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Abstract

We consider the simplest possibility for a model of particle dark matter in which
dark matter has only gravitational interaction with the standard model sector. Even
in such a case, it is known that the gravitational particle production in an expanding
universe may lead to a correct relic abundance depending on the inflation scale and
the mass of dark matter particle. We provide a comprehensive and systematic analysis
of the gravitational particle production of fermionic and vectorial dark matter, and
emphasize that particles which are much heavier than the Hubble parameter but lighter
than inflaton can also be produced abundantly.
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1 Introduction

Gravitational particle production is a universal phenomenon which happens in the expanding
universe [1, 2]. If a field is not conformal, it feels the time-dependent background evolution
of the metric and results in finite number density even if we start with the adiabatic vacuum
with no particle excitation initially. Gravitational particle production in inflationary universe
was discussed in Refs. [3–5], where it was shown that the particle production happens during
the transition from inflationary (or de Sitter) era to the radiation-dominated or matter-
dominated universe. Depending on the mass of the particle, these gravitationally produced
particles can be dominant component of dark matter (DM). A typical number density of
produced particles during the transition is given by n ∼ H3

inf where Hinf denotes the Hubble
parameter during inflation for a scalar field with a minimal coupling to gravity if m . Hinf
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where m denotes the scalar field mass.#1 Note also that a light scalar field with m .
Hinf gravitationally develops condensation during inflation, whose subsequent oscillation
can account for the DM in the present universe (see e.g. Refs. [6, 7] for recent works on
general spectator fields).

Recently it was argued that the gravitational particle production also happens during
the reheating era in which the inflaton oscillates coherently, due to the fact that the cosmic
scale factor a(t) contains a small but rapidly oscillating part [8, 9]. Since the time scale of
the coherent oscillation is given by ∼ m−1inf , where minf denotes the inflaton mass around its
potential minimum, particles with mass smaller than minf are likely to be produced, along
the line of preheating in models where the inflaton directly couples to other fields [10–13].
The number density produced in this way is also given by n ∼ H3

inf for a minimally coupled
scalar. It is comparable to the contribution discussed above, but now the particle mass can
be as large as the inflaton mass minf . Since many inflation models have minf � Hinf , it opens
up a possibility that the super-Hubble mass particles are efficiently produced and become
a dominant component of DM. This scenario was further studied in detail in Refs. [14, 15].
See also Refs. [16,17] for some related works.#2 This class of scenario is interesting since we
do not need any particular interaction of DM with SM particles to account for the present
DM abundance. In this sense, it may be the simplest model of DM.

In this paper we consider production of a massive fermion and vector boson which only
have gravitational interaction. A fermion or vector boson may be more suitable as a can-
didate of purely gravitational DM since their interactions with the SM particles can be
naturally forbidden at the renormalizable level. For a singlet fermion ψ, the only possible
renormalizable interaction in the Lagrangian is L ∼ yiψ(LiΦ) + h.c. where Li (i = 1, 2, 3)
denotes the lepton doublet and Φ is the SM Higgs boson with yi being coupling constants.
This coupling is forbidden by, e.g., assuming that the SM fermions are charged under B−L
gauge symmetry but ψ is a singlet. Especially, ψ is absolutely stable if the Z2 subgroup of
U(1) B − L symmetry remains unbroken. For an Abelian hidden vector boson Aµ, the only
possible renormalizable interaction is the kinetic mixing with hypercharge photon, which
may also be forbidden by imposing discrete symmetry. For a scalar field φ, on the other
hand, one can always introduce a Higgs-portal coupling L ∼ −λφ2|Φ|2 which drives φ into
thermal bath unless the coupling constant λ is very small. Once thermalized, the DM abun-
dance is determined by the standard freezeout scenario [22, 23]. Thus fermion or vector
boson can be more likely to be purely gravitational DM.

The gravitational production of fermion or vector boson is qualitatively different from
the case of scalar field with minimal coupling to gravity. This is because the fermion and
(transverse) vector boson are conformal in the massless limit. One can choose a canonical
basis such that the dependence on the cosmic scale factor completely disappears. Thus there
is no particle production in the massless limit, which is similar to the case of a scalar field

#1 Precisely, Hinf should be regarded as the Hubble scale at the end of inflation. In this paper we take the
Hubble parameter H to be constant during inflation, which is a good approximation for our purpose.
#2 Gravitationally interacting particles are also produced by scatterings of the Standard Model (SM)

particles in thermal bath through the graviton exchange [18–21].
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with conformal coupling. The case of massive vector boson is a bit complicated since the
longitudinal component behaves rather like a minimally coupled scalar field and requires a
careful investigation.

In Sec. 2 we study the gravitational fermion production. In Sec. 3 we investigate the grav-
itational production of massive vector boson in detail. In particular, we carefully distinguish
the transverse and longitudinal mode and discuss how they behave under the time-dependent
background. We conclude in Sec. 4.

2 Fermion production

2.1 Fermion action in the FRW Universe

Let us consider an action of free Majorana fermion ψ, which satisfies the Majorana condition

ψ = −C−1ψT with C denoting the charge conjugation matrix,

S =

∫
d4x e

[
−1

2
ψ (eµaγ

aDµ −m)ψ

]
, (1)

where eµa denotes the vierbein with a, b, . . . and µ, ν, . . . represent local Lorentz and general
coordinate indices respectively, and e ≡ det(eµa) =

√
−g. The covariant derivative is given

by

Dµ = ∂µ +
1

4
ωabµ γ[aγb], (2)

where the spin connection is defined as

ωabµ = 2eν[a∂[µeν]
b] − eν[aeb]σeµc∂νecσ. (3)

In the Friedmann-Robertson-Walker (FRW) background,

ds2 = −dt2 + a2(t)δijdx
idxj = a2(τ)

(
−dτ 2 + δijdx

idxj
)
, (4)

the only non-zero components are

ωi
j0 = δjiH, (5)

whereH = a′/a is the conformal Hubble parameter, which is related to the Hubble parameter
H = ȧ/a through H = aH. Here and in what follows, the prime (dot) denotes the derivative
with respect to conformal time τ (physical time t). It is convenient to perform the rescaling

as ψ̃ ≡ a3/2ψ so that the action becomes

S =

∫
dτd3x

[
−1

2
ψ̃ (δµaγ

a∂µ − am) ψ̃

]
. (6)
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It is seen that the rescaled field has a canonical kinetic term and the action is independent
of the scale factor a in the massless limit m→ 0. In other words, a fermion is conformal in
the massless limit. Therefore, the rate of gravitational particle production is suppressed by
the fermion mass mψ.

