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Figure 1: M;** scenario in comparison with the proposed new M]}*(p = —2TeV) scenario

and the other choices of p = —1TeV, —3TeV, shown in the (M,,tan ) parameter plane.
Left panel: current experimental constraints from heavy Higgs searches in the bb [64] (dashed
lines) and 77— [65] (solid lines) final state and 125 GeV Higgs rate measurements (gray filled
regions); Right panel: Contours for the lowest acceptable value of the light-Higgs boson mass,
M, = 122GeV (taking into account a theory uncertainty of £3 GeV), with the Higgs rate
constraints (from the left panel) superimposed.

CMS pp — H/A — 77~ search [65] with 35.9 fb~! of data, both at a center-of-mass energy of
13 TeV, using HiggsBounds [66-71]. The indirect constraints from Higgs rate measurements
are evaluated with HiggsSignals (version 2.3.0) [72,73] by means of a negative log-likelihood
ratio (LLR) test with the SM as alternative hypothesis, and approximating the likelihood with
a x? function. This test uses Run-1 [3] and recent Run-2 results up to around 80 fb~! from
ATLAS [74] and CMS [75-84]. Fig. 1 (left) clearly illustrates that pp — H/A — bb searches
become more sensitive for scenarios with large negative g values due to the enhancement of
the bottom-quark Yukawa coupling, as the excluded regions probe lower values of tan 3 for
larger negative pu values.? It is noteworthy that the exclusion limit from pp — H/A — 77—
searches does not vary significantly with u.> This is because the pp — H/A — bb signal rate
profits from an enhancement in the production (in the gg — bbH /A production mode) and in
the decay branching ratio (BR) of the H/A — bb decay, while the pp —+ H/A — 7F7— signal
rate only gains from the enhancement in the production rate whereas in combination with the
decay rate BR(H/A — 7%77) a large compensation of A, effects occurs [85]. Still, we observe
that heavy Higgs-boson searches in the bb final state cover significantly less parameter space in

AThe exclusion lines for g = —2TeV and —3TeV terminate, as for larger tan 3 values the hight Higgs boson
mass quickly decreases (see also the right panel of Fig. 1) and the prediction of Higgs-boson masses is affected
by large uncertainties.

5The exclusion contours derived from the CMS pp — H/A — 777~ search are practically identical for the
choices p = —1, —2 and —3TeV, and therefore plotted as a single contour.
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Figure 2: HL-LHC projections in the M}* scenario, assuming YR18 systematic uncertainties
(scenario S2 in Ref. [15]). The dashed black curve and blue filled region indicate the expected
HL-LHC reach via direct heavy Higgs searches in the 77— channel with 6 ab—! of data (with the
dark blue regions indicating the 1 and 2o uncertainty), whereas the red and green dashed lines
show the expected limit from current searches in this channel by ATLAS [106] and CMS [65],
respectively. The current and future HL-LHC sensitivity via combined ATLAS and CMS Higgs
rate measurements is shown as magenta and black dotted contours, respectively (the latter
being accompanied with a hatching of the prospectively excluded region).

sufficient to probe parameter regions that are not covered by the direct Higgs searches (black
dashed line). Those direct searches in the 77— final state will probe the parameter space up
to M, < 2.5TeV for the highest displayed tan § values of tan 3 ~ 50. At tan S = 20 the reach
extends up to M, < 2000GeV. The change in the curvature of the black dashed line around
M4 ~ 1.9 TeV can be understood from the fact that for larger values of M, decays of H and A
into electroweakinos open, thus diminishing the event yield of the 7#7— final state. The kink
in the exclusion boundary at M4 ~ 800 GeV is caused by a transition of the main production
channel from gluon fusion (low tan § values) to bottom quark associated production (high tan 3
values).!? In this scenario the prospective combined sensitivity from direct and indirect searches
in the absence of a signal would yield a lower bound on M4 of about M, = 1200 GeV. In order
to correctly interpret this result, the following should be taken into account. As explained
above, this bound is not a consequence of prospective Higgs signal strength measurements at

107t should be kept in mind that for the projected H /A — 71+~ search sensitivity we used the one-dimensional
profiled cross section hmits for the two relevant production modes.
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Figure 3: HL-LHC projections in the M}!*(¥) scenario with the same color coding as in Fig. 2.

the HL-LHC, but it is rather driven by the direct Higgs search reach in combination with the
Higgs-mass prediction. Since by definition for this benchmark scenario all parameters except
M4 and tan 3 are set to fixed values, the adopted theoretical uncertainty of the Higgs-mass
prediction has a major impact on the resulting bound. For a smaller theoretical uncertainty
the allowed region in this scenario would be shifted to larger tan 3 values, so that the lower
bound on M, would rise to values above 2TeV. On the other hand, in scenarios where the
prediction for the mass of the light Higgs boson is compatible with the measured Higgs-boson
mass also for low tan 3 values, the indirect constraints on M, from the rate measurements can
exceed the sensitivity from the direct searches (see the discussion below).

