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We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges.
Our calculations are performed on two 2 + 1-flavor ensembles generated using a 2-HEX-smeared
Wilson-clover action at the physical pion mass and lattice spacings a ≈ 0.116 and 0.093 fm. We
use a wide range of source-sink separations — eight values ranging from roughly 0.4 to 1.4 fm on
the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble — which allows us
to perform an extensive study of excited-state effects using different analysis and fit strategies. To
determine the renormalization factors, we use the nonperturbative Rome-Southampton approach
and compare RI′-MOM and RI-SMOM intermediate schemes to estimate the systematic uncertain-
ties. Our final results are computed in the MS scheme at scale 2 GeV. The tensor and axial charges
have uncertainties of roughly 4%, gT = 0.972(41) and gA = 1.265(49). The resulting scalar charge,
gS = 0.927(303), has a much larger uncertainty due to a stronger dependence on the choice of
intermediate renormalization scheme and on the lattice spacing.

I. INTRODUCTION

Nucleon charges quantify the coupling of nucleons to quark-level interactions and play an important role in the
analysis of the Standard Model and Beyond the Standard Model (BSM) physics. The isovector charges, gX , are
associated with the β-decay of the neutron into a proton and are defined via the transition matrix elements,

〈p(P, s)|ūΓXd|n(P, s)〉 = gX ūp(P, s)ΓXun(P, s) (1)

where the Dirac matrix ΓX is 1, γµγ5 and σµν for the scalar (S), the axial (A) and the tensor (T) operators, respectively.
They are straightforward to calculate in lattice QCD since they receive only connected contributions arising from the
coupling of the operator to the valence quarks, i.e. there are no contributions from disconnected diagrams. Lattice
calculations of these charges were recently reviewed by FLAG [1], and we note some calculations of them in the last
few years in Refs. [2–15].

The nucleon axial charge is experimentally well determined; the latest PDG value is gA = 1.2724(23) [16]. In
addition to its role in beta decay, the axial charge gives the intrinsic quark spin in the nucleon, and its deviation
from unity is a sign of chiral symmetry breaking. Since the axial charge is so well measured, it is considered to be a
benchmark quantity for lattice calculations, and it is essential for lattice QCD to reproduce its experimental value.

Unlike the axial charge, the nucleon scalar and tensor charges are difficult to directly measure in experiments. Thus,
computations of those observables within lattice QCD will provide useful input for ongoing experimental searches for
BSM physics. The generic BSM contributions to neutron beta decay were studied in Ref. [17], where it was shown
that the leading effects are proportional to these two couplings; thus, calculations of gS and gT are required in order
to find constraints on BSM physics from beta-decay experiments. The tensor charge is also equal to the isovector first
moment of the proton’s transversity parton distribution function (PDF), 〈1〉δu−δd. Constraining the experimental
data with lattice estimates of the tensor charge reduces the uncertainty of the transversity PDF significantly [18].
In experiment, there are multiple observables that could be used to constrain gT [19, 20], and the overall precision
will be greatly improved by the SoLID experiment at Jefferson Lab [21], providing a test of predictions from lattice
QCD. In addition, the tensor charge controls the contribution of the quark electric dipole moments (EDM) to the
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neutron EDM, which is an important observable in the search for new sources of CP violation. The scalar charge is
related via the conserved vector current relation to the contribution from the difference in u and d quark masses to

the neutron-proton mass splitting in the absence of electromagnetism, gS = δMQCD
N /δmq [22].

In this paper, we present a lattice QCD calculation of the isovector axial, scalar, and tensor charges of the nucleon
using two ensembles at the physical pion mass with different lattice spacings. This paper is organized as follows.
In Sec. II, we describe the parameters of the gauge ensembles analyzed, the lattice methodology, and the fits to the
two-point functions used to extract the energy gaps to the first excited state on each ensemble. We discuss different
analysis methods for estimating the three bare charges and eliminating the excited-state contaminations and present a
procedure for combining the multiple results in Sec. III. The procedure we follow for determining the renormalization
factors for the different observables using both RI′-MOM and RI-SMOM schemes is described in Sec. IV. In Sec. V, we
give the final estimates of the renormalized charges and discuss the continuum and infinite volume effects. Finally, we
give our conclusions in Sec. VI. In Appendix A, we show analysis results of the bare charges using the many-state fit,
which is an alternative model for excited-state contributions based on the contributions of noninteracting Nπ states
with relative momentum (~p)2 < (~pmax)2. In Appendix B, we list the bare charges determined on the two ensembles
studied in this work, along with data used in previous publications [2, 3].

II. LATTICE SETUP

A. Correlation functions

To determine the nucleon matrix elements in lattice QCD, we compute the nucleon two-point and three-point
functions at zero momentum,

C2(t) =
∑
~x

(Γpol)αβ 〈χβ(~x, t)χ̄α(0)〉 , (2)

CX3 (τ, T ) =
∑
~x,~y

(Γpol)αβ 〈χβ(~x, T )OX(~y, τ)χ̄α(0)〉 . (3)

Here, we place the source at timeslice 0, the sink at timeslice T , and insert the operator OX at the intermediate

timeslice τ . The latter is the isovector current OX = q̄ΓX
τ3

2 q, where q is the quark doublet q = (u, d)T , and χ =

εabc(ũTaCγ5
1+γ4

2 d̃b)ũc is a proton interpolating operator constructed using smeared quark fields q̃. We use Wuppertal

smearing [23], q̃ ∝ (1 + αH)Nq, where H is the nearest-neighbor gauge-covariant hopping matrix constructed using
the same smeared links used in the fermion action; the parameters are chosen to be α = 3.0 on both ensembles,
N = 60 on the coarse ensemble, and N = 100 on the fine ensemble. The spin and parity projection matrices are
defined1 as Γpol = 1

2 (1 + γ4)(1− iγ3γ5).

In order to compute CX3 , we use sequential propagators through the sink [24]. This has the advantage of allowing for
any operator to be inserted at any time using a fixed set of quark propagators, but new backward propagators must be
computed for each source-sink separation T . The three-point correlators have contributions from both connected and
disconnected quark contractions, but we compute only the connected part since for the isovector flavor combination
the disconnected contributions cancel out.

B. Simulation details

We perform our lattice QCD calculations using a tree-level Symanzik-improved gauge action and 2 + 1 flavors of
tree-level improved Wilson-clover quarks, which couple to the gauge links via two levels of HEX smearing [25]. We
use two ensembles at the physical pion mass: one with size 484 and lattice spacing a ≈ 0.116 fm which we call coarse,
and another with 644 and a ≈ 0.093 fm which we call fine. Both volumes satisfy mπL ≈ 4. On the coarse ensemble,
we perform measurements on 212 gauge configurations using source-sink separations T/a ∈ {3, 4, 5, 6, 7, 8, 10, 12}
ranging roughly from 0.4 to 1.4 fm. In addition, we make use of all-mode-averaging (AMA) [26, 27] to reduce the
computational cost through inexpensive approximate quark propagators. For T/a ∈ {3, 4, 5}, we use approximate

1 In this paper we use Euclidean conventions, {γµ, γν} = 2δµν .
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samples from 96 source positions per gauge configurations and high-precision samples from one source position for
bias correction, and for T/a ∈ {6, 7, 8, 10, 12} we use double those numbers. On the fine ensemble, we perform the
calculations on 442 gauge configurations using source-sink separations T/a ∈ {10, 13, 16} ranging roughly from 0.9
to 1.5 fm. AMA is applied with 64 sources with approximate propagators and one source for bias correction per
gauge configuration. Table I summarizes the parameters and the number of measurements performed on each of the
ensembles.