It is convenient to work with the Fourier mode since we are interested in the free fermion:

ψ̃(~x, τ) =

∫
d3k

(2π)3
ψ~k(τ)ei

~k·~x. (7)

The equation of motion for the mode function is given by(
∂τγ

0 − i~k · ~γ − am
)
ψ~k(τ) = 0. (8)

Now let us expand the mode function as

ψ~k(τ) =
∑
h=±

[
u~k,h(τ)b~k,h + v~k,h(τ)b†

−~k,h

]
, (9)

where v~k,h = −C−1uT−~k,h and h denotes the helicity degree of freedom. The normalization

condition is taken as follows:

u†~k,h(τ)u~k,h′(τ) = v†~k,h(τ)v~k,h′(τ) = δhh′ , u†~k,h(τ)v~k,h′(τ) = 0. (10)

The creation and annihilation operators satisfy the following anti-commutation relation:{
b~k,h, b

†
~k′,h′

}
= (2π)3 δ(~k − ~k′)δhh′ ,

{
b~k,h, b~k′,h′

}
=
{
b†~k,h, b

†
~k′,h′

}
= 0, (11)

so that the original field satisfies the anti-commutation relation
{
ψ̃(τ, ~x), ψ̃†(τ, ~y)

}
= δ(~x−~y).

Let us write the mode function as

u~k,h(τ) =

(
u+~k,h(τ)

u−~k,h(τ)

)
⊗ ξ~k,h, (12)

where ξ~k,h denotes the eigenvector of the helicity, which satisfies (~σ · ~̂k)ξ~k,h = hξ~k,h with k̂ ≡
~k/|~k| and h = ±1. Taking ~k to be the z-direction, we have ξ~k,+ = (1, 0)T and ξ~k,− = (0, 1)T .
Adopting the Dirac representation for the gamma matrices, the equation of motion becomes

i∂τu
±
~k,h

(τ) + hku∓~k,h(τ)∓ amu±~k,h(τ) = 0, (13)

which may be cast into the second order form,

∂2τu
±
~k,h

(τ) +
[
ω2
k(τ)± i(am)′

]
u±~k,h(τ) = 0, ω2

k(τ) ≡ k2 + a2m2. (14)
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Note that u+~k,h and u−~k,h are not independent of each other and the normalization condition

implies ∣∣∣u+~k,h(τ)
∣∣∣2 +

∣∣∣u−~k,h(τ)
∣∣∣2 = 1. (15)

During the de Sitter phase in which the Hubble parameter is given by H = Hinf = const,
noting (am)′ = a2Hinfm and τ = −1/(aHinf), we find an exact solution to Eq. (14) as

u±~k,h(τ) = iε

√
−πkτ

4
e
± πm

2Hinf H(1)
ν± (−kτ), ν± ≡

1

2
∓ im

Hinf

, (16)

where ε = 1 for u+~k,h and ε = −h for u−~k,h, and H
(1)
ν (x) is the Hankel function of the first kind

with order ν. In the far past (kτ → −∞), or the short wavelength limit, it approaches to
the same mode function as the Minkowski vacuum:

u+~k,h →
√
ωk + am

2ωk
e−i

∫
ωkdτ , u−~k,h → −h

√
ωk − am

2ωk
e−i

∫
ωkdτ . (17)

Here a(τ) → 0 limit should be understood. It is also evident that there is no significant
growth in the superhorizon limit (kτ → 0) during inflation.#3

2.2 Fermion production

Now let us estimate the gravitational fermion production. The fermion production in the
rapidly oscillating background or the fermionic preheating was studied in Refs. [24–27]. The
gravitational fermion production in the expanding universe was studied in Refs. [28–30] and
also the gravitino preheating was extensively studied in Refs. [31–37]. Here we combine these
knowledges to estimate the rate of gravitational fermion production, especially pointing out
the contribution from the inflaton coherent oscillation.

The energy density of the fermion is given by

a4(τ)ρψ(τ) =
1

2

〈
ψ̃†i∂τ ψ̃

〉
= 2

∫
d3k

(2π)3
ωkfψ(k, τ) (20)

#3 Asymptotic form of the Hankel function in the short wavelength limit is

H(1)
ν (x)→

√
2

πx
ei(x−(2ν+1)π/4) for x→ +∞. (18)

In the long wavelength limit, the Hankel function becomes

H(1)
ν (x)→ − i

π
Γ(ν)

(
2

x

)ν
for x→ 0 and Re(ν) > 0. (19)
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where the prefactor 2 counts the two helicity modes and

fψ(~k, τ) ≡ 1

2ωk

[
am

(∣∣∣u−~k,h(τ)
∣∣∣2 − ∣∣∣u+~k,h(τ)

∣∣∣2)+ 2hkRe
(
u+~k,h(τ)u−∗~k,h(τ)

)]
+

1

2
, (21)

=
1

2ωk

[
am+ 2 Im

(
u+∗~k,h(τ)∂τu

+
~k,h

(τ)
)]

+
1

2
(22)

denotes the occupation number or the phase space density. The last factor +1/2 cancels
the negatively divergent energy density due to the fermionic zero-point fluctuations. One
sees that fψ = 0 for the Minkowski mode function (17). In the time-dependent background
(a′ > 0) the mode function may be modified from this asymptotic form and hence we will
obtain fψ > 0 that signals particle production. The number density is also a useful quantity,
which is then given by

a3(τ)nψ(τ) = 2

∫
d3k

(2π)3
fψ(k, τ). (23)

