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Large scale analytic calculations in
quantum field theories

Johannes Blümlein

Abstract We present a survey on the mathematical structure of zero- and
single scale quantities and the associated calculation methods and function
spaces in higher order perturbative calculations in relativistic renormalizable
quantum field theories.

1 Introduction

Precise theoretical predictions within the Standard Model of elementary par-
ticles are indispensable for the concise understanding of the fundamental
parameters of this physical theory and the discovery of its potential exten-
sions. At the experimental side highly precise measurements exist at e+e−,
ep and pp–colliders as at LEP, HERA, and the LHC. In the near future the
high luminosity phase of the LHC will even provide much more precise data.
Other facilities, like the ILC [1] and a possible FCC [2], are currently planned.
During the last three decades enormous efforts have been made to calculate
key observables measured at these colliders at higher and higher accuracy, to
meet the challenge provided by the accuracy of the experiments.

For zero–scale quantities currently analytic massless calculations can be
performed at the five–loop and for massive calculations at the four-loop level.
Single scale calculations are performed in both cases at the three–loop level.
To perform these large scale calculations very demanding efforts are needed
at the side of their automation, computer–algebraic implementation, and
the use of highly efficient mathematical technologies. Therefore, the present
problems can only be solved within a very close interdisciplinary cooperation
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between experts in all these different fields and it cannot be the sole tasks
for theoretical physicists anymore.

While at one–loop order the mathematical solution for many scattering
processes has been known early, cf. [3–5], systematic representations at higher
loop order turned out to be more difficult. The core problem concerns the
analytic integration of Feynman parameter integrals. Here integration is un-
derstood as anti–differentiation. An essential question is to determine the
final solution space to which the respective integrals do belong and its math-
ematical structure, and to find the irreducible objects through which the cor-
responding integrals are represented. Furthermore, one needs efficient math-
ematical and computer–algebraic technologies to map the given Feynman
parameter integrals into the latter quantities.

In this paper we give a survey on the main technological steps to calculate
higher loop zero– and single–scale quantities in renormalizable quantum field
theories, with the focus on analytic integration techniques and the occurring
function spaces. The systematic theory of integration in this field is vastly
developing and many more new structures are expected to be revealed in the
future at higher loop levels and by considering the production of more parti-
cles in the final state of the respective scattering processes. These calculations
are needed to obtain stable theoretical predictions for the experimental preci-
sion measurements at the present and future colliders, which operate at high
luminosity.

The paper is organized as follows. In Section 2 we summarize the main
steps in multi–loop perturbative calculations. Different methods used in sym-
bolic calculations of zero– and single–scale Feynman parameter integrals are
described in Section 3. In Section 4 a hierarchy of function spaces, mainly
for single–scale integrals, is discussed which emerge in present multi–loop
calculations. Here we consider as well the representations in Mellin–N and
x–space. Section 5 contains the conclusions.1

2 Main Steps in Multi–Loop Perturbative Calculations

In most of the large projects, which are currently dealt with, the Feynman
diagrams are generated using packages like QGRAF [12] and performing the
color algebra for the gauge groups using Color [13]. Standardized algorithms
to obtain Feynman parameterizations exist, cf. e.g. [14–16]. At growing com-
plexity, to perform the Dirac- and spin-algebra will be a challenge even to
FORM [17–20]. One further maps the set of the contributing Feynman inte-
grals to master integrals using the integration–by–parts (IBP) technique [21]
based on Laporta’s algorithm [22], of which several implementations exist,
cf. e.g. [23–27] and others. The remaining main step is then the integration

1 For other recent surveys on integration methods for Feynman integrals see [6–11].
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of the master integrals. One possibility to inspect the problem on hand, is to
analyze the associated system of first order differential equations for the mas-
ter integrals. Sometimes it is also useful to consider, in addition, the related
system of linear difference equations. One may decouple these systems using
the algorithms implemented in the packages [28, 29], as e.g. Zürcher’s algo-
rithm [30]. This leads to a single differential equation or difference equation of
large order and degree and associated determining equations for the remain-
ing master integrals. If the former equations can be factored at first order, it
is known that the master integrals can be obtained in terms of indefinitely
nested sums or iterated integrals over certain alphabets, which are revealed
in the solution process, e.g. using difference field and ring theory [31–43],
algorithmically implemented in the package Sigma [44, 45]. This applies to a
wide class of physical cases. Most of the integration and summation methods
described in Section 3 apply to them and allow to obtain the integrals analyt-
ically in terms of the mathematical functions described in Section 4. Finally,
efficient numerical representations of these functions have to be provided to
obtain numerical predictions of the different observables for the experiments.