On each gauge configuration, a random initial source position is chosen and the others are evenly separated and
distributed throughout the volume. We always bin all of the samples on each configuration to account for any spatial
correlations. In addition, we have tested for autocorrelations by binning the configurations in groups of 2, 4, 8, and
16: no significant trends were identified in the estimated statistical uncertainty and therefore we elected not to bin
samples from different configurations.

Ensemble ID Size β amud ams a [fm] amπ mπ [MeV] mπL Nconf T/a NAMA
meas NHP

meas

coarse 484 3.31 −0.09933 −0.04 0.1163(4) 0.0807(12) 137(2) 3.9 212
{3, 4, 5}

{6, 7, 8, 10, 12}

40704

81408

424

848

fine 644 3.5 −0.05294 −0.006 0.0926(6) 0.0626(3) 133(1) 4.0 442 {10, 13, 16} 56576 884

TABLE I: Parameters of the ensembles and measurements used in this work. The lattice spacing is taken from Ref. [25], where it is set using
the mass of the Ω baryon at the physical point. Nconf refers to the number of gauge configurations analyzed and NAMA

meas = 2×Nconf×NAMA
src

is the number of measurements performed using the AMA method with NAMA
src being the number of source positions used on each gauge

configuration. The factor of 2 in Nmeas accounts for the use of forward- and backward-propagating states. Finally, NHP
meas refers to the

number of measurements made with high-precision.

C. Fitting two-point functions

Inserting a complete set of states I =
∑
n |n〉〈n| into Eq. (2) yields the spectral decomposition

C2(t) =
∑
n

e−Ent(Γpol)αβ〈Ω|χβ |n〉〈n|χ̄α|Ω〉, (4)

where we use the shorthand χβ = χβ(0). Truncating this to the ground state and a single excited state, on each
ensemble we perform two-state fits to the two-point correlation functions at zero momentum:

C2(t) = a0e
−E0t + a1e

−E1t, (5)

where ai and Ei denote the amplitudes and the energies of the two states. For comparison, we also perform one-state
fits with C2(t) = a0e

−E0t only.
The blue and red points in Fig. 1 show the dependence of aE0 and a∆E1 = a(E1−E0) on the start time slice tmin/a

for the coarse (left) and fine (right) ensembles. The values for aE0 were obtained using both the one- and two-state
fits. The shaded blue and red bands indicate our preferred estimates of aE0 and a∆E1, respectively. Those correspond
to the two-state fits with tmin/a = 4 and tmax/a = 12 for the coarse ensemble and tmin/a = 5 and tmax/a = 16 for
the fine ensemble. The quality of the resulting fits is shown in Fig. 2 by plotting the two-point function divided by
its fitted ground-state contribution

C2(t)

a0exp(−E0t)
. (6)

Table II gives a summary of the estimated fit parameters on both the coarse and fine ensembles.

III. ESTIMATION OF BARE CHARGES

The spectral decomposition of the three-point function is

CX3 (τ, T ) =
∑
n,n′

e−En(T−τ)e−E
′
nτ (Γpol)αβ〈Ω|χβ |n〉〈n|OX |n′〉〈n′|χ̄α|Ω〉, (7)
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FIG. 1: Left column: Dependence of E0 on tmin estimated using one-state fits to the two-point function with tmax = 16 and tmax = 20 for
the coarse and fine ensemble, respectively. Moreover, we plot E0 extracted from two-state fits to the two-point function with tmax = 12 and
tmax = 16 for the coarse and fine ensemble, respectively. The blue shaded bands correspond to our preferred estimates of the ground-state
masses. Right column: Dependence of the energy gap, E1−E0, (red circles) on tmin using the previous two-state fits where the red shaded
bands refer to our preferred estimates.
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FIG. 2: Plots of the two-point function divided by the ground-state contribution, for both the coarse (left) and the fine (right) ensembles.
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Ensemble aE0 aE1 a1/a0 χ2/dof

coarse 0.5550(56) 1.08(11) 0.97(20) 0.45

fine 0.4279(36) 0.737(70) 0.89(12) 0.33

TABLE II: Estimated parameters of two-state fit to two-point correlation functions.

where OX = OX(0). This decomposition, along with Eq. (4), formally only holds in the continuum limit since the
lattice action includes a clover term and smearing that extend in the time direction. In practice, this means that the
shortest time separations may not be trustworthy. When the time separations τ and T −τ are large, excited states are
exponentially suppressed and the ground-state denoted by n, n′ = 0 dominates. In this limit, the ratio of CX3 (τ, T )
and C2(T ) yields the bare charge:

RX(τ, T ) ≡ CX3 (τ, T )

C2(T )

large τ,(T−τ)−−−−−−−−−→ gbare
X +

∑
n

[
bn

(
e−∆En(T−τ) + e−∆Enτ

)
+ b′ne

−∆EnT + . . .
]
, (8)

where ∆En ≡ En−E0 is the energy gap between nth excited state and ground state. Increasing T suppresses excited-
state contamination, but it also increases the noise; the signal-to-noise ratio is expected to decay asymptotically as
e−(E− 3

2mπ)T [28]. The ratio RX(τ, T ) produces at large T a plateau with “tails” at both ends caused by excited states.
In practice, for each fixed T , we average over the central two or three points near τ = T/2, which allows for matrix
elements to be computed with errors that decay asymptotically as e−∆E1T/2.

Excited-state contamination is a source of significant systematic uncertainties in the calculation of nucleon structure
observables. These contributions to different nucleon structure observables have been studied recently using baryon
chiral perturbation theory (ChPT) [29–32]. Contamination from two-particle Nπ states in the plateau estimates of
various nucleon charges, which becomes more pronounced in physical-point simulations, has been studied in Refs. [30,
32]. It was found that this particular contamination leads to an overestimation at the 5–10% level for source-
sink separations of about 2 fm. This suggests that the source-sink separations of ∼ 1.5 fm reached in present-day
calculations may not be sufficient to isolate the contribution of the ground-state matrix element with the desired
accuracy. On the other hand, in Ref. [31] a model was used to study corrections to the LO ChPT result for the axial
charge; it was found that high-momentum Nπ states with energies larger than about 1.5MN can be the cause for the
underestimating of the axial charge observed in Lattice QCD calculations. These contributions, however, cannot be
estimated in chiral perturbation theory. Refs. [29–32] find that multiple low-lying nucleon-pion states give important
contributions to RX(τ, T ), which is in stark contrast to the commonly-used fit model based on a single excited state.

