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Abstract. Higher order calculations in perturbative Quantum Field Theories often produce
coupled linear systems of differential equations which factorize to first order. Here we present
an algorithm to solve such systems in terms of iterated integrals over an alphabet the structure
of which is implied by the coefficient matrix of the given system. We apply this method to
calculate the master integrals in the color–planar and complete light quark contributions to the
three-loop massive form factors.

1. Introduction
Higher order calculations in perturbative Quantum Field Theories often produce coupled linear
systems of differential equations which factorize to first order. Through the integration-by-parts
identities (IBP) [1,2], the Feynman integrals appearing in a scattering amplitude can be mapped
to a smaller set of integrals, the master integrals (MIs). One method to solve these integrals
is the method of differential equations [3–6], where one differentiates the MIs with respect to a
kinematic invariant and obtains such a coupled linear system of differential equations in which
we are interested in. Such an algorithm was constructed earlier in [6, 7] in the case of a system
of difference equations. Here we summarize the algorithm, presented in [8], operating on uni-
variate systems of differential equations, which factorize to first order. In the cases where the
systems do not factorize to first order, elliptic and even more involved structures appear, cf.
e.g. [9–17]. Our algorithm works for any basis of master integrals, while in the one in [5] a
special basis is required.

As an example, we employ this method to compute the set of MIs which appear in the
color–planar and complete light quark nonsinglet three-loop contributions to the heavy-quark
form factors for different currents, namely the vector, axial-vector, scalar and pseudo–scalar
currents. These form factors are of phenomenological importance. Being the heaviest particle of
the Standard Model (SM), the top quark plays an important role in comprehending the electro-
weak symmetry breaking (EWSB). Consequently, many observables like the inclusive production
cross section of a pair of top quarks, the forward–backward asymmetry, etc., draw attention in
the post era of the Higgs boson discovery. These form factors are basic building blocks of many
such observables. The two-loop QCD contributions to these massive form factors were first



computed in [18–21]. Later in [22], an independent computation was performed for the vector
form factors, including the O(ε) terms, where ε is the dimensional regularization parameter in
D = 4− 2ε space-time dimensions.

In [23], the two-loop QCD contributions up to O(ε2) for all massive form factors were
calculated. At the three-loop level, the color-planar contributions to the vector form factors have
been computed in [24,25] and the complete light quark contributions in [26]. Using the method
described here, we have calculated both the color-planar and complete light quark contributions
to the three–loop form factors for the axial–vector, scalar and pseudo-scalar currents in [27] and
for the vector current in [8], where a detailed description of the present method along with an
example is presented. In a parallel calculation, the same results have been obtained in [28]. The
asymptotic behavior of these three–loop form factors has been studied in [29,30].

2. Description of the method
We consider a set of n MIs I = (I1, . . . , In) within the same topology. The MIs are functions of
the space–time dimension D and the Landau variable x defined by

s =
q2

m2
= −(1− x)2

x
. (1)

Here q2 is the virtuality of the boson and m denotes the heavy quark mass. One obtains an
n × n system of coupled linear differential equations by performing the derivative with respect
to x of each of the MIs followed by the IBP reduction,

d

dx
I =M I +R. (2)

Here the n × n matrix M consists out of entries from the rational function field K(D,x) (or
equivalently from K(ε, x)) where K is a field of characteristic 0. The inhomogeneous part
R = (R1, . . . ,Rn) contains MIs which are already known. In simple cases, R turns out to
be just the null vector. For more involved cases, we assume that each entry Ri is expanded1

into a Laurent series in ε in terms of iterated integrals

Ri =

∞∑
j=−k

εjR(j)
i . (3)

To proceed, we assume that the unknown integrals Ii can be expanded into a Laurent series in
ε

Ii =

∞∑
j=−k

εjI(j)
i . (4)

We first apply Zürcher’s algorithm [31–34] (or a variant of it), implemented in the package
OreSys [35], leading to a single differential equation which is then analyzed with HarmonicSums

