
DESY 18-161

Relaxion Dark Matter

Nayara Fonseca1, ∗ and Enrico Morgante1, †

1DESY, Notkestrasse 85, 22607 Hamburg, Germany

We highlight a new connection between the Standard Model hierarchy problem and the dark
matter sector. The key piece is the relaxion field, which besides scanning the Higgs mass and
setting the electroweak scale, also constitutes the observed dark matter abundance of the universe.
The relaxation mechanism is realized during inflation, and the necessary friction is provided by
particle production, with no need for a large number of e-folds and no new physics at the TeV
scale. Using this framework we show that the relaxion is a phenomenologically viable dark matter
candidate in the keV mass range.

Introduction. The non-baryonic matter component of
the universe, the dark matter (DM), constitutes about
a fifth of the total energy density of our universe. De-
spite the several experimental searches and the impres-
sive effort of the community, the non-gravitational na-
ture of DM is still unknown. In the last decades, a lot
of attention was devoted to the class of beyond Standard
Model (SM) theories which can provide a weakly inter-
acting massive particle (WIMP) DM candidate, which
features an appealing connection between the dark sec-
tor and the electroweak scale. In light of no definitive
evidence of new physics at the TeV scale and strong ex-
clusion limits from WIMP direct detection experiments,
to go beyond the WIMP paradigm became crucial. In
this letter we propose another option which can closely
connect the Higgs naturalness problem with the DM sec-
tor. The link is the relaxion field.

The cosmological relaxation of the electroweak scale is
a recent proposal to address the SM hierarchy problem
making use of the relaxion, a new axion-like field, which
scans the Higgs mass parameter during its cosmologi-
cal evolution [1]. The relaxion evolution stops due to a
back-reaction mechanism which turns on when the Higgs
vacuum expectation value (VEV) is at the electroweak
scale. This paradigm shift fits in the interface between
particle physics and early universe cosmology and gave
rise to a varied literature, including studies related to the
model building challenges [2–9], concerns about the in-
flationary and reheating sectors [10–15], alternatives to
inflation [16–18], UV completions [19–22], developments
on the model building front [23–31], a leptogenesis real-
ization [32], and experimental signatures [33–37].

The constructions discussed in [2, 35] use a Higgs-
dependent barrier as back-reaction mechanism to stop
the field during inflation. In these models, the relaxion
abundance is too small to explain DM. A second field,
which scans the barriers’ amplitude in [2], can instead
meet this requirement being produced via the misalign-
ment mechanism. Oppositely, if relaxation proceeds after
inflation, the relaxion is overproduced [18].

In the framework used here, relaxation happens dur-
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ing inflation and the relaxion stopping mechanism is pro-
vided by particle production [17]. This construction does
not require new physics close to the TeV scale, and it
can be realized without the need of large number of e-
folds or super-Planckian field excursions. In this note, we
point out that the relaxion field, which sets the value of
the electroweak scale, can simultaneously account for the
observed DM density, when it is produced after reheat-
ing by the scattering of SM particles. Similarly to the
case where the DM production happens via the freeze-
in mechanism (see e.g. [38] for a review), the relaxion
is never in thermal equilibrium with the SM bath and
its comoving number density freezes to a constant value
when the number density of the particles dominating its
production become Boltzmann-suppressed.

Parameter space for the model. In this section we de-
rive the parameter space for the model proposed in [17]
in which relaxation happens during inflation and particle
production is the stopping mechanism.1 The Lagrangian
can be written as

