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Abstract. We report a new analysis of the isospin splittings within the decuplet
baryon spectrum. Our numerical results are based upon five ensembles of
dynamical QCD+QED lattices. The analysis is carried out within a flavour-
breaking expansion which encodes the effects of breaking the quark masses and
electromagnetic charges away from an approximate SU(3) symmetric point. The
results display total isospin splittings within the approximate SU(2) multiplets
that are compatible with phenomenological estimates. Further, new insight is
gained into these splittings by separating the contributions arising from strong
and electromagnetic effects. We also present an update of earlier results on the
octet baryon spectrum.
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1. Introduction

Isospin symmetry is so prevalent in the description of hadronic systems that the
significance of a potential violation of this symmetry is often taken for granted. In the
context of spectroscopy, isospin symmetry is manifest in the approximate degeneracy
of isospin multiplets. Using this approximate symmetry to inform the interpretation
of states can be incredibly powerful. Nevertheless, violations of this symmetry will
become significant at some degree of precision. Isospin splittings in the ground state
hyperons are known to be as much as 8 MeV. Phenomenological estimates suggest
splittings in the decuplet baryons to be of a similar size [1]. Given that modern
analyses are able to achieve (real part of the) pole positions at a precision of ±1 MeV
precision for the ∆-baryons [2,3], there is an opportunity to revisit analyses of isospin
violation in low-energy πN scattering [4, 5].

Beyond spectroscopy, it is also worth noting that the determination of isospin
violation is relevant to a range of physical phenomena, including the flavour
decomposition of nucleon structure [6–9]; tests of neutrino-nucleus interactions [10,11];
precision constraints on CKM [12, 13] matrix elements from leptonic [14, 15] and
semi-leptonic [16] decay rates; and quark mass parameters [17–20]. In addition,
the interplay of the coupled gauge theories in the nonperturbative domain offers a
unique theoretical playground to explore. These extended motivations have prompted
intensive effort in recent years to introduce electromagnetic effects in numerical lattice
QCD studies [21–31] — building upon the pioneering work of Duncan, Eichten &
Thacker [32].

In the present work, we perform simulations in dynamically-coupled QCD+QED
[27, 28], where the electric charges of sea-quark loops are included in the fermion
determinant. In this work, the hadron spectrum calculations are performed across
323 × 64 and 483 × 96 lattices with up to 3 distinct sea quark mass combinations.
Partially-quenched correlators are employed to further constrain flavour symmetry
breaking effects. Starting from an SU(3) symmetric point inspired by Dashen’s
relation [33], we use a flavour symmetry breaking expansion [28] to extrapolate to
the physical quark masses and interpolate to the physical QED coupling — where
our underlying gauge ensembles use an unphysically-large αQED ∼ 0.1 to enhance
the signal strength in the electromagnetic effects. In addition to providing isospin
splittings among the decuplet multiplets, we also present updated results for the octet
baryons.

The manuscript proceeds as follows: Section II reviews the form of the flavour-
symmetry breaking expansions, including a description of the “Dashen scheme” used
to distinguish electromagnetic and quark mass effects; Section 3 provides the lattice
simulation details; Section 4 presents the lattice spectra results, including the flavour-
breaking fits and treatment of finite-size effects; results and discussion follow in
Section 5; and we conclude in Section 6.

2. Mass expansions

The approximate SU(3) flavour symmetry of nature has provided tremendous insight
into strong interaction phenomenology. In recent lattice studies of pure QCD, we have
exploited this symmetry by formulating an SU(3) expansion about a point of exact
flavour symmetry [34]. The key to these investigations has been to use a starting point
where the degenerate light (up, down and strange) quark mass is approximately equal
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to the average of the corresponding physical masses, m̄ = (mu + md + ms)/3. As a
consequence, when quark masses are tuned to lie on a trajectory that holds m̄ fixed at
its physical value, flavour-singlet quantities only vary at second order in the dominant
SU(3) breaking parameter δmq = mq − m̄. This particular value is chosen such that
lattice determinations of flavour-singlet quantities, such as X2

π = (2m2
K + m2

π)/3,
take their physical value. The extrapolation to the physical point along a trajectory
with m̄ = constant is simplified by the reduced set of operators that contribute to
the quark mass variation [34]. Isospin violating effects arising from the quark mass
difference md −mu are also naturally incorporated into the formulation [35].

