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Abstract
We study isospin-1 P-wave ππ scattering in lattice QCD with two flavours of O(a) improved

Wilson fermions. For pion masses ranging from mπ = 265 MeV to mπ = 437 MeV, we determine

the energy spectrum in the centre-of-mass frame and in three moving frames. We obtain the

scattering phase shifts using Lüscher’s finite-volume quantisation condition. Fitting the dependence

of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine

the resonance parameters mρ and gρππ. By combining the scattering phase shifts with the decay

matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare

the results to the Gounaris-Sakurai representation of the form factor in terms of the resonance

parameters. In addition, we fit our data for the form factor to the functional form suggested by

the Omnès representation, which allows for the extraction of the charge radius of the pion. As

a further application, we discuss the long-distance behaviour of the vector correlator, which is

dominated by the two-pion channel. We reconstruct the long-distance part in two ways: one based

on the finite-volume energies and matrix elements and the other based on Fπ. It is shown that this

part can be accurately constrained using the reconstructions, which has important consequences

for lattice calculations of the hadronic vacuum polarisation contribution to the muon anomalous

magnetic moment.
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I. INTRODUCTION

The study of hadronic resonances in terms of the underlying theory of QCD necessitates a
non-perturbative treatment. Lattice QCD has emerged as a versatile tool enabling ab-initio
determinations of many hadronic properties [1]. The ρ meson, which is the simplest QCD
resonance and decays almost exclusively into two pions [2], is interesting for several reasons:
It serves as a benchmark for the finite-volume formalism pioneered by Lüscher [3–5], whose
practical implementation poses a number of challenging tasks. Furthermore, the relevant
correlation function have a rather favourable noise-to-signal ratio compared to those for
other resonances, due to the ρ being the lightest isovector resonance.

Beyond its role as a benchmark, the precision study of the ρ resonance has a number of
interesting applications. A good understanding of the ρ→ ππ channel is a vital component
for any study of more complicated resonances, where the ρ is an intermediate decay channel.
Thus, the ρ has been subject to many lattice QCD studies already [6–19]. Secondly, using
the approach suggested by Meyer [20] (which is closely related to work by Lellouch and
Lüscher [21]), the pion form factor, Fπ, can be determined in lattice QCD in the timelike
region. For first lattice implementations of this method see [16, 22].

An interesting and increasingly relevant application of lattice calculations of Fπ arises in
the context of ab initio determinations of the hadronic vacuum polarisation (HVP) contri-
bution to the muon’s anomalous magnetic moment, ahvp

µ . The latter is accessible via the
(spatially summed) vector correlator G(x0) [23–25], which, at large Euclidean times x0 is
dominated by the two-pion channel. Given sufficiently precise data for Fπ, one can accu-
rately constrain the long-distance regime of G(x0) which helps to significantly reduce both
statistical and systematic uncertainties in lattice calculations of ahvp

µ [26].
The outline of this paper is as follows: In Section II we summarise the methods used

for determining the isospin-1 scattering phase shift and the timelike pion form factor from
our lattice calculations. Section III presents our results for the scattering phase shift, while
section IV contains the results for the timelike pion form factor. Implications for the calcula-
tion of the leading order HVP contribution to the muon anomalous magnetic moment aµ are
discussed in Section V. Finally, Section VI summarises our results. Our analysis supersedes
previous preliminary results presented in [27, 28].

II. METHODOLOGY

A. Determination of the finite volume energy spectrum

To study the ρ resonance, we first need to extract a tower of low-lying energy levels.
The strategy we use is to build a matrix of correlation functions using interpolating field
operators with the quantum numbers of the ρ meson. The lowest states of the spectrum can
be extracted using the variational method [29–32]. We start by forming a correlator matrix

Cij(t) = 〈Oi(t)Oj(0)†〉 =
∞∑
n=1

e−Ent〈0|Oi|n〉〈n|O†j |0〉 (2.1)

from the correlators formed of interpolating operators Oi(t) for the ρ and ππ states in a
given frame and then solve a generalised eigenvalue problem (GEVP)

C(t)v(t, t0) = λ(t, t0)C(t0)v(t, t0) (2.2)
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for this matrix. The nth eigenvalue λn asymptotically decays exponentially with the energy
En of the nth state. There are different ways of choosing the parameter t0 in the GEVP;
one of them is to keep t0 constant (the “fixed-t0 method”) and another way is to use the
“window method” [32], which keeps the window width tw = t − t0 constant. For suitable
choices, the latter ensures that the leading excited state contamination to λn(t, t0) from the
finite correlator basis comes from ∆En = EN+1 − En [32], where N is the size of the basis.

For the operator basis we use [33]

ρ0(P , t) =
1

2L3/2

∑
x

e−iP ·x
(
ūΓu− d̄Γd

)
(t) , (2.3)

where Γ ∈ {γi, γ0γi} and

(ππ)(p1,p2, t) = π+(p1, t)π
−(p2, t)− π−(p1, t)π

+(p2, t) . (2.4)

The momenta p1 and p2 of the single pions add up to the frame momentum P , i.e. p1 +p2 =
P ≡ 2π/Ld. The single-pion interpolators are defined by

π+(q, t) =
1

2L3/2

∑
x

e−iq·x
(
ūγ5d

)
(x, t) , (2.5)

π−(q, t) =
1

2L3/2

∑
x

e−iq·x
(
d̄γ5u

)
(x, t) . (2.6)

In a finite hypercubic volume, the rotational symmetry O(3) of the continuum is reduced
to that of a discrete subgroup. The operators are therefore classified by the irreducible rep-
resentations (irreps) of the respective subgroup. The set of irreps depends on the momentum
frame used. In this work, we are using a centre-of-mass frame (CMF) as well as moving
frames with three different lattice momenta with a maximum momentum of P 2 = 3(2π/L)2,
i.e. d2 = 3. Correlation functions are computed for all such moving frames that can be re-
alised on a lattice of spatial size L. Frames that share the same absolute momentum are
averaged over.

In the rest frame, continuum operators OJ with spin J are subduced [34] into the irreps
Λ of the octahedral group via

O
[J ]
Λ,µ =

∑
M

SJ,MΛ,µ O
J,M , (2.7)

where M are the magnetic quantum numbers of J , SJ,MΛ,µ are the subduction coefficients and

µ is the row of the finite volume irrep Λ. The J in O
[J ]
Λ,λ is in brackets because, although it

was produced only from operators with spin J , the operator can now have an overlap with
all other spins which are contained in Λ [35].