L ⊃ 1

2

(
Λ2 − g′Λφ

)
h2 + gΛ3φ− λ

4
h4 − Λ4

b cos

(
φ

f ′

)
− φ

4F

(
g22W

a
µνW̃

aµν−g21BµνB̃µν
)
, (1)

where φ is an axion-like field with decay constant f ′, h is
the Higgs field, Λ is the cutoff of the theory, the dimen-
sionless parameters g and g′ are assumed to be spurions
that explicitly break the axion shift symmetry, λ is the
Higgs quartic coupling, Λb is the scale at which the φ
cosine potential is generated. The effective scale F con-
trols the interaction of the relaxion with the SM gauge
bosons. We assume that the relaxation dynamics takes
place in the broken phase so that the Higgs mass pa-
rameter, µ2

h(φ) ≡ (−Λ2 + g′Λφ), is large and negative
when the scanning process starts, µ2

h(φini) ∼ −Λ2. The
last term in Eq. (1) is the interaction responsible to slow
down the relaxion once the particle production is trig-
gered. B and W are the SM gauge bosons with g1 and

1 See [18] for an analysis of the case in which relaxation happens
after inflation.
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g2 being the corresponding U(1) and SU(2) gauge cou-
plings. When expanded in the mass eigenstates this term
reads

− φ
F
εµνρσ

(
2g22∂µW

−
ν ∂ρW

+
σ + (g22 − g21)∂µZν∂ρZσ

− 2g1g2∂µZν∂ρAσ

)
. (2)

In what follows we will just consider the tachyonic in-

stability from the ZZ̃ term and absorb the gauge cou-
pling in the definition of the corresponding field such that
1/f = (g22 − g21)/F , as in [18].

The non-generic coupling structure of Eq. (2) is de-

signed to avoid a tree-level coupling to photons φFF̃ ,
which would lead to exponential photon production dur-
ing the relaxion’s evolution, thus slowing down the field
independently of the Higgs VEV and spoiling the mech-
anism.2 Such a term is unavoidably generated through
radiative corrections, and we will discuss under which
conditions it does not harm the construction. The lead-
ing interaction with the SM gauge bosons in Eq. (1) gen-
erates a coupling to SM fermions (at one loop) and to
photons (at one and two loops) [39, 40]:

∂µφ

fF
(ψ̄γµγ5ψ) and

φ

4fγ
FF̃ (3)

where

1

fF
=

3α2
em

4F

[
Y 2
FL

+ Y 2
FR

cos4 θW
− 3

4 sin4 θW

]
log

Λ2

m2
W

, (4)

and

1

fγ
=

2αem

π sin2 θWF
B2 (xW ) +

∑
F

NF
c Q

2
F

2π2fF
B1 (xF ) , (5)

where NF
c is the color factor, QF is the electric charge of

the fermion F with mass mF , and xi ≡ 4m2
i /mφ. The

functions B1,2 are given by:

B1(x) = 1− x[f(x)]2, B2(x) = 1− (x− 1)[f(x)]2, (6)

f(x) =

{
arcsin 1√

x
, x ≥ 1

π
2 + i

2 log 1+
√
1−x

1−
√
1−x , x < 1.

(7)

When the relaxion is light, which will turn out to be the
case of interest for our DM scenario, these functions scale
like B1(xF )→ −m2

φ/(12m2
F ) and B2(xW )→ m2

φ/(6m
2
W )

as m2
φ → 0. This implies, for instance, that when the re-

laxion is lighter than the electron mass, the induced cou-
pling to photons originated from the coupling in Eq. (1)
is suppressed.

2 This can, for example, descend from a left-right symmetric UV
completion [39].

The relaxation mechanism can be described as follows.
The φ field rolls down its potential until it reaches a crit-
ical velocity φ̇c when there is an exponential production
of gauge bosons, which makes the relaxion slow down due
to the transfer of its energy to the gauge bosons. This
back-reaction mechanism becomes clear once we examine
the equations of motion for φ and for a massive vector

Vµ with interaction L ⊃ φ/(4f)Vµν Ṽ
µν ,

φ̈− gΛ3 + g′Λh2 +
Λ4
b

f ′
sin

φ

f ′
+

1

4f
〈V Ṽ 〉 = 0, (8)

V̈± + (k2 +m2
V ∓ k

φ̇

f
)V± = 0, (9)

where the 〈V Ṽ 〉 is the expectation value of the quantum
operator and V± refers to the two transverse polarizations
of Vµ.3 Note that V+ has a tachyonic growing mode when