In the remainder of this section, we discuss the analysis methods we employ to study and suppress excited-state
contributions to the axial, scalar, and tensor charges. We start with estimating the bare charges using the standard
‘ratio method’ in Sec. III A. In Sec. III B, we discuss the use of the summation method in addition to presenting a
two-state fit model to the summations, which was inspired by the calculation in Ref. [10] that quotes a percent-level
uncertainty for gA. Furthermore, we employ a two-state fit to the ratios RX(τ, T ), which is presented in Sec. III C.
Finally, in Sec. III D, we explain the procedure we follow to combine the estimates from the different fit strategies
and extract final values for the bare charges.

A. Ratio method

The ratio method is a simple approach that allows for excited-state effects to be clearly seen. Figures 3 to 5 show our
results for the isovector axial, scalar, and tensor charges on the coarse (top rows) and fine (bottom rows) ensembles.
The first columns of those figures show the ratios yielding the different charges as functions of the insertion time τ/a
shifted by half the source-sink separation, i.e. (τ − T/2)/a. The different colors correspond to the ratios obtained
using different source-sink separations. For the axial and scalar charges (particularly on the coarse ensemble), there
appears to be a jump in the data from τ = 0 to τ/a = 1, which is expected because even in the continuum limit the
spectral decomposition in Eq. (7) assumes a nonzero separation between the interpolating operator and the current.
On the other hand, the data appear to vary smoothly between τ = a and τ = T − a, suggesting that the effect of the
lack of a transfer matrix is mild.

As explained in Sec. II, when the times τ and T − τ0 are large, the ratios become time-independent. One observes
increasing (for gbare

A and gbare
S ) or decreasing (for gbare

T ) trends for the plateau values as the time separations are
increased and clear curvatures indicating the significant contributions from excited states. We estimate the different
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FIG. 3: Results for the isovector axial charges on the coarse (top row) and fine (bottom row) ensembles using the ratio and summation
methods. The first column shows the dependence of the ratios on the operator insertion time τ and the source-sink separation T . Different
source-sink separations are displayed in different colors. The blue circles in the second column show the values of the charges estimated by
averaging the two or three central points of RA(τ, T ) near τ = T/2 and their dependences on T/2. The red squares in the second column
show the resulting bare isovector axial charges using the summation method. Here, we show the dependences of the obtained axial charge
on the minimal source-sink separations included in the fit Tmin. The open symbol indicates a poor fit with p-value less than 0.02.

charges by averaging the central two or three points near τ = T/2. The blue circles in the second columns of Figs. 3
to 5 are the estimated charges from the plateaus plotted against T/2. We know that the excited-state contributions
to RX(τ, T ) decay as e−∆E1T/2 which results eventually in a plateau when the source-sink separation is large enough.
We observe on both the coarse and fine ensembles that the scalar charge reaches a plateau as expected with increasing
T/2. This does not happen in the case of the tensor charge, indicating that this method fails to reliably control
excited states for gT . For the axial charge, a plateau is possibly reached at the largest values of T/2, although this
coincides with the presence of particularly large statistical uncertainties.

B. Summation method

For studying the excited-state contributions, we use in addition to the aforementioned ratio method, the summation
method [33, 34]. The summation method allows improving the asymptotic behavior of excited-state contributions
through summing ratios at each source-sink separation T . The summed ratios can be shown to be asymptotically
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FIG. 4: Results for the isovector scalar charge using the ratio and summation methods. See the caption of Fig. 3 for explanations.

linear in the source-sink separation,

SX(T ) ≡
T−τ0∑
τ=τ0

RX(τ, T ) = c0 + Tgbare
X +O(Te−∆E1T ) +O(e−∆E1T ). (9)

We choose τ0/a = 1. The matrix element can then be extracted from the slope of a linear fit to SX(T ) at several
values of T . The leading excited-state contaminations decay as Te−∆E1T .

For performing the fits of the summation method on the coarse ensemble, we vary the fit range by fixing the
maximum source-sink separation included in the fit to Tmax/a = 12 and changing the minimal source-sink separation,
Tmin/a. The obtained results for the three charges on the coarse ensemble are displayed as red squares in the upper
right panels of Figs. 3 to 5 which demonstrate the dependences of gbare

X on Tmin/a. Here, we see that the obtained
gbare
A shows a slight increase when increasing from the shortest Tmin and gbare

T shows a somewhat larger decrease,
whereas gbare

S is flat. We eventually reach a plateau in all cases. The fit quality is measured by computing the p-value
and the open symbols refer to fits with p-value < 0.02. The red squares in the lower right panels of Figs. 3 to 5 show
the results for the summation method on the fine ensemble including all three available source-sink separations, which
leads to one summation point at Tmin/a = 10.

The numerous source-sink separations used for calculations on the coarse ensemble allow us to perform the fit to the
summations in Eq. (9) including contributions from the first excited state. This leads to two additional fit parameters
c1 and c2 where ∆E1 is estimated from two-state fit to the two-point correlation function. The fit function becomes

SX(T ) = c0 + gbare
X T + c1Te

−∆E1T + c2e
−∆E1T . (10)
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FIG. 5: Results for the isovector tensor charge using the ratio and summation methods. See the caption of Fig. 3 for explanations.

In Fig. 6, we show the results of such a fit for all three charges. As before, we fix Tmax/a = 12 and vary Tmin. The
results in Fig. 6 show that the fits for the different charges are stable although with relatively large statistical errors.
The endcaps of the error bars refer to the resulting statistical uncertainties when fixing ∆E1 in Eq. (10) to its central
value whereas the vertical lines of the error bars result from taking the uncertainties in ∆E1 into consideration when
evaluating the fit in Eq. (10). We see that fixing ∆E1 to its central value has little to no effect on the final results.

C. Two-state fit of the ratio

In this section, we study including the contribution from a single excited state when fitting the ratio, RX(τ, T ).
This is performed using the fit function

RX(τ, T ) = gbare
X + bX

(
e−∆E1τ + e−∆E1(T−τ)

)
+ b′Xe

−∆E1T . (11)

Here, ∆E1 is estimated from two-state fit to the two point function. We perform the stability analysis for this method
by fitting to all points with τ ∈ [τ0, T − τ0] and varying τ0. As previously noted, the ratios appear smooth starting
from τ/a = 1 and therefore we choose to start from τ0/a = 1 in order to judge the approach to a plateau. However,
for our final selection of results in the next subsection, we will not use τ0/a smaller than 3.