In moving frames, there is a further reduction of symmetry, namely into the subgroup
of the octahedral group that keeps P invariant [35], which is referred to as the little group
[36]. To subduce continuum operators into the lattice irreps of the moving frame, we need
helicity operators

OJ,λ(p) =
∑
M

D(J)∗
Mλ (R)OJ,M(p) , (2.8)
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d Λ(dim(Λ))

[000] T1(3)

[00n] A1(1), E(2)

[0nn] A1(1), B1(1), B2(1)

[nnn] A1(1), E(2)

TABLE I. Irreps in the various moving frames used in this study.

where λ is the helicity index, and D(J)∗
Mλ (R) is a Wigner-D matrix [37] for the transformation

R that rotates |p|êz into p [38]. This allows a further subduction into little group irreps Λ,
forming a so-called subduced helicity operator

O
J,P,|λ|
Λ,µ (p) =

∑
λ̂=±λ

S η̃λ̂Λ,µO
J,P,λ̂(p) , (2.9)

where P is the parity of OJ,P,λ̂(p = 0) and η̃ = P (−1)J .
We construct multiparticle operators from linear combinations of products of single-

particle operators with definite momentum. A general ππ creation operator in an irrep Λ
can be written [35]

(ππ)
[p1,p2]†
P ,Λ,µ =

∑
p1∈{p1}∗
p2∈{p2}∗
p1+p2=P

= C(P ,Λ, µ,p1,p2)π†(p1)π†(p2) , (2.10)

where {p1,2}∗ is the group orbit of p1,2, i.e. the set of momenta that are equivalent under an
allowed lattice rotation. C is a Clebsch-Gordan coefficient which couples the irreps Λ1 and
Λ2 of the single-pion creation operators π†(p) with the irrep Λ of the (ππ)† operator. These
single-pion irreps are either the A−1 irrep of the cubic group for p = 0 or the A2 irrep of the
little group of p for p 6= 0. The coefficients relevant for this work are listed in [35, 39].

In the isospin limit G-parity allows only contributions from odd partial waves [40]. Taking
these reductions of symmetry into account, the relevant irreps of the ρ→ ππ channel, where
JP = 1− and where l = 1 is the dominant contributing partial wave are listed in Table I.

In addition to the correlator matrix C(t), the calculation of the timelike pion form factor

in Section IV also requires the matrix elements 〈Jµ(x = 0, t)O†i (0)〉, both for the local
(single-site) current,

J lµ(x) =
1

2
ZV ψ̄(x)γµτ

3ψ(x) , (2.11)

and the conserved (point-split) current

J cµ(x+ a
2
µ̂) =

1

4
(ψ̄(x+ aµ̂)(1 + γµ)Uµ(x)†τ 3ψ(x)− ψ̄(x)(1− γµ)Uµ(x)τ 3ψ(x+ aµ̂)) ,

(2.12)

where ψ(x) = (u, d)T and τ 3 = diag(1, −1). In analogy to the single-meson operators, the
spatial components of the current operators Jµ(x) are projected into the respective irreps
Λ, yielding JΛ(x). In what follows, the superscript Λ will be omitted in all equations where
the irreps are treated the same way.
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We extract the relevant information on the ground state and the first few excited states
from the eigenvectors vn(t) of the corresponding eigenvalues λn(t) determined via the solution
of the GEVP of C(t).

The former are used to define operators Xn(t) that project on the state with energy En:

Xn(t) = v†nO(t) =
∑
i

v∗niOi . (2.13)

The corresponding two-point function is defined as

Dnn(t) = 〈Xn(t)X†n(0)〉 = v†nC(t)vn , (2.14)

which is the (approximate) projection of the correlation matrix Cij(t) onto the correlator
corresponding to the nth state. We investigated the eigenvectors vn on each timeslice and
have chosen to use the vectors from the earliest timeslice after which the absolute value
of their components plateaued. At large times, remnant contributions from other states in
Dnn(t) are expected to be exponentially suppressed such that only the nth state survives:

Dnn(t)→ |Zn|2 exp(−Ent) . (2.15)

Zn = 〈Ω|Xn|n〉 is an overlap factor with state n of the optimised interpolating operator Xn.
From an exponential fit to Dnn(t) we extract |Zn| for our further analysis. The operators
Xn are then used to form a two-point function with the current insertions at the sink,

〈J(t)X†n(0)〉 =
∑
i

vni〈J(t)O†i (0)〉 , (2.16)

which again has a large-time behaviour dominated just by one state:

〈J(t)X†n(0)〉 → 〈Ω|J(t)|n〉Z∗ne−Ent . (2.17)

The timelike pion form factor requires the knowledge of the matrix element 〈Ω|J(t)|n〉, which
can either be extracted by fitting an exponential function to Dnn(t) and 〈J(t)X†n(0)〉 or by
forming the ratio [16]:

REn(t) =
〈J(t)X†n(0)〉√
Dnn(t)e−

1
2
Ent
→ Z∗n
|Zn|
〈Ω|J(t)|n〉 . (2.18)

We also computed two other ratios with the same asymptotic value proposed by the authors
of [16]. Similar to that work, we find R(t) produces the most precise plateaus of the three
and is not reliant on the fit to Equation (2.15) for the extraction of Zn. Therefore we fit a
constant to |REn(t)|2 = |〈Ω|J(t)|n〉|2 to extract the plateau value, which we denote |An|2.

B. The distillation method

The two-pion operators are non-trivial to compute, due to so-called sink-to-sink quark
lines which require all-to-all propagators to be computed. To facilitate this task we are using
the “distillation” [41] and stochastic Laplacian Heavyside (LapH) smearing [42] methods.
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With distillation [41], a smearing matrix Sxy(t) is constructed in the following way: We
start with the lattice spatial Laplacian,

−∇2(x,y, t) = 6δx,y −
3∑
j=1

(Ũj(x, t)δx+ĵ,y + Ũ †j (y, t)δx−ĵ,y) , (2.19)

where the gauge fields Ũ have been smeared using 3 iterations of stout smearing [43] with
smearing parameter 0.2. We then compute the lowest Nev eigenmodes v(k), defined via∑

y

−∇2(x,y, t)v(k)(y, t) = λ(k)(t)v(k)(x, t) . (2.20)

The definition of the actual smearing matrix is

Sxy(t) =
Nev∑
k=1

v(k)(x, t)v†(k)(y, t) ≡ V (t)V †(t) . (2.21)

One main advantage of this approach is that this smearing matrix can be split and used
to project propagators into the subspace spanned by the Nev eigenvectors, a much smaller
number than the 3N 3

L colour fundamental fields on each timeslice which are naively needed
to save a propagator.