ω2
k,+ ≡ k2 +m2

V − k
φ̇
f < 0. Taking into account that the

first mode that becomes tachyonic is kc = φ̇/(2f), which
is the one for which ωk,+ is minimum, we get that V+
grows exponentially for

|φ̇| & φ̇c ∼ 2f mV . (10)

Consequently, the term 〈V Ṽ 〉 becomes the dominant one

in the equation of motion for the relaxion field, making φ̇
decrease. After φ has slowed down, the constant cosine
potential acting as a barrier can make the relaxion evo-
lution stop. If V is a massive SM gauge boson, then its
mass depends on the Higgs field, implying that condition
(10) is not satisfied when the Higgs field value is large
so there is no relevant particle production in this regime.
To obtain the correct value of the electroweak scale, the
back-reaction should be triggered when the mass of the
EW bosons is mZ , i.e. for φ̇c ∼ 2fmZ , where mZ is the
SM Z boson mass. The parameters of the model in (1)
should be arranged such that this back-reaction turns on
when φ is close to the critical value Λ/g′, generating a
parametric hierarchy between the cutoff scale Λ and the
electroweak scale. This happens if the classical Higgs
field h follows closely the minimum of its potential.

There are several conditions that should be fulfilled in
order to get a successful stopping mechanism using par-
ticle production during inflation. We refer to the orig-
inal paper [17] for a discussion of such conditions (see
App. A for the summary of the required conditions that
should be consistently combined). Besides the require-
ments presented in [17], following [18] we impose that

the loop-induced coupling φFF̃ does not lead to efficient
photons production (see App. A for details).

Taking into account all the constraints on the particle
production mechanism, we identify the allowed param-
eter parameter space for the model in Eq. (1) which is

3 We neglect the longitudinal mode VL as it does not have a tachy-
onic instability.
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FIG. 1. Parameter space consistent with relaxation during
inflation using particle production (pp) as the stopping mech-
anism. In the orange region φ is unstable; in the yellow one
the relaxion is overproduced; the green region is compatible
with the relaxion being DM; the light green one results after
applying indirect detection bounds.

characterized by five parameters: the cut-off Λ, the cou-
pling g′, the barriers’ height Λb, the decay constant f ′

and the Hubble constant during inflation HI . The scale
f can be fixed in terms of the other parameters using the
particle production trigger condition in Eq. (10) and the
value of the slow-roll velocity, which gives

f =
g′Λ3

6HImZ
. (11)

Additionally, we assume g = g′ as the terms proportional
to g and g′ in Eq. (1) may be generated in a similar
manner in the UV model.

The coloured region in Fig. 1 shows the values of Λ, g′

for which the relaxion mechanism can be realized success-
fully. To each point it corresponds a range in the other
three free parameters.

Relaxion as Dark Matter. The relaxion can be pro-
duced via vacuum misalignment and through thermal
scattering. In the first case, after the relaxion gets stuck
in one of the barriers, it will eventually start to oscillate
freely when particle production becomes inefficient, lead-
ing to a energy density which red-shifts as non-relativistic
matter. Since in our scenario the relaxation dynamics
happens during inflation, the energy density stored in
the field is diluted away and the misalignment contri-
bution to the relaxion abundance is negligible [17] (see
also [2, 35]). The only possibility to produce a significant
relaxion abundance is then via scattering.