Upon inclusion of electromagnetic effects, we wish to further exploit the
perturbative breaking of SU(3) symmetry. The electromagnetic renormalisation of the
quark masses makes it impossible to rigorously define equality of the light quark masses
mu = md in a scheme-invariant fashion. Nevertheless, by choosing an appropriate
renormalisation condition, we can ensure that electromagnetic effects can be treated
perturbatively. Inspired by the Dashen relation [33], we impose the condition that
the QCD component of neutral pseudoscalar mesons at the symmetric point can be
parameterised identically and hence are equal. In practice, our tuning procedure
requires that the bare quark masses, mq (or κq in the case of Wilson fermions), at
the SU(3) symmetric point are chosen such that all neutral (connected) pseudoscalar
mesons M(qq̄) are equal, i.e. M2(uū) ≈ M2(dd̄) = M2(ss̄), where equality between
M2(dd̄) and M2(ss̄) at the symmetric point is exact due to the fact that d and s quarks
have the same charge. Further details of the Dashen scheme and the associated tuning
can be found in Ref. [28].

Following the procedure outlined in Ref. [34], adapted to incorporate
electromagnetic corrections [28], we obtain the relevant flavour-breaking expressions
for our hadron masses. The flavour-breaking expansion of the pseudoscalar masses to
NLO was reported in Ref. [28], however we quote the result here for completeness,
albeit with a slight rearrangement of the terms

M2(ab̄) =M2
0 + α(δµa + δµb) + β1(δµ2

a + δµ2
b)

+ β2(δµa − δµb)2 + βEM1 (e2
a + e2

b) + βEM2 (ea − eb)2

+ γEM1 (e2
aδµa + e2

bδµb) + γEM2 (eaeb)(δµa + δµb)

+ γEM3 (e2
bδµa + e2

aδµb)

+ c1(δmu + δmd + δms)

+ c2
[
δm2

u + δm2
d + δm2

s − (δmuδmd + δmuδms + δmdδms)
]

+ c3(δmu + δmd + δms)
2 + c4(e2

uδmu + e2
dδmd + e2

sδms)

+ cEM1 (e2
u + e2

d + e2
s) + cEM2 (eued + eues + edes)

+ cEM3 (e2
u + e2

d + e2
s)(δµa + δµb). (1)

In this expansion, the valence quark charges are indicated by ea,b and the sea
quark charges by eu,d,s. The valence and sea quark mass deviations from the SU(3)
symmetric point are respectively denoted by

δµa,b = µa,b − m̄, δmu,d,s = mu,d,s − m̄. (2)

These quark mass variations are evaluated in the Dashen scheme [28], where the
distance from the symmetric point to the chiral limit, msym

q , is defined to be
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independent of the quark charge, hence absorbing the quark electromagnetic self
energy into the quark mass parameter.

Given that our framework is to approach the physical point along a trajectory
that holds the singlet quark mass approximately constant‡, we can neglect the c1 and
c3 terms. Furthermore, the span of our sea quark masses are unable to provide any
meaningful constraint on terms involving the sea masses. In particular, we neglect c2
as O(δm2) and c4 as O(αδm). The cEM terms could be determined with simulations
at different values of the QED gauge coupling, however in our present study these
terms are simply absorbed into a redefinition of the relevant expansion parameters to
give

M2(ab̄) =M2
0 + α(δµa + δµb) + β1(δµ2

a + δµ2
b)

+ β2(δµa − δµb)2 + βEM1 (e2
a + e2

b) + βEM2 (ea − eb)2

+ γEM1 (e2
aδµa + e2

bδµb) + γEM2 (eaeb)(δµa + δµb)

+ γEM3 (e2
bδµa + e2

aδµb) . (3)

To the same order in the flavour-breaking parameters, we write the general
expressions for the octet baryons:

M(aab) =M0 + α1(2δµa + δµb) + α2δµa

+ β1(2δµ2
a + δµ2

b) + β2(δµ2
a + 2δµaδµb) + β3(δµ2

a)

+ βEM1 (2e2
a + e2

b) + βEM2 (e2
a + 2eaeb) + βEM3 (e2

a)

+ γEM1 (2e2
aδµa + e2

bδµb) + γEM2 [2δµaea(ea + eb) + 2δµbebea))]

+ γEM3 (2δµaeaeb + δµbe
2
a) + γEM4 (2δµa(e2

a + e2
b) + 2δµbe

2
a)