The circles with the outer statistical uncertainties in the plots of Fig. 7 show the resulting unrenormalized isovector
charges as we vary τ0 for the coarse (left column) and fine (right column) ensembles. The fit range includes source-sink
separations satisfying T ≥ 2τ0; this means that for the coarse ensemble, as τ0 is increased the shorter source-sink
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FIG. 6: The obtained unrenormalized axial, scalar, and tensor charges on the coarse ensemble from fits to the summations SX(T ) including
contributions from a single excited state. The endcaps of the error bars refer to the resulting statistical uncertainties when fixing ∆E1 in
Eq. (10) to its central value, whereas the vertical lines of the error bars result from taking the uncertainties in ∆E1 into consideration
when evaluating the fit in Eq. (10).

separations (which have the most precise data) will be excluded from the fit. We notice that for gbare
A , there is no

significant dependence on τ0. The estimates for gbare
S show a noisier signal on the fine ensemble. The signal for gbare

T
on the fine ensemble shows an upward trend in the central value for increased τ0 while the statistical uncertainties are
decreasing; this is normally not expected, whereas the signal on the coarse ensemble shows no to little dependence
on τ0. The inner error bars of Fig. 7 show the uncertainties when ∆E1 is fixed to its central value. The difference
between the inner and outer statistical uncertainties for the axial charge shows that the uncertainty on the energy gap
makes a large contribution to the uncertainties of the final results, particularly when including small time separations
in the fit. This may be because the small time separations are more sensitive to the model parameters used to remove
excited-state contributions. This observation applies also to the tensor charge but less to the scalar charge.

D. Combining different analyses

We have so far applied four methods for analyzing the excited-state contributions to the different observables on
each ensemble, namely

1. Ratio method

2. Summation method
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FIG. 7: Estimates of the unrenormalized isovector axial, scalar, and tensor charges from the two-state fit to RX(τ, T ) as functions of
τ0 for the coarse and fine ensembles. The inner error bars (endcaps) refer to the resulting statistical uncertainties when fixing ∆E1 in
Eq. (11) to its central value whereas the outer error bars (vertical lines) result from taking the uncertainties in ∆E1 into consideration
when evaluating the fit in Eq. (11).
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3. Two-state fit to RX(τ, T )

4. Two-state fit to SX(T ) (on the coarse ensemble)

For each method, we have plotted the estimated charges as functions of a Euclidean time separation T/2, Tmin, or τ0,
which we will generically call δt. For each bare charge, we want to choose a preferred δt for each method and then
combine the results from all methods to obtain a final result. In order to reduce the number of case-by-case decisions,
we have devised a procedure that we will follow to accomplish this. Our procedure is designed to fulfill the following
requirements ordered in decreasing importance:

• Fit ranges with poor fit quality are excluded, since that indicates the data are not compatible with the fit model
and therefore the fit result is not trustworthy.

• Estimations should be taken from the asymptotic plateau regime, where there is no significant dependence on
δt.

• Smaller statistical uncertainties are preferred.

• Larger time separations are preferred so that we reduce the residual excited-state contamination.

In the following, we outline the first part of the procedure which aims to find a preferred δt from each analysis
method.

1. If data are obtained from fits (all methods except the ratio method), we start from the smallest δt, δtmin, and
increase it until the fit quality is good. The criterion is for the fit to have a p-value greater than 0.02. We call
the smallest δt that fulfills this criterion δt0.

2. We fit the data starting from δt0 with a constant and test if the p-value of that fit is greater than 0.05. We
increase δt until this is the case. We name the smallest δt that fulfills this requirement δt1.

3. In order to make sure that we are well inside a plateau region, we take δt2 = δt1 + 0.2 fm. Rounded to the
nearest lattice spacing, this corresponds to the addition of 2a on each ensemble.

4. We find the data point with δt ≥ δt2 that has the smallest statistical uncertainty. We denote this point as δt3.

5. Starting from the largest available δt, we decrease δt until we find a data point with uncertainty no more than
20% larger than the uncertainty at δt3. We consider this data point to be the final estimation for the analysis
method under consideration. We name the time separation at this point δtf . The motivation here is that
for points of similar statistical uncertainty, larger δt is preferred because of the reduced residual excited-state
contamination.

Method δtmin δt0 δt1 δtf gbareA δt0 δt1 δtf gbareS δt0 δt1 δtf gbareT

Ratio 1.5a 3.5a 6a 1.268(38) 2a 4a 0.730(62) 5a - -

Summation 3a 4a 4a 6a 1.284(17) 3a 3a 6a 0.77(12) 5a 5a 7a 1.034(17)

Two-state fit to RX(τ, T ) 1a 1a 1a 3a 1.276(22) 1a 1a 3a 0.742(91) 1a 1a 4a 1.015(31)

Two-state fit to SX(T ) 3a 3a 3a 5a 1.28(10) 3a 3a 5a 0.93(91) 3a 3a 5a 1.050(61)

TABLE III: The final estimates for each method and observable on the coarse ensemble.

Method δtmin δt0 δt1 δtf gbareA δt0 δt1 δtf gbareS δt0 δt1 δtf gbareT

Ratio 5a 5a 8a 1.282(33) 5a 5a 0.895(47) 6.5a - -

Summation 10a 10a 10a 10a 1.283(32) 10a 10a 10a 1.25(35) 10a 10a 10a 0.959(24)

Two-state fit to RX(τ, T ) 1a 1a 1a 4a 1.259(23) 1a 1a 4a 1.11(20) 1a 1a 5a 0.990(27)

TABLE IV: The final estimates of the charges for each method on the fine ensemble.

On the fine ensemble, we do not have small values of δt for the ratio and summation methods. When δt1 = δtmin, this
suggests that the plateau could start earlier than our available data. In this case, we choose to take δt2 determined
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Ensemble gbareA gbareS gbareT

Coarse 1.282(17) 0.740(74) 1.029(20)

Fine 1.271(24) 0.913(54) 0.972(23)

TABLE V: Our final estimates of the charges on the coarse and fine ensembles.

on the coarse ensemble for the same method and same charge, and use it (scaled to account for the different lattice
spacings) as δt2 on the fine ensemble.

The above procedure gives multiple estimates for each observable: at most one from each method. The obtained
estimates of the charges for the coarse and fine ensembles are listed in Tab. III and Tab. IV, respectively. In those
tables, we also outline for each case the obtained δtmin which is the smallest available δt, δt0 resulting from the first
step in the above procedure and δt1 from the second step. For cases where δtmin = δt1, this indicates that there is no
significant residual excited-state contamination. This is always the case for two-state fits, indicating that the data are
compatible with the single-excited-state model. There are cases in the two tables where we have no remaining data
after the second or the third step of the above procedure to define a δtf and therefore we leave those fields empty,
as no reliable result could be obtained. We notice that we obtain similar δt1 for the ratio and summation methods
which indicates that it is appropriate to compare ratios at separation T with summation points at Tmin = T/2. In
this case (and it can be seen in Figs. 3–5), the summation method provides more precise results than the ratios; this
is in contrast to the usual comparison of ratio at separation T and summation at Tmin = T , which finds that the
summation method has larger uncertainties. The values for the axial, scalar, and tensor charges in both tables show
consistency within error bars between the different methods. The statistical uncertainties differ between the different
fit strategies; in particular we obtain relatively large error bars for the scalar charge on both ensembles.