Particularly on larger lattices, because the total computational cost scales with the cube
of the physical volume or higher for fixed smearing, distillation is often treated stochastically
[42]. In this approach noise-partitioning (also referred to as dilution) in the space spanned by
the Laplacian eigenmodes [44, 45] is used to reduce the variance of the stochastic estimator.
With a suitable dilution scheme, using just one noise per quark line typically produces a
statistical uncertainty due to the stochastic estimation of the quark propagation that is of
the same size or smaller than the one from the Monte-Carlo path integral.

A quark line, i.e. a smeared-to-smeared propagator within stochastic Laplacian-Heavyside
(LapH)-smearing, can be computed via

Q = SD−1S =
∑
b

E(ϕ[b](ρ)(%[b](ρ))†) , (2.22)

with the LapH sink vectors ϕ and the LapH source vectors %,

ϕ[b](ρ) = SD−1V P (b)ρ (2.23)

%[b](ρ) = V P (b)ρ . (2.24)

These in turn are constructed using the noise vectors ρ, and the dilution projectors P (b).
One can use γ5-hermiticity to reverse quark propagators, giving rise to alternative LapH
source and sink vectors

ϕ̄[b](ρ) = γ5ϕ
[b](ρ) , (2.25)

%̄[b](ρ) = γ5%
[b](ρ) , (2.26)

which give a different estimator for the quark line, E(%̄ϕ̄†). Meson functions can then be
expressed via

M[b1,b2],(ρ1,ρ2)
Γ (v1,w2;p, t) = Γαβ

∑
x

e−ip·xv
[b1]
aα,xt(ρ1)∗w

[b2]
aβ,xt(ρ2) , (2.27)
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where v,w are LapH source or sink vectors %, %̄ or ϕ, ϕ̄. Single-meson correlation functions
are a product of two such meson functions, for example

〈π+(tf )π
−(t0)〉 =

1

4L3
〈−M[b1,b2],(ρ1,ρ2)

γ5
(ϕ̄i, ϕj; tF )M[b1,b2],(ρ1,ρ2)

γ5
(%̄i, %j; t0)∗〉U,ρ , (2.28)

which uses the Einstein summation convention for the dilution indices b1, b2. As our correla-
tion functions can contain two-pion operators at both the source and the sink, we evaluate
expressions with products of up to four meson functions.

Correlation functions with a vector current at the sink require a propagator that is not
smeared at the sink. This can be computed via [16, 46]

D−1S =
∑
b

E(φ[b](ρ)(%[b](ρ))†), (2.29)

where φ is a LapH unsmeared sink vector,

φ[b](ρ) = D−1V P (b)ρ, (2.30)

and likewise φ̄[b](ρ) = γ5φ
[b](ρ) yields an estimator for SD−1.

C. Gauge field configurations and distillation schemes

We use three gauge field ensembles with 2 dynamical mass-degenerate light flavours of
nonperturbatively improved Wilson quarks [47, 48] generated by the Coordinated Lattice
Simulations (CLS) consortium using the DDHMC algorithm and software package [49, 50].
The ensembles were generated with β = 5.3 corresponding to a lattice spacing of a =
0.0658(7)(7)fm and Table II lists key parameters of these ensembles along with the number
of configurations used in our study.

T/a L/a mπ [MeV] κ mπL Nconf Nmeas Nev

E5 64 32 437 0.13625 4.7 500 2000 56

F6 96 48 311 0.13635 5.0 300 900 192

F7 96 48 265 0.13638 4.2 350 1050 192

TABLE II. CLS Nf = 2 ensembles used in this study. All share β = 5.3 and a = 0.0658(7)(7)fm. T

and L refer to the lattice extent in time and space directions respectively. Nconf specifies the number

of gauge configurations used, while Nmeas refers to the number of source timeslices multiplied by

the number of configurations. The number of Laplacian eigenmodes used is denoted by Nev.

We use different dilution schemes for quark lines connected to the source timeslice and
for sink-to-sink quark lines. Lines connected to the source timeslice use full spin dilution
and full time dilution. Full Laplacian eigenvector dilution is used on E5, while interlace-12
eigenvector dilution (LI12 in the notation of [42]) is used on F6 and F7. The perambulators
for sink-to-sink (sts) quark lines are calculated with full spin dilution and interlace-8 time
dilution (TI8 ). On E5 sink-to-sink lines use LI8, while LI12 is used on F6 and F7.

For the calculation of Laplacian eigenmodes, the PRIMME package [51] is used with a
preconditioner built from Chebyshev polynomials [52]. Our code uses the library QDP++
from USQCD [53] and the deflated SAP+GCR solver from the openQCD package [54]. For
cross-checks of the analysis the package TwoHadronsInBox [55] was used.
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tmin tmax amπ

E5 15 28 0.14511(33)

F6 16 35 0.10366(29)

F7 19 40 0.08893(30)

TABLE III. Fit ranges to the single-cosh fit and corresponding pion masses including jackknife

error on the three ensembles.

III. THE ρ RESONANCE

In this section the determination of the energy spectra, the calculation of the phase shift
from the energies, and the resulting resonance mass mρ and coupling gρππ are described.

A. Energy spectra

The pion masses on the three ensembles have been extracted using a cosh-fit ansatz.
The fit ranges and results are shown in Table III. We also solved the GEVP in the window
method for the 8 irreps listed in Table I. The extracted energy levels of two selected irreps

on the F6 lattice, together with the effective energies E
(k)
eff (t) = −t−1

w ln(λ(k)(t)) are shown
in Fig. 1.

The energy levels were obtained by fitting the eigenvalues extracted from the GEVP to
a function allowing for the ground state and one excited state. Results for all irreps and
ensembles are listed in Table IV, together with the values of χ2/d.o.f. for each fit.

B. Lüscher formalism

Lüscher’s finite volume method [3, 4] is used to map the energy levels of the finite-volume
lattice box to the continuum phase shift.1 For the ρ, we are interested in the l = 1 partial
wave. In principle, higher partial waves also contribute to the spectrum. The effect of
the l = 3 and l = 5 partial waves has been studied in [11, 16]. With this restriction, the
quantisation condition reads

δ1(k) = φd
Λ(q) + nπ . (3.1)

In this equation, k = (2π/L)q are the scattering momenta, δ1(k) is the l = 1 infinite volume
phase shift, and φd

Λ(q) is a kinematical function related to modified zeta functions, which
can be computed to arbitrary precision. The centre-of-mass energy is given by Ecm =
2
√
m2
π + k2. With the spectrum data from the GEVP we can use this relation to map out

the infinite volume phase shift in the energy region 2mπ < E < 4mπ.
The results from this procedure are shown in Fig. 2 for all three ensembles used. The

curve in this plot is a fit to a Breit-Wigner parameterisation,

k3 cot δBW
1 (k; gρππ,mρ) =

6π

g2
ρππ

(m2
ρ − E2

cm)Ecm , (3.2)

1 For a review of recent physics results from (extensions of) the Lüscher method see Ref. [56].
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aEeff

t/a

E, d2 = 1

0 5 10 15 20
t/a

A1, d
2 = 2

FIG. 1. Spectrum from the GEVP on the F6 lattice, using the window method, for two irreps:

d2 = 1, E on the left (a typical example for the energy levels we extract) and d2 = 2, A1 on the

right (an example where the plateau does not look as good, particularly the intermediate level).