+ γEM5 δµae
2
a + γEM6 δµaeaeb, (4)

and the decuplet baryons:

M(abc) =M0 + α1(δµa + δµb + δµc)

+ β1(δµ2
a + δµ2

b + δµ2
c) + β2(δµaδµb + δµaδµc + δµbδµc)

+ βEM1 (e2
a + e2

b + e2
c) + βEM2 (eaeb + eaec + ebec)

+ γEM1 (e2
aδµa + e2

bδµb + e2
cδµc)

+ γEM2 [δµaea(eb + ec) + δµbeb(ea + ec) + δµcec(ea + eb)]

+ γEM3 (δµaebec + δµbeaec + δµceaeb)

+ γEM4

[
δµa(e2

b + e2
c) + δµb(e

2
a + e2

c) + δµc(e
2
a + e2

b)
]
. (5)

As argued above, we have already dropped the terms involving the sea quark masses
and charges. We note that for any f(M) an SU(3) flavour and charge breaking
expansion can be made. For heavy quark masses, due to curvature in the numerical
data, it was found [36] to be advantageous to expand M2; here as the quark mass
range used is smaller it is sufficient to consider an expansion of M .

‡ Note that in pure QCD the singlet quark mass can be held constant exactly, but once
electromagnetism is included, this is only approximately true due to the different quark charges.
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Table 1. Summary of lattice ensemble details.

β e2 V κu, + 2/3 κd, − 1/3 κs, − 1/3 Ensemble

5.50 1.25 323 × 64 0.124362 0.121713 0.121713 1
5.50 1.25 323 × 64 0.124440 0.121676 0.121676 2
5.50 1.25 323 × 64 0.124508 0.121821 0.121466 3
5.50 1.25 483 × 96 0.124362 0.121713 0.121713 4
5.50 1.25 483 × 96 0.124440 0.121676 0.121676 5

3. Lattice matters

The QCD+QED action we are using in this study is given by

S = SG + SA + SuF + SdF + SsF (6)

where SG is the tree-level Symanzik improved SU(3) gauge action; SA is the
noncompact U(1) gauge action of the photon; and SqF is the fermion action for each
quark flavour, q. The photon action is,

SA =
1

2e2

∑
x,µ<ν

(Aµ(x) +Aν(x+ µ)−Aµ(x+ ν)−Aν(x))2 . (7)

For the fermion action we employ the nonperturbatively O(a)-improved SLiNC action
[37]

SqF =
∑
x

{
1

2

∑
µ

[
q̄(x)(γµ − 1)e−ieqAµ(x)Ũµ(x)q(x+ µ̂)

−q̄(x)(γµ + 1)eieqAµ(x)Ũ†µ(x− µ̂)q(x− µ̂)
]

+
1

2κq
q̄(x)q(x)− 1

4
cSW

∑
µν

q̄(x)σµνFµνq(x)

}
(8)

where Ũµ is a single-iterated mild stout-smeared link. The clover coefficient cSW has
been computed non-perturbatively for pure QCD [37] and we do not include the QED
clover term.

Simulations are carried out on lattice volumes of size 323× 64 and 483× 96. The
sea quark κ values are shown in Table 1, using charges of eu = +2/3, ed = es = −1/3.
The strong coupling was chosen to be β = 5.50 and the electromagnetic coupling
was chosen to be e2 = 1.25, about ten times greater than physical. These choices
lead to a lattice spacing of a = 0.068(1)fm [28]. Further details can be found
in Refs. [27, 28]. In order to better constrain the a priori unknown coefficients in
the flavour-breaking expansions, we employ up to eight different partially-quenched
valence quarks corresponding to neutral pseudoscalar meson masses in the range
225 MeV . M(qq̄) . 765 MeV and valence quark charges ea,b = 0,−1/3,+2/3.
Hadron correlators are evaluated in the so-called QEDL formulation [38], where the
zero mode of the photon field is eliminated on each time slice before computing the
valence quark propagators.
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Hadron masses are computed from two-point correlation functions using
conventional techniques. In particular, for baryons we construct zero-momentum two-
point functions as

C(t) =
∑
~x

Tr Γ 〈χ(~x, t)χ̄(0)〉 , (9)

for some choice of baryon spin projection matrix, Γ, e.g. for spin averaged, Γ =
(1 + γ4)/2. For octet baryons, we employ the interpolating operator in terms of a
doubly-represented quark of flavour, q1, and a singly-represented quark of flavour, q2

