.95 for m4 = 370 TeV, to gp = 1.02 for m4 = 10000
TeV. Our calculation of Try and Tiyg is shown in Fig.[6] In this regime, reheating is inefficient
following the PT, thus Try # Tina. Indeed, there is a period of matter domination following
the PT, as n oscillates about the minimum of its potential. More precisely, the ratio of scale
factors between the PT and the end of reheating is given by

gpT _ (TRH)4/3. (15)

aRH Tina

This leads to greater expansion of the Universe between the PT and today, suppressing the
signal, and redshifting the frequency further than would otherwise be the case.

The GW spectrum is determined in the following way. First of all, as the thermal plasma
has been diluted away by the time of the PT, the scalar field configuration — and not sound
waves or turbulence — is the source of the signal. It has been suggested that the oscillations
of the scalar field after the PT may increase both that peak frequency and energy density of
the GW signal by an order of magnitude |76]. We choose to remain conservative, however,
and base our spectrum on [8]. Once the Universe enters the late inflationary stage at Ting,
the energy density remains constant until the plasma temperature reaches 7),, and so the
Hubble scales at both temperature are the same H(T,) = H(Ti). Taken together, 5 and
H ~ T2,/Mp set the initial frequency of the GW signal. We then redshift this value to Try
when the Universe once again enters a radiation dominated phase. The redshifting from Try
to today then follows the standard calculation [8]. Taking all this, together with Eq.
into account, the peak frequency is given by

i T 1/3 f I5; T 1/6
(ita) RH Jx P infl i
= () (5) (7) (i) (i)™ 09

where g, counts the effective degrees of freedom contributing to the radiation density, and
f+/B =0.62/(1.8—0.1v,,+v?2) is taken from simulations [44]. The amplitude of the spectrum

12
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Figure 7: Examples of GW spectra in regime (iia). Although o> 1, and §/H is similar for
both phase transitions, the period of matter domination after the PT is longer for larger my,,
leading to a suppressed signal. For purposes of illustration we also include the unresolvable
foreground from black hole binaries with masses 10°Mg, — 10'°M, (MBH-MBH) [47].

is also suppressed with respect to the case with no early period of matter domination,

TRH 4/3
ng—) <T ) ng, (17)

infl

because Qaw = paw/pe x a’, (a7') in a radiation (matter) dominated Universe. Accounting
for these factors, we find the GW spectra and summarise their detectability in Fig. [f] Ex-
amples of the spectra are shown in Fig.[7] Notice that for these large masses, the frequency
of the gravitational waves extends well above 1 Hz, motivating us to compare our signal
against sensitivity curves from current and future LIGO configurations O1 and O5 and
the Einstein Telescope (ET) [77].

Regimes (ib) and (iib)

The SU(2)p phase transition occurs after QCD confinement. The QCD phase transition
occurs with six massless quarks and is first order . There is a chance this could lead to
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an observable GW signal [9,(69]. We cannot, however, use our techniques above to accurately
calculate the phase transition parameters, « and [ for the QCD phase transition [69]. Most
likely a lattice study is required in order to more carefully explore this possibility. Alternative
techniques have been pursued in [67}70].

We now turn to the details of the SU(2)p phase transition following shortly after the
QCD one. The quark condensate formed after chiral symmetry breaking leads to a tadpole
term and hence a VEV for the EW Higgs. This in turn leads to a mass term for n through
the cross-quartic. Provided 3m?% 2> 2m?, which corresponds to our regime of interest, the
thermal barrier from the gauge bosons is still large enough to prevent immediate SU(2)p
breaking. Instead, a first order phase transition occurs just before the barrier disappears
at T~ mpAqep/ma. As can be checked numerically, the non-zero mass term for n means
this phase transition now occurs with a very large 3, and does not lead to an observable

gravitational wave signal.