The picture is somewhat different in the M**(¥) scenario. Here the large branching ratio
of the heavy neutral Higgs boson decaying to charginos and neutralinos already at lower values
of M4 leads to a strongly reduced direct reach of H/A — 77~ searches. The kink in the ex-
clusion boundary at M4 ~ 600 GeV is as in Fig. 2 caused by a transition of the most sensitive
production channel from gluion fusion (at low tan 4 values) to bottom quark associated pro-
duction (at high tan § values). At tan/ = 20 the reach in the M}*(¥) scenario is significantly
reduced to My < 1700 GeV compared to the M}*® scenario with M4 < 2000 GeV. On the other
hand, at large values of tan § ~ 50 and thus large M, the reach is only slightly weaker than
in the M}® scenario, as for those M, values in both scenarios decays into electroweakinos are
kinematically open. In order to further strengthen the impact of direct searches it would be
useful to supplement the searches in the 77— and bb final states with dedicated searches for
the decays of H and A to charginos, neutralinos and in general also to sleptons. Higgs rate
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Figure 4: HL-LHC projections in the M;Fpy scenario with the same color coding as in Fig. 2.
The blue and black dash-dotted lines show the current CMS [88] and future HL-LHC expected
95% C.L. limit from a combination of H — hh searches (see Sec. 3 for details).

largest coverage for tan 8 values up to tan 8 ~ 5.5, while for higher values of tan 3 the direct
searches for heavy Higgs bosons in the 757~ final state have the best prospects.

In order to cover the low-tan 3 region, further experimental sensitivity studies for direct
searches for H/A — tt, H — hh and A — Zh decays as well as heavy Higgs boson decays into
electroweakinos are of interest (see Refs. [87,95] for recent theorists’ projections of H/A — tt
and H — hh, and Ref. [15] for experimental projections in different scenarios). The searches for
decays to electroweakinos are of particular importance in both the M;**(Y) and the M;Tpr(X)
scenario, see also Ref. [10,11,108].

We now turn to the second EFT scenario, Mfi EFT{ %), with a light EWino spectrum. As for
the case of the M}%(¥) scenario discussed above, the HL-LHC measurement of the di-photon
Higgs-boson signal rate has the potential to set a lower bound on tan 3 for the chosen values of
the chargino masses. In fact, restricting ourselves to the tan 3 range between 1 and 10 that was
originally proposed for this scenario, the entire (M4, tan ) plane of the M111 2er(¥) scenario can
be probed by the HL-LHC measurement of the di-photon Higgs-boson signal rate. Accordingly,
this parameter plane could be excluded at the HL-LHC if no deviation from the SM prediction
is observed. Therefore, instead of displaying the (M4, tan 3) plane, we instead investigate the
reach of the HL-LHC in the (M3, p) parameter plane, where M5 is the soft-breaking wino mass
parameter and g the Higgs mixing parameter. This is shown in Fig. 5, where we highlight the
prospective 20 excluded region, assuming HL-LHC Higgs signal rate measurements that agree

12
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Figure 5: Projected reach of future Higes signal rate measurements at ATLAS and CMS with
3 ab~! assuming YR18 systematic uncertainties in the (Ma, p) parameter plane around the
M;; Epr(X) scenario (denoted by the orange star), for fixed My = 3 TeV. The solid, dashed and
dotted contour lines and the corresponding gray areas indicate the 2o reach for tan 8 values of
2.5, 5 and 10, respectively.