For obtaining a final estimate of the charges, we combine the different analysis methods by performing a weighted
average to determine the central value. The statistical uncertainty is determined using bootstrap resampling. We test
the compatibility of the central value with the set of analysis methods using a correlated χ2. If the reduced χ2 is greater
than one, then this indicates the different analysis methods are not in agreement, and the corresponding systematic
uncertainty can be accounted for by scaling the statistical uncertainty by

√
χ2/dof. We list our final estimates of the

charges on both ensembles in Tab. V. In this table, the given uncertainties are obtained from bootstrap resampling
and all the χ2 values are acceptable. We obtain the largest χ2/dof = 1.04 for gbare

S from the fine ensemble.

IV. NONPERTURBATIVE RENORMALIZATION

We determine renormalization factors for isovector axial, scalar, and tensor bilinears using the nonperturbative
Rome-Southampton approach [35], in both RI′-MOM [35, 36] and RI-SMOM [37] schemes, and (for the scalar and
tensor bilinears) convert and evolve to the MS scheme at scale 2 GeV using perturbation theory. Our primary data
are the Landau-gauge quark propagator

S(p) =

∫
d4x e−ip·x

〈
ψ(x)ψ̄(0)

〉
, (12)

where ψ is a u or d field, and the Landau-gauge Green’s functions for operator O,

GO(p′, p) =

∫
d4x′d4x e−ip

′·x′
eip·x

〈
ψ(x′)O(0)ψ̄(x)

〉
. (13)

In our case, O is an isovector quark bilinear and there is only one Wick contraction, which is a connected diagram.
We evaluate both of these objects using four-dimensional volume plane-wave sources, yielding an average over all
translations in the lattice volume. From these, we construct our main objects, the amputated Green’s functions,

ΛO(p′, p) = S−1(p′)GO(p′, p)S−1(p). (14)

These renormalize as ΛRO = (ZO/Zψ)ΛO. We will not determine Zψ directly; instead, we will take ratios to determine
ZO/ZV and compute ZV from pion three-point functions.

A. Conditions and matching

The RI′-MOM scheme uses kinematics p′ = p, whereas RI-SMOM uses p2 = (p′)2 = q2, where q = p′ − p. In
both cases the scale is defined as µ2 = p2. Note that a comparison of RI-MOM and RI-SMOM renormalization was
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previously done using chiral fermions in Ref. [38].
For the vector current, the operator is Vµ = ψ̄γµψ. In RI′-MOM, the renormalization condition is

1

36
Tr
[
ΛRVµ(p, p)γνPµν

]
= 1, (15)

where Pµν = δµν − pµpν/p2 is the projector transverse to p, and for RI-SMOM the condition is

1

12q2
Tr
[
qµΛRVµ(p′, p)/q

]
= 1. (16)

Imposing the vector Ward identity, both of these imply that the quark field renormalization condition must be

−i
12p2

Tr
[
S−1
R (p)/p

]
= 1, (17)

although we do not evaluate this explicitly.
For the axial current, the operator is Aµ = ψ̄γµγ5ψ. In RI′-MOM, the condition is

1

36
Tr
[
ΛRAµ(p, p)γ5γνPµν

]
= 1, (18)

and for RI-SMOM, it is

1

12q2
Tr
[
qµΛRAµ(p′, p)γ5/q

]
= 1. (19)

Each of these is related by a chiral rotation to the corresponding condition on the vector current. This implies that
in the chiral limit, the renormalized axial current will satisfy the axial Ward identity, and therefore no matching to
MS is needed.

For the scalar bilinear, the operator is S = ψ̄ψ. In RI′-MOM, the condition is

1

12
Tr
[
ΛRS (p, p)

]
= 1, (20)

and for RI-SMOM, it has the same form,

1

12
Tr
[
ΛRS (p′, p)

]
= 1. (21)

For RI′-MOM, the matching to MS is known to three loops [39, 40], and for RI-SMOM it is known to two loops [41].
The anomalous dimension is obtained from the quark mass anomalous dimension via γS = −γm; we use the four-loop
MS result [42, 43].

We write the tensor operator as Tµν = ψ̄ 1
2 [γµ, γν ]ψ. In RI′-MOM, Gracey [40] starts from the decomposition

ΛTµν (p, p) = Σ
(1)
T (p2) 1

2 [γµ, γν ] + Σ
(2)
T (p2)

/p

p2
(γµpν − γνpµ) , (22)

and then imposes the condition Σ
(1),R
T (p2) = 1. Note that chiral symmetry breaking allows more terms to appear,

but they won’t contribute to any relevant trace. As Gracey notes, this term can be isolated via

Σ
(1)
T (p2) =

−1

72
Tr

[
ΛTµν (p, p)

(
1
2 [γµ, γν ] +

/p

p2
(γµpν − γνpµ)

)]
. (23)

This can be rewritten to obtain the renormalization condition in a simple form:

1

72
Tr
[
ΛRTµν (p, p) 1

2 [γβ , γα]PµαPνβ

]
= 1. (24)

For RI-SMOM, the condition is

1

144
Tr
[
ΛRTµν (p′, p) 1

2 [γν , γµ]
]

= 1. (25)

For RI′-MOM, the matching to MS is known to three loops [40], and for RI-SMOM it is known to two loops [41]. We
use the four-loop MS anomalous dimension [44]2.

2 Note that the sign of the three-loop term proportional to N2
f disagrees between the proceedings of Baikov and Chetyrkin [44] and the

first three-loop calculation, done by Gracey [45]. However, in an appendix of a later publication by Chetyrkin and Maier [46], the sign
agrees with Gracey, and therefore we use that sign.
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FIG. 8: Determination of ZV : coarse ensemble (left) and fine ensemble (right). This difference of ratios provides an estimate of Z−1
V .

Note that the vertical scale is a factor of four smaller for the fine ensemble.

B. Vector current

Following e.g. Refs. [25, 47], we determine ZV by computing the zero-momentum pion two-point function C2(t)
and three-point function C3(t), where the latter has source-sink separation T = Lt/2 and an operator insertion of the
time component of the local vector current at source-operator separation t. The charge of the interpolating operator
gives the renormalization condition

ZV [R(t1)−R(t2)] = 1, (26)

for 0 < t1 < T < t2 < Lt, where R(t) = C3(t)/C2(T ). We choose t2 = t1 + T ; the difference results in a large
cancellation of correlated statistical uncertainties, so that precise results can be obtained with relatively low statistics;
see Fig. 8. Results on the coarse ensemble are much noisier than on the fine one, although the statistical errors are
still below 1%. We take the unweighted average across the plateau, excluding the first and last three points. This
yields ZV = 0.9094(36) on the coarse ensemble and ZV = 0.94378(10) on the fine one.