χ(~x, t) = εabc
(
qaT1 (~x, t)Cγ5 q

b
2(~x, t)

)
qc1(~x, t) , (10)

where here a, b, c are colour labels. In the following, given the partially quenched
nature of our simulations, we distinguish flavour by the electric charge carried by a
quark rather than its mass. For example, when the combination uud occurs in the
following discussion, this refers to an octet baryon where its doubly-represented quark
has charge +2/3 while the singly-represented quark has charge −1/3. For decuplet
baryons we choose an explicit spin-projection for the scalar diquark of the interpolating
operator that contains doubly- and singly-represented quarks

χ(~x, t) =
1√
3
εabc

[
2
(
qaT1 (~x, t)Cγ− q

b
2(~x, t)

)
qc1(~x, t)

+
(
qaT1 (~x, t)Cγ− q

b
1(~x, t)

)
qc2(~x, t)

]
, (11)

where γ− = (γ2 + iγ1)/2. We note that correlation functions for the Σ∗0, involving all
three flavours of quarks, have not been computed in the present study.

In Figs. 1 and 2 we show examples of our results for the octet and decuplet
baryon masses, respectively. These figures collect the partially-quenched results on
both 483 × 64 ensembles listed in Table 1, plotted as function of the leading SU(3)
breaking term (2δµa +µb) from Eq. (4). The circles and triangles denote results from
the 483 × 96 ensembles 4 and 5, respectively, as labelled in Table 1. To facilitate
simpler comparisons with the fitted SU(3) expansion, the contributions from all other
quark mass-dependent terms beyond (2δµa+µb) in Eq. (4) have been subtracted from
each mass point. As such the curves displayed are given by:

M (sub)(aab) = M0 + α1(2δµa + δµb) +
∑

βEMi Fi(ea, eb), (12)

where the functions Fi encode the appropriate quark-charge dependence as given by
Eqs. 4 and 5. The residual scatter of the points around the line provides an indication
of the quality of the global fit across the baryons. The slight difference in between the
lines of the different panels provides a measure of the QED splittings encoded by the
βEM terms.

The left vertical dashed lines in Figs. 1 and 2 display the positions of the physical
point for the corresponding baryons. For the octet baryons at charge Q = 0, the fit
lines “interpolate” to the Ξ+ and a mild extrapolation to the neutron point. Similarly,
we see the Σ+ and proton in the charge Q = 1 panel. For the decuplet we have chosen
to display the corresponding Q = −1 and Q = +1 contours.
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Figure 1. The dependence of the neutral, Q = 0, (top) and positively-charged,
Q = +1, (bottom) octet baryons on the leading SU(3) breaking term (2δµa +µb)
from Eq. (4), as described in the text. The circles and triangles denote results
from the 483 × 96 ensembles 4 and 5, respectively, as labelled in Table 1. The
vertical dashed lines indicate the locations of the baryon masses at the physical
quark masses, as given in Table 2.

4. Analysis

4.1. Finite volume

In the present work, we just consider the leading finite-volume corrections associated
with the electromagnetic interactions. Strong interaction effects are expected
to be subdominant as they are exponentially suppressed by exp(−mπL) whereas
electromagnetic finite volume (FV) corrections are only power law suppressed, i.e.
1/Ln. These infinite volume hadron masses are estimated in the effective field theory,
NRQEDL, including corrections up to (and including) O(1/L2) [25,39,40].§

Our full dataset includes results obtained from a subset of simulations which
have all simulation parameters fixed except the physical volume. This allows us to
assess the effects of the finite volume on our simluations as compared to the analytic
expectations of Refs. [25, 39, 40]. By considering mass differences between isospin
partners, strong finite-volume effects should cancel, leaving us with quantites that are
primarily sensitive to electromagnetic finite-volume effects. We find that the splittings
on our two volumes (∼ 2.2, 3.3 fm) are generally compatible with each other after
accounting for the leading QED FV effects. When quoting our final values in the
following sections, the results obtained from the finite-volume corrected 483×96 lattice