[36–44] for first order factorization.
The MIs can be distinguished sector–wise, where the maximal set of non–vanishing

propagators in a single Feynman graph defines a sector and corresponding subsets define the
sub-sectors. On the other hand, a derivative can only introduce the inverse of a new propagator.
Hence, the differential equation of a MI can contain integrals from the same sector or its sub–
sectors. Thus, organizing the MIs in such a way that MIs with less number of propagators are
kept at the bottom of the list, provides an upper–block–triangular form ofM, i.e. the diagonal

1 In the following f (k) does not denote the kth derivative of f .



elements of M are square matrices of rank one or more. Each such square matrix represents a
completely coupled set of MIs and we call them sub–systems ofM. Due to such an arrangement
of the system, we can now solve it in a bottom–up approach, i.e. we first solve the last coupled
sub–system, having no dependence to the other MIs and work upwards in the next step. Below
we present how we solve the sub–systems.

I. Let us consider m integrals Ĩ = (Ĩ1, . . . , Ĩm) which constitute a coupled sub–system,

d

dx
Ĩ = M̃ Ĩ + R̃, (5)

where M̃ and R̃ are respective parts ofM and R and hence have similar expansions in ε. Now
we exploit the fact that for a certain topology and kinematics an integral has a definitive pole
structure with a fixed order (k) of the highest pole, as e.g. the integrals arising in three–loop
heavy quark form factors can have at most a 1/ε3 pole. Keeping that in mind, we plug in Eq. (4)
into Eq. (5), perform the series expansion in ε and obtain the coefficient of εk as follows

d

dx
Ĩ(k) = M̃(0) Ĩ(k) +

(
M̃(1) Ĩ(k−1) + M̃(2) Ĩ(k−2) + · · ·+ M̃(k+l) Ĩ(−l)

)
+ R̃(k) . (6)

II. Now we try to solve the sub–system order by order in ε. To accomplish that we start with
the coefficient of the leading pole ε−l. The corresponding sub–system is

d

dx
Ĩ(−l) = M̃(0) Ĩ(−l) + R̃(−l) . (7)

To solve Eq. (7), a natural first step is to reduce this m × m system to a higher order linear
differential equation. We refer to this procedure as ‘uncoupling’. By using OreSys, we obtain

m∑
k=0

pk(x)
dk

dxk
Ĩ(−l)

1 (x) = r(x). (8)

Here pl(x) are rational functions in K(x) and r(x) consists of contributions from R(−l)
j (x) and

its derivatives. OreSys also provides the additional m − 1 relations for the remaining integrals

Ĩ(−l)
k (x), k = 2, . . . ,m in terms of linear combinations of Ĩ(−l)

1 (x) and its derivatives:

Ĩ(−l)
k (x) =

m−1∑
i=0

ak,i(x)
di

dxi
Ĩ(−l)

1 (x) + ρk(x), (9)

with ak,i(x) ∈ K(x) and ρk(x) ∈ K(x). We remark that the uncoupling may find several linear
differential equations for several unknowns. However, the sum of the order of all the linear
differential equations is m. For simplicity we assume in the following that only one linear

differential equation for Ĩ(−l)
1 (x) is produced.

III. Now we consider the homogeneous solutions of Eq. (8). The differential equation can be
factorized at first order as(

d

dx
− p̂1(x)

)(
d

dx
− p̂2(x)

)
. . .

