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In this note we present a simple but exact model of quasi-single field inflation [1, 2], in which the
couplings between perturbations are completely controlled, and for instance can be made constant
with any desired value. This provides a way to numerically implement quasi-single field inflation
and to test its predictions in various regimes. We confirm that the numerics agree to good accuracy
with the analytical predictions for the isosceles bispectrum and the full shape function.

I. INTRODUCTION

Quasi-single field inflation [1, 2] is a class of mod-
els where the inflaton interacts with other particles
(isocurvatons) with mass m ∼ H. It predicts an
interesting shape of primordial non-Gaussianities that
is distinguishable from single-field inflation [1–9]. The
quasi-single field bispectrum has been constrained by
CMB data [10, 11] and provides an important target
for future observations (for a recent discussion see [12]).
Fields with mass of order Hubble may appear naturally
in string embeddings of inflation, describing e.g. physics
at the Kaluza-Klein scale [13]. Moreover, masses of
order Hubble could arise from radiative corrections to
light fields [3, 14].

Yet it is difficult to test the predictions of quasi-single
field inflation with isocurvature mass m . H numeri-
cally, because one needs to construct a potential that
sustains a constantly curved trajectory in field space,
while keeping m under control. The centrifugal force
displaces the inflaton from the minimum of the potential,
leading to order Hubble corrections to the isocurvature
mass. This problem was discussed in detail in [15]. In
this note we provide a simple model of quasi-single field
inflation in which the couplings between perturbations
are controlled, and for instance can be made constant
with any desired value.

The main obstacle in these potential-based construc-
tions is that, unlike single-field inflation, the potential
V (ϕ) does not reflect the properties of the perturba-
tions, because a curved inflationary trajectory deviates
from the potential gradient flow in field space. Instead,
we apply the recently developed orbital inflation [16, 17]
to the quasi-single field regime. Orbital inflation is based
on the Hamilton-Jacobi formalism developed in [18–21]
and extended to multi-field in [22–28] in which inflation
attracts to the Hubble gradient flow

φ̇a ∼ −∇aH, (1)
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This means that the Hubble parameter H(φa) controls
the behavior of both the background and perturbations.

The idea of orbital inflation is to align the inflationary
trajectory - and thus the Hubble gradient - with an isom-
etry of field space, i.e. an ‘angular’ direction θ [16, 17].
This ensures that inflaton happens at constant ‘radius’
ρ = ρ0, like in the simplest models of quasi-single field
inflation. Additionally, in a moment we will assume a
product separable form ofH to meet the condition of con-
stant isocurvature mass m ∼ H. Therefore, the Hubble
parameter - as opposed to the potential - takes a partic-
ularly simple form to support quasi-single field inflation.
Given the existence of an isometry we are free to write
the kinetic term in the form

− 2K = f(ρ)(∂θ)2 + (∂ρ)2 . (2)

Slightly adapting1 the multi-field Hamilton-Jacobi for-
malism, the following potentials admit exact inflationary
attractors to the angular Hubble gradient flow

V = 3H2 − 2H2
θ

f(ρ)
, (3)

where we denoted Hθ = ∂θH. Up to the constraint of the
vanishing gradient in the radial direction ∂ρH = 0, we
are free to choose H(θ, ρ) and we can tune the couplings
between perturbations to our liking. This is, to our
knowledge, the first exact realization of quasi-single field
inflation.

1 In the Hamilton-Jacobi formalism there is an additional con-
tribution to the potential of −2H2

,ρ. However, on the isometric
inflationary attractor this term is zero, and therefore we can pre-
serve the same background solution if we remove this term. As
pointed out in [28] the Hamilton-Jacobi assumption bounds the
isocurvature mass from above µ2 . 3/2H2, and to study quasi-
single field inflation we would like to alleviate this constraint.
Therefore, we modified the form of the potential.
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II. THE MODEL

Summarizing the discussion above, our simple model
of quasi-single field inflation is given by

Sφ = −1

2

∫
d4x
√
−g

[
R+ f(ρ)(∂θ)2 + (∂ρ)2

+ 6H2(θ, ρ)− 4H2
θ (θ, ρ)

f(ρ)

]
, (4)

with Hρ(ρ0) = 0 for some constant value ρ0. Further-
more, R is the Ricci scalar of spacetime and we use the
convention Mp = 1.