with the SM expectation. The results are shown for three different values of tan 8 = 2.5,5, 10
and fixed My = 3TeV. As can be seen in Fig. 5, the reach in the chargino mass parameters
M5 and p increases with decreasing tan 3, caused by a larger mixing of the charginos with
decreasing tan 3, which directly impacts the h — 7 partial decay width. Similarly, the largest
values of the light chargino mass, Mif’ can be probed if Ms = p, as in this case the chargino
mixing is large, and in turn, the Higgs boson coupling to charginos is maximized. For instance,
for tan 3 = 2.5 (5) and M> = p, light chargino masses up to ~ 255 (190) GeV can be probed
at the 2¢ level (in this case, the heavier chargino mass is ~ 410 (320) GeV). In contrast, in
case of a larger hierarchy, M> > pu or Ms < p, the smaller of the two mass parameters has to
be rather low in order to be able to probe the electroweakino sector via the di-photon signal
strength measurements. The nominal values of Ms and u that were chosen in the definition of
the M3pr(X) scenario, marked by an orange star in Fig. 5, could be probed for tan 8 < 12.5,
which is in agreement with the findings in the M}?5(¥) scenario, see Fig. 3. We emphasize that
this indirect probe for electroweakinos via their loop contributions to the b — v partial decay
width is complementary to the direct searches for electroweakinos at the HL-LHC [109].
Finally, in Fig. 6 we show the HL-LHC sensitivity for the proposed new Mfﬁ{p = —2TeV)
scenario in comparison with the Méﬁ scenario and the other choices of p = —1TeV, —3TeV, as
introduced in Section 2. The exclusion lines and filled regions are analogous to those in Fig. 1
(left), but are now determined using the HL-LHC prospective searches and measurements,
instead of the current experimental results. The main qualitative features observed in Fig. 1

13
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Figure 6: HL-LHC projections for the proposed new M}?*(u = —2 TeV) scenario in comparison
with the M'® scenario and the other choices of p = —1TeV, —3 TeV, shown in the (M4, tan )
parameter plane; the dashed and solid lines show the expected exclusion from heavy Higgs
boson searches in the bb and 77~ final state, respectively, and the gray filled regions indicate
the indirect reach of HL-LHC Higgs rate measurements.

(left) can be found here for the HL-LHC projections as well: Searches for heavy Higgs bosons
in the 777~ final state cover a larger area in the (Mg, tan §) parameter plane than those in the
bb final state, and the H/A — bb search sensitivity shows a strong dependence on the size and
sign of p while there is only a moderate impact on the searches in the 7+7~ final state. On the
other hand, Fig. 6 shows that the anticipated reach of heavy Higgs boson searches in the bb final
state is competitive with the indirect reach of the anticipated Higgs-boson rate measurements.
Except for ¢ = —3TeV the direct searches in the bb final state yield a stronger expected
exclusion in the high-M, region than the Higgs-boson rate measurements. The flat regions
towards large values of M, in the upper bounds on tan 3 for g = —2TeV and p = —3TeV are
again caused by the fact that the prediction for the light Higgs-boson mass is below 122 GeV
in this region (see Fig.1 (right)), and the same applies to the lower limit in tan S (which is
almost identical for all values of u). However, for M4 < 2TeV in the scenario with p = —2TeV
and for M4 < 1.5TeV in the scenario with p = —3TeV the Higgs rate measurements provide
sensitivity for a non-trivial upper bound on tan 3.

14
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Figure 7: Prospective 2¢ indirect exclusion region from Higgs rate measurements at the HL-
LHC and the ILC, assuming agreement with the SM predictions, in the M}?* scenario (upper

left panel), the M;%{ﬁ scenario (upper right panel), and the Mfi%"‘_ scenario (bottom panel).

ments are included (see Sec. 3).

In the first two scenarios, M}? and M}% (%), the sensitivity at large tan f is determined by
the decoupling behavior with M,, resulting in roughly vertical exclusion lines for tan 5 = 25
(not explicitly shown in Fig. 7). In this large-tan 3 region the HL-LHC will already probe masses
of the heavy Higgs bosons far in the decoupling regime, M, = 920 GeV and 1000 GeV for the
M}?* and M}*(y) scenario, respectively. The ILC measurements at ILC250 and ILC500 will
be able to extend the HL-LHC reach in M4 by around +(110-125) GeV and +(200-235) GeV,
respectively. In the M}? scenario, due to the absence of light SUSY particles, this lower bound
on M4 roughly remains the same for lower tan § values. These indirect constraints on M, are
complementary to the sensitivity of the direct searches discussed in Fig. 2, which depend on
the details of the decay patterns of the heavy Higgs bosons. The indirect constraints from the
rate measurements can potentially exceed the direct search sensitivity for heavy Higgs bosons
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Figure 8: Upper panels: Indirect 20 constraints in the (M, tan ) parameter plane of the M,l%
scenario from prospective Higgs-boson signal-rate measurements at the HL-LHC (faint red) and
in combination with ILC250 (medium red) and ILC500 (bright red) measurements, assuming
that the point, indicated by a star, (M,,tan 3) = (700 GeV,8) (left panel) or (M,,tan 3) =
(1TeV,8) (right panel) is realized in nature. Lower panels: SM-normalized Higgs rate in the
pp — Vh, h — bb channel, R}! (green contours), with the 2¢ parameter ranges from the upper
panels superimposed.