C. Axial, scalar, and tensor bilinears

We use partially twisted boundary conditions, namely periodic in time for the valence quarks rather than the
antiperiodic condition used for sea quarks. The plane-wave sources are given momenta p = 2π

L (k, k, k,±k), k =

2, 3, . . . , L4a . By contracting them in different combinations, we get data for both RI′-MOM kinematics, p′−p = 0, and

RI-SMOM kinematics, p′ − p = 2π
L (0, 0, 0,±2k). We used 54 gauge configurations from each ensemble. However, the

modified boundary condition rendered one configuration on the coarse ensemble exceptional and the multigrid solver
was unable to converge; therefore, we omitted this configuration and used only 53 on the coarse ensemble. In addition,
on the coarse ensemble we also performed a cross-check using different kinematics, p, p′ ∈ { 2π

L (k, k, 0, 0), 2π
L (k, 0, k, 0)},

which ensure that in the RI-SMOM setup the components of p′ − p are not larger than those of p and p′. Since the
primary kinematics have p and p′ oriented along a four-dimensional diagonal and the alternative kinematics have
them oriented along a two-dimensional diagonal, these setups will sometimes be referred to as 4d and 2d, respectively.

After perturbatively matching the RI′-MOM or RI-SMOM data to the MS scheme and evolving to the scale 2 GeV,
there will still be residual dependence on the nonperturbative scale µ2 due to lattice artifacts and truncation of the
perturbative series. To control these artifacts, we perform fits including terms polynomial in µ2 and also, following
Ref. [48], a pole term. Our fit function has the form A + Bµ2 + Cµ4 + D/µ2; the constant term A serves as our
estimate of the relevant ratio of renormalization factors ZO/ZV . We also consider fits without the pole term, i.e. with
D = 0. We use two different fit ranges: 4 to 20 GeV2 and 10 to 30 GeV2.

The main results on the two ensembles are shown in Fig. 9. The RI-SMOM data are generally very precise (more
so than the RI′-MOM data), which makes the fit quality very poor in many cases. If the covariance matrix from the
RI′-MOM data is used when fitting to the RI-SMOM data, then the fit qualities are good except for some of the fits
without a pole term for the axial and tensor bilinears. For the RI′-MOM data, the fit quality is good when using a
pole term and also good for the scalar bilinear when omitting the pole term. Therefore, we elect to always include the
pole term in our fits for ZA/ZV and ZT /ZV . For ZS/ZV we use fits both with and without the pole term, however
the fit with a pole term to the RI′-MOM data is very noisy and therefore we exclude it.
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FIG. 9: Ratios of renormalization factors ZA/ZV , ZS/ZV , and ZT /ZV on the coarse (left) and fine (right) ensembles, determined using
the RI′-MOM (green circles) and RI-SMOM (orange squares) intermediate schemes and then matched to MS at scale 2 GeV. For most
points, the statistical uncertainty is smaller than the plotted symbol. The solid curves are fits to the µ2-range from 4 to 20 GeV2, and
the dashed curves are fits to the range 10 to 30 GeV2. To reduce clutter, uncertainties on the fit curves are not shown. For the fits that
include a pole term, the fit curve without the pole term is also plotted, in the range 0 < µ2 < 6 GeV2. The fits for ZS/ZV without a pole
term are shown using desaturated colors. The open symbols near µ2 = 0 provide the final estimate for each intermediate scheme; their
outer (without endcap) and inner (with endcap) error bars show the total and statistical uncertainties. The filled dark gray diamonds are
the final estimates that combine both schemes.
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FIG. 10: Check of alternative kinematics for ratios of renormalization factors on the coarse ensemble. The data with momenta along
four-dimensional diagonals and the final combined estimates are repeated from Fig. 9. The points with open symbols have momenta along
two-dimensional diagonals and the curves are fits to those points in the µ2-range from 4 to 15 GeV2. For the fits that include a pole term,
the fit curve without the pole term is also plotted, in the range 0 < µ2 < 6 GeV2. The fits for ZS/ZV without a pole term are shown
using desaturated colors.

To account for the poor fit quality for some of the RI-SMOM fits, we scale the statistical uncertainty of the estimated
ratio of renormalization factors by

√
χ2/dof whenever this is greater than one. For each intermediate scheme, we take

the unweighted average of all fit results as the central value, the maximum of the statistical uncertainties, and the
root-mean-square deviation of the fit results as the systematic uncertainty. We combine results from both schemes in
the same way to produce our final estimates, with the constraint that both schemes are given equal weight. These
estimates are also shown in Fig. 9. For ZS/ZV there is a large discrepancy between the two intermediate schemes,
which leads to a large systematic uncertainty. This discrepancy is smaller on the fine ensemble, suggesting that it is
caused by lattice artifacts.

Figure 10 shows the second set of kinematics on the coarse ensemble. These data do not reach as high in µ2;
therefore, we choose to fit to a single range of 4 to 15 GeV2. We use the same fit types as for the first set of
kinematics, and the results (which can seen from the values of the curves at µ2 = 0) are consistent with the final
estimates from the first set of kinematics.

Our final estimates of the renormalization factors, after adding errors in quadrature, are given in Table VI. The
uncertainty on ZS is more than 10% and we obtain percent-level uncertainties on ZA and ZT . In our previous
publications using this lattice action [2, 3, 51], we used different values for these renormalization factors, which are
listed in Table VII. These previous values were all obtained using an RI(′)-MOM type scheme. Because of our large
uncertainty, ZS is in agreement with the previous value. The latter is also in agreement with our result from only
the RI′-MOM scheme. Our result for ZT is also consistent with the previous value. However, we find that ZA is
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ZV ZA ZS ZT

coarse 0.9094(36) 0.9703(170) 1.0262(1521) 0.9611(134)

fine 0.9438(1) 0.9958(50) 1.0157(1065) 0.9999(48)

TABLE VI: Final estimates of renormalization factors on the two ensembles.

ZA ZS ZT

coarse 0.9086(21)(111) 1.115(17)(30) 0.9624(62)

fine 0.9468(6)(56) 1.107(16)(22) 1.011(5)

reference [49, 50] [25] [2]

TABLE VII: Previously used renormalization factors for this lattice action and these two lattice spacings.

5–7% higher than the values that we previously used, a discrepancy of three standard deviations on the coarse lattice
spacing and more than six on the fine one. The previous values would imply that ZA/ZV is within about one percent
of unity for both lattice spacings, which is very difficult to reconcile with Fig. 9. The discrepancy in central values of
ZA is smaller for the fine lattice spacing than the coarse one, suggesting that the two determinations could converge
in the continuum limit, although the uncertainties are large enough that it is also possible the discrepancy has no
dependence on the lattice spacing.