The different levels in the respective irrep are plotted using different colours and the accordingly

coloured bands are the fit results of the corresponding eigenvalues to fit function allowing for the

ground state and an excited state. The width of those bands indicates the statistical error of the

fit and the length shows the chosen fit range. The horizontal lines are the free two-pion levels in

the respective moving frame.

which is motivated in the resonance region by the effective-range formula. Given that the
data points and their error estimates are confined to the curves dictated by the Lüscher zeta
function, as is visible in Fig. 2, we fit the data according to their error behaviour along the
curves dictated by the zeta-functions. The Lüscher condition is reformulated to

cot δ1(k) = cot(φ(q)) , (3.3)

and the difference to Equation (3.2),

f(q; gρππ,mρ) = cot(φ(q))− cot δBW
1

(
2π

L
q; gρππ,mρ

)
, (3.4)

is calculated. Given any pair of resonance parameters (gρππ,mρ) we can solve f(q; gρππ,mρ) =
0, and this way obtain qfit

i (gρππ,mρ) and the energy levels Efit
cm,i(gρππ,mρ). To this end define

9



d2 irrep E5 χ2/d.o.f. F6 χ2/d.o.f. F7 χ2/d.o.f.

0.3213(11) 0.77 0.2883(9) 0.63 0.2727(11) 0.45

0 T1 0.4905(21) 0.73 0.3443(15) 0.82 0.3306(17) 1.67

0.4333(32) 0.42 0.4228(34) 0.75

0.3022(8) 1.05 0.2329(10) 0.84 0.2049(8) 1.40

1 A1 0.3573(12) 1.12 0.2996(15) 0.96 0.2875(18) 0.66

0.3618(18) 1.24 0.3491(21) 1.04

0.3215(14) 1.67 0.2900(10) 0.83 0.2755(11) 1.14

1 E 0.5238(41) 0.77 0.3671(18) 1.02 0.3559(18) 0.49

0.4460(28) 0.35 0.4356(40) 0.56

0.3068(11) 0.85 0.2472(10) 1.18 0.2224(11) 0.95

2 A1 0.3783(20) 1.37 0.3054(17) 1.23 0.2945(21) 1.04

0.3753(18) 0.61 0.3646(21) 1.77

0.3155(25) 0.60 0.2658(10) 0.86 0.2467(11) 1.82

2 B1 0.4128(20) 1.11 0.3106(18) 1.25 0.2948(29) 1.67

0.3841(20) 1.48 0.3700(27) 0.43

0.3240(23) 1.10 0.2913(13) 0.84 0.2783(17) 2.22

2 B2 0.5454(51) 1.32 0.3755(18) 1.29 0.3653(20) 0.71

0.3943(24) 1.06 0.3797(40) 0.78

0.3096(18) 0.59 0.2584(13) 0.37 0.2364(17) 1.35

3 A1 0.3937(47) 0.62 0.2989(14) 0.44 0.2831(20) 0.82

0.3161(21) 0.97 0.3079(26) 0.82

3 E 0.3199(37) 1.83 0.2786(12) 1.41 0.2617(15) 0.73

0.4538(37) 0.77 0.3295(18) 1.12 0.3132(34) 1.74

TABLE IV. Extracted energy levels aEk (states are ordered from ground state to the higher excited

states from top to bottom) in the window method with tw=3 in each irrep for the three lattices

used in this work. One level fewer per irrep is extracted on E5, due to the levels being above the

4mπ threshold and the interpolator basis being smaller by 1.

the χ2-function

χ2(gρππ,mρ) =
∑
i,j

(Efit
cm,i(gρππ,mρ)− Elat,i)C

−1
i,j (Efit

cm,j(gρππ,mρ)− Elat,j) , (3.5)

with the covariance matrix

Ci,j =

njk∑
k=0

(Elat,i,k − Ēlat,i)(Elat,j,k − Ēlat,j) , (3.6)

calculated from the njk jackknife samples of the lattice energies and their central values
Ēlat,i. By minimising this χ2-function on each jackknife sample, we can obtain fit values
for the resonance parameters. One advantage of this approach is that we can use any
parameterisation suitable for the situation. We can compare our form factor results to the
Gounaris-Sakurai parameterisation [57] of the phase shift, which is characterised by the

10



FIG. 2. Phase shifts on all three ensembles using the window method. The horizontal axis shows

the CMF energy of each level and data points of the same colour and symbol belong to the same

frame and irrep. Error bars follow the curves allowed by the Lüscher zeta functions. The red

vertical line indicates the 4mπ threshold in each system; data points above are excluded from the

fit and thus shown in grey. The black line is the result of the Breit-Wigner fit to our data by

minimising the χ2 functional defined in (3.5). The χ2/d.o.f. for each fit is shown in the plots.

resonance parameters mρ and Γρ =
k3ρ
m2

ρ

g2ρππ

6π
:

k3

Ecm

cot[δGS
1 (k)] = k2h(Ecm)− k2

ρh(mρ) + (k2 − k2
ρ)b , (3.7)

b = − 2

mρ

[
2k3

ρ

mρΓρ

+
1

2
mρh(mρ) + k2

ρh
′(mρ)

]
, (3.8)

h(ω) =
2kω
πω

ln
ω + 2kω
2mπ

, (3.9)

kω =

√
ω2

4
−m2

π , kρ = kmρ , (3.10)
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E5 F6 F7

BW GS BW GS BW GS

mρ 0.3156(8) 0.3157(10) 0.2933(8) 0.2934(9) 0.2800(10) 0.2800(10)

gρππ 5.70(9) 5.66(9) 6.08(13) 6.03(13) 5.91(17) 5.88(16)

χ2/d.o.f. 1.47 1.64 0.75 0.84 1.47 1.52

TABLE V. Resonance parameters extracted from the fit to the energy levels using the Lüscher

formalism. All levels are extracted using the window method with tw=3. Compared are the fit

results to the Breit-Wigner and Gounaris-Sakurai parameterisations.

and show the results in Table V. The two fits produce consistent results, although the
Gounaris-Sakurai parameterisation yields slightly higher values of χ2.