A population of relaxion particles is produced through
a + b ↔ φ + c interactions, where the species a, b, and c
belong to the SM and are in thermal equilibrium. The
relaxion abundance is controlled by the Boltzmann equa-
tion [41]

dYφ
dx

= − Γ

xH

(
Yφ − Y eq

φ

)
, (12)

where we define the dimensionless variables Yφ = nφ/s
and x = mφ/T with nφ being the relaxion number den-
sity, s the entropy density, and mφ the relaxion mass.
The equilibrium number density of φ is Y eq

φ = neqφ /s ≈
0.278/g∗ where g∗ is the number of relativistic degrees of
freedom, and H is the Hubble rate. The quantity Γ is
given by the sum over the interaction rates, Γ ≡

∑
i Γi

with Γi = nci〈σv〉i, where the sum includes gluon scatter-
ing [42], Primakoff scattering (via φγγ, φZγ, and φBB,
see e.g. [35, 43, 44]), Compton scattering (via φl̄l and
φq̄q, where l and q refer to a SM lepton and quark, re-
spectively, see e.g. [35, 43]), and Primakoff and Comp-
ton processes through the mixing with the Higgs (see
e.g. [35]). We neglected all the interference terms. We
expect this to be a sensible approximation, as we checked
that at each temperature the subdominant processes are
highly suppressed compared to the main one. As we dis-
cuss below, our relevant temperatures are always below
the pion mass, so the relaxion production through pion
conversion is Boltzmann-suppressed. At such low tem-
peratures, the dominant process is Compton scattering
γ + e↔ φ+ e, with a rate

ΓC ≈
3ζ(3)

π2
αem

m2
eT

f2e
, (13)

where fe is given in Eq. (4). Assuming that the ini-
tial number density of relaxion particles is negligible,
Yφ(x0) = 0, the solution of Eq. (12) is given by

Yφ(x) = Y eq
φ

[
1− exp

(
−
∫ x

x0

Γ

x′H
dx′
)]

, (14)

where T0 = mφ/x0 can be identified with the reheating
temperature (we will comment more on this below). If
the argument of the integral is large, then Yφ(x) ≈ Y eq

φ
and the correct DM abundance can only be met for a
very light (thus hot) DM component. We must therefore
be in the opposite situation, in which the argument of
the integral in Eq. (14) is much smaller than one, and we
can approximate Yφ by

Yφ(x) ≈ Y eq
φ

∫ x

x0

Γ

x′H
dx′. (15)

Compton scattering is active until electrons become non-
relativistic. This is why we need a rather low T0 (as
discussed in the following), which guarantees that the
interactions are out-of-equilibrium (Γi/H < 1) and that
the relaxion never enters in thermal equilibrium with the
SM bath.

The relaxion decays through the loop-induced cou-
plings to photons and SM fermions as in Eq. (3) (see
e.g. [39, 40]), by the leading interaction with the elec-
troweak gauge bosons in Eq. (1), and via the mixing with
the Higgs as in Eq. (1) for which we used the results in
[45]. We only consider 2-body decays in our analysis.
As we shall see in the following, relaxion dark matter is
typically in the keV range. In this mass ballpark the re-
laxion can only decay into photons and neutrinos. The
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decay into photons happens both via the mixing with the
Higgs and through the loop-induced coupling of Eq. (3).
For simplicity, we will assume in the following that neu-
trinos are Majorana fermions in which case the decay
through this channel is suppressed compared to the one
into photons as it proceeds via higher dimensional oper-
ators (see e.g. [40]). If neutrinos are Dirac fermions, this
can be the dominant decay channel. Even in this case,
the bounds from indirect detection on the DM decaying
into photons (see next section) imply stronger constraints
on the relaxion lifetime.

Results and discussion. In order to identify the param-
eter space that can lead to the correct DM abundance,
we performed a scan looking for points in {Λ, g′,Λb, f ′}
which can satisfy the DM hypothesis. For each point,
the value of HI is fixed by the requirement of the DM
abundance, and we compared this with the range allowed
from the conditions on particle production. The result is
shown in Fig. 1. The green region is the one where the re-
laxion is stable, all the bounds on a successful relaxation
with particle production can be simultaneously satisfied
and the relaxion abundance matches the observed DM
one. The light green part is the one in which, addition-
ally, the constraints from indirect detection are satisfied.
In the yellow region the relaxion can be made stable, but
it is overproduced. Finally, in the orange region the re-
laxion’s lifetime is shorter than the age of the universe.
The sharp cut in the green region at Λ & 104 GeV de-
scends from the condition that the relaxion slowly rolls
with a velocity that does not exceed the cutoff Λ2, af-
ter fixing HI to get the correct relic abundance (see for
details App. A).