3 Symbolic Integration of Feynman Parameter Integrals

In the following we summarize main aspects of the analytic integration of
multi–loop Feynman parameter integrals. Of course these integrals can also
be evaluated numerically, without observing their particular analytic struc-
ture, to some accuracy and methods exist to separate the different pole contri-
butions in ε, cf. e.g. [46–56], which we will not discuss in the following. These
methods play a role, however, also for testing analytic results. In calculating
all the integrals required to solve a large scale problem, it is usually necessary
to combine different analytic methods, at least for the sake of efficiency. This
requirement finally led to the creation of these methods. In the future even
more and further refined technologies will be needed to solve more enhanced
problems. Finally, one ends up with sets of irreducible functions which span
the solutions, see Section 4. The numerical representation of these functions
is necessary and will be discussed in Section 4.3.

Non of the different techniques described in the following are of universal
character. In particular the solution of the most advanced problems will need
a combined and sensible use of various of them. All of them have to be handled
with care to achieve a steady stepwise reduction of the problem on hand
and to avoid to enlarge the complexity, given the limited time and memory
resources for the corresponding computer algebraic calculations. This will also
apply to future developments, since more complex calculations will require
further new and advanced technologies.

Many of the formalisms described below lead to summation problems.
Their solution requires dedicated and efficient algorithms in difference field
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theory as implemented in the packages Sigma [44, 45], EvaluateMultiSums
and SumProduction [57–59], see also [60].

3.1 The PSLQ Method

The PSLQ method applies to the solution of zero dimensional quantities,
i.e. physical quantities given by pure numbers. If the pool of constants is
known or can be guessed over which the corresponding quantity has a poly-
nomial representation over Q, a highly precise numerical representation of the
quantity and the individual monomials allows to determine the correspond-
ing rational coefficients, cf. [61]. This method has been applied recently in a
massive calculation of the five–loop QCD β-function [62]. Here the individual
master integrals certainly contain also constants of elliptic nature and prob-
ably beyond. However, they all cancel in the final result, which is spanned by
multiple zeta values (MZVs) [63,64], more precisely by {ζ2, ζ3, ζ5, ζ7}, beyond
pure rational terms. Let us illustrate the method by an example. We would
like to determine the harmonic polylogarithm H−1,0,0,1(1), cf. Section 4.2,
which is given by a polynomial of MZVs up to weight w=4. I.e. we have to
apply the PSLQ method over all monomials up to w=4

{

ln(2), ζ2, ζ3,Li4

(

1

2

)}

. (1)

An approximate numerical value of H−1,0,0,1(1) is

0.3395454690873598695906678484608602061387815339795751791304750

222490137419723806082682624196443182167020255697096551752247012

11749559277 (2)

and PSLQ yields

H−1,0,0,1(1) = − 1

12
ln4(2) +

1

2
ln2(2)ζ2 +

3

5
ζ22 − 3

4
ln(2)ζ3 − 2Li4

(

1

2

)

.

(3)

In particular, monomials like ln(2), ln2(2), ln3(2), ζ2, ζ3 do not contribute
here.
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3.2 Hypergeometric Functions and their Generalizations

Simpler Feynman–parameter integrals have representations in terms of gen-
eralized hypergeometric functions [65–67] and their generalizations such as
Appell-, Kampe-De-Feriet- and related functions [68–79]. This is due to the
hyperexponential nature of the Feynman–parameter integrals, implying real
exponents due to the dimensional parameter ε. These representations map
multiple integrals to single series (for generalized hypergeometric functions)
and double infinite series (e.g. for Appell series), which finally have to be
solved by applying summation theory. The simplest function is Euler’s Beta-
function implying the series of p+1Fp functions

B(a1, a2) =

∫ 1

0

dt ta1−1(1 − t)a2−1 (4)

3F2(a1, a2, a3; b1, b2;x) =
Γ (b2)

Γ (a3)Γ (b2 − a3)

∫ 1

0

dt ta3−1(1 − t)−a3+b2−1

×2F1(a1, a2; b1; tx). (5)

Representations of this kind are usually sufficient for massless and mas-
sive single–scale two–loop problems [80–83]. In the case of three–loop ladder
graphs Appell-functions are appearing [84,85]. There are some more classes of
higher transcendental functions of this kind, which have been studied in the
mathematical literature [71,72,76]. The corresponding representations allow
the expansion in the dimensional parameter ε. At a given level in the calcu-
lation of Feynman diagrams one will not find corresponding known function
representations and one has to invoke other methods of integration. One way
to derive analytic infinite sum representations are Mellin–Barnes integrals to
which we turn now.