V. RENORMALIZED CHARGES

Multiplying the bare charges in Table V by the renormalization factors in Table VI and adding the uncertainties in
quadrature, we obtain the renormalized charges on the two ensembles, shown in Table VIII. The final values should be
obtained at the physical pion mass, in the continuum and in infinite volume. Since both ensembles have pion masses
very close to the physical pion mass and have large volumes, we neglect these effects as their contribution to the
overall uncertainty is relatively small. With two lattice spacings, we are unable to fully control the continuum limit;
instead, we choose to account for discretization effects by taking the central value from the fine ensemble and quoting

an uncertainty that covers the spread of uncertainties on both ensembles, i.e. δgX = max(δgfX , |gcX−gfX |+δgcX), where

gcX and gfX denote the charge computed on the coarse and fine ensembles, respectively. It should be cautioned that
since discretization effects are formally O(αsa), which varies by a factor of only about 3

4 between the two ensembles, it
is possible that the uncertainty from these effects is underestimated; additional calculations with finer lattice spacings
would be needed to improve this. We obtain

gA = 1.265(49), (27)

gS = 0.927(303), (28)

gT = 0.972(41). (29)

The overall uncertainties for the axial and tensor charges are roughly 4%. The scalar charge has a much larger
uncertainty, due to the large uncertainty in the renormalization factor and the large difference in central values
between the two ensembles.

Results on these two ensembles can be compared with our earlier calculations using the same lattice action and
heavier pion masses [2, 3], reevaluating those earlier works based on the more extensive study of excited-state effects in
Section III and using the renormalization factors from Section IV. For gA, the summation method with Tmin ≈ 0.7 fm
was found to be acceptable; therefore, we reuse the summation-method results from Ref. [3], which had Tmin ≈ 0.9 fm.
For gT , we found that the ratio method with the middle separation (T ≈ 1.2 fm), as used in Ref. [2] was inadequate;

Ensemble gA gS gT

coarse 1.244(28) 0.759(136) 0.989(23)

fine 1.265(24) 0.927(112) 0.972(24)

TABLE VIII: Renormalized charges on the two ensembles.
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FIG. 11: Isovector charges gA, gS , and gT versus pion mass. The inner error bars exclude the uncertainty on the renormalization factor,
which is fully correlated across all ensembles with the same lattice spacing. The smaller of the two volumes at mπ ≈ 0.25 GeV is displaced
horizontally and indicated with an open symbol. The final estimates based on the two physical-point ensembles are indicated by the dark
gray diamonds.

instead we will use the summation method. Finally, for gS the large statistical uncertainty means that the source-
sink separation used in Ref. [2] with the ratio method was larger than necessary, and here we will take the shortest
separation (T ≈ 0.9 fm) rather than the middle one. Some caution is also required here, as excited-state effects can
vary with the pion mass and the choice of smearing parameters in the interpolating operator. However, the earlier
calculations are generally less precise, which makes it more likely that excited-state effects are small compared with
the statistical uncertainty. The exception is the fully-controlled study of finite-volume effects at mπ ≈ 250 MeV,
which has a precision similar to this study; however, it is expected that the contribution from excited states is weakly
dependent on the lattice volume in the range we considered [30, 31].

The comparison with our earlier results is shown in Fig. 11. In these plots, the ensembles used for a study of short
time-extent effects are excluded and for two ensembles at mπ ≈ 250 MeV of size 323×48 and 243×48, we have increased
statistics. The data show no significant dependence on the pion mass, which justifies our neglect of this effect in the
final values of the charges. If we assume that finite-volume effects scale as m2

πe
−mπL/

√
mπL as for the axial charge

in chiral perturbation theory at large mπL [52], then the finite-volume correction can be obtained by multiplying the
difference between the two volumes at mπ ≈ 250 MeV by 0.28 and 0.23 for the coarse and fine physical-pion-mass
ensembles, respectively. One can see that this effect is also small compared with the final uncertainties.

This comparison provides the opportunity to revisit our earlier result for gA [3], which was unusually low. This was
partly caused by the lower value of ZA, but the value obtained for mπ = 149 MeV is still two standard deviations
below the physical-point coarse ensemble. It appears that this is a statistical fluctuation, since the methodology has
not been significantly changed.
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VI. SUMMARY AND OUTLOOK

We have computed the nucleon isovector axial, scalar, and tensor charges using two 2+1-flavor ensembles with a
2-HEX-smeared Wilson-clover action. Both ensembles are at the physical pion mass and have lattice spacings of 0.116
and 0.093 fm. We have demonstrated control over excited-state contamination by using eight source-sink separations
in the range from roughly 0.4 to 1.4 fm on the coarse ensemble and three source-sink separations in the range from 0.9
to 1.5 fm on the fine ensemble. The shorter source-sink separations are useful for the summation method but larger
ones are needed for the ratio method. In addition, the choice of T is observable-dependent: if excited-state effects are
drowned out by noise, then shorter separations are more useful. We have studied a range of different fitting strategies
to extract the different charges of the nucleon from ratios of correlation functions, namely the ratio, two-state fit to
the ratios, summation method, two-state fit to the summations (only on the coarse ensemble). We have studied the
stability of the different analysis methods and designed a procedure for combining the multiple estimates obtained
for each observable and giving an estimate of its final value. We have observed consistency between the different
analysis methods, although within larger error bars for the scalar charge. We have determined the renormalization
factors for the different observables using the nonperturbative Rome-Southampton approach and compared between
the RI′-MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties.

Our final results are given in Eqs. (27–29). The axial and tensor charges show overall uncertainties of roughly
4%. The obtained scalar charge, however, shows a much larger uncertainty, due to the large uncertainty in the
renormalization factor and the large difference in the central values we observe between the the coarse and fine
ensembles. In this study, since both ensembles have pion masses very close to the physical pion mass and have large
volumes, we neglect the pion-mass dependence and finite volume effects. We have shown that this is justified when
comparing our results to earlier calculations using the same lattice action and heavier pion masses. This calculation
supersedes the earlier ones since it improves on them by working directly at the physical pion mass, using much higher
statistics, and performing a more extensive study of excited-state effects.

Recent lattice calculations of the isovector charges are summarized in Fig. 12, although we caution that many of
them leave some sources of systematic uncertainty uncontrolled or unestimated; see the FLAG review [1] for details.
Our results are consistent with most of these previous calculations and also with the PDG value of gA.

In our calculation, we have found a large discrepancy for ZS between the two intermediate renormalization schemes;
it would be therefore useful to verify whether this goes away at finer lattice spacings, and to compare against other
approaches such as the Schrödinger functional [53] or position-space [54] methods.
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Appendix A: Many-state fit

In the two-state fit presented in Sec. II C, the obtained E1 is much higher than the lowest expected Nπ or Nππ
state. For this reason, in addition to using the two-state fit model, we also implement a many-state model for the
excited-state contributions.