Figure 3 shows the world data for the coupling gρππ from various 2 and 2+1 flavor
simulations. There is no significant dependence on the pion mass, and the lattice results are
generally close to the physical value.

IV. THE TIMELIKE PION FORM FACTOR

To determine the timelike pion form factor we first need to calculate the matrix elements
|Al/c|n = |〈0|Jl/c|n〉|. The subscripts l/c refer to the local and the conserved currents,
respectively. Our results for the matrix elements |Al/c| are listed in Table VI. There are
sizable differences between |Al| and |Ac|, likely due to cut-off effects, which are studied in
[58, 59]. This is a clear indication that an improved version of the currents (defined e.g. in
[60, 61]) would be preferable. These differences are supposed to vanish in the continuum
limit, but we cannot check this since we are only considering a single lattice spacing.

We now have all the input to compute the timelike pion form factor [20, 62],

|(Fπ)dΛ(s)|2 = Gd
Λ(γ)

(
q(φd

Λ)′(q) + k
∂δ1(k)

∂k

)3πs

k5
|A|2 , (4.1)

where s = E2
cm and

Gd
Λ(γ) =

{
1
γ

if Λ = A1

γ otherwise
, (4.2)

with the Lorentz-boost γ = E
Ecm

.

This equation includes derivatives of the infinite volume phase shift δ1(k) obtained in the
previous section, and of the modified Lüscher zeta functions φd

Λ, which were also used in the
phase-shift analysis, and which can be obtained to any desired mathematical precision. We
want to compare our form factor results to another study [58], which was performed on the
same ensembles and which used correlators with one local and one conserved vector current.
To conform with that study, we define the local-conserved version of |A|2,

|Alc|2 ≡ |Al||Ac| . (4.3)

For another literature comparison [63], we use the local-local version.
Equation (4.1) allows us to directly determine Fπ(s) from lattice data for discrete values

of s, using a parameterisation of the phase shift as well as the current matrix elements. To

12
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FIG. 3. Overview of lattice results for the coupling gρππ as a function of the pion mass in the

calculation. The upper pane shows the results from simulations with dynamical light and strange

quarks, while the lower pane shows results with dynamical light quarks only. Where available,

the scale-setting uncertainty provided by the authors has been added in quadrature to obtain the

errors on the horizontal axis. The value extracted from the physical ρ-meson width is indicated by

the magenta star and the black dashed line. The results from this work are the red open squares

in the lower pane.

get a continuous description of Fπ(s), we can use the Gounaris-Sakurai parameterisation
[57], given by the resonance parameters mρ,Γρ:

FGS
π (Ecm) =

f0

k3

Ecm
(cot[δGS

1 (k)]− i)
, (4.4)

f0 = −m
2
π

π
− k2

ρh(mρ)− b
m2
ρ

4
, (4.5)

with the definitions from Eqs. (3.7 – 3.10). The comparison of our lattice-calculated values
for Fπ and the Gounaris-Sakurai curves is shown in Figure 4. We want to stress these these
curves are not fits to the form factor data.

The Gounaris-Sakurai curve seems to describe our data reasonably well, but it would
be desirable to have a fit to our form factor data extracted from lattice QCD. One way to

13



d2 irrep E5 F6 F7

ZV 0.74418(33) 0.74143(14) 0.74011(23)

|Al| |Ac| |Al| |Ac| |Al| |Ac|
2.41(34) 2.12(31) 1.94(22) 1.74(19) 1.79(24) 1.63(22)

0 T1 0.75(20) 0.57(16) 1.06(18) 0.90(16) 1.05(17) 0.90(15)

0.71(22) 0.53(18) 0.80(20) 0.65(18)

2.02(25) 1.81(22) 0.55(7) 0.51(6) 0.48(6) 0.46(5)

1 A1 1.85(25) 1.59(22) 2.18(30) 1.95(26) 2.08(30) 1.87(26)

0.79(14) 0.66(12) 0.87(15) 0.74(13)

2.24(33) 1.98(30) 1.94(21) 1.74(19) 1.79(23) 1.63(21)

1 E 1.18(35) 0.97(30) 0.89(16) 0.74(14) 0.98(16) 0.82(14)

0.57(17) 0.42(14) 0.52(14) 0.40(11)

2.44(32) 2.17(28) 0.83(10) 0.77(9) 0.72(10) 0.68(9)

2 A1 1.57(26) 1.33(23) 2.25(32) 2.00(28) 2.22(33) 1.98(29)

0.65(12) 0.54(10) 0.63(11) 0.53(10)

2.05(39) 1.81(35) 1.02(12) 0.93(11) 0.82(11) 0.76(11)

2 B1 0.98(17) 0.81(15) 1.77(25) 1.56(22) 1.76(30) 1.57(26)

0.43(10) 0.33(9) 0.50(10) 0.41(9)

2.18(41) 1.92(37) 1.91(24) 1.71(21) 1.77(27) 1.60(24)

2 B2 0.61(19) 0.50(16) 0.38(8) 0.31(7) 0.16(4) 0.14(4)

0.92(18) 0.74(15) 0.87(20) 0.69(16)

2.75(44) 2.44(40) 1.17(15) 1.08(13) 1.01(17) 0.94(16)

3 A1 1.41(31) 1.17(26) 1.27(18) 1.12(15) 0.98(14) 0.87(13)

1.87(29) 1.63(26) 2.05(33) 1.81(29)

3 E 1.42(33) 1.25(30) 1.40(18) 1.26(15) 1.25(18) 1.14(17)

0.78(17) 0.64(14) 1.40(22) 1.20(19) 1.40(25) 1.21(22)

TABLE VI. Matrix elements |Al/c| extracted from the window method in units of 10−2. The values

for ZV are taken from [58]. The difference in |Al| and |Ac| is likely due to cut-off effects, which are

studied in [58, 59].

realise such a fit is an n-subtracted Omnès representation [64, 65]

F (n)
π (s) = exp

(
Pn−1(s)s+

sn

π

∫ ∞
4m2

π

ds′
δ1(s′)

(s′)n(s′ − s− iε)

)
, (4.6)

where Pn−1(s) is a polynomial function of degree n−1. We parametrise the phase shift δ1(s′)
in this equation using the Breit-Wigner form, Equation (3.2), and our extracted resonance
parameters. For the 2-subtracted version, the polynomial is a constant,

P1(s) =
〈r2
π〉
6

, (4.7)

with the square radius 〈r2
π〉 of the pion. The polynomial for the 3-subtracted version reads