3.3 Analytic Solutions using Mellin–Barnes Integrals

The higher transcendental functions discussed in Section 3.2 have represen-
tations in terms of Pochhammer–Umlauf integrals [65, 86, 87] and related to
it, by Mellin–Barnes integrals [88, 89]. They are defined by

1

(a+ b)α
=

1

Γ (α)

1

2πi

∫ i∞

−i∞

dzΓ (α+ z)Γ (−z)
bz

aα+z
, α ∈ R, α > 0, (6)

cf. e.g. [90]. Here the contour integral is understood to be either being closed
to the left or the right surrounding the corresponding singularities. The
Mellin–Barnes decomposition is analogous to the binomial (series) expansion
for α < 0. After its application, various more Feynman parameters can be
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integrated using the technique described in Section 3.2. In every application
the decomposition introduces a number of infinite sums of depth one ac-
cording to the residue theorem. There exist some packages for Mellin–Barnes
integrals [91–94], allowing also for numerical checks. Finally all the produced
sums have to be solved using multi–summation methods. Therefore one is
advised to apply this method very carefully. Not all expressions generated by
this method can be analytically summed using the presently know technolo-
gies, cf. [44, 45]. Sometimes Mellin–N space techniques may lead to elliptic
structures, while x–space techniques do not, cf. [95], and sum–representations
have to be cast back into definite integral representations first.

3.4 Hyperlogarithms

In a wide class of cases Feynman integrals can be represented by combinations
of Kummer–Poincaré integrals [96–100] for (a part) of their expansion coef-
ficients in ε. Let us assume one can isolate these terms, see [101], and forms
a corresponding finite multi–integral. The method of hyperlogarithms [102]
has originally intended to reorganize these integrals such that one can find a
sequence of integrations being linear in the Feynman parameter on hand. If
this is the case the result is given in terms of Kummer–Poincaré integrals. For
a corresponding implementation see [103]. The method has first been applied
to the usual massless Feynman integrals. A generalization for massive inte-
grals also containing local operator insertions has been given in [104], with
an implementation in [105]. Here also certain non–linear Feynman parameter
structures, breaking multi–linearity, could be integrated.

3.5 The Method of Differential Equations

In single–scale processes systems of ordinary differential equations for the
master integrals are naturally obtained by the IBP–relations differentiating
for a parameter x.2 The master integrals may then be calculated by solv-
ing these systems under given physical boundary conditions, [106–109]. One
considers the system

d

dx







f1
...
fn






=







A11 . . . A1,n

...
...

An1 . . . An,n













f1
...
fn






+







g1
...
gn






, (7)

2 Correspondingly, in the case of more parameters, partial differential equation sys-
tems are obtained.
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which may also be transformed into the scalar differential equation

n
∑

k=0

pn−k(x)
dn−k

dxn−k
f1(x) = g(x), (8)

with pn 6= 0, and (n − 1) equations for the remaining solutions, which are
fully determined by the solution f1(x). In setting up these systems one has
to perform the expansion in ε in parallel in the decoupling.

An important class of differential equations is formed by the first order
factorizing systems, after applying the decoupling methods [8,30] encoded in
Oresys [28], which appear as the simplest case. Eq. (7) may be transformed
into Mellin space, decoupled there and solved using the efficient methods of
the package Sigma, cf. Ref. [85].

The decoupled differential operator of (8) can be written in form of a
combination of iterative integrals, cf. Section 4.2,

f1(x) =

n+1
∑

k=1

γkgk(x), γk ∈ C, (9)

gk(x) = h0(x)

∫ x

0

dy1h1(y1)

∫ y1

0

dy2h2(y2)...

∫ yk−2

0

dyk−1hk−1(yk−1)

×
∫ yk−1

0

dykqk(yk) (10)

with qk(x) = 0 for 1 ≤ k ≤ m. Further, γm+1 = 0 if ḡ(x) = 0 in (8), and
γm+1 = 1 and qm+1(x) being a mild variation of ḡ(x) if ḡ(x) 6= 0. These solu-
tions are d’Alembertian [110] since the master integrals appearing in quantum
field theories obey differential equations with rational coefficients, the letters
hi, which constitute the iterative integrals, have to be algebraic. The solu-
tion can be computed using the package HarmonicSums [111]. More generally,
also Liouvillian solutions [112] can be calculated with HarmonicSums utilizing
Kovacic’s algorithm [113]. This algorithm has been applied in many massive
three–loop calculations so far, see also [85, 114–116].

If being transformed to the associated system of difference equations, the
same holds, if this system is also first order factorizing. The solution of the
remaining equations are directly obtained by the first solution.

In the multi–variate case, the ε–representation of a linear system of partial
differential equations

∂mf(ε, xn) = Am(ε, xn)f(ε, xn) (11)

is important, as has been recognized in Refs. [117, 118], see also [119]. The
matrices An can now be transformed in the non–Abelian case by

A′
m = B−1AmB −B−1(∂mB), (12)
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see also [120,121], and one now intends to find a matrix B to transform (11)
into the form

∂mf(ε, xn) = εAm(xn)f(ε, xn), (13)

if possible. This then allows solutions in terms of iterative integrals. A for-
malism for the basis change to the ε–basis has been proposed in [122] and
implemented in the single–variate case in [123, 124] and in the multi–variate
case in [125].