On top of the above constraints, we applied a lower
bound on the DM mass from structure formation. Ob-
servations from Lyman-α forest [46, 47] are in tension
with a thermal relic below a few keV. Note that in our
case the DM velocity distribution is non-thermal, which
may weaken some of these bounds (see [38] and references
therein). It would be interesting to explore such feature
which we leave for future work. Here we will simply im-
pose that the relaxion should be heavier than 2 keV.

Figure 2 shows the minimal and maximal allowed DM
mass for each point, including all the range of T0. The
range of relaxion mass compatible with the DM hypoth-
esis is ∼ 2 keV− 70 keV.

The other free parameters of the model take the follow-
ing values: f ′ ∼ 1011 − 1013 GeV, Λb ∼ 103 − 104 GeV,
HI ∼ 10−10 − 10−6 GeV. Correspondingly, the scale f
lies in the range ∼ 106−107 GeV. The number of e-folds
required to realize the relaxation mechanism is at most
∼ 106, but in most of the parameter space it is . O(100).

Finally, Fig. 3 shows how the allowed region depends
on the value we choose for the reheating temperature.
As it was anticipated, a drawback of our scenario is that
the reheating temperature is rather low, T0 . 30 MeV, to
avoid overabundance. If thermal equilibrium is reached,
in this mass range the relaxion would be overabudant by
a factor of 10 − 1000. The reheating temperature can
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FIG. 2. Minimal and maximal relaxion masses for the allowed
parameter space, selecting the green region in Fig. 1.

be made larger than T0 if a dilution mechanism is active
above the latter. For example, the decay of additional
unstable particles can inject entropy in the plasma, re-
ducing Yφ. Alternatively, in the perturbative reheating
scenario, the temperature of the universe during the re-
heating phase can be much larger than the final reheating
temperature [48], while entropy injection keeps the relax-
ion abundance low. This could therefore allow baryoge-
nesis at high temperature. Here we just assume that the
relaxion abundance is negligible at T0.

Strong constraints on the model come from the ob-
servations of the galactic and extra-galactic diffuse X-
ray and γ-ray background. We consider the constraints
on decaying DM from [49] which uses the diffuse photon
spectra data from different satellites. For our parameter
space, which comprises masses around the keV range, the
relevant bounds are given by the satellites HEAO-1 [50]
and INTEGRAL [51]. In Fig. 1 we show in light green
the region in agreement with the bounds on the lifetime
of a scalar DM decaying into two photons, τφ & 1026−28 s
for mφ > 4 keV [49]. This constrains the relaxion mass to
be below mφ . 4 keV. Extrapolating the bound from [49]
to lower masses further constrains the parameter space,
but the result does not change significantly. This places
relaxion DM in a knife-edge position: on the one hand,
new results from indirect searches in the keV mass range
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FIG. 3. Allowed dark matter region as a function of the re-
heating temperature. The region shrinks for higher tempera-
ture T0. The plot on the top corresponds to the whole green
region in Fig. 1 while the one on the bottom selects the light
green region in Fig. 1.

could rule out this scenario; on the other hand, a numeri-
cal solution of the Boltzmann equation could weaken the
lower bound on the relaxion mass, thus opening the pa-
rameter space for lighter DM.

Another important constraints are given by astrophysi-
cal probes. We consider the cooling bounds on photopho-
bic axion-like particles of [39] to constrain our relaxion
DM parameter space. The relaxion coupling to electrons
(see Eq. (4)) is constrained from red giants observations,
which results in a lower bound for the coupling in Eq. (1)
of f & 3 × 107 GeV for mφ . 10−5 GeV. Even more
stringent is the bound from Supernova 1987A, which for
mφ . 0.1 GeV, disfavors f . 108 GeV. It should be no-
ticed that the uncertainties associated with the bounds
derived from astrophysical sources are typically within an
order of magnitude [39]. This implies that our scenario
is in a mild tension with such bounds. On the other
hand, the parameter space for successful relaxation with
particle production is also subject to some variation. In-
deed, the consistency conditions applied here are in gen-
eral conservative. We then expect that by relaxing some
of these requirements, one may open the resulting pa-
rameter space.