P2(s) =
〈r2
π〉
6

+
1

2

(
2cπV −

(〈r2
π〉
6

)2)
s , (4.8)
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FIG. 4. The timelike pion form factor on the E5, F6, F7 ensembles (top to bottom). Data points

with the same symbol and colour belong to the same frame and irreps. The error bars associated

with each data point come from a jackknife estimate. The grey curve is the GS representation of

Fπ, which only takes the fit parameters of the phase-shift fit mρ, gρππ into account — it is not a

fit to the data pictured in these plots. The vertical red bars indicate the 4mπ threshold for each

lattice.

with the curvature cπV of the pion form factor. The integrand of

On(s) = exp

(
sn

π

∫ ∞

4m2
π

ds′
δ1(s

′)

(s′)n(s′ − s− iε)

)
(4.9)

has a pole at s′ = s and in order to solve the integral numerically we need to do a subtraction,

∫ ∞

4m2
π

ds′
δ1(s

′)

(s′)n(s′ − s− iε)
=

∫ ∞

4m2
π

ds′
δ1(s

′)− δ1(s)

(s′)n(s′ − s)
+ δ1(s)

∫ ∞

4m2
π

ds′
1

(s′)n(s′ − s− iε)
. (4.10)

The integral O(s) can now be computed analytically. We divide the lattice data Fπ(s) by
the function On(s), and fit the result using the function ffit(s) = exp(Pn−1(s)s). The results
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n E5 F6 F7

〈r2
π〉/r2

0 2 1.18(2) 1.34(1) 1.46(2)

〈r2
π〉/r2

0 3 1.11(3) 1.31(3) 1.37(4)

cV /r
4
0 3 3.59(7) 4.98(7) 6.05(15)

TABLE VII. Square radius and curvature (in units of 10−2) of the pion obtained from the fit to the

n-subtracted Omnès representation of the form factor, using a local-conserved current setup. The

Sommer scale r0 is taken from [66]. We want to stress that the curvature can indeed be calculated

from the fit parameter we use, but that the result and particularly the error estimate presented

here might not be the physical value.

n E5 F6 F7

〈r2
π〉/r2

0 2 1.25(2) 1.41(1) 1.53(2)

〈r2
π〉/r2

0 3 1.18(3) 1.37(3) 1.43(4)

cV /r
4
0 3 3.81(7) 5.26(8) 6.33(15)

〈r2
π〉/r2

0 [63] 1.18(5) 1.37(6) 1.61(10)

TABLE VIII. Same as Table VII but using a local-local vector current. The last line shows the

values from [63], where 〈r2
π〉 has been computed from a fit to the spacelike form factor. The

difference of our results to the corresponding values in Table VII comes from discretisation effects,

which are also visible in the matrix elements themselves, shown in Table VI.

of the fit to the 3-subtracted version are shown in Figure 5. In the 2-subtracted version,
our data were not very well described by the fit function. The fit describes the Fπ data
much better than the GS representation of the form factor, but for all ensembles the fits
have somewhat large values for χ2/d.o.f. We investigated the cause of this and excluded
autocorrelation in the chain or single outlying data points as sources for this observation.
There are however indications that our data set might be too small for reliable estimates of
such a large covariance matrix.

Results for the square radius 〈r2
π〉 from this fit are shown in Table VII. The results for

the 2- and 3-subtracted version differ on the level of 2σ, which is another indication that
the 2-subtracted version is not enough to describe the data accurately. The square radius
was previously determined in [63] by fitting the spacelike pion form factor, computed on
the same ensembles we are using in our study. This is a completely different approach and
provides a very good cross-check of our fit procedure. Because the authors of [63] employ a
local current (as opposed to the local-conserved setup used up to this point), we repeated
the analysis using |Al| in Equation (4.1). The results for the square radius from this analysis
are shown and compared to the result from [63] in Table VIII. While both results agree very
well for ensembles E5 and F6, we obtain a somewhat smaller square radius on ensemble F7.
This observation is discussed further in Section V. The comparison of this table with Table
VII shows again that discretisation effects in our currents are sizable.

As a consistency check our results for the square radius and curvature are plotted as a
function of the pion mass, along with the values from phenomenological determinations in
Figure 6. For the square radius we compare to the recent determination from Ref. [67],
while for the curvature we use the value from Ref. [68], which also provides an overview
of various determinations. Note that the pion mass dependence of our results is in good
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FIG. 5. Left panel: The timelike pion form factor on the E5, F6, F7 lattice (top to bottom),

window method. Data points with the same symbol and colour belong to the same frame and irreps.

The orange curve is the fit to Fπ, parametrised via the 3-subtracted version of Equation (4.6). The

vertical red bars indicate the 4mπ threshold in each lattice and data points above this threshold

have not been included in the fit and are shown in grey for this reason. Right panel: The data

which we are actually fitting to. The vertical axis shows Fπ divided by the Omnès integral, i.e. the

analytically calculable part of Equation (4.6), and the fit function is f(s) = exp(Ps), where P is a

1st-order polynomial. The vertical axis is displayed on a log scale and the orange curve is the fit

function with the jackknife error. Shown are also the χ2/d.o.f. values of the respective fits, which

are quite high.
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FIG. 6. Left panel: Pion mass dependence of the square radius 〈r2
π〉. Right panel: The same for

the curvature cv. Our lattice results are compared to the determinations in Ref. [67] and Ref. [68]

respectively. The inner error bar on the lattice data denotes the statistical uncertainty, while the

outer error bar includes the scale setting uncertainty from the conversion to physical units.

qualitative agreements with the expectations from Ref. [69]. Lattice results for the curvature
have previously been obtained in [70].