3.6 The Method of Arbitrary Large Moments

In the case of single–scale problems the corresponding class of Feynman in-
tegrals depends on a real parameter x ∈ [0, 1], which is given e.g. as the ratio
of two Lorentz invariants. For any power in ε one would like to find the corre-
sponding function in x analytically. In a series of cases, cf. e.g. [116,126–128],
one may represent the solution in terms of a formal Taylor series in the
variable x. The differential equations implied by the integration-by-parts
method [21, 22, 25–27] can now be turned into recurrences using the Tay-
lor series ansatz. In solving the corresponding system one may generate a
large number of Mellin moments for the different projections on the individ-
ual color factors and multiple zeta values [64]. This is the case independently
of the fact that the corresponding x– or N–space solution is given by iterative
integrals or iterative–noniterative integrals. The corresponding method has
been described in Ref. [129]. These moments can then be used as an input to
the method described in Section 3.7 to find the associated difference equa-
tions. In some applications for single scale massive three–loop integrals [114]
8000 moments could be calculated. This is by far more than possible using
standard methods like Mincer [130], MATAD [131] or Q2E [132, 133]. Based
on this number of moments, the formal power series may be used as highly
precise semi–analytic numeric representations, in case the corresponding se-
ries expansion has been performed for the physical quantity to be evaluated.
If analytic continuations are still necessary, the method cannot be applied
directly.

3.7 Guessing One-dimensional Integrals

As has been described in Section 3.6 single–variate multiple Feynman pa-
rameter integrals can be either expanded into formal Taylor series or can be
Mellin–transformed
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G(N) = M[f(x)](N) =

∫ 1

0

dxxN−1f(x). (14)

In both cases one tries now to find the associated difference equation [134]
to the set of moments, e.g. {G(2), G(4), ...., G(2m)},m ∈ N [135–138]. Indeed
such an equation exists in many cases, as e.g. for (massive) operator ma-
trix elements [139], but also for single–scale Wilson coefficients, Ref. [140].
If a suitably large number of moments has been calculated analytically the
associated series of rational numbers can now be used as input for the guess-
ing algorithm [141], which is also available in Sage [142], exploiting the fast
integer algorithms available there. The method finally returns the wanted
difference equation, and tests it by a larger series of further moments. This
method has been applied in Ref. [143] to obtain from more than 5000 moments
the massless unpolarized three–loop anomalous dimensions and Wilson coef-
ficients in deep-inelastic scattering [140, 144, 145]. Recently, the method has
been applied ab initio in the calculation of three–loop splitting functions [146]
and the massive two– and three–loop form factor [116, 147]. In the case of
a massive operator matrix element 8000 moments [114] could be calculated
and difference equations were derived for all contributing color and ζ-value
structures. Analytic solutions can be found using the package Sigma [44,45],
provided the problem is solvable in difference field theory. In other cases at
least the first order factorizing parts can be factored off. Other techniques
are then needed to determine the remainder part of the solution.

3.8 The Almkvist–Zeilberger Algorithm

Since Feynman parameter integrals, depending on an additional parameter
x, can be given as integrals over {xi|n1=1} ∈ [0, 1]n, they form the multi–
integral I(x), depending also on ε. The dependence on the real parameter
x may be transformed into one on an integer parameter N , see Section 3.6.
The Almkvist–Zeilberger algorithm [148, 149] is providing a method to find
either an associated differential equation for I(x) or a difference equation for
I(N), the coefficients of which are either polynomials in {x, ε} or {N, ε},

m
∑

l=0

Pl(x, ε)
dl

dxl
I(x, ε) = N(x, ε) (15)

m
∑

l=0

Rl(N, ε)I(N + l, ε) = M(N, ε). (16)

Both equations may be inhomogeneous, where the inhomogeneities emerge
as known functions from lower order problems. An optimized and improved
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algorithm for the input class of Feynman integrals has been implemented in
the MultiIntegrate package [85, 150]. It can either produce homogeneous
equations of the form (15,16) or equations with an inhomogeneity formed
out of already known functions.

3.9 Iterative-Noniterative Integrals and Elliptic Solutions

Non–first order factorizing systems of differential or difference equations for
the master integrals, cf. Section 3.5, occur at a certain order in massive Feyn-
man diagram calculations. Well–known examples for this are the sun–rise
integral, cf. e.g. [151–157], the kite integral [158–160], the three–loop QCD–
corrections to the ρ–parameter [161–163], and the three–loop QCD correc-
tions to the massive operator matrix element AQg [114]. After separating the
first–order factorizing factors a Heun differential equation [164] remains in
the case of the ρ–parameter. One may write the corresponding solution also
using 2F1–functions with rational argument [161, 165] and rational param-
eters. It is now interesting to see whether these solutions can be expressed
in terms of complete elliptic integrals, which can be checked algorithmically
using the triangle group [166].