In this work, we showed that the relaxion mechanism
can naturally provide a phenomenologically viable warm
DM candidate in the keV mass range. We identified the
relevant parameter space in the scenario in which relax-
ation happens during inflation, using particle production
as a source of friction. We discussed astrophysical and
indirect detection constraints on our model.

Recently, there has been an increasing interest in di-
rect detection experiments that can probe the sub-MeV
mass range, in particular, in the development of new tech-
niques which would allow us to explore new regions of
the DM parameter space (see e.g. [52, 53]). The re-
laxion would be a well motivated DM candidate in the
keV range, which encourages new studies in this mass
ballpark.

It would be interesting to further explore the conse-
quences of such a model on structure formation, and
perform a dedicated analysis of the indirect detection
bounds. We leave these studies for future work.
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Appendix A: Conditions for relaxation during
inflation with back-reaction from particle production

In this appendix we discuss the requirements that
should be fulfilled in order to have relaxation during infla-
tion with back-reaction provided by particle production
[17]. First, the relaxion should not affect the inflationary
dynamics, implying that the relaxion potential is sub-
dominant compared to the inflaton one. This gives a
lower bound on the inflation scale HI :

Vφ ∼ Λ4 . H2
IM

2
Pl . (A1)

In addition, the assumption that φ evolves classically is
valid only if the classical evolution dominates over the
quantum fluctuations during inflation. Therefore we im-
pose that, over a Hubble time, (δφ)class & (δφ)quant with
(δφ)class ∼ V ′φ/(3H

2
I ) and (δφ)quant ∼ HI/(2π). This

gives us an upper bound on the inflation scale,

HI .

(
2π

3

)1/3 (
g′Λ3

)1/3
, (A2)

where we used that V ′φ ∼ g′Λ3.
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Furthermore, inflation should last long enough such
that the relaxion has time to scan the Higgs mass param-
eter. The minimal number of e-folds which is required to
scan a field range ∆φ ∼ Λ/g′, is given by

Ne ∼ (δφclass)
−1 Λ

g′
∼ 3H2

I

g′2Λ2
∼ Λ4

12m2
Zf

2
, (A3)

where in the last step we used that the slow roll velocity
is φ̇ ∼ 2mZf .

We also need to make sure that the Higgs field is effi-
ciently tracking the minimum of its potential during the
scanning process. This ensures that the back-reaction
from the exponential production of gauge bosons is trig-
gered when the VEV is at the electroweak scale. Hence,
we impose that

v̇

v2
. 1, (A4)

where v = (Λ2 − g′Λφ)1/2/
√
λ is the minimum of the

Higgs potential given in Eq. (1). Eq. (A4) needs to be
satisfied until the Higgs field value has reached the elec-
troweak scale.

Another necessary condition is that the average slow-
roll velocity during the scanning has to be large enough to
overcome the barriers generated by the cosine potential
in Eq. (1),

φ̇roll & Λ2
b , (A5)

where φ̇roll ∼ V ′φ/(3HI) + δ(t) with V ′φ = gΛ3 and δ(t)
being a contribution due to the cosine potential.

Additionally, once the back-reaction has turned on, the
barriers must be high enough to stop the relaxion evolu-
tion, requiring that

Λ4
b & gΛ3f ′. (A6)

We should also ensure that once relaxion is slowing
down, the Higgs mass does not change by an amount
larger than the correct value, i.e.