§ We note that with our larger value of the electromagnetic coupling, αQED ∼ 0.1, this expansion
parameter is numerically comparable to the values of 1/(mL) in the NRQED expansion [41].
Nevertheless, Matzelle and Tiburzi [41] have shown that potentially-relevant higher-order terms in
αQED do not affect the expansion to O(1/L2).
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Figure 2. The dependence of the negative-charge, Q = −1, (top) and positively-
charged, Q = +1, (bottom) decuplet baryons on the leading SU(3) breaking term
(2δµa + µb) from Eq. (5), as described in the text. The circles and triangles
denote results from the 483 × 96 ensembles 4 and 5, respectively, as labelled in
Table 1. The vertical dashed lines indicate the locations of the baryon masses at
the physical quark masses, as given in Table 2.

data provide the central values and statistical uncertainties. The difference between
the two volumes, after correcting for the leading-order EM finite-volume effects and
extrapolating to the physical point, provides a conservative estimate for the dominant
systematic uncertainty.

4.2. The physical point

The first stage of our analysis is to identify the location of the quark mass parameters
corresponding to the physical point. For this, we restrict ourselves to the meson
sector following the procedure outlined in Ref. [28]. The general expansion of Eq. (3)
is modified such that the QED contributions to the neutral pseudoscalar mesons are
absorbed into the quark self-energy. This modification defines the Dashen quark mass
parameters, δmD

q , δµ
D
a , which are then used to parameterise the deviation from the

SU(3) origin. As described in Section 2, terms involving the c and cEM coefficients have
been neglected in this analysis. Upon fitting the resulting expression to the remainder
of the pseudoscalar meson mass spectrum, the enhanced value of αQED = 1.25/4π
employed in our simulations is corrected by a linear rescaling of the fitted βEM

and γEM coefficients by a factor of 4π/(1.25 × 137). Constraining the fits to three
pieces of physical input, namely the physical π0, K0 and K+ masses, then leads to a
determination of the lattice spacing and the bare quark masses at the physical point.
These results are given in Table 2 for the larger 483 × 96 volume. We note that only
three physical inputs are required to determine the four unknown parameters, as we
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have the additional constraint built into our simulations that the average quark mass,
m̄ = (mu+md+ms)/3, is held fixed, i.e. δmu+δmd+δms = 0. Using the parameters
given in Table 2, we are able to provide a prediction for the π+ mass, which is provided
in Table 3 in the form of a mass splitting from the π0. The result from the present
work is in agreement with that from [28], however we note the improved statistical
precision of the current work due to the inclusion of the additional ensembles away
from the SU(3) symmetric point summarised in Table 1.

Table 2. Dashen quark mass parameters at the physical point and the inverse
lattice spacing.

aδmD
u aδmD

d aδmD
s a−1/GeV

-0.00786 (1) -0.00728 (2) 0.0151 (2) 2.906 (12)

4.3. Baryons

At this stage we have completely described our Dashen scheme and have predictions
for the physical quark masses and the lattice spacing for each volume. Hence we
are now in a position to fit the finite-volume corrected, partially quenched octet and
decuplet baryon masses to the flavour-breaking expansions given in Eqs. (4) and (5)
with the bare quark masses, δµq replaced by the Dashen mass δµDq .

Previous work has shown that the light hadron spectrum in pure QCD is well
described along our m̄ = constant trajectory by flavour breaking expansions that are
linear in the flavour breaking quark mass parameter over the entire mass range from
the SU(3)-symmetric point to the physical point, with only small corrections provided
by terms quadratic in the flavour-breaking parameter [34]. A summary of the fit
parameters for the 483 × 96 lattice ensembles is presented in Appendix A.

We note that the reduced χ2 values indicate that the fits are suitably able to
describe the data. To visualise the multi-dimensional fit, we show the central values of
the fit parameterisation against the (finite-volume corrected) lattice spectra in Figs. 1
and 2.

5. Results & Discussion

5.1. Octet baryons

Using the preferred fits we can extrapolate our spectrum to the physical point, as
determined within the meson sector. The absolute masses of the baryon octet are
summarised in Table 4, where we see excellent agreement with the experimental values
for the proton and neutron masses, while we observe multiple-σ discrepancies as the
number of strange quarks in the baryons is increased. This is perhaps an indication of
a slight mismatch in our tuning of the singlet quark mass. This effect, however, will
not affect the results for isospin splittings presented in the remainder of this paper.

Given the high degree of correlation in the mass determinations, the isospin
splittings are determined to much better precision and are displayed in Figure 3 for
our two lattice volumes.