(
d

dx
− p̂m(x)

)
y1(x) = 0, (10)

with p̂k being rational functions in K(x) by using algorithms from [45–47]. We find the
d’Alembertian solutions yi(x), i = 1, . . . ,m (see [8] for details) for the homogeneous part of



Eq. (8) in terms of iterative integrals. In our application to the three–loop massive form factors,
the alphabet is

A =
{

1
x ,

1
1−x ,

1
1+x ,

1
1+x2

, x
1+x2

, 1
1+x+x2

, x
1+x+x2

, 1
1−x+x2

, x
1−x+x2

}
. (11)

The arising iterative integrals in our application can be simplified to the harmonic polylogarithms
(HPLs) [48] and cyclotomic HPLs [36]. We also note here that to fix the boundary condition
of the differential equations, one needs to evaluate these iterative integrals at a particular value
of x, say x = 1 which resulted in the example on hand into multiple zeta values (MZVs) [49]
and cyclotomic constants [36,50–52]. In [53], PSLQ [54] was used to conjecture relations beyond
those known from [36,50–52].

IV. The general solution (g(x)) including the inhomogeneous part can now be easily given by
the method of variation of constants in terms of iterative integrals as

g(x) =
m∑
i=1

yi(x)

∫ x

l
dx̃
r(x̃)Wi(x̃)

W (x̃)
(12)

where W (x̃) is the Wronskian of the linear differential equation Eq. (8) and Wi(x̃) is given by

Wi(x) = (−1)i+m

∣∣∣∣∣∣∣∣∣
y1 . . . yi−1 yi+1 . . . ym
d
dxy1 . . . d

dxyi−1
d
dxyi+1 . . . d

dxym
...

...
...

...
dm−2

dxm−2 y1 . . . dm−2

dxm−2 yi−1
dm−2

dxm−2 yi+1 . . . dm−2

dxm−2 ym

∣∣∣∣∣∣∣∣∣ . (13)

V. Next we use the general solution (g(x)) for Ĩ(−l)
1 (x), plug it into Eq. (9) for k = 2, . . . ,m

and obtain solutions for the rest of the integrals and obtain Ĩ(−l)(x) at O(ε−l).

VI. Now we consider the next order (−l+1) in the ε-expansion. We use the solution of Ĩ(−l)(x)
in terms of iterative integrals and plug it into Eq. (6) for k = −l + 1. Thus we obtain a new

system of the form Eq. (7) for the ε−l+1-coefficient Ĩ(−l+1) = (Ĩ(−l+1)
1 (x), . . . , Ĩ(−l+1)

m (x)). Then
the above procedure is repeated. From Eq. (6) it is evident that the homogeneous solution at
each order remains same. The only changes happen to the inhomogeneous functions r(x). As
a consequence, we can reuse the already available homogeneous solutions y1(x), . . . , ym(x) and
just need to compute g(x) in Eq. (12) with the updated function r(x). In Ref. [8] the method
has been illustrated by a detailed example.

3. Application to the massive form factors
We consider the decay of a virtual massive boson, which can be a vector (V ), an axial-vector
(A), a scalar (S) or a pseudo-scalar (P ) of momentum q, into a pair of heavy quarks of mass m,
momenta q1 and q2 and color c and d, through a vertex Xcd, where Xcd = ΓµV,cd,Γ

µ
A,cd,ΓS,cd and

ΓP,cd. The general form of the amplitudes can be written as

ūc(q1)ΓµV,cdvd(q2) ≡ −iūc(q1)
[
δcdvQ

(
γµ FV,1 +

i

2m
σµνqν FV,2

)]
vd(q2),

ūc(q1)ΓµA,cdvd(q2) ≡ −iūc(q1)
[
δcdaQ

(
γµγ5 FA,1 +

1

2m
qµγ5 FA,2

)]
vd(q2),

ūc(q1)ΓS,cdvd(q2) ≡ −iūc(q1)
[
δcdsQ

(m
v

(−i) FS
)]
vd(q2),

ūc(q1)ΓP,cdvd(q2) ≡ −iūc(q1)
[
δcdpQ

(m
v

(γ5) FP

)]
vd(q2) . (14)



Here ūc(q1) and vd(q2) are the bi–spinors of the quark and the anti–quark, respectively, with
σµν = i