In the examples mentioned one can find representations in terms of com-
plete elliptic integrals of the first and second kind, K and E, cf. [167, 168],
and the question arises whether an argument translation allows for a rep-
resentation through only K. Criteria for this have been given in [169, 170].
In the case of the three–loop QCD-corrections to the ρ–parameter, however,
this is not possible.

The homogeneous solution of the Heun equations are given by 2F1–

solutions ψ
(0)
k (x), k = 1, 2, at a specific rational argument. These integrals

cannot be represented such that the variable x just appears in the bound-
aries of the integral. The inhomogeneous solution reads

ψ(x) = ψ
(0)
1 (x)

[

C1 −
∫

dxψ
(0)
2 (x)

N(x)

W (x)

]

+ {1 → 2}, (17)

with N(x) and W (x) the inhomogeneity and the Wronskian. C1,2 are the
integration constants. Through partial integration the ratio N(x)/W (x) can

be transformed into an iterative integral. Since ψ
(0)
k (x) cannot be written

as iterative integrals, ψ(x) is obtained as an iterative non–iterative integral

[161, 171] of the type

Ha1,...,am−1;am,Fm(r(ym)),am+1,...aq
(x) =

∫ x

0

dy1fa1
(y1)

∫ y1

0

dy2...

∫ ym−1

0

dymfam
(ym)Fm[r(ym)]Ham+1,...,aq

(ym),(18)
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with r(x) a rational function and Fm a non–iterative integral. Usually
more than one non–iterative integral will appear in (18). Fm denotes any

non–iterative integral, implying a very general representation, cf. [161].3 In
Ref. [173] an ε–form for the Feynman diagrams of elliptic cases has been
found recently. However, transcendental letters contribute here. This is in
accordance with our earlier finding, Eq. (18), which, as well is an iterative
integral over all objects between the individual iterations and to which now
also the non–iterative higher transcendental functions Fm[r(ym)] contribute.
One may obtain fast convergent representations of H(x) by overlapping se-
ries expansions around x = x0 outside possible singularities, see Ref. [161]
for details.

Let us return to the elliptic case now. Here one one may transform the
kinematic variable x occurring as K(k2) = K(r(x)) into the variable q =
exp[iπτ ] analytically with

k2 = r(x) =
ϑ42(q)

ϑ43(q)
, (19)

by applying a 3rd order Legendre–Jacobi transformation, where ϑl, l = 1, ..., 4
denote Jacobi’s ϑ-functions and Im(τ) > 0. In this way Eq. (17) is rewrit-
ten in terms of the new variable. The integrands are given by products of
meromorphic modular forms, cf. [174–176], which can be written as a linear
combination of ratios of Dedekind’s η-function

η(τ) = q
1
12

∞
∏

k=1

(1 − q2k) . (20)

Depending on the largest multiplier k ∈ N, km, of τ in the argument of the
η-function, the solution transforms under the congruence subgroup Γ0(km).
One can perform Fourier expansions in q around the different cusps of the
problem, cf. [177, 178].

In the case that the occurring modular forms are holomorphic, one obtains
representations in Eisenstein series with character, while in the meromorphic
case additional η–factors in the denominators are present. In the former case
the q–integrands can be written in terms of elliptic polylogarithms in the
representation [155, 156]

ELin,m(x, y) =

∞
∑

k=1

∞
∑

l=1

xk

kn
yl

lm
qkl (21)

and products thereof, cf. [156]. The corresponding q–integrals can be directly
performed. The solution (17) usually appears for single master integrals.
Other master integrals are obtained integrating further other letters, so that
finally representations by H(x) occur. Iterated modular forms, resp. Eisen-

3 This representation has been used in a more special form also in [172] later.
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stein series, have been also discussed recently in [179,180]. Efficient numerical
calculations of modular forms based on q–series were obtained in [181].

For systems which factorize only to 3rd and higher order much less is
known.

3.10 Iterative Integrals of Functions with More Variables

The occurrence of several masses or additional external non–factorizing scales
in higher order loop- and phase–space integrals leads in general to rational
and root–valued letters with real parameter letters in the contributing alpha-
bet, cf. [95, 182–185]. In the case of the loop integrals one obtains letters of
the kind

1

1 − x(1 − η)
,

√

x(1 − x)

η + x(1 − η)
,
√

x(1 − η(1 − x), η ∈ [0, 1]. (22)

The iterative integrals and constants which appeared in [95,182] could finally
be all integrated to harmonic polylogarithms containing complicated argu-
ments, at least up to one remaining integration, which allows their straight-
forward numerical evaluation.