These mass splittings are summarised in Table 3 and serve as an update to our
earlier work [27] which was based on only a single set of sea quark masses, namely
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Table 3. Predicted mass splittings for π+ and octet baryons in the Dashen
scheme, including a separation into QCD and QED contributions in the Dashen
scheme. π0 assumed to be the state (uū− dd̄)/

√
2. Experimental mass splittings

[3] are also given for comparison. All values quoted in MeV.

π+ − π0 n− p Σ− − Σ+ Ξ− − Ξ0

QED 5.86(14)(40) −1.53(25)(50) −0.29(24)(10) 1.19(15)(20)
QCD — 2.79(67)(40) 8.58(72)(70) 5.79(28)(80)
Total — 1.27(75)(50) 8.29(77)(25) 6.95(25)(90)

Experiment 4.59 1.30 8.08 6.85

Table 4. Extrapolated masses for the octet baryons in the Dashen scheme,
showing comparison with the experimental masses [3]. Only the maximally-
charged state of each isospin multiplet is shown. All values quoted in MeV.

p Σ+ Ξ0

939(14)(56) 1165(11)(23) 1276(6)(19)

Experiment 938.3 1189.4 1314.8

n− p Σ− − Σ+ Ξ− − Ξ00

2

4

6

8

10

∆
M

(M
eV

)

483 × 96

323 × 64

exp.

Figure 3. Octet mass splitting with the average octet family mass subtracted.
This includes EM effects. The black crosses are experimental data. The coloured
points are estimates generated from our lattice analysis.

ensembles 1 and 4 in Table 1. We note that in Ref. [27] the photon zero modes
were treated dynamically, requiring an effective kinetic energy to be subtracted at the
analysis stage. The first uncertainty shown in Table 1 is statistical, while the second
provides an estimate of the finite-size systematic error as described in the previous
section. We note that since our simulations are performed at only a single value of the
lattice spacing, no continuum extrapolation is possible. As a guide to the magnitude
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of these UV cut-off effects, Ref. [42,43] showed (with lattice spacings of a similar size
and similar quark and gluon actions) that corrections to the nucleon and ∆ mass are
of the order 1 %. Additionally, Ref. [25] used a similar lattice spacing and action as in
the present work and showed that the UV cut-off effects on the isospin mass splittings
of the octet baryons, including QED, were on the order of 1%.

In Ref. [28] we provided a prescription for converting electromagnetic mass
contributions between Dashen and MS schemes, however to leading order this has no
effect on the central values and hence we only quote our Dashen scheme results. To
separate QED and QCD, we note the γEM terms in Eqs. 4 and 5 describe a product of
e2 and δµ effects. We distinguish the isospin-breaking effects arising from these terms
as either being: QED, when δµu = δµd; QCD, when eu = ed; or a remaining (and
small) second-order isospin-breaking effect. For example, terms involving the product
(eu− ed)(δµu + δd) is attributed to QED, whereas (eu + ed)(δµu− δd) is attributed to
QCD. The former vanish if the up and down charges are equal, while the latter vanish
if the masses are equal.

The electromagnetic splitting between the proton and neutron has seen
considerable attention in recent years. Our result for the proton-neutron mass-
splitting shows some preference to the dispersive analysis of Ref. [44], which finds
−1.30± 0.47 MeV. In contrast, we see our result is slightly larger in magnitude than
the values reported in Refs. [45] and [46, 47], though not in statistical disagreement.
It is noted that the latter phenomenological studies display better agreement with the
lattice results of the BMW Collaboration [25].

Figure 4 shows the breakdown between strong isospin breaking and electromag-
netic effects for the octet baryons. The Ξ splittings are generally compatible with
both phenomenological estimates [45] and the BMW lattice results [25]. We note that
a direct comparison for the electromagnetic splitting in the Σ is not possible, since
this is set to zero in the scheme prescribed in Ref. [25].

5.2. Decuplet baryons

For the decuplet baryons, our analysis is restricted to the extrapolation of our lattice
masses to the physical point based on the flavour-breaking expansion about the
SU(3) symmetric point. That is, no attempt has been made in the present work to
incorporate the effects of the resonant nature of the decuplet baryons at the physical
quark masses — which necessarily lead to branch point singularities in the quark mass
extrapolation [48, 49]. The isospin splittings within the decuplet baryons therefore
represent a first estimate on the magnitude of these effects. A full treatment including
mixing with multi-hadron states is left for future work.