2 [γµ, γν ]. vQ, aQ, sQ and pQ are the Standard Model (SM) coupling constants for the

vector, axial-vector, scalar and pseudo-scalar, respectively; v = (
√

2GF )−1/2 denotes the SM
vacuum expectation value of the Higgs field, with the Fermi constant GF . More details can be
found in [23]. The ultraviolet (UV) renormalized form factors (FI) are expanded in the strong
coupling constant αs = g2

s/(4π) as follows

FI =
∞∑
n=0

(αs
4π

)n
F

(n)
I . (15)

The form factors can be obtained from the amplitudes by multiplying appropriate projectors
as given in [23] and performing the trace over the color and spinor indices. nl and nh are the
numbers of light and heavy quarks, respectively.

The computational procedure of the three–loop massive form factors are outlined in
Refs. [23, 27]. As usual the packages QGRAF [55], Color [56], Q2e/Exp [57, 58] and FORM [59, 60]
have been used to generate the Feynman diagrams, calculate their color structure and to
perform traces over the Dirac matrices. Since we use dimensional regularization, an appropriate
description for the treatment of γ5 is needed in the case of axial-vector and pseudo-scalar form
factors. However, both the color–planar and complete nl contributions belong to the so-called
non-singlet case, where the vertex is connected to open heavy quark lines. Hence, both γ5-
matrices appear in the same chain of Dirac matrices, which allows us to use an anti-commuting
γ5 in D space-time dimensions, with γ2

5 = 1. This is implied by the well-known Ward identity,

qµΓµ,nsA,cd = 2mΓns
P,cd , (16)

The IBP reduction to MIs has been performed using Crusher [61]. Finally, we have obtained 109
MIs, out of which 96 appear in the color–planar case. To obtain the MIs, we have implemented
the method described in the previous section. Apart from OreSys, we have intensively used
HarmonicSums [36–44] and Sigma [62, 63]. Finally, we have performed numerical checks of all
the MIs using FIESTA [64–66].

Once, we compute the MIs including the required orders in ε, we finally obtain the color–
planar and complete light quark contributions to the unrenormalized three–loop massive form
factors. In these cases, along with the strong coupling constant, the heavy quark mass and the
heavy quark wave function need UV renormalization. We consider the MS scheme to renormalize
the strong coupling constant, where we set the universal factor Sε = exp(−ε(γE − ln(4π)) for
each loop order to one at the end of the calculation. However, we renormalize the heavy quark
mass and wave function in the on–shell (OS) scheme. The required renormalization constants
are denoted by Zm,OS [67–71], Z2,OS [67–69,72] and Zas [73–79] for the heavy quark mass, wave
function and strong coupling constant, respectively.

The QCD amplitudes contain infrared (IR) divergences arising from soft gluons and collinear
partons. However, such behavior is universal and acts as a check of exact computations. In the
case of massive form factors, the structure of IR singularities are given by [80,81]

FI = Z(µ)F fin
I (µ) , (17)

where F fin
I is finite as ε→ 0. Z(µ) is related to the massive cusp anomalous dimension [82, 83]

through the renormalization group equation.

4. Results
The system of differential equations of the MIs appearing in the color–planar and complete
light quark contributions to the massive form factors is a single scale and first order factorizable



system. We apply our proposed method to this system to obtain the solutions of the MIs up
to the required order in ε. Using these solutions for the MIs, we then obtain the form factors
for vector, axial–vector, scalar and pseudo–scalar currents in the corresponding scenario. The
results are lengthy and hence are provided as supplementary material along with Ref. [8, 27].

Here we illustrate in Figures 1 the behavior of the O(ε0) parts of the vector and axial-vector
form factors as a function of x ∈ [0, 1]. In Figures 2, the O(ε0) part of the scalar and pseudo-
scalar form factors are presented. We also show their small– and large–x expansions. The latter
representations are obtained using HarmonicSums. To evaluate the HPLs and the cyclotomic
HPLs numerically, we use the GiNaC package [84, 85] and the FORTRAN-codes HPOLY.f [86] and
CPOLY.f [8].