In the case of phase space integrals with more scales, e.g. [183, 184], also
letters contribute, which may imply incomplete elliptic integrals and iterated
structures thereof. Contrary to the functions obtained in Section 3.9 these are
still iterative integrals, because the boundaries of the phase–space integrals
are real parameters and not constants. The integrands could not by ratio-
nalized completely by variable transformations, see also [186]. Contributing
letters are e.g.

x√
1 − x2

√
1 − k2x2

,
x√

1 − x2
√

1 − k2x2(k2(1 − x2(1 − z2)) − z2)
, (23)

with k, z ∈ [0, 1]. The corresponding iterative integrals are called Kummer–
elliptic integrals. They are derived using the techniques described in Refs. [187–
189].

4 A Series of Function Spaces

Intermediary and final results for zero– and single–scale multi–loop calcu-
lations have representations by special functions as polynomials over Q. In
the case of of zero–scale quantities these are special numbers. For single scale
quantities one either uses finite nested sum representations in Mellin N–space
or iterative integral representations in x–space. Here x denotes a Lorentz in-
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variant ratio of two physical quantities. Both spaces are related to each other
by the Mellin transform (14), where f(x) denotes an iterative integral. The
zero–scale quantities can be obtained e.g. in the limit N → ∞ of these Mellin
transforms or by the values f(x = 1).

4.1 Classes of Nested Sums

The methods described in Section 3 very often lead to finite nested sum
representations for which algorithms exist [44, 45] to cast these sums into
indefinitely nested sums. They are given by

Sb,a(N) =

N
∑

k=1

gb(k)Sa(n), S∅ = 1, gc ∈ Ā, (24)

with Ā the associated alphabet of functions. The sums obey quasi–shuffle
relations [190, 191]. The simplest structures are the finite harmonic sums
[192, 193], where gb(k) = (sign(b))k/k|b|, b ∈ N\{0}. A generalization is
obtained in the cyclotomic case [194]. Here the characteristic summands are
ga,b,c(k) = (±1)k/(ak + b)c, with a, b, c ∈ N\{0}. Further, the generalized
harmonic sums have letters of the type bk/kc, with c ∈ N\{0}, b 6= 0, b ∈ R,
[195]. Another generalization are nested finite binomial and inverse-binomial
sums, containing also other sums discussed before. An example is given by

N
∑

i=1

(

2i

i

)

(−2)i
i

∑

j=1

1

j

(

2j

j

)S1,2

(

1

2
, 1

)

(j) =

∫ 1

0

dx
(−x)N − 1

x+ 1

√

x

8 − x

×
[

Hw12,1,0(x) − 2Hw13,1,0(x) − ζ2 (Hw12(x) − 2Hw13(x))
]

− 5ζ3

8
√

3

∫ 1

0

dx
(−2x)N − 1

x+ 1
2

√

x

4 − x
+ c1

∫ 1

0

dx
(−8x)N − 1

x+ 1
8

√

x

1 − x
, (25)

with c1 ≈ 0.10184720 . . . , cf. [189]. Here the indices wk label specific letters
given in [189]. Infinite binomial and inverse binomial sums have been con-
sidered in [196,197]. Given the general structure of (24) many more iterated
sums can be envisaged and may still appear in even higher order calculations.

4.2 Classes of Iterated Integrals

Iterated integrals have the structure
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Hb,a(x) =

∫ x

0

dyfb(y)Ha(y), H∅ = 1, fc ∈ A, (26)

where fc are real functions and are the letters of the alphabet A. Iterated
integrals obey shuffle relations [191,198] which allows to represent them over
a multinomial basis of fewer terms.

The simplest iterative integral having been considered in quantum field
theory are the Nielsen integrals for the two–letter alphabets {1/x, 1/(1− x)}
or {1/x, 1/(1+x)} [199–202], covering also the polylogarithms [202–204]. This
class has later been extended to the harmonic polylogarithms [205] build over
the alphabet {1/x, 1/(1 − x), 1/(1 + x)}. A further extension is to the real
representations of the cyclotomic polylogarithms, with {1/x, 1/Φk(x)} [194],
where Φk(x) denotes the kth cyclotomic polynomial. Another extension is
given by Kummer–Poincaré iterative integrals over the alphabet {1/(x −
ai), ai ∈ C}, [96–100]. Properties of these functions have been studied
in Refs. [195, 206]. In general one may have also more general denominator
polynomials P (x), which one can factor into

P (x) =

n
∏

k=1

(x− ak)

m
∏

l=1

(x2 + blx+ cl), ak, bl, cl ∈ R (27)

in real representations. One then performs partial fractioning for 1/P (x) and
forms iterative integrals out of the obtained letters. Further classes are found
for square–root valued letters as studied e.g. in Ref. [189]. In multi–scale
problems, cf. e.g. [95, 183–185] and Section 3.10, further root–valued letters
appear, like also the Kummer–elliptic integrals [184].