Inspired by [62], the many-state fit models the contributions from the first few Nπ noninteracting states with relative
momentum (~p )2 < (~pmax)2. The noninteracting levels in a finite cubic volume with periodic boundary conditions are

http://arxiv.org/abs/de-sc/0009913
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FIG. 12: Recent lattice calculations of gA, gS , and gT [2–15]. When separate statistical and systematic errors are quoted, the inner error
bar (with endcap) indicates the statistical uncertainty and the outer one (without endcap) gives the quadrature sum. Open and filled
symbols denote unpublished and published work. Green, orange, and blue denote calculations done with 2, 2 + 1, and 2 + 1 + 1 dynamical
quark flavors, which is also indicated in the legend. Circles are used for individual calculations and this work is indicated with stars.
Squares are used for the averages from FLAG [1] and for the determination of gS using the conserved vector current relation and lattice
QCD input [22]. The vertical line with gray error band indicates the PDG value for gA [16].

determined by

E~n =

√(
2π~n

L

)2

+m2
π +

√(
2π~n

L

)2

+m2
N , (A1)

where L denotes the spatial extent of the lattice and ~n is a three-vector of integers. We are interested in states with
quantum numbers equal to that of a proton i.e. I(JP ) = 1/2(1/2

+
). However, the state of a pion and nucleon both at

rest does not contribute since its parity is opposite that of the nucleon. The shift between free and interacting energy
levels is small relative to the gap to the single nucleon state, as shown in [31]. This justifies the use of noninteracting
finite-volume spectrum for the values of ∆E~n = E~n −mN .

The obvious difficulty in performing such a fit comes from the many fit parameters needed to parametrize the
matrix elements and the overlap of the nucleon interpolating operator onto each of the Nπ states. In order to reduce
the number of fit parameters involved in the many-state fit, we assume that the coefficient for ground-to-excited
transitions is the same for all states, and the off-diagonal transition matrix elements between different excited states
are small but that excited states in the two-point function in the denominator of the ratio are important. This yields
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FIG. 13: The bare axial, scalar, and tensor charges obtained using the many-state fit to RX(τ, T ) for the coarse and fine ensembles. The
open symbols refer to fits with p-value < 0.02. The gray bands denote the final estimates of the charges from Tab. V.

a formula like the following3

RX(τ, T ) = gbare
X + bX

∑
~n 6=0

|~n|2≤|~nmax|2

(
e−∆E~nτ + e−∆E~n(T−τ)

)
+ cX

∑
~n 6=0

|~n|2≤|~nmax|2

e−∆E~nT . (A2)

where the three parameters are gbare
X , bX , and cX . Also, the above ~n fulfills |~n|2 ≤ |~nmax|2 and we exclude the state

where the nucleon and pion are at rest, ~n = 0. We perform the many-state fit using four different values of n2
max,

3 We thank Oliver Bär for pointing out that the ChPT prediction includes a factor of ~p2/(m2
π + ~p2) in the terms proportional to bX and

cX . However, for nonzero momenta in our lattice volumes this factor lies in the range [0.7, 1.0] and including it does not change the
qualitative behavior of these fits.
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β Size amud ams mπ [MeV] mπL gbareA gbareS gbareT

3.31 483 × 48 −0.09933 −0.04 137(2) 3.9 1.282(17) 0.740(74) 1.029(20)

3.5 643 × 64 −0.05294 −0.006 133(1) 4.0 1.271(24) 0.913(54) 0.972(23)

3.31 483 × 48 −0.09900 −0.04 149(1) 4.2 1.096(92) 0.812(103) 1.122(71)

3.31 323 × 48 −0.09756 −0.04 202(1) 3.8 1.151(113) 0.867(106) 1.105(92)

3.31 323 × 48 −0.09530 −0.04 254(1) 4.8 1.327(25) 0.859(19) 1.058(19)

3.31 243 × 48 −0.09530 −0.04 254(1) 3.6 1.278(42) 0.780(33) 1.080(30)

3.31 243 × 48 −0.09300 −0.04 303(2) 4.3 1.149(180) 0.700(141) 0.953(126)

3.31 243 × 48 −0.09000 −0.04 356(2) 5.0 1.290(123) 0.835(65) 1.082(96)

3.5 323 × 64 −0.04630 −0.006 317(2) 4.8 1.161(119) 0.858(94) 0.989(92)

TABLE IX: Bare charges used in Fig. 11.

n2
max ∈ {5, 10, 20, 50}.
Figure 13 shows a summary of the estimated unrenormalized isovector axial, scalar, and tensor charges as functions

of τ0 using this approach applied on both the coarse (left column) and fine (right column) ensembles. We notice that
the estimated charges at short τ0 depend significantly on n2

max and that increasing n2
max results in decreasing the

statistical uncertainties of the estimated charges. In addition, Fig 13 shows that the obtained charges for different
n2

max values tend to be consistent at the largest τ0. When comparing to our final estimates of the bare charges in
Tab. V (gray bands), we notice that the estimates from the many-state fit approach are consistent within error bars
and that the many-state fit leads to larger statistical uncertainties for gbare

A and gbare
S compared to other analysis

methods. The strong dependence on n2
max at short τ0 suggests that this method may be relatively unreliable and that

a more sophisticated model such as the one in Ref. [31] is needed to extend into the resonance regime.
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[19] A. Courtoy, S. Baeßler, M. González-Alonso, and S. Liuti, “Beyond-Standard-Model Tensor Interaction and Hadron
Phenomenology,” Phys. Rev. Lett. 115 (2015) 162001, arXiv:1503.06814 [hep-ph].

[20] M. Radici and A. Bacchetta, “First extraction of transversity from a global analysis of electron-proton and proton-proton
data,” Phys. Rev. Lett. 120 (2018) 192001, arXiv:1802.05212 [hep-ph].

[21] Z. Ye, N. Sato, K. Allada, T. Liu, J.-P. Chen, H. Gao, Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, “Unveiling the
nucleon tensor charge at Jefferson Lab: A study of the SoLID case,” Phys. Lett. B 767 (2017) 91–98, arXiv:1609.02449
[hep-ph].
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[36] M. Göckeler, R. Horsley, H. Oelrich, H. Perlt, D. Petters, P. E. L. Rakow, A. Schäfer, G. Schierholz, and A. Schiller,
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[54] V. Giménez, L. Giusti, S. Guerriero, V. Lubicz, G. Martinelli, S. Petrarca, J. Reyes, B. Taglienti, and E. Trevigne,
“Non-perturbative renormalization of lattice operators in coordinate space,” Phys. Lett. B 598 (2004) 227–236,
arXiv:hep-lat/0406019.

[55] A. Pochinsky, “Qlua.” https://usqcd.lns.mit.edu/qlua.
[56] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Manteuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi,

“Adaptive multigrid algorithm for the lattice Wilson-Dirac operator,” Phys. Rev. Lett. 105 (2010) 201602,
arXiv:1005.3043 [hep-lat].

[57] J. Osborn et al., “QOPQDP.” https://usqcd-software.github.io/qopqdp/.
[58] RBC, UKQCD Collaboration, R. J. Hudspith, “Fourier accelerated conjugate gradient lattice gauge fixing,” Comput.

Phys. Commun. 187 (2015) 115–119, arXiv:1405.5812 [hep-lat].
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