4 Discussion and Conclusion

We have explored the possibility of spin-one DM from a hidden SU(2)p gauge group. The
stability of DM is elegantly assured through an accidental custodial symmetry. Given the
massive vector bosons, unitarity demands that the SU(2)p be broken through the Higgs
mechanism. This implies a phase transition or crossover occurred in the dark sector, i.e. the
symmetry was initially unbroken at high temperatures. A strong phase transition will result
in gravitational waves possibly detectable at future gravitational wave observatories.

In this scenario the SU(2)p gauge coupling plays a crucial role in determining the relic
abundance through freeze-out or late-time inflation. The same gauge coupling controls both
the scattering cross-section and the thermal effects of the gauge bosons relevant for the phase
transition. The model is therefore well suited as a case study for the sensitivity of future
gravitational wave observatories to phase transitions in DM sectors.

We studied both tree level and radiatively-induced symmetry breaking. After finding
the resulting gravitational wave spectra we identified parameter space which can be probed
by LISA and BBO. As is known from previous studies, only limited parameter space of
standard polynomial type potentials can be tested by LISA. The prospects improve for the
classically scale invariant scenario. In this case, LISA is competitive with future direct
detection experiments in the freeze-out regime and can probe the new regime of super-cool
DM, which is inaccessible to direct and indirect detection. Nevertheless, a conclusive test
could only be performed by a more powerful observatory such as BBO.

We saw how foregrounds, which have so far been largely ignored in phase transition
studies, apart from in [6}[7], can be taken into account in the estimates of the signal-to-noise
ratio. Our results should be taken as indicative; we expect updated estimates of foregrounds
to become available as our knowledge of the binary populations improves. More sophisticated
studies, taking into account the precise capability of the LISA and eventually BBO spacecraft
are required. Simulations of sound waves in the plasma for a > 0.1 should also be performed.
Only then will it be possible to conclusively rule out models from their implied gravitational
wave signals using future LISA and BBO data. A positive signal at LISA — which requires
a very strong phase transition — would most likely point toward exotic new physics at the
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TeV scale such as the close-to-conformal potential studied here.
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A The effective potential

A.1 Symmetry breaking at tree level

The full effective potential is composed of four pieces

V(9.0 T) = Viree(d,0) + V(0. m) + VE (0, m) + Vi (0,0, T) . (18)

The tree-level piece

This directly follows from Eq. and it is given by

2 A A
Viree(0,77) = %452 + St “2 7+ fn”‘ + fn%z- (19)

Coleman-Weinberg potential at zero temperature

Knowing the field dependent masses, m;(¢,n), in the Laudau gauge the one-loop T = 0
contribution is given by

DT (a9 ). o

where 1 is the MS renormalization scale and ¢; = {1,3,6,12,1,9,3,3} for the h, Z, W*, t, n, A,
G, GP. In addition, C; = 5/2 for gauge bosons and C; = 3/2 otherwise. Finally, F' =0 (1)
for bosons (fermions).

The masses as a function of the scalar field values for the fermions and gauge bosons of
the SM are

1 1 1
m%(¢,n) = 1(93 +9v)9%, miy (¢,m) = 19%052, m(¢,n) = §y?¢2- (21)

Similarly, for the dark gauge bosons m?(¢,n) = g5n*/4. Due to the coupling A3 in Eq. (T]),

the scalar sectors mix with each other and the masses for the real scalar fields entering in
Eq. are the eigenvalues of the matrix

m2 17+ 3% + 33’ A3 1) (22)
Higgs Az on N% + 3)‘2772 + %)\3¢2 .

15



In spite of this, the Goldstone bosons do not mix at tree level. In fact, in the Landau gauge,
their masses are given by

1

m2G(¢7 7]) = IU/% + )‘1¢2 + §>‘3772 ) (23>
1

MG, (6:1) = 4+ Ao + 530, (24)

which vanish at (¢,7) = (vs,v,), as follows from Egs. (3)).