∆mh ∼
∆m2

h

mh
∼ 1

mh
g′Λ φ̇∆tpp . mh , (A7)

where ∆tpp is the characteristic time scale for particle
creation which can be estimate by taking into account
that the particle production is affected by the presence of
the thermal plasma, and is given by ∆tpp ∼ T 2f3/φ̇3 [17].
Here T is obtained by assuming that the relaxion kinetic
energy is transferred to radiation:

1

2
φ̇2 ∼ 1

2

(
V ′φ

3HI

)2

∼ π2

30
g∗T

4 . (A8)

To be conservative, we evaluate Eq. (A7) with φ̇ ∼ Λ2
b .

We impose that the kinetic energy lost by φ due to par-
ticle production is larger than the one gained by rolling
down the potential,

∆Krolling . ∆Kpp. (A9)

We estimate the two terms as ∆Kpp ∼ φ̇2/2 and

∆Krolling ∼ dK
dt ∆tpp, where dK/dt = −dV/dt ∼ gΛ3φ̇.

Again, to be conservative, we take φ̇2/2 ∼ Λ4
b .

On top of that, one should guarantee that the particle
production is faster than the expansion rate,

∆tpp < H−1I , (A10)

so that the energy dissipation efficently slows down the
relaxion field.

Furthermore, the scanning must have enough precision
to resolve the electroweak scale. The mass parameter µ2

h
cannot vary more than the Higgs mass over one period
of the cosine potential,

g′Λ δφ = g′Λ (2πf ′) . m2
h . (A11)

It is crucial that the induced coupling to photons in
Eq. (3) is suppressed enough, otherwise the dissipation
from particle production would be relevant independently
of the value of the Higgs mass. Then we have to impose
that the produced photons are efficiently diluted by the
cosmic expansion

∆tγ > H−1I , (A12)

where ∆tγ ∼ T 2f3γ/φ̇
3 with fγ given in Eq. (5). The

relaxion induced coupling to photons through the Higgs
mixing (see Eq. (1)) is very suppressed and the dilution
requirement in (A12) for this contribution is trivially sat-
isfied.

A last condition concerns the restoration of the shift
symmetry. After the relaxion has been trapped into one
of the wiggles, the temperature cannot be larger than the
confinement scale, T < Λb. This condition is only rele-
vant if the sector which generates the cosine potential
gets in thermal equilibrium with the SM model. This
can be estimated as follows. We assume the barriers
are generated by some QCD-like gauge group, which is

coupled to the relaxion via a term φG′G̃′/f ′. Then, we
naively estimate the rate for g′g′ ↔ ZZ interactions as
Γ ∼ T 5/(f2f ′2), which must be larger than the Hubble
rate HI to achieve thermalization.

All in all, the conditions that apply to the parameters
of our model are the following:
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HI &
g′Λ

3
slow-roll velocity (A13)

HI &
g′2Λ4

3v3EWλ
3/2

Higgs tracking the minimum (A14)

HI .
g′Λ3

3Λ2
b

overcome the wiggles (A15)

HI &

(
10−4g′5Λ15

√
g∗m3

ZΛ8
b

)1/4

efficient dissipation (A16)

HI &

(
10−4g′5Λ13

√
g∗m2

hm
3
ZΛ4

b

)1/4

small Higgs mass variation (A17)

HI &Min

[(
5

3

g′2Λ6

g∗π2Λ4
b

)1/2

,

(
230m8

Zg
′2Λ6

g5∗f
′8

)1/6
]

no symmetry restoration (A18)

HI &
Λ2

MPl
inflaton potential dominates (A19)

HI .

(
2π

3

)1/3

g′1/3Λ classical rolling dominates (A20)

HI &
16

9π2g2EW

φ̇3

T 2f3γ
photon dilution (A21)

HI .
16

9π2g2EW

φ̇3

T 2f3
particle production fast (A22)

g′ .
Λ4
b

Λ3f ′
stopping condition (A23)

g′ .
m2
h

2πf ′Λ
scanning with enough precision (A24)

f ′ &Λb,Λ and f & Λ consistency of the EFT (A25)
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