V. HADRONIC VACUUM POLARISATION

Recently, it has been realised that the timelike pion form factor has an important appli-
cation in the context of lattice calculations of the hadronic contributions to the muon g− 2.
The hadronic vacuum polarisation contribution, ahvp

µ , is accessible in lattice QCD via several
integral representations involving the vector correlator [26]. A convenient way to evaluate
ahvp
µ is based on the so-called time-momentum representation (TMR) [23–25]:

ahvp
µ =

(α
π

)2
∫ ∞

0

dx0 G(x0)K̃(x0;mµ) , (5.1)

with a known kernel function K̃(x0;mµ), the muon mass mµ and the vector-vector correlator,

G(x0)δkl = −
∫
d3x 〈Jem

k (x)J em
l (0)〉 . (5.2)

Here, Jem
µ is the electromagnetic current,

Jem
µ (x) =

2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x) + · · · . (5.3)

A definition of the kernel can be found in [58]. This correlator can be decomposed into an
iso-vector (I = 1) and an iso-scalar (I = 0) part, G(x0) = GI=1(x0) + GI=0(x0). It is also
commonly decomposed into connected diagrams from each quark flavour and disconnected
diagrams. For comparison with Ref. [58], we will focus on the connected light-quark contri-
bution, Gud(x0) = 10

9
GI=1(x0). While for small x0, this correlator can be precisely computed

on the lattice, the signal cannot be traced to arbitrarily large values of x0, partly due to the
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deteriorating signal-to-noise ratio, but also due to the finite time extent of the lattice. Get-
ting a good estimate for the long-distance behaviour of G(x0), which is needed to perform
the integral to infinity, is one of the main challenges. The general idea is therefore to use
the direct lattice data up to some cut-off distance xcut

0 and to determine the part above this
distance separately.2 Ref. [58] used a simplistic single-exponential model for the large-time
part of Gud(x0):

Gud(x0) = ce−mρx0 , (5.4)

where mρ was a naive estimate for the rho mass, namely the plateau value of a 〈ρ(t)ρ†(0)〉
correlator, and c was determined by fitting Gud(x0). We are improving on this method in
our work using two different approaches, one using a reconstruction of the finite-volume
correlator and one estimating the infinite-volume correlator.

The finite-volume approach uses the information we have about the lowest states in the
energy spectrum from the GEVP. We can reconstruct the light-quark correlator with the
current matrix elements |Al/c| we already used to compute Fπ,

Gud
nmax

(x0) =
10

9

nmax∑
n=0

|Alc|2ne−Enx0 . (5.5)

This approach has several advantages: Not only do we get a more precise estimate for the
large-x0 behaviour of Gud(x0), but we also have a way to determine the number of states
required for a reliable estimate. By computing Gud

nmax
(x0) for different values of nmax, we

can see the estimates converging towards each other. In a region where Gud
n (x0) agrees

within errors with Gud
n+1(x0), we assume that all energy levels n + 2 and above will not

contribute significantly to Gud(x0). The integrand of Equation (5.1) for different values of
nmax can be seen in Figure 7. We compare it to the data obtained by a direct calculation
of the vector-vector correlator on the same ensembles, performed in [58]. Even for values
lower than xcut

0 , the contribution obtained only from the first level on E5 saturates the
contribution from the lowest two levels. On F6 and F7, the contribution from two levels
saturates the contribution obtained from 3 levels, also at comparably low x0. This means
that the computation of further levels would not contribute significantly to ahvp

µ , and it also
shows that a 1-exponential tail is not well motivated on F6 and F7. Also, on E5 and F6,
our reconstructed data saturate the lattice data from [58] around xcut

0 and are much more
precise afterwards. On F7, the correlator data lie significantly above the reconstruction,
which might be caused by a correlated fluctuation upward that overestimates the vector-
vector correlator. Already starting at about 1 fm, the data from the direct lattice calculation
on F7 seem to deviate from the expected behaviour, leading to this possible overestimation.

In the infinite-volume approach, the long-time part of the correlator is estimated by
evaluating the integral

Gud
Fπ(x0) =

10

9

∫ ∞
0

dω ω2ρ(ω2)e−ωx0 . (5.6)

Below the 4mπ threshold3, ρ(s) can be parameterised by

ρ(s) =
1

48π2

(
1− 4m2

π

s

) 3
2

|Fπ(s)|2 . (5.7)

2 One can also obtain rigorous upper and lower bounds for the long-time contribution [71, 72], which can

be improved with knowledge of the spectral decomposition of Gud(x0) [59, 73].
3 Because the integrand is exponentially suppressed at high energy, we use this parameterisation (and the

one of Fπ) also above the 4mπ threshold.
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FIG. 7. The light quark contribution to the integrand of Equation (5.1) for ensembles E5, F6, F7

(top to bottom). The data points computed in [58] are plotted as black filled circles up to xcut
0 and

as open circles above the cut. The bands represent the continuation of the correlator above xcut
0 as

discussed in Ref. [58]. Coloured symbols denote the data from this work using the reconstructed

light-quark correlator Gudnmax
from Equation (5.5) for different values of nmax. The vertical lines

indicate the value of xcut
0 .

This approach was also used in [58], where the form factor was estimated using the Gounaris-
Sakurai [57] parameterisation using the naive rho mass mρ and an estimation of the width
Γρ based on its experimental value and an assumed scaling Γρ ∝ k3

ρ/m
2
ρ.

4

In this work, we have several parameterisations of Fπ and can therefore directly evaluate
Equation 5.6. The result of this is shown in Figure 8, where we compare the vector-vector

4 We will not compare the infinite-volume GS results from Ref. [58] with ours. In that work, the GS model

was also used for a finite-volume extension of the correlator, and we compare those results with ours in

Table IX.
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correlator Gud
Fπ

obtained from the Gounaris-Sakurai and from the Omnès representation and
for comparison show the estimator with the highest nmax from Figure 7 as well as the Mainz
HVP data from [58] again. It is obvious that the Gounaris-Sakurai representation with the
resonance parameters from our phase-shift analysis is not a good parameterisation of our
data and leads to an integrand that does not saturate the lattice data.
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FIG. 8. The integrand of Equation (5.1) for ensembles E5, F6, F7 (top to bottom). The meaning

of the black filled and open circles is the same as in Figure 7. Blue triangles represent the integrand

reconstructed from the iso-vector correlator Gudnmax
of Equation (5.5) for the corresponding value of

nmax. Data corresponding to the iso-vector correlator constructed from the GS parameterisation

and the 3-subtracted Omnès representation of Fπ are shown as red and blue bands, respectively.

The different types of extending the correlator above xcut
0 are used to compute the results for

ahvp
µ presented in Table IX. The difference between the 2- and 3-subtracted versions of the Omnès

representation integral is too small to be seen on this plot.