The counter-term potential

The counter terms to the potential in Eq. are

J oA 0 [P
Viet(ou = gty gy Wy Dagey Do (25)

By demanding no changes to the masses and VEVs of the scalars from their tree level values,
that is, by imposing

+&4

Os.n(VY + V1) = 0, (26)
(¢777):(U¢»Un)

0.0 (VI + Vi) = 0, (27)
(¢:m=(vg,vn)

(28)

we calculate the couplings in Eq. (25). Moreover, we ﬁndﬁ
2 3
VO Vc R E gZ 4 h L my (¢7 7]) v

o2 (6, m)m <v¢,vn>} oM. (20)

In this equation, the prescription for the scalars m?(¢,n) is the following. They are the
eigenvalues of the mass matrix in Eq. , ordered in such way that

m2(0,0) = Fu(p, 1) and mZ(vg, vy) = Fr(mg,my), (30)

where
Fi(a,b) = %(a—l—bi(a—b)sgn(|a| —18])) - (31)

Notice that X F(a,b) = a+b and that, when a and b are both positive (negative), F(a,b)
is the maximum (minimum) of them.

4 There is a subtle issue for the contribution of the Goldstone bosons to Eq. (29)). As explained above,
their tree-level masses vanish at (vg4,v,) leading to an infrared divergence in Eq. Such a divergence
is spurious [80] and disappears after the one-loop contributions to the Goldstone-boson self-energies are
accounted for. Neglecting any pos&ble mixing effect due to non-vanishing A3z, the latter can be calculated

by means of omZ(¢, 1) = (1/2)8°V,* /8%¢ and 6m,  (¢,n) = (1/2)92V,” /0%
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Finite-temperature potential

The one-loop finite T" contribution is given by

VvlT(qb7 T) :Z gz(_l) T

272

X /OOO y* Ln (1 — (=) Exp {—\/yQ +m2(h, n)/T?D dy. (32)

In order to take into account the resummation of the Matsubara zero modes one includes
the daisy term

[ 3/2 3/2
Vouin (6, 7) = 3 L { [mi(0m)] " = [m2(6,m) + 1L(D)] "} (33)
where the sum runs only over scalars and the longitudinal degrees of freedom of the vector
bosons, i.e g = {1,1,1,2,1,3,3,3} for h, Z, v, W*, n, A, G, Gp. Here the thermal
masses are given by [81]

1 1 3 29, 1.2 , 1.2
AL F A3+ 5592 + 59y T 1Y 0 2
Moo = | 2 6 16 16 1 T2, 34
e = 0 Do+ Dyt S, (34
1
m.— (= 1 2, L 9 2\ 2 35
G (21+63+1692+169Y+4t) ) (35)
g, = 1A2+—A3+39% T2 (36)
b 2 6 16 ’
n
(6+ 3f)9§ 0
2
1_IZ/’Y = 0 1 N 5ng ) 1, (37)
6 9 9y
5 n
= (5+ %) #1* (39)
5
HA - 69%}T27 (39>

where ny = 3 is the number of fermionic families with SU(2) x U(1) charge. Note for the
scalars and the Z/~, the prescription here is that m?(¢, n) represents the relevant eigenvalue
of the zero temperature mass matrix and m?(¢, n) +1I1;(T) the relevant eigenvalue of the zero
temperature mass matrix with the thermal masses added along the diagonal. This means the
Z and v mix at finite temperature. To avoid spurious contributions to the thermal masses
from the SU(2)p gauge bosons at large field values, we cut off the gp contributions with a
factor (ma/T)*Ky(ma/T)/2, where Ky(x) is the modified Bessel function of the second kind
of order two.
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A.2 Classically Scale Invariant Potential

As explained in the text, in this case we have radiative symmetry breaking and the potential
at one loop becomes [21],22,/18,|19]

99pn" n] 1
V) ~ =2~ (Ln || -~ 40
where the ¢ direction plays a completely negligible role in the area of parameter space in
which we shall be interested. (The EW symmetry is broken by the induced mass term,
)\31)727 /2, from the cross quartic.) The thermal effects are dominated by the gauge bosons.

Thus the effective potential is well approximated by Eq. , together with the one-loop
thermal, Eq. (32)), and daisy terms, Eq. (33), for the SU(2)p gauge bosons.
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