through the dependence of the involved branching ratio on the total width of the Higgs boson at
125 GeV. For instance, near the assumed points (M,, tan §) = (700 GeV, 8) and (1000 GeV, 8),
the Higgs-to-diphoton rate is suppressed by 7% and 3% with respect to the SM prediction,
respectively, as a result of a slightly enhanced bottom-quark Yukawa coupling and its impact
on the total Higgs width. The combination of the measurements of the Higgs signal rates at
the HL-LHC in various channels involving the product of the production cross sections and
decay branching ratios will therefore provide sensitive information on possible deviations from
the SM, while it will be non-trivial to disentangle the source of the deviations. Concerning
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Figure 90 Wischeleinen-plots for the two assumed MSSM parameter points (M4, tanf) =
(700 GeV,8) (left) and (Ma,tan3) = (1TeV,8) (right) in the M!*® scenario: Predicted Higgs
couplings in the k framework (orange horizontal bars) along with the anticipated 1o precision
from a global fit [104] to Higgs rate measurements at the HL-LHC, where the theoretical
assumption Ky < 1 is employed, and including prospective measurements at ILC250 and ILC500
(but without imposing an assumption on &y ).

the prospective rate measurements at the ILC, the most precise Higgs rate measurements
will be performed in the ete~ — Zh, h — bb channel during the run at 250 GeV and in the
ete~ —+ vih, h — bb channel in the 500 GeV run [104], each with a precision at the sub-percent
level. The ILC measurements will therefore complement the information obtainable at the HL-
LHC with high-precision input on observables that cannot be well exploited at the LHC. The
ILC will furthermore provide model-independent measurements of individual branching ratios.
This kind of information will be erucial in order to determine the source of possible deviations
without invoking model assumptions. In order to investigate the underlying nature of detected
deviations from the SM, the indirect constraints that we have discussed here should of course be
applied in the context of the information that is available from the direct searches for additional
Higgs bosons (see in particular Fig. 2) and other states of new physics. The limits from these
searches may in fact exclude large regions of the parameter space that is favored by the indirect
constraints. Naturally, in case of a significant excess (or more than one) in the direct searches
the prospects for narrowing down the possible nature of new physics with the combination of
direct and indirect information would of course much improved.

The pattern of the deviations from the SM predictions corresponding to the situation where
the parameter point (M4, tan 3) = (700 GeV,8) or the point (M,,tan ) = (1000 GeV,8) of
the M;% scenario is realized in nature is shown in Fig.9. The displayed plots, which we
denote as “Wischeleinen-plots” (washing line plots) in the following, show the predicted light
Higgs couplings (normalized to the SM prediction) at the assumed MSSM points in the &
framework [61], along with the anticipated 1o precision of a rather general k determination [104]
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Figure 10: Indirect 20 constraints in the (M4, tan J) parameter plane from prospective Higgs-
boson signal-rate measurements at the HL-LHC and the ILC (upper row) and R}" contours
(lower row) in the M,FE"‘_ scenario, assuming that the point, indicated by a star, (Ma, tan ) =
(700 GeV,8) (left panels) or (M4,tan3) = (1 TeV, 8) (right panels) is realized in nature. The
same color coding as in Fig. 8 is used.