Table IX shows our results for the long-time tail computed using the different methods
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E5 F6 F7

0 to xcut
0 2.662(26) 3.131(52) 3.462(86)

xcut
0 to ∞ (1-exp/GS) 0.484(15) 0.818(52) 1.238(96)

xcut
0 to ∞ (Gudnmax

) 0.473(9) 0.808(13) 1.050(20)

xcut
0 to ∞ (GudFπ , n = 2) 0.516(13) 0.776(29) 1.049(48)

xcut
0 to ∞ (GudFπ , n = 3) 0.502(13) 0.805(30) 1.078(52)

0 to ∞ (1-exp/GS) 3.146(39) 3.949(99) 4.700(173)

0 to ∞ (Gudnmax
) 3.135(28) 3.940(59) 4.524(95)

0 to ∞ (GudFπ , n = 2) 3.179(30) 3.907(63) 4.511(102)

0 to ∞ (GudFπ , n = 3) 3.165(31) 3.936(65) 4.540(106)

FV correction, n = 2 0.043(12) −0.032(31) −0.001(50)

FV correction, n = 3 0.029(13) −0.003(31) 0.028(54)

FV correction, [58] 0.03 0.07

TABLE IX. Values for ahvp
µ obtained using various methods, in units of 10−8. The first line shows

the accumulated integral over the lattice data up to xcut
0 . The next four lines show the integral over

the long-time tail using the following four methods: (1-exp/GS) is the single-exponential (on E5)

or the finite-volume GS parametrisation (on F6 and F7), which is a re-analysis of the data from

[58]. Gudnmax
is our extension using the reconstruction of the light-quark correlator using Equation

(5.5). GudFπ reconstructs the vector-vector correlator using Equation (5.6), where the pion form

factor Fπ is parametrised by the n-subtracted Omnès representation for n = 2 and n = 3. We

do not show the results of GudFπ reconstructed using the GS parameterisation of Fπ as it does not

describe our data well, as can be seen in Figure 8. The last three lines show the estimate of a

correction for finite-volume effects, based on the difference between GudFπ and Gudnmax
, or based on

the GS parametrisations in Ref. [58] (which was not done for E5).

employed in this work and compares them to the naive estimate obtained in [58] without
access to the resonance data from this work. Also shown is the full value for ahvp

µ , which is
the sum of the contribution from the direct lattice calculation and the different long-time
tails. One can see readily from Figure 7 that on F7, our reconstruction of the vector-
vector correlator using Equation (5.5) does not saturate the data from the direct lattice
computation of Gud(x0). When comparing our new values for ahvp

µ with the ones from [58]
and the chiral extrapolation performed in that work (see Figure 9), one can see that the
value for F7 shifts significantly, but that it comes to an overall better agreement with the
chiral extrapolation curve. Because the lattice data on F7 seems to show a large correlated
fluctuation already at about 1 fm, and because we are using a transition value of xcut

0 ≈ 1.38
fm, the true value for ahvp

µ might be even lower. In any case, the published value for F7 lay
prominently above the fit curve of the data points sharing the same lattice spacing and our
analysis brought this data point closer to the curve. A similar issue is observed for the pion
radius when comparing our results in Table VIII to the published results in [63].

Although asymptotically finite-volume effects in Gud(x0) are suppressed exponentially as
e−mπL, in practice these effects can be significant. When the large-x0 region is dominated
by a small number of states, the volume dependence is not in the asymptotic regime [23].
Therefore, it is useful to consider the difference between infinite-volume and finite-volume
reconstructions, which provides an estimate of a finite-volume correction. This is also shown
in Table IX. On ensemble E5, the correction is statistically significant and roughly +1%.
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On F6 and F7, where a finite-volume correction was previously estimated in Ref. [58], our
results are consistent with zero and also consistent with the previous estimate.

300
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600

0.00 0.05 0.10 0.15 0.20 0.25
m2

π [GeV2]

ahvpµ · 1010

Ref. [58]
This work

FIG. 9. Pion mass dependence of ahvp
µ at β = 5.3. Red triangle correspond to the data computed in

Ref. [58] with the chiral extrapolation at non-zero lattice spacing represented by the band. The blue

circles denote the data points determined from the large-x0 tail of our most precise reconstruction

of the correlator, which is the Gudnmax
correlator using the matrix elements |A| as an input. Points are

slightly shifted for clarity. The leftmost red triangle corresponds to ensemble G8 (mπ = 185 MeV),

which was not considered in this work. Our determination of the tail of the iso-vector correlator

allows for a significantly more precise determination of ahvp
µ compared to Ref. [58]. Furthermore, we

find that the result for F7 moves closer to the curve when our reconstruction of the large-distance

tail is used.

VI. CONCLUSIONS

We have performed an analysis of I = 1 pion-pion scattering on three different Nf = 2
ensembles at fixed lattice spacing. Our spectra have been determined using the variational
method for a total of eight different irreps in the centre-of-mass frame and three different
moving frames with lattice momenta up to d2 = 3. The spectral information was used
in a finite-volume analysis to determine the resonance parameters. We have studied the
consistency of different parameterisations of the phase shift by comparing the results for
the resonance mass mρ and the coupling gρππ obtained from fits to either the Breit-Wigner
or the Gounaris-Sakurai representation. Our results, shown in Table V, indicate that the
resonance parameters are only weakly dependent on the parametrisation.
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We have used our parameterisation of the phase-shift together with the matrix elements
of the local and point-split vector currents to compute the pion form factor, Fπ, in the
timelike region. While the results for Fπ agree qualitatively with the Gounaris-Sakurai
parameterisation based on our ρ meson masses and couplings, they are better described by
an Omnès representation obtained from a fit to the Fπ data, taking the resonance parameters
mρ and gρππ as input quantities.

The thrice-subtracted version provides a particularly good description and also allows for
the determination of the (squared) pion charge radius 〈r2

π〉. Our results compare well to an
independent calculation of the charge radius on the same ensembles, obtained from the slope
of the pion form factor in terms of the spacelike momentum transfer Q2 [63]. When lowering
the pion mass, our results for 〈r2

π〉 and the curvature approach the phenomenological values
[67, 68]. The resulting mass dependence of the squared radius is compatible with the results
in Ref. [69].

While the characterisation of resonances using lattice techniques is interesting in its own
right, the gained information can also be put to good use in different contexts. As another
important application we have considered the calculation of the hadronic vacuum polarisa-
tion contribution to the muon anomalous magnetic moment, ahvp

µ . The precision of lattice

calculations of ahvp
µ is typically limited by the long-distance tail of the vector correlator.

By means of a direct comparison with an earlier study [58], we have shown that the
precision in ahvp

µ can be substantially increased by describing the long-distance tail of the
TMR integrand (see Equation (5.1)) using the spectral information on the first few states in
the iso-vector channel. Alternatively, the tail of the integrand can be much more accurately
constrained via the representation of the vector correlator in terms of the pion form factor.
These techniques have, in the meantime, been employed in a recent calculation of ahvp

µ on
CLS gauge ensembles with Nf = 2+1 flavours of dynamical quarks [59]. Going beyond that
work, we have used the difference between infinite-volume and finite-volume reconstructions
to estimate finite-volume effects; the results are consistent with previous estimates using the
Gounaris-Sakurai model.
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[49] M. Lüscher, Comput. Phys. Commun. 165, 199 (2005), arXiv:hep-lat/0409106 [hep-lat].
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