In order to estimate the particle production, we conveniently rewrite the mode function
as

u+~k,h(τ) = Ak,h(τ)g+e
−i

∫ τ ωk(τ ′)dτ ′ +Bk,h(τ)g−e
i
∫ τ ωk(τ ′)dτ ′ , (24)

where coefficients are assumed to satisfy

A′k,h(τ) = −
g′−
g+
e2i

∫ τ ωk(τ ′)dτ ′Bk,h(τ), B′k,h(τ) = −
g′+
g−
e−2i

∫ τ ωk(τ ′)dτ ′Ak,h(τ), (25)

where g± ≡
√

(ωk ± am)/(2ωk). One can check that u+k,h(τ) satisfies the equation of motion
(14). The other mode function is given by

u−~k,h(τ) = −h
[
Ak,h(τ)g−e

−i
∫ τ ωk(τ ′)dτ ′ −Bk,h(τ)g+e

i
∫ τ ωk(τ ′)dτ ′] , (26)

and hence the normalization condition (15) implies |Ak,h(τ)|2 + |Bk,h(τ)|2 = 1, which ensures
that the phase space density cannot exceed unity as expected from the Pauli exclusion
principle. The initial condition (17) is equivalent to Ak,h(τ → −∞) = 1 and Bk,h(τ →
−∞) = 0. Since the initial condition and the time evolution (25) do not explicitly depend
on h, Ak,h and Bk,h are the same for both h = ±. In what follows we omit the helicity
subscript h for this reason. Deviation from these initial values Ak = 1 and Bk = 0 indicate
particle production. With these definitions, we have

fψ(~k, τ) = |Bk(τ)|2, Bk(τ) '
∫ τ

dτ ′
a2Hmk

2ω2
k

e−2i
∫ τ ′ ωk(τ ′′)dτ ′′ . (27)

Thus what we have to do is to calculate Bk(τ) under the background evolution of the cosmic
scale factor a(τ). The calculation is almost parallel to the case of scalar field with conformal
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coupling. Thus we do not write the detail of the calculation below. Readers are referred
to Ref. [14] for more detailed discussion to evaluate this integral. There it was shown that
there are two contributions to the particle production: one comes from the “slow” change of
the background whose time scale is just parametrized by the Hubble expansion rate H and
the other comes from the “fast” change of the background related to the inflaton coherent
oscillation whose time scale is characterized by the inflaton mass mφ [8, 9].

For the “slow” contribution, the production rate is suppressed as e−cm/Hinf with c being
order one numerical constant for m & Hinf . Thus we focus on the case m . Hinf . In this case,
the dominant production comes from the epoch around k ∼ am, i.e., the fermion becomes
non-relativistic. The number density produced in this way is estimated as

n
(slow)
ψ (τ) ∼ A a−3(τ) k3c ,

kc
aend

≡ m

(
Hinf

m

) 2
3(1+w)

, (28)

where A ∼ O(10−3) is a numerical coefficient and kc is defined as a momentum such that
k/a(τ) = m at H = m, aend denotes the scale factor at the end of inflation and w denotes
the equation of state parameter after inflation until the epoch H = m. Hereafter we take
w = 0 for simplicity, having in mind a scenario that the inflaton coherent oscillation behaves
as non-relativistic matter and it finally decays into radiation at H = HR with the reheating
temperature TR = (90/π2g∗)

1/4
√
HRMP .#4 This result is consistent with Ref. [30]. The

“fast” contribution is given by

n
(fast)
ψ (τ) ∼ CH3

inf

(
m

minf

)2(
aend
a(τ)

)3

, (29)

where minf denotes the inflaton mass and C ∼ 10−3 − 10−2 is a numerical constant. As
emphasized in Refs. [8, 9, 14, 15], this fast contribution is not suppressed even for m� Hinf

but gets a suppression form & minf and the majority of inflation models predictsminf � Hinf .
The final fermion abundance is roughly given by the sum of these two contributions. In any
case, the fermion abundance goes to zero in the massless limit m → 0 as expected, since a
fermion is conformal in this limit. Combining them, the present fermion abundance in terms
of its energy density divided by the entropy density s is given by

ρψ
s
' mHinfTR

4M2
P

[
C
(

m

minf

)2

+ η
m

Hinf

]
, (30)

where

η = A×

{
1 for m . Hinf

(m/Hinf)
2e−cm/Hinf for m & Hinf

. (31)

#4 We implicitly assumed that reheating is competed after H = m, i.e., HR < m. Otherwise, kc should be
replaced by kc/aend = m(Hinf/m)2/3(m/HR)1/6.
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Figure 1: Illustration of the gravitationally produced fermion abundance with two sets of
inflaton mass and reheating temperature, minf = 1015 GeV and TR = 1011 GeV (Left), minf =
1013 GeV and TR = 1011 GeV (Right). Three different curves (gray solid, blue dashed, and
purple dotted) correspond to Ωψ = (1, 0.1, 0.01)× ΩDM.

For Hinf � m . minf , the fast contribution likely dominates and we have

ρψ
s
' 4× 10−10GeV C

( m

109 GeV

)( Hinf

109 GeV

)(
TR

1010 GeV

)(
m

minf

)2

. (32)

For m . Hinf , on the other hand, the slow contribution likely dominates and we have

ρψ
s
' 4× 10−10GeVA

( m

109 GeV

)2( TR
1010 GeV

)
. (33)

In this case, the abundance is independent of the inflationary scale Hinf .
#5 Comparing it

with the present DM abundance ρDM/s ∼ 4 × 10−10 GeV, it is possible that a pure singlet
fermion having only the gravitational interaction becomes a dominant component of DM if
its mass is relatively large.