Given some Hubble parameter H(θ, ρ) the relevant
kinematical and geometrical inflationary quantities of
this model are given by

1

κ
=
fρ
2f
, θ̇ = −2

Hθ

f
, ε =

2H2
θ

fH2
,

R =
2

κ2
− fρρ

f
, m2 = 6HHρρ −

4HθHθρρ

f
,

Vρρρ
H2

=
6Hρρρ

H
+ ε

(
12(2 + Rκ)

κ3
+
fρρρ
f

)
+

4Hθ

fH

(
6Hθρρ

Hκ
− Hθρρρ

H

)
.

(5a)

(5b)

(5c)

We use the shorthand notation f = f(ρ), H = H(θ, ρ)
and Hρ = ∂ρH, etcetera. Here κ equals the field radius

of curvature, ε ≡ − Ḣ
H2 is the first slow-roll parameter

and R denotes the Ricci curvature of field space. Finally,
m is the effective mass of the radial isocurvature pertur-
bations. All variables are understood to be evaluated at
ρ = ρ0.

To reproduce the results of [1] we focus on a model of
quasi-single field inflation with a constant isocurvature
mass in Hubble. As can been seen from Eq. 5b, the
simplest way to realize a constant isocurvature mass and
Vρρρ (up to a slow-roll correction) is to take a Hubble
parameter of the product separable form

H(ρ, θ) = W (θ)

(
1 +

λ

2
(ρ− ρ0)2 +

α

6
(ρ− ρ0)3 + . . .

)
.

(6)
A product separable Hubble parameter yields the fol-

lowing subclass of potentials that admit quasi-single field
inflation

V (θ, ρ) = 3

(
W 2(θ)− 2W 2

θ (θ)

3f(ρ)

)
×
(

1 +
λ

2
(ρ− ρ0)2 +

α

6
(ρ− ρ0)3 + . . .

)2

.

(7)

Using Eq. 5, the isocurvature mass is given by
m2/H2 = 6λ + O(ε). In addition, the higher order

coupling that is important for non-gaussianity becomes
Vρρρ = 6α+O(ε).

Furthermore, we specialize to a flat field metric f(ρ) =
ρ2, such that κ = ρ0 on the inflationary trajectory. More-
over, we take W ∼ θ, which corresponds to a quadratic
type of potential along the angular direction with slow-
roll parameter ε = 1/(2∆N + 1).

III. NUMERICAL COMPARISON

We proceed by numerically checking the predictions of
quasi-single field inflation. We use the PyTransport code
developed by [29, 30] (see also [15, 31]). In what follows
the power spectrum and bispectrum are defined as

〈R(k)R(p)〉′ = PR(k) =
2π2

k3
∆2
R(k), (8)

〈R(k1)R(k2)R(k3)〉′ = BR(k1, k2, k3) (9)

where the prime denotes that the overal delta function
(2π)3δD(

∑
ki) has been removed. The bispectrum is

usually expressed as a dimensionless shape function for
which we use the following two conventions

SR(k1, k2, k3) =
k21k

2
2k

2
3

(2π2)2
BR(k1, k2, k3)

∆2
R(k1)∆2

R(k2) + perm
, (10)

fNL(k1, k2, k3) ≡ 5

6

BR(k1, k2, k3)

PR(k1)PR(k2) + perm
. (11)

An analytical expression for the power spectrum for
orbital inflation - and hence of the model under consid-
eration - was derived in [17]. The power spectrum is of
the form

∆2
R =

H2

8π2ε
(1 +D), (12)

where D captures the transfer of power from the isocur-
vature perturbations. Matching this result with the nu-
merical function C(ν) defined in Equation 3.8 of [1], we
find

C(ν) =
κ2

16ε
D =

1

2

(
1− exp

((
− 3

2 + ν
)

∆N
)

3
2 − ν

)2

, (13)

with ν ≡
√

9/4−m2/H2 ≈
√

9/4− 6λ. This function
agrees well with the one shown in Figure 6 of [1] if we take
∆N ∼ 50−60. On the other hand, for ρ20 . 102 we don’t
find the same prediction for ns as in Eq. (3.11) of [1],
because the ∆N -dependence of C(ν) becomes important.