from the SM. This kind of information will be crucial to determine the underlying nature of
the detected deviations. As discussed above, those investigations should of course be based
on both the direct information from searches and the indirect constraints. For the M-~
scenario large parts of the parameter region that would be preferred by the prospective Higgs
rate measurements are within the 2o reach of heavy Higgs searches in the 77— and possibly
even bb final states at the HL-LHC, see Fig. 6. A robust excess in these searches would provide
clues for the mass scale of the heavy Higegs bosons, M. The 125 GeV Higgs rate measurements
could then, together with first potential measurements of the strength of such a heavy Higgs
boson signal, allow one to put new physics interpretations under scrutiny and, within the
considered scenario, lead to strongly improved constraints on the model parameters.
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Figure 11: Wischeleinen-plots, using the the same color coding as in Fig. 9, for the two assumed
MSSM parameter points (M4, tan3) = (700GeV,8) (upper left panel) and (M4,tan3) =
(1TeV,8) (upper right panel) in the M;%"“_ scenario. The lower panel shows for the assumed
point (M4, tan ) = (1 TeV,8) and different values of p the prospects for ks, where for com-
parison also the corresponding prediction in the THDM-II (see text) is indicated (dotted line),
see text for details. The Higgs couplings in the & framework predicted in the displayed sce-
narios are compared with the anticipated 1o precision from Higgs rate measurements, where
at the HL-LHC the theoretical assumption &y < 1 is employed, while for the results including
prospective measurements at [ILC250 and ILC500 no assumption on Ky is employed.

In Fig. 11 we show Wischeleinen-plots for the parameter points (M4, tan 3) = (700 GeV, 8)
(upper left panel) and (M4, tan §) = (1000 GeV, 8) (upper right panel) in the MFE""_ SCEnario,
i.e. we show the predicted Higgs couplings represented by & scale factors in the displayed scenar-
ios along with the prospective 1o precision levels of their determination from a global fit [104] to
Higgs rate measurements. For the precisions from HL-LHC the theoretical assumption ky < 1
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Figure 12: Indirect 2¢ constraints in the (M., tan ) parameter plane of the M Fp(¥) scenario

from prospective Higgs-boson signal-rate measurements at the HL-LHC and the ILC (upper
row) and contours for SM-normalized Higgs rates (lower row) with the same color coding as in
Fig. 8, assuming that the point, indicated by a star, (Ma, tan §) = (700 GeV, 3) (left panel) or
(Ma,tan ) = (1'TeV, 3) (right panel) is realized in nature. The blue and green contours in the
lower panels show the inclusive rate for pp -+ h — VV (V = W*, Z), R, and the inclusive
rate for pp = h — 7, R;, respectively, with the 20 parameter ranges from the upper panels
superimposed.

of tan f in the electroweakino sector and can thus provide complementary information [109].
In Fig. 12 we show the results in the M;Tpr(X) scenario, with the assumed parameter
point (Mg, tan3) = (700 GeV,3) in the left panels, and (M4, tan ) = (1000GeV,3) in the
right panels. The expected 20 allowed parameter ranges obtained by Higgs-boson signal-rate
measurements are shown in the upper panel of Fig. 12 with the same color coding as before in
Figs. 8 and 10. The indirect bounds from the Higgs rate measurements on M, for the first
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Figure 13: Contours of the scalar fermion soft-SUSY breaking mass Msysy in the (M,
tan ) parameter plane of the Mféw{;;'_fj scenario discussed in Fig. 12, assuming that the point,
indicated by a star, (M, tan 3) = (700 GeV, 3) (left panel) or (M,,tan 3) = (1 TeV,3) (right
panel) is realized in nature. The indirect 2¢ constraints from prospective Higgs-boson signal-
rate measurements at the HL-LHC and the ILC obtained in the upper panels of Fig. 12 are
superimposed.

assumed point at M4 = 700 GeV (~ 6.5%, left plot). This is becanse at lower M4 values the
enhancement of the h — bb decay is stronger, which in turn suppresses the h — vy decay rate
via its contribution to the total decay width. For the considered scenario the impact of the
Higgs rate measurements at the ILC would mainly be a significant improvement of the indirect
constraints on M.

In Fig. 13 we show contour lines of equal Mgy in the same parameter space as considered
in Fig.12. Superimposed (as dotted lines) are the expected 2c-allowed parameter regions
shown previously in Fig. 12 for the same MSSM points that we assume to be realized. Maysy
denotes the scale of all scalar fermion soft-SUSY breaking masses. As explained in Sec. 2, in
the Mféw(ﬁ scenario Msysy is adjusted at every point in the parameter plane such that
My, ~ 125GeV. Thus the constraints in the (M4, tan 3) parameter plane for a given assumed
realization of the MSSM can be translated into a constraint on the sfermion mass scale in this
scenario. As a result, if such a scenario with light electroweakinos and a rather low value of
tan 4 was realized in nature, the sensitivity to tan g arising from the loop contributions of the
light charginos to the di-photon rate could be exploited to constrain Msysy to the ranges

2.3TeV < Msusy <50TeV  for (Ma, tan 8) = (700 GeV, 3),
2.3TeV < Msusy <30TeV  for (Mg, tan 8) = (1000 GeV, 3).