In Fig. 1 we illustrate with several contours of the fermion abundance on the plane of
(m,Hinf) with two choices of inflaton mass and reheating temperature, the left panel with
minf = 1015 GeV and TR = 1011 GeV, and right panel with minf = 1013 GeV and TR =
1011 GeV. Three different contours (gray solid, blue dashed, and purple dotted) correspond

#5 If m < HR, the expression (33) should be multiplied by the factor (m/HR)1/2 (hence becomes inde-
pendent of the reheating temperature) due to the change of expression of kc, as noticed in the previous
footnote.
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to Ωψ = (1, 0.1, 0.01) × ΩDM, where Ωi (i = ψ,DM) is the density parameter defined by
ρi/ρcrit with ρcrit being the critical energy density of the present universe. Evidently, wide
parameter space exists for the correct DM relic density. Note that we should also include the
contribution from thermal production by gravitational annihilation of SM particles in the
thermal bath [18–21]. See Appendix C for details. In the parameter space we have shown,
however, contributions from thermal production is negligible.

3 Vector boson production

3.1 Vector boson action in the FRW Universe

Let us consider an action of massive vector boson,

S =

∫
d4x
√
−g
[
−1

4
gµρgνσFµνFρσ −

1

2
m2gµνAµAν

]
, (34)

where Fµν = ∂µAν − ∂νAµ. In the FRW background, this action is rewritten as

S =

∫
dτd3x

[
−1

4
ηµρηνσFµνFρσ −

1

2
a2m2ηµνAµAν

]
. (35)

One can impose a Z2 symmetry under which only Aµ changes its sign to forbid the kinetic
mixing with the standard model hypercharge photon. Then Aµ is stable and a candidate of
DM. See Refs. [38,39] for concrete model buildings.

The vector boson mass can be regarded as a result of the Higgs mechanism. In this
case, the radial component of the Higgs boson is a physical field but it can be decoupled
from the dynamics if the radial component is heavy enough. This is achieved by assuming
that the gauge coupling constant is much smaller than the Higgs self coupling constant, for
example. Or we can rely on the Stuckelberg mechanism: let the gauge boson mass term be
m2gµν(Aµ + c∂µφ)(Aν + c∂νφ) by introducing additional real scalar field φ. This mass term
respects the gauge symmetry Aµ → Aµ + ∂µχ if φ transforms as φ→ φ−χ/c with arbitrary
function χ. By setting φ = 0 using this gauge degree of freedom, we end up with the massive
vector boson action (34). In this case, there is no physical degree of freedom other than the
vector boson.

It is again convenient to work with the Fourier mode since we are interested in the free
vector boson:

Aµ(~x, t) =

∫
d3k

(2π)3
Aµ(~k, t)ei

~k·~x. (36)

Since Aµ(~x, t) is a real field, Aµ(~k, t) = A∗µ(−~k, t) must be satisfied. The three physical

components are divided into the transverse and longitudinal mode: ~A = ~AT + k̂AL, where

9



the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ≡ ~k/|~k|. Note
that A0 is not dynamical but it is determined by the constraint equation as

A0(~k, t) =
i~k · ~̇A

k2 + a2m2
=

ikȦL
k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

∫
d3kdτ

(2π)3
1

2

(
|∂τ ~AT |2 − (k2 + a2m2)| ~AT |2

)
, (39)

SL =

∫
d3kdτ

(2π)3
1

2

(
a2m2

k2 + a2m2
|∂τAL|2 − a2m2|AL|2

)
. (40)

The longitudinal mode is further redefined using the canonical field ÃL ≡ f(τ)AL with
f(τ) ≡ am/

√
k2 + a2m2,

SL =

∫
d3kdτ

(2π)3
1

2

(
|∂τ ÃL|2 − ω2

L|ÃL|2
)
, ω2

L =
a2m2

f 2
− f ′′

f
≡ k2 +m2

L, (41)

where the effective mass is given by#6

m2
L = a2m2 − k2

k2 + a2m2

(
a′′

a
− a′2

a2
3a2m2

k2 + a2m2

)
. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m → 0, i.e., the scale factor dependence disappears in the limit m → 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, τ) =
∑
h=±

[
AT (~k, τ)~εha~k,h +A∗T (~k, τ)~ε∗ha

†
−~k,h

]
, (43)

where ~εh denotes the polarization vector for two polarization modes h = + and − which
satisfies ~ε∗h · ~εh′ = δhh′ . A concrete expression is ~ε± = (1,±i, 0)/

√
2 if ~k points to the z-

direction. The ladder operators satisfy[
a~k,h, a

†
~k′,h′

]
= (2π)3δhh′δ(~k − ~k′),

[
a~k,h, a~k′,h′

]
=
[
a†~k,h, a

†
~k′,h′

]
= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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The mode function obeys the same equation of motion as a scalar field with conformal
coupling:

A′′T + (k2 + a2m2)AT = 0. (45)

The solution during inflation (in the de Sitter phase) is given by

AT (k, τ) = e
i(2ν+1)π

4
1√
2k

√
−πkτ

2
H(1)
ν (−kτ), ν2 ≡ 1

4
− m2

H2
, (46)

where we have chosen the boundary condition at kτ → −∞ (deep inside the horizon) so
that it approaches to the mode function in the Minkowski space:

AT (k, τ)→ 1√
2k
e−ikτ . (47)

Since ν2 < 1/4 for m2 > 0, there is no growth of the superhorizon modes during inflation.
Therefore, the dominant contribution to the gravitational production of the transverse vector
boson happens around/after the end of inflation. We can solve the equation of motion (45)
with the initial condition (47) under the background evolution of the cosmic scale factor
a(τ) due to the (spatially homogeneous) inflaton dynamics to determine the energy density
of the transverse vector boson through (84). Instead of solving (45) directly, we can make
useful parametrization as follows:

AT (k, τ) =
αk(τ)√

2ωk
e−i

∫ τ ωk(τ ′)dτ ′ + βk(τ)√
2ωk

ei
∫ τ ωk(τ ′)dτ ′ , (48)

where ωk ≡
√
k2 + a2m2 and αk(τ) and βk(τ) are assumed to satisfy

α′k(τ) =
ω′k
2ωk

e2i
∫ τ ωk(τ ′)dτ ′βk, β′k(τ) =

ω′k
2ωk

e−2i
∫ τ ωk(τ ′)dτ ′αk. (49)

It is checked that these set of equations satisfy the equation of motion (45). The initial
condition is taken to be αk → 1 and βk → 0 at kτ → −∞. Using this parametrization, the
energy density (84) is expressed as

a4(τ)ρT (τ) = 2

∫
d3k

(2π)3
ωkfT (k, τ), fT (k, τ) = |βk(τ)|2. (50)

Here fT (k, τ) denotes the occupation number of the transverse vector boson. Note that the
normalization condition implies |αk(τ)|2 − |βk(τ)|2 = 1. In contrast to the case of fermion,
this normalization condition does not limit the possible produced number density of vector
boson.