As for the octet baryons, our decuplet expansion is fit to the electromagnetic
finite-volume corrected lattice results. The absolute masses themselves do not compare
so favourably with experimental determinations, as shown in Table 5. Within the

Table 5. Absolute masses for the maximally-charged state for each isospin
multiplet within the decuplet. All values quoted in MeV.

∆++ Σ∗+ Ξ∗0 Ω

This work 1304(59)(6) 1425(38)(8) 1542(26)(9) 1656(21)(8)

Experiment 1231 1383 1532 1672
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Figure 4. A decomposition of the octet splitting in terms of EM and strong
isospin breaking effects. The BMW lattice points are from [25]. The lines
represent a constraint placed by the experimental data.

quoted uncertainties we observe that the absolute masses at the physical point are
compatible with the experimental masses. Nevertheless, it is possible that there is
a systematic uncertainty that is causing an underestimate of the overall scale of the
SU(3) breaking between these states. This could be due to the fact that our simulations
are performed at and around the SU(3) symmetric point where the ∆ and Σ∗ states
are stable states. However, in the physical system the ∆ and Σ∗ states are unstable
and decay, e.g. to ∆→ π+N , where the net mass of the π+N system is significantly
lower than the three quark state. The opening of these decay channels is certainly
anticipated to affect the extrapolation to the physical point [48]. This physics of the
decays would become less prominent for Ξ∗ and irrelevant for the Ω, which is stable
under the strong interaction. Based on analysis in the literature [48–50] we expect
more favourable agreement when these effects are taken into account. For instance,
using the physical decuplet masses as input and chiral perturbation theory Ref. [50]
and Ref. [49] give estimates of the masses of the decuplet baryons when these decay
channels are turned off. These estimates match more closely with our lattice mass
predictions.

Assuming that the threshold effects do not have a strong influence on the isospin-
violating parts, we expect that the magnitudes and orderings of the splittings to
be indicative of the expected behaviour at the physical point. We highlight some
various selected splittings of phenomenological interest in Table 6. The combination
∆+++∆−−∆+−∆0 is selected as it eliminates the leading strong isospin violation, and
hence provides a purely electromagnetic effect. The difference ∆0 −∆++ is reported
by the PDG. The particular combination ∆− −∆++ + 1

3

(
∆0 −∆+

)
can be isolated
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Table 6. Mass splittings for decuplet baryons. All values quoted in MeV.

∆++ + ∆− −∆+ −∆0 ∆0 −∆++ ∆− −∆++ + 1
3

(
∆0 −∆+

)
QED 1.7(14)(10) -2.5(20)(13) -2.7(26)(20)
QCD -0.006(11)(6) 6.3(24)(5) 10.5(40)(10)
Total 1.7 (14)(10) 3.8(31)(5) 7.8(46)(5)

Cutkosky [1] 2.84–3.55 0.81–1.53 4.31–4.92
Exp./Pheno. — 2.86(30) [52] 4.6(2) [51]

Σ∗+ + Σ∗− − 2Σ∗0 Σ∗− − Σ∗+ Ξ∗− − Ξ∗0

QED 1.5(7)(1) -0.8(11)(7) 0.61(51)(60)
QCD -0.0032(56)(30) 6.1(22)(2) 2.92(98)(1)
Total 1.5(7)(1) 5.3(23)(10) 3.54(98)(8)

Cutkosky [1] 1.42 4.56 3.09
PDG [3] 2.6(21) 4.4(6) 3.2(6)

experimentally by considering the difference between π+ and π− cross sections on
deuteron targets, as reported in Ref. [51]. For the Σ∗ baryons, again Σ∗+ +Σ∗−−2Σ∗0

removes the leading strong isospin breaking, leaving a purely electromagnetic effect.
To mimic the analogous splitting of the octet baryons we display Σ∗− − Σ∗+, which
is observed to be dominated by the quark mass differences. Similarly we find that
Ξ∗− − Ξ∗0 is also dominated by the strong effect, which is perhaps counterintuitive
since the electromagnetic effect in Ξ∗− is repulsive while it is attractive in Ξ∗0.