0.0 0.2 0.4 0.6 0.8 1.0
-5000

0

5000

10 000

x

F
V

,1
(3
) (

x
)

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10 000

12 000

x

F
V

,2
(3
) (

x
)

0.0 0.2 0.4 0.6 0.8 1.0
-5000

0

5000

10000

x

F
A

,1
(3
) (

x
)

0.0 0.2 0.4 0.6 0.8 1.0

0

5000

10 000

15 000

x

F
A

,2
(3
) (

x
)

Figure 1. The O(ε0) contribution to the vector three-loop form factors F
(3)
V,1 (upper left) and F

(3)
V,2

(upper right) and to the axial-vector three-loop form factors F
(3)
A,1 (lower left) and F

(3)
A,2 (lower right)

as a function of x ∈ [0, 1]. Dash-dotted line: leading color contribution of the non–singlet form
factor; full line: sum of the complete non–singlet nl-contributions for nl = 5 and the color–planar
non–singlet form factor; dashed line: large x expansion; dotted line: small x expansion.

4.1. Checks
We have performed a series of checks starting with maintaining the gauge parameter ξ to
first order and thus obtaining a partial check on gauge invariance. Fulfillment of the chiral
Ward identity, Eq. (16), gives another strong check on our calculation. Considering αs–
decoupling appropriately, we obtain the universal IR structure for all the UV renormalized
results, confirming again the universality of IR poles. Also, in the low energy limit, the magnetic
vector form factor produces the anomalous magnetic moment of a heavy quark which we cross
check with [87] in this limit.
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Figure 2. The O(ε0) contribution to the scalar three-loop form factors F
(3)
S (left) and to the

pseudo-scalar three-loop form factors F
(3)
P (right) as a function of x ∈ [0, 1]. Dash-dotted line:

leading color contribution of the non–singlet form factor; Full line: sum of the complete non–singlet
nl-contributions for nl = 5 and the color–planar non–singlet form factor; Dashed line: large x
expansion; Dotted line: small x expansion.

We have compared our results with those of Ref. [25,26,28], which have been computed using
partly different methods. Both results agree.

5. Conclusion
We presented a method to solve uni-variate systems of differential equations which are first order
factorizable. The system is solved in terms of iterative integrals over a finite alphabet of letters.2

This method can be applied to a wide range of systems in Quantum Field Theory. We employ
this method to solve such a system of differential equations appearing while solving the master
integrals of the color–planar and complete light quark contributions to the three loop heavy
quark form factors using the method of differential equations. Finally, we also obtain all the
corresponding form factors for vector, axial–vector, scalar and pseudo–scalar currents at three
loops, which play an important role in phenomenological study of top quark.
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massive systems in [89] beyond Kummer–Poincaré iterated integrals [90,91], but applies to fully general alphabets.



[10] S. Bloch and P. Vanhove, J. Number Theor. 148 (2015) 328–364 [hep-th/1309.5865].
[11] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 56 (2015), no. 7 072303 [hep-ph/1504.03255].
[12] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 55 (2014), no. 10 102301 [hep-ph/1405.5640].
[13] L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, J. Math. Phys. 57 (2016), no. 12 122302 [hep-

ph/1607.01571].
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[15] J. Brödel, C. Duhr, F. Dulat and L. Tancredi, JHEP 05 (2018) 093 [arXiv:1712.07089 [hep-th]].
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[49] J. Blümlein, D.J. Broadhurst and J.A.M. Vermaseren, Comput. Phys. Commun. 181 (2010) 582–625

[arXiv:0907.2557 [math-ph]].
[50] D.J. Broadhurst, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091].
[51] M.Y. Kalmykov and B.A. Kniehl, Nucl. Phys. Proc. Suppl. 205-206 (2010) 129–134 [arXiv:1007.2373 [math-

ph]].
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