Then what we have to do is to estimate βT (k, τ). The calculation is the same as the
gravitational production of a scalar field with conformal coupling as performed in detail in

11



Ref. [14]. Here we present only the results. The number density of the transverse vector
boson is given by

nAT (t) ' H3
inf

[
CT

m4

m4
inf

+ η
m

Hinf

](
a(tend)

a(t)

)3

, (51)

where η is given by the same expression as (31) after reinterpreting m in (31) as the vector
boson mass. It is assumed that m � minf since otherwise the vector boson production
is suppressed. Taking account of the two polarization degrees of freedom, the numerical
coefficient CT is found to be 3/(256π) if the inflaton potential is well approximated by the
quadratic one [15]. Assuming that the universe is matter-dominated before the completion
of reheating, we obtain the energy to entropy density ratio as

ρT
s

=
TRmnAT (tend)

4H2
infM

2
P

' TRHinfm

4M2
P

[
CT
(

m

minf

)4

+ η
m

Hinf

]
. (52)

3.3 Longitudinal mode production

The longitudinal mode is more similar to a scalar field, as seen from the action (41). It is
quantized as

ÃL(~k, τ) = ÃL(~k, τ)a~k + Ã∗L(~k, τ)a†
−~k
, (53)

where the ladder operators satisfy[
a~k, a

†
~k′

]
= (2π)3δ(~k − ~k′),

[
a~k, a~k′

]
=
[
a†~k, a

†
~k′

]
= 0. (54)

The equation of motion of the mode function is

Ã′′L + ω2
L(k, τ)ÃL = 0, ω2

L = k2 +m2
L. (55)

For convenience, we also present the equation of motion in the original basis:

A′′L +
2f ′

f
A′L + (k2 + a2m2)AL = A′′L +

2Hk2

k2 + a2m2
A′L + (k2 + a2m2)AL = 0. (56)

During the de Sitter phase, the effective mass of the longitudinal mode is given by

m2
L = a2m2 − a2H2

inf

k2(2k2 − a2m2)

(k2 + a2m2)2
. (57)

In the high momentum limit k � am, it is approximated as

m2
L ' a2(m2 − 2H2

inf), (58)

12



which is the same form as a massive scalar coupled to gravity minimally. Thus we can take the
mode function as in the Minkowski form in the high momentum limit (k/a� max[m,Hinf ])
as

ÃL(k, τ)→ 1√
2k
e−ikτ . (59)

In the low momentum limit k � am, we obtain

m2
L ' a2

(
m2 +H2

inf

k2

a2m2

)
, (60)

This is always positive definite even in the massless limit m→ 0, which is a unique feature of
massive vector boson, different from a massive scalar. Now we consider two cases separately:
heavy vector boson m & Hinf and light vector boson m . Hinf .

3.3.1 Heavy vector boson case

For the heavy vector boson case m & Hinf , it is evident that the effective mass squared m2
L is

always positive independently of the wavenumber k, and hence there is no significant growth
of the vacuum fluctuation. In particular, no superhorizon modes are enhanced during the de
Sitter phase. Therefore, in this case, we should only take account of the production of high
momentum modes after inflation. For k � am, we obtain

ω2
L ' k2 + a2m2 − a′′

a
. (61)

This is the same form as the minimally coupled scalar field. This may be regarded as a
consequence of the Goldstone boson equivalence theorem, which says that the longitudinal
vector boson may be identified with the Goldstone boson in the high energy limit. Similar
to the case of scalar field, we can again make the following parameterization:

ÃL(k, τ) =
αk(τ)√

2ωL
e−i

∫ τ ωL(τ ′)dτ ′ + βk(τ)√
2ωL

ei
∫ τ ωL(τ ′)dτ ′ , (62)

where αk(τ) and βk(τ) are assumed to satisfy

α′k(τ) =
ω′L
2ωL

e2i
∫ τ ωL(τ ′)dτ ′βk, β′k(τ) =

ω′L
2ωL

e−2i
∫ τ ωL(τ ′)dτ ′αk. (63)

It is again checked that these set of equations satisfy the equation of motion (55). The
initial condition is taken to be αk → 1 and βk → 0 at kτ → −∞. The energy density (85)
is expressed as

a4(τ)ρL(τ) = 2

∫
d3k

(2π)3
ωLfL(k, τ), fL(k, τ) = |βk(τ)|2, (64)
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where fL(k, τ) denotes the occupation number of the longitudinal vector boson. The nor-
malization condition implies |αk(τ)|2 − |βk(τ)|2 = 1. In this case, therefore, the number
density of produced longitudinal vector boson is estimated in the same as a minimal scalar
field [14],

nAL(t) ' CLH3
inf

(
a(tend)

a(t)

)3

, (65)

where CL ∼ 3/(512π) [15] and we assumed m < minf . Compared with the transverse mode,
there is no suppression factor of (m/minf)

4. Thus the energy to entropy density ratio is
evaluated as

ρL
s

=
TRmnAL(tend)

4H2
infM

2
P

' CLTRHinfm

4M2
P

. (66)