Those indirect constraints could of course be significantly improved with the results of the direct
searches for additional Higgs bosons and electroweakinos, which in the considered scenario
would have good prospects for a significant excess or even a discovery.
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Figure 14: Wischeleinen-plots, using the the same color coding as in Fig. 9, for the two assumed
MSSM parameter points (M4, tan 3) = (700 GeV,3) (left panel) and (M,, tan 3) = (1 TeV, 3)
(right panel) in the M, 1(X) scenario. The predicted Higgs couplings in the k framework are
compared with the anticipated 1o precision from Higgs rate measurements, where at the HL-
LHC the theoretical assumption Ky < 1 is employed, while for the results including prospective
measurements at ILC250 and ILC500 no assumption on Ky is employed.

The predicted Higgs couplings in the M} 3r(X) scenario, parametrized in terms of & scale

factors, are shown in Fig. 14 for the assumed MSSM points (M4, tan ) = (T00GeV,3) (left
panel) and (M4, tan 3) = (1 TeV, 3) (right panel) in comparison to the anticipated 1o precision
of the future ¥ determination. In contrast to the MFE' scenario, Fig. 9, and in line with the
previous discussion, because of the large loop contributions of the light charginos to the di-
photon rate in the M;EEE'FT (X) scenario a sizable deviation in k. is clearly visible already with
the HL-LHC precision. This precision on the effective Higgs-photon-photon coupling can only
mildly be improved by the ILC measurements. On the other hand, k; and k, show deviations
similar to the points considered in the M'* scenario, Fig.9, and here the ILC measurements
will be crucial to achieve a significant discrimination with respect to the SM prediction.

We now turn to the discussion of the case that a relatively large value of tan S could be
realized in nature. For this purpose we choose a heavy Higgs-boson mass of My = 1.75 TeV.
In the M* and M}?*(¥) scenarios the tan§ value is chosen to be tan§ = 50, close to the
expected exclusion bound of the current pp — H/A — 7+7— analysis [65]. For the M, >*~
scenario we fix tan 3 = 25, close to the current indirect exclusion from Higgs rate measurements.
The chosen value of My = 1.75 TeV is a “best-case” scenario if the M55SM with a large value
of tan 3 is realized, in the sense that it would certainly lead to a discovery of heavy Higgs
bosons at the HL-LHC (see our discussion above of the projections in the different benchmark
scenarios) and possibly even already in the near future.

For definiteness, we quote here the 13 TeV signal rates of the processes pp —+ H/A — 757~
and pp -+ H/A = bb, whose production is completely dominated by bottom-quark associated
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Figure 15: Wischeleinen-plots, using the the same color coding as in Fig. 9, for the following
three assumed MSSM scenarios: (M, tan 3) = (1750 GeV, 50) in the M}?® scenario (upper left
panel), (M4, tan §) = (1750 GeV, 50) in the M}*(¥) scenario (upper right), and (M4, tan ) =
(1750 GeV,25) in the Mfs"‘_ scenario (lower panel). The predicted Higgs couplings in the
k framework are compared with the anticipated 1o precision from Higgs rate measurements,
where at the HL-LHC the theoretical assumption k- < 1 is employed, while for the results
including prospective measurements at ILC250 and ILC500 no assumption on Ky is employed.

used as null hypothesis). Here we want to focus on the latter. As the future measurements
will naturally feature statistical fluctuations, we rather refer to the y? of the SM hypothesis
as AxZy = X2y — Xiissy. Where in our projection study with idealized measurements we have
Xissm = 0 for the considered realized MSSM parameter point. In this likelihood ratio test
between two simple hypotheses, with no adjustable model parameters, the levels Ay? = 4 and
9 correspond to a 2o and 3o tension, respectively, between the SM hypothesis and the M5SSM
hypothesis. It should be noted that this level of sensitivity does not allow one to exclude the SM
hypothesis on grounds of the measurements alone, but instead only allows one to discriminate
between two models. As these tensions are inferred indirectly from the signal rates of the
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