Next, we compare the analytical predictions of the
quasi-single field bispectrum [1] with the numerical so-
lutions of our exact model. Perturbative control of the

quasi-single field results requires
∣∣∣Vρρρ

H

∣∣∣ � ∣∣∣Vρρ

H2

∣∣∣, which
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FIG. 1. This figure shows the analytical prediction fQSF
ansatz(x)

in Equation 17 (dashed lines) and the full numerical solu-
tion (solid lines) of the isosceles bispectrum fNL(x) defined
in Equation 16 using the code [29]. We take the values

ν ∈ {0.0, 0.3, 0.5, 1.0}. The amplitude of fQSF
ansatz(x) and the

corresponding numerical solution for ν = 1 have been rescaled
by 0.1 to fit inside the same plot range.

is amply satisfied if α� 1/H. The analytical prediction
of fNL in the equilateral configuration (Equation 4.16 of
[1]) can then be written as

fQSF
NL = −6αHA(ν)(∆2

R)−1/2
(

2ε

ρ20

)3/2

, (14)

with A(ν) equal to α(ν) defined in Equation 4.16 of [1].
In the regime D � 1, that is assumed in [1], we can
approximate

fQSF
NL ≈ A(ν)

−48απε2

ρ30
. (15)

Notice that α/ρ30 has to be quite large for the amplitude
to be non slow-roll suppressed. At the same time we
would like to stay in the regime D � 1. To compare
with the results of [1] we therefore take α = 1000 and
ρ0 = 2.

We start with comparing the shape function for isosce-
les configurations

fiso(x) ≡ fNL(k, xk, xk), (16)

where we suppress the k dependence for convenience. Us-
ing the shape ansatz in Equation 6.2 of [1], the amplitude

of the bispectrum for isosceles triangles is given by

fQSF
ansatz(x) =

(
3

2x+ 1

)7/2−3ν
2x2 + 1

3x2ν
× fQSF

NL . (17)

In the numerical computation we vary x between 1
(equilateral configuration) and x = 10 (squeezed config-
uration). Moreover, we take ν ∈ {0.0, 0.3, 0.5, 1.0} and
we take the long wavenumber to cross the horizon about
60 efolds before the end of inflation. The results are
shown in Figure 1. We see that the overall agreement is
quite good. More precisely, we find that the predictions
for the amplitude are accurate up to 30%, 15%, 20% and
25%, respectively.

Let us next compute the full shape function

S(x1, x2) ≡ SR(k, x2k, x3k) , (18)

with the sum of the three wavevectors kt = k1 + k2 + k3
evaluated at 55 efolds before the end of inflation. The
result is shown in Figure 2. To compare with Figure 7 of
[1] we normalize the plot to one at the equilateral point
(x2, x3) = (1, 1). Moreover we take a similar plot range.
As far as we can judge the shapes are in agreement. For
completeness we also show the unscaled shape functions
in Figure 3, in which more detailed shape information
can be seen.

IV. CONCLUSION

In this note we provided a simple, exact, model of
quasi-single field inflation. With this model we are able to
test numerically the analytical predictions of [1]. We con-
firm that the numerics agree to good accuracy with the
analytical predictions for the isosceles bispectrum and
the full shape function.
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FIG. 2. The numerical solution for the shape function S(x2, x3) defined in 18 using the code [29]. We take the values
ν ∈ {0.0, 0.3, 0.5, 1.0} and perform the necessarily rescalings, such that this Figure can be compared directly to Figure 7 of [1].
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FIG. 3. The same as Figure 2, except that no rescalings of the shape function have been performed.
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