3.3.2 Light vector boson case

For the light vector boson case m . Hinf , the situation is different. Superhorizon modes with
m < k/a < Hinf experience tachyonic growth during inflation, similar to the case of light
scalar and these inflation-generated long wavelength modes may give dominant contributions
to the final vector boson abundance. Note that the growth is eventually terminated when
the physical wavenumber k/a becomes equal to the vector boson mass m. Thus the power
spectrum of such a massive vector boson at large scale is much suppressed compared with
the case of light scalar field with the same mass [40]. For modes with m < k/a < Hinf , it is
easily found from (55) that the mode function grows as#7

ÃL(k, τ) ∝ τ−1 ∝ a. (67)

Therefore, at the end of inflation, the mode function becomes

∣∣∣ÃL(k)
∣∣∣2 '



1

2k
for k > aendHinf

1

2k

(
aendHinf

k

)2

for aendm < k < aendHinf

1

2k

(
Hinf

m

)2

for k < aendm

. (68)

In terms of the energy density per log frequency at the end of inflation, after the renormal-
ization of the UV divergence as usual, we have

ρL(k, tend) ' 1

2

(
k

aend

)2(
Hinf

2π

)2

for k < aendHinf . (69)

#7 Note that the original field AL(k, τ) before the canonical rescaling remains constant.
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At this stage, therefore, the shortest wavelength mode (k ∼ Hinfaend) gives the dominant
contribution to the total energy density of the longitudinal vector boson. However, these
modes are (highly) relativistic and receive larger suppression factor due to the redshift. As
shown in Appendix, the energy density scales as

ρL(k) ∝


a−2 for k < aH and m < H

a−3 for k < am and m > H

a−4 for k > am and k > aH

. (70)

Assuming again that the universe is matter-dominated before the completion of the reheat-
ing, the final energy to entropy density ratio is expressed in terms of the number density at
H = m, defined by nL(k;H = m) = ρL(k;H = m)/

√
m2 + k2/a2(H = m):

ρL(k)

s
'


TRnL(H = m)

4mM2
P

for HR < m

TRnL(H = m)

4mM2
P

(
m

HR

)1/2

=

(
90

π2g∗

)1/4
nL(H = m)

4m1/2M
3/2
P

for HR > m
, (71)

where HR ≡
√
π2g∗/90T 2

R/MP is the Hubble parameter at the completion of reheating.
For HR < m, we find

ρL(k)

s
'


TRH

2/3
inf

32π2m2/3M2
P

(
k

aend

)2

for k < k∗

TRmH
4
inf

32π2M2
P

(aend
k

)3
for k > k∗

(HR < m), (72)

where k∗ ≡ a(H = m)m denotes the comoving wavenumber for which the corresponding
mode becomes non-relativistic at H = m. Thus it is seen that the total energy density is
dominated by modes around k = k∗. In this case we have k∗ = aendm(Hinf/m)2/3. The total
vector boson abundance is then given by

ρL
s
' TRH

2
inf

32π2M2
P

' 5× 10−10 GeV

(
TR

106 GeV

)(
Hinf

1012 GeV

)2

. (73)

It is independent of the vector boson mass m.
For HR > m, after straightforward but tedious calculations, we find

ρL(k)

s
'



TRH
2/3
inf

32π2M2
Pm

1/2H
1/6
R

(
k

aend

)2

for k < k∗

TRmH
8/3
inf

32π2M2
PH

2/3
R

(aend
k

)
for k∗ < k < a(H = HR)HR

TRmH
4
inf

32π2M2
P

(aend
k

)3
for k > a(H = HR)HR

(HR > m). (74)
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Again we find that it is peaked around k = k∗ where k∗ ≡ a(H = m)m, which is now
evaluated as k∗ = aendm(Hinf/HR)2/3(HR/m)1/2. Thus the total vector boson abundance is
given by

ρL
s
'
(

90

π2g∗

)1/4
m1/2H2

inf

32π2M
3/2
P

' 5× 10−10 GeV
( m

10−6 GeV

)1/2( Hinf

1012 GeV

)2

. (75)

It is consistent with Ref. [40].

3.4 Combined Results

Let us summarize the results so far. The abundance of longitudinal vector boson which is
purely gravitationally produced is given by

ρL
s
'



CLTRHinfm

4M2
P

for Hinf < m

TRH
2
inf

32π2M2
P

for HR < m < Hinf(
90

π2g∗

)1/4
m1/2H2

inf

32π2M
3/2
P

for m < HR

. (76)

Note that the origin of the vector boson is different between the case of m > Hinf and
m < Hinf . In the former case, the vector boson is dominantly produced at the end of
inflation or during the early stage of reheating and the main produced mode is about the
inflaton mass: k ∼ aendminf . In the latter case, the dominant contribution comes from
the superhorizon mode generated during inflation, which eventually re-enters the horizon at
H ∼ m. The transverse modes are also produced at the end of inflation and during the
reheating stage, but they are always subdominant compared with the longitudinal mode.

In Fig. 2, we show several contours of the vector boson abundance on the parameter space
of (m,Hinf) for two sets of inflaton mass and reheating temperature, minf = 1013 GeV and
TR = 1011 GeV (Left panel), minf = 1012 GeV and TR = 1010 GeV (Right panel). Similar to
the fermion case, thermal production is included, see Appendix C. Three contours (gray solid,
blue dashed, and purple dotted) correspond to ΩA = (1, 0.1, 0.01)×ΩDM where ΩA = ρA/ρcrit
is the density parameter of the vector boson. We can see there are wide and viable parameter
regions that can satisfy the current DM relic abundance. Contours without including thermal
productions are shown in thin curves that however almost coincide with thick ones, which
means thermal contributions are negligible in the showed parameter space.

4 Conclusions and discussion

We have studied the DM production mechanism in the case where the DM particle is a
massive fermion or vector boson and has only the gravitational interaction. The produc-
tion takes place through the so-called gravitational particle production under the standard
inflationary cosmology.