4.3 Classes of Associated Special Numbers

For the sums of Section 4.1 which are convergent in the limit N → ∞ and
the iterated integrals of Section 4.2 which can be evaluated at x = 1 one
obtains two sets of special numbers. They span the solution spaces for zero–
scale quantities and appear as boundary values for single–scale problems.
Examples for these special numbers are the multiple zeta values [64], associ-
ated to the harmonic sums and harmonic polylogarithms, special generalized
numbers [195] like Li2(1/3), associated to generalized sums and to Kummer–
Poincaré iterated integrals, special cyclotomic numbers [194] like Catalan’s
number, special binomial numbers [189], as e.g. arccot(

√
7), and special con-

stants in the elliptic case [161,207]. The latter numbers are given by integrals
involving complete elliptic integrals at special rational arguments and related
functions. In general these numbers obey more relations than the finite sums
and iterated integrals. One may use the PSLQ–method to get a first infor-



Large scale analytic calculations in QFT 15

mation on relations between these numbers occurring in a given problem and
proof the conjectured relations afterwards.

4.4 Numerical Representations

Physical observables based on single scale quantities can either be repre-
sented in Mellin N–space or x–space. Representations in Mellin N–space
allow the exact analytic solution of evolution equations [208] and scheme-
invariant evolution equations can be derived in this way [209, 210]. The x–
space representation is then obtained by a single numerical integral around
the singularities of the respective quantity for N ∈ C, cf. [208], requiring to
know the complex representation of the integrand in N–space. In the case
of harmonic sums semi–numerical representations were given in [211, 212].
Furthermore, it is known that basic harmonic sums, except of S1(N), which
is represented by the Digamma function, and its polynomials, have a rep-
resentation by factorial series [213, 214], which has been used in [215, 216]
for their asymptotic representation, see also [217]. One uses then the recur-
sion relations, which can be obtained from (24), to move N ∈ C from the
asymptotic region to the desired point on the integration contour in the ana-
lyticity region of the problem. This can be done for the sums of the type being
described in Refs. [189,194,195] as well, since also in this case asymptotic ex-
pansions can be provided, at least for certain combinations of sums occurring
in the respective physical problem, cf. [85, 104]. In the case that the corre-
sponding relations are not given in tabulated form, they can be calculated
using the package HarmonicSums [111, 150, 189, 192–195, 218, 219]. Relations
for harmonic sums are also implemented in summer [192], and for generalized
harmonic sums in nestedsums [220], Xsummer [221], and PolyLogTools [222].

In other applications one may want to work in x–space directly. Here
numerical representations are available for the Nielsen integrals [200], the
harmonic polylogarithms [223–227], the Kummer–Poincaré iterative inte-
grals [227], and the cyclotomic harmonic polylogarithms [116]. These rep-
resentations are also useful to lower the number of numerical integrations for
more general problems, e.g. in the multi–variate case. The relations for the
corresponding quantities are implemented for the harmonic polylogarithms
in [205, 224] and for all iterative integrals mentioned, including general iter-
ative integrals, in the package HarmonicSums.

5 Conclusions

In parallel to the analytic higher–loop calculations in Quantum Field The-
ory the associated mathematical methods have been developed by theoretical
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physicists and mathematicians since the 1950ies. We witness a very fast de-
velopment since the late 1990ies approaching difficult massive problems at
two–loop and higher order and massless problems form three loops onward.
The classical methods of polylogarithms and Nielsen–integrals which were
standard means, turned out to be not sufficient anymore. Since then more
and more special number– and function spaces have been revealed, studied
and were brought to flexible practical use in very many applications. More-
over, a wide host of analytic integration and summation methods has been
developed during a very short period. In this way very large physics problems
could be solved analytically – a triumph of the exact sciences, also thanks
to various groundbreaking methods in computer algebra. In this context the
goal is to improve the accuracy of the fundamental parameters of the Stan-
dard Model of the elementary particles further. Within the present projects
this concerns in particular the relative precision of the strong coupling con-
stant αs(M

2
Z) to less than 1% and of the MS mass of the charm quark to

better than 1.5 %.
At even higher loop order and for more separated final state legs, in-

troducing more masses and kinematic invariants, one expects further math-
ematical structures to contribute. Possible structures of this kind could be
Abel–integrals [228] and integrals related to K3–surfaces [229]. More inclusive
methods, like the method of differential equations, can certainly determine
the degree of non–factorization of a physical problem. However, one would
like to know in a closer sense the respective analytic solution. Here cutting
methods can be of use since the underlying integrands can be systemati-
cally related to the final integral by (various) Hilbert-transform [230–232].4

In this way integrand structures are revealed, which are somewhat hidden in
the case of differential equations. This method has been advocated early by
M. Veltman [234], see also [235].