The final mass splittings due to isospin breaking effects, both strong and
electromagnetic, at the physical quark masses for all decuplet baryon on both volumes
are shown in Figure 5. The mass splittings within each isospin multiplet are displayed
as the difference of each mass from the average of its respective multiplet. For example,
the splittings in Delta baryons are given by:

∆MB = MB −
1

4
(M∆++ +M∆+ +M∆0 +M∆−) . (13)

For the Σ∗ and Ξ∗ baryons we are able to compare our mass splittings directly
with those obtained from experiment, indicated by the black crosses, while for the ∆
baryons we are only able to compare to a fit to experimental data [1]. The results
shown in Figure 5 clearly agree with the experimental determinations, indicating
that while the overall magnitude of our decuplet baryon masses are overestimated,
potentially due to the fact that we haven’t considered the full resonance structure
of the strongly unstable baryons, the mass splittings within each multiplet can be
accurately described by our QCD+QED simulation.

Finally, we note that the present analysis allows us to estimate the total
contributions to baryon masses arising from electromagnetism. Of particular relevance
is that the Ω baryon is now being commonly used to determine the scale in lattice
QCD to sub-percent precision. We find the QED contribution to the Ω mass to be
less than 0.2% of the total mass, below the precision relevant for current lattice QCD
simulations, but perhaps significant for the next generation of calculations.
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Figure 5. Mass splittings within the isospin multiplets of decuplet baryons with
respect to the average multiplet mass (see Eq. (13)), including both strong and
electromagnetic effects. The black crosses for Σ∗ and Ξ∗ baryons are experimental
data [3], while the black circles for ∆ baryons indicate a fit to experimental
data [1].

6. Conclusion

We have presented lattice QCD+QED results for the light baryon mass spectrum
including both strong and electromagnetic isospin breaking effects. Our simulations
are based on partially-quenched simulations with 2 volumes and up to three choices
for the sea quark masses at and around the SU(3) symmetric point. For the octet
baryons, this work represents an update to our earlier findings [27] which were
obtained from only a single choice of sea quarks. Another difference to our previous
work is the use of the QEDL formulation [38] for the valence quarks. We find
excellent agreement between our results for the mass splittings of the isospin partners,
n − p, Σ− − Σ+, Ξ− − Ξ0 and those observed experimentally. Our procedure also
allows for the decomposition of these isospin-dependent mass splittings into strong
and electromagnetic contributions with the Dashen scheme.

Qualitatively the absolute values of the masses of our decuplet spectrum are too
large, although we have not yet considered how the pole position of a resonance can be
affected by the multi-hadron strong decay modes in a finite volume which may account
for some of this discrepancy. A description of the resonance nature of the decuplet
baryon mass spectrum has only recently started to be addressed in pure QCD lattice
simulations [53,54]. A full formalism to resolve resonant features of hadron scattering
in a finite box, including the long-range Coulomb interactions, is yet to be developed.

The principle focus of the present work is the determination of the isospin breaking
effects in the decuplet baryon mass spectrum. The lattice estimates for the mass
splittings within the different isospin multiplets of the decuplet baryons, however, are
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in excellent agreement with the experimentally observed splittings in the case of the
Σ∗ and Ξ∗ baryons, or a phenomenological fit using experimental data [1] in the case
of the ∆ baryons.
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Appendix A. Fit parameters

In Table A1, we report the fit parameters of the flavour-breaking expansions.

Table A1. Expansion parameters as determined for the 483 × 96 volume. The
terms involving the electromagnetic couplings have been scaled to the physical

point by the factor αphys
QED/α

lat
QED.

Meson Octet Decuplet

M0 0.020504(66) 0.3944(24) 0.494(11)
α1 1.1703(47) 3.32(11) 1.73(40)
α2 — −1.71(23) —
β1 −0.17(22) −20.7(40) 1.0(135)
β2 1.51(12) −14.2(13) −2.9(45)
β3 — 38.0(11) —
βEM
1 0.0001975(47) 0.00083(17) 0.00064(53)
βEM
2 −0.0005222(37) 0.001032(55) 0.00042(18)
βEM
3 — −0.00022(33) —
γEM
1 0.00435(26) −0.0041(44) 0.012(17)
γEM
2 −0.00899(13) 0.0014(11) 0.003(5)
γEM
3 0.00526(21) −0.0063(54) 0.0092(61)
γEM
4 — 0.0014(27) −0.00011(70)
γEM
5 — 0.008(11) —
γEM
6 — 0.016(12) —

χ2 183.74 47.12 20.35
DOF 105 112 118
χ2/DOF 1.75 0.42 0.172
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[42] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg, T. Kurth,
L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert, “Ab initio determination of light
hadron masses,” Science, vol. 322, no. 5905, pp. 1224–1227, 2008.
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