16



2 4 6 8 10 12
6

7

8

9

10

11

12

Log(
m

GeV
)

Lo
g
(
H
in
f

G
eV

)

minf=10
13GeV, TR=10

11GeV, ΩDM≈0.25

ΩA=(1, 0.1, 0.01)×ΩDM

2 4 6 8 10 12
4

6

8

10

12

Log(
m

GeV
)

Lo
g
(
H
in
f

G
eV

)

minf=10
12GeV, TR=10

10GeV, ΩDM≈0.25

ΩA=(1, 0.1, 0.01)×ΩDM

Figure 2: Illustration of the gravitationally produced vector boson abundance with two
sets of inflaton mass and reheating temperature, minf = 1013 GeV and TR = 1011 GeV (Left),
minf = 1012 GeV and TR = 1010 GeV (Right). Three different curves (gray solid, blue dashed,
and purple dotted) correspond to ΩA = (1, 0.1, 0.01)× ΩDM.

For the case of a massive fermion, the presence of mass term violates the conformal invari-
ance and it somehow feels the background time evolution, resulting in particle production.
The dominant production process depends on the fermion’s mass m. For m . Hinf , the
non-adiabaticity of the fermion wave function is prominent when the fermion becomes non-
relativistic k ∼ am for each wavenumber k. Those with momentum k such that k ∼ am and
H ∼ m gives the dominant contribution to the final fermion abundance as already pointed
out in Ref. [30]. For m � Hinf , such an effect of the universe expansion is negligible while
the inflaton coherent oscillation produces excites the high momentum fermion modes, since
the cosmic scale factor a(τ) includes a small but nonzero oscillating part. In both cases, we
have the viable parameter regions that can reproduce the present DM abundance. All these
features are similar to the case of a scalar field with conformally coupled to gravity [14].

For the case of a massive vector boson, the story is a bit complicated. The transverse
mode is conformal in the massless limit, and hence the gravitational production proceeds
only through the presence of mass term. Again it is similar to the case of conformally coupled
scalar field. On the other hand, the longitudinal mode shows more non-trivial behavior. For
m . Hinf , during the de Sitter phase the vector obtains superhorizon quantum fluctuations
and eventually behaves as non-relativistic matter. In contrast to the scalar field with minimal
coupling, there is a limit for the growth of the superhorizon modes at k ∼ am, and hence such
a model is not constrained by the presence of DM isocurvature perturbation on cosmological
scales [40]. For m � Hinf , it is rather close to the minimally coupled scalar field, and the
inflaton coherent oscillation excites the high-momentum longitudinal mode. In both cases
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we have correct parameter regions that reproduce the present DM abundance.
Several comments are in order. For analyses of both the fermion and vector boson, we

have assumed that the fermion/vector boson mass parameter m is just a constant. It is
possible that the mass is given by the expectation of value of some other Higgs-like scalar
field. In such a case the mass parameter m can be dynamical. For example, it can have a
different value in the inflationary era and the present universe. Our results crucially depend
on this assumption. If there is a Higgs field, we should take account of the dynamics of the
Higgs field if the mass of the Higgs field is smaller than the Hubble parameter H, which may
significantly affect our estimate of the fermion and vector boson abundance.

Finally we comment on the detectability of our model. Since DM is only gravitationally
interacting, it is hopeless to find it through a kind of direct detection experiments. If DM
is long-lived but has finite lifetime, its decay would produce high-energy cosmic rays for
indirect detections [42]. As seen from Figs. 1 and 2, the wide DM mass range is consistent
with the DM abundance and correspondingly the energy of cosmic-rays induced by the DM
decay also can take wide range of values. Another interesting possibility may be to search
for the effect of heavy field (say, m ∼ Hinf) through the non-Gaussianity of the primordial
curvature fluctuations [17,43–47].
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A Conventions

Our convention follows Ref. [48]. The flat space metric is taken to be ηµν = diag(−1, 1, 1, 1).
The gamma matrices in the flat space is denoted by γa while those in the curved background
are expressed by γ̂µ. They are related by γ̂µ = eaµγa by using the vierbein eaµ. In the FRW
background, the vierbein is

eaµ = aδaµ, eµa =
1

a
δµa , (77)

so that the metric is given by gµν = eaµe
b
νηab = a2ηµν . The Clifford algebra is then defined as

{γ̂µ, γ̂ν} = 2gµν . (78)

Thus we have (γ̂0)† = −γ̂0 and (γ̂i)† = γ̂i. We also define γ5 ≡ iγ0γ1γ2γ3. The explicit Weyl
representation of the gamma matrices is

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
1 0
0 −1

)
, (79)
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where σµ = (−1, σi) and σ̄µ = (1, σi) with σi being the usual Pauli matrices that satisfy
{σi, σj} = 2δij. In the Dirac representation the explicit form of the gamma matrices is

γ0 =

(
i 0
0 −i

)
, ~γ =

(
0 i~σ
−i~σ 0

)
, γ5 =

(
0 1
1 0

)
. (80)

B Energy density of vector boson

B.1 Energy-momentum tensor and energy density

The energy momentum tensor is defined as

Tµν =
−2√
−g

δ(
√
−gL)

δgµν
. (81)

For a massive vector boson, it is given by

Tµν = gρσFµρFνσ −
1

4
gµνg

ραgσβFρσFαβ +m2

(
AµAν −

1

2
gµνg

ρσAρAσ

)
. (82)

After some calculations, we find that the energy density ρ = 〈0|T00|0〉 is given by

ρ = ρT + ρL, (83)

ρT = 2

∫
d3k

(2π)3
1

2a4
[
|A′T (k)|2 + (k2 + a2m2)|AT (k)|2

]
, (84)

ρL =

∫
d3k

(2π)3
1

2a4

[
a2m2

k2 + a2m2
|A′L(k)|2 + a2m2|AL(k)|2

]
, (85)

where the prefactor 2 in the expression of ρT accounts for the two polarization states. Again
we can rewrite the longitudinal mode by using the canonical field ÃL(~k) = fAL(~k) with
f(τ) ≡ am/