This process to master highly complex Feynman integrals using analytic
methods is of course just at the beginning and will develop further given the
present and future challenges in the field. All of these results put experimen-
tal analyses in precision measurements at the high energy colliders into the
position to analyze the data with much reduced theory errors and we will
get far closer in our insight into the structure of the micro cosmos to re-
veal its ultimate laws. The interdisciplinary joined effort by mathematicians,
theoretical and experimental particle physicists and experts in computer al-
gebra makes this possible and allows to answer quite a series of fundamental
scientific questions of our time.

I would like to give my warmest thanks to Peter Paule for his continuous
collaboration and support to the DESY–RISC collaboration, starting with
our first contacts in 2005, arranged by Bruno Buchberger. This scientific
symbiosis has produced a large number of methods to tackle quite a series
of difficult problems since, and is continuing to do so in the future. Physics,

4 For a recent application to the one–loop case, see e.g. [233].
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mathematics, and computer algebra profit from this and reach new horizons,
which, not at all, could have been imagined. In this way we follow together
the motto D. Hilbert has given to us:

Wir müssen wissen. Wir werden wissen.

Le but unique de la science, c’est l’honneuer de l’esprit humain.5
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Linéaires, (Chelsea Publ. Co, New York, 1953).
99. K.T. Chen, Trans. A.M.S. 156 (3) (1971) 359–379.

100. A.B. Goncharov, Math. Res. Lett. 5 (1998) 497–516.
101. A. von Manteuffel, E. Panzer, and R.M. Schabinger, JHEP 02 (2015) 120,

[arXiv:1411.7392[hep-ph]].
102. F. Brown, Commun. Math. Phys. 287 (2009) 925–958, [arXiv:0804.1660

[math.AG]].
103. E. Panzer, Comput. Phys. Commun. 188 (2015) 148–166,

[arXiv:1403.3385[hep-th]].
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147. J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider, Phys. Lett.

B 782 (2018) 528–532 [arXiv:1804.07313 [hep-ph]].
148. G. Almkvist and D. Zeilberger, J. Symb. Comp. 10 (1990) 571–591.
149. M. Apagodu and D. Zeilberger, Adv. Appl. Math. (Special Regev Issue), 37

(2006) 139–152.
150. J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle

Physics, Ph.D. Thesis, Linz U. (2012) arXiv:1305.0687[math-ph].
151. D.J. Broadhurst, J. Fleischer, and O. V. Tarasov, Z. Phys. C60 (1993) 287–302,

[hep-ph/9304303].
152. S. Bloch and P. Vanhove, J. Number Theor. 148 (2015) 328–364,

[hep-th/ 1309.5865].
153. S. Laporta and E. Remiddi, Nucl. Phys. B704 (2005) 349–386,

[hep-ph/0406160].
154. L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 54 (2013) 052303,

[hep-ph/1302.7004].
155. L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 55 (2014), no. 10 102301,

[hep-ph/1405.5640].
156. L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 56 (2015), no. 7 072303,

[hep-ph/1504.03255].
157. L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 57 (2016), no. 3 032304,

[hep-ph/1512.05630].
158. A. Sabry, Nucl. Phys. 33 (1962) 401–430.
159. E. Remiddi and L. Tancredi, Nucl. Phys. B907 (2016) 400–444,

[arXiv:1602.01481[hep-ph]].

http://www.arXiv.org/abs/[hep-ph/9605317]
http://www.arXiv.org/abs/[hep-ph/0007294]
http://www.arXiv.org/abs/[hep-ph/0411111]
http://www.arXiv.org/abs/[arXiv:0904.3563[hep-ph]]
http://www.arXiv.org/abs/[hep-ph/0504242]
http://www.arXiv.org/abs/[arXiv:0902.4091[hep-ph]]
http://www.arXiv.org/abs/[hep-ph/0403192]
http://www.arXiv.org/abs/[hep-ph/0404111]
http://www.arXiv.org/abs/[arxiv:1705.01508[hep-ph]]
http://www.arXiv.org/abs/[hep-ph/9304303]
http://www.arXiv.org/abs/[hep-th/1309.5865]
http://www.arXiv.org/abs/[hep-ph/0406160]
http://www.arXiv.org/abs/[hep-ph/1302.7004]
http://www.arXiv.org/abs/[hep-ph/1405.5640]
http://www.arXiv.org/abs/[hep-ph/1504.03255]
http://www.arXiv.org/abs/[hep-ph/1512.05630]
http://www.arXiv.org/abs/[arXiv:1602.01481[hep-ph]]


Large scale analytic calculations in QFT 23

160. L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, J. Math. Phys. 57

(2016), no. 12 122302, [hep-ph/1607.01571].
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189. J. Ablinger, J. Blümlein, C.G. Raab, and C. Schneider, J. Math. Phys. 55

(2014) 112301, [arXiv: 1407.1822 [hep-th]].
190. M.E. Hoffman, J. Algebraic Combin. 11 (2000) 49–68 [arXiv:math/9907173

[math.QA]].
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