√
k2 + a2m2,

ρL =

∫
d3k

(2π)3
1

2a4

[
|Ã′L(k)|2 +

a2m2 + f ′2

f 2
|ÃL(k)|2 − f ′

f

(
Ã′L(k)Ã∗L(k) + Ã′∗L(k)ÃL(k)

)]
,

=

∫
d3k

(2π)3
1

2a4

[
|Ã′L(k)|2 +

(
k2 + a2m2 +H2

(
k2

k2 + a2m2

)2
)
|ÃL(k)|2

−H k2

k2 + a2m2

(
Ã′L(k)Ã∗L(k) + Ã′∗L(k)ÃL(k)

)]
. (86)

Note that these expressions show UV divergence when the vacuum configuration for the mode
function is substituted, which must be subtracted to obtain nearly vanishing cosmological
constant observed now.
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B.2 Energy scaling of the vector boson

In this appendix we present approximate solutions to the equation of motion of the vector
boson mode function after inflation and show how the corresponding energy density scales
with respect to the cosmic scale factor a(τ). Hereafter we assume the reheating phase of the
universe with equation of state w such that H ∝ a−3(1+w)/2.

B.2.1 Transverse mode

The equation of motion for the transverse mode is

A′′T + (k2 + a2m2)AT = 0. (87)

In the light vector boson regime (m� H), the solution looks like#8

AT ∼


1√
2k
eikτ for k � am

1√
2k

for k � am
. (88)

Thus ρT ∝ a−4 for k � am and ρT ∝ a−2 for k � am.
In the heavy vector boson regime (m� H), the solution looks like

AT ∼


1√
2k
eikτ for k � am

1√
2am

eim
∫
adτ for k � am

, (89)

Thus ρT ∝ a−4 for k � am and ρT ∝ a−3 for k � am, as just expected from the scaling of
relativistic and non-relativistic matter, respectively.

B.2.2 Longitudinal mode

The equation of motion for the longitudinal mode is

ÃL
′′

+ ω2
LÃL = 0, ω2

L = k2 +m2
L, (90)

where the effective mass is given by#9

m2
L = a2m2 − k2

k2 + a2m2

(
1− 3w

2
− 3a2m2

k2 + a2m2

)
H2. (91)

#8 Actually there is also a solution AT ∝ a(1+3w)/2 for k � am and this is a growing solution for w > −1/3.
It is not trivial whether this growing solution is of physical importance or not, but detailed investigations
show that the boundary condition (47) does not lead to this growing solution [40].
#9 Some relations in the universe with equation of state w are: a′′/a = H2(1 − 3w)/2, Hτ = 2/(1 + 3w),
H′ = −H2(1 + 3w)/2, a ∝ τ2/(1+3w)
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In the case of light vector boson regime (m� H), it is a bit complicated:

ω2
L '


k2 −

(
1− 3w

2
− 3a2m2

k2

)
H2 for k � am

a2m2 +
5 + 3w

2

k2

a2m2
H2 for k � am

. (92)

Thus the solution looks like

ÃL ∝


eikτ for aH � k

c1a+ c2a
(3w−1)/2 for am� k � aH

c3 + c4a
(3w+1)/2 for k � am

. (93)

with c1–c4 denoting numerical constants determined by the initial conditions at the end of
inflation.#10 Note again that the growing solution for k � am actually is not of physical
importance if one properly connects the solution during inflation to that during the reheating
phase [40]. Thus we only need to see terms with c1 and c3 for k � aH. As a result, we
obtain the scaling of the longitudinal vector boson energy density as ρL ∝ a−4 for k � aH
(subhorizon modes) and ρL ∝ a−2 for k � aH (superhorizon modes).

In the case of heavy vector boson regime (m� H), on the other hand, we simply obtain

ω2
L ' k2 + a2m2. (94)

It is the same as the transverse one and hence we obtain ρL ∝ a−4 for k � am and ρL ∝ a−3

for k � am, just as expected.

C Thermal production

Here we briefly summarize the thermal production (TP) of gravitationally interacting DM.
The production cross section of purely gravitational DM X, either X is fermion or vector
boson, through the scattering of SM particles in the thermal bath with the temperature T
is [18–21]

〈σv〉 = y
T 2

M4
P

for T > mX , (95)

with some numerical constant y, y ' 0.2 for fermions and y ' 0.8 for vectors. See Ref. [20]
for details. The DM number density created per Hubble time is given by

nX ∼ n2
SM 〈σv〉H−1 ∼


y
T 4
RH

M2
P

∝ a−3/2 for T > TR

y
T 6

M3
P

∝ a−6 for T < TR

, (96)

#10 These solutions can be found by substituting the ansatz ÃL ∝ a` and requiring that leading terms
vanish to determine the exponent `. Here we neglect the last terms in (92) since they do not much affect
the value of `.
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assuming T > mX . Otherwise, the production rate is suppressed by e−mX/T . Therefore, if
TR > mX , the production is dominated at T ∼ TR. On the other hand, if TR < mX , the
production is dominated at T ∼ mX . Thus the DM abundance through the gravitational
annihilation of SM particles is given by(ρX

s

)(TP)

' mXnX(Tprod)

3H2
prodM

2
P

3TR
4
. (97)

Here the subscript “prod” refers to the dominant production epoch. It is estimated as

(ρX
s

)(TP)

∼


ỹ

T 7
R

m3
XM

3
P

∼ 10−15 GeV ỹ

(
TR

1010 GeV

)7(
1010 GeV

mX

)3

for mX > TR

ỹ
mXT

3
R

M3
P

∼ 10−15 GeV ỹ

(
TR

1010 GeV

)3 ( mX

1010 GeV

)
for mX < TR

, (98)

where ỹ includes various O(1) numerical factor neglected in the rough estimation. This
should be compared with the gravitational production studied in the main text. For the
case of vector boson or minimal scalar, it can dominate over the gravitational production if
the reheating is close to instantaneous, i.e., if HR is not very far from Hinf . For the fermion
case, it depends on the model parameters mX , Hinf , TR and minf in a more complicated way.
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