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Abstract: We present a very minimal model for baryogenesis by a dark first-order phase

transition. It employs a new dark SU(2)D gauge group with two doublet Higgs bosons,

two lepton doublets, and two singlets. The singlets act as a neutrino portal that transfer

the generated asymmetry to the Standard Model. The model predicts ∆Neff = 0.09–0.13

detectable by future experiments as well as possible signals from exotic decays of the Higgs

and Z bosons and stochastic gravitational waves.
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This paper is dedicated to the memory of Ann Elizabeth Nelson.

1 Introduction

The origin of the baryon asymmetry of the universe (BAU) remains an open question. Al-

though baryon number is conserved at tree level by the Standard Model (SM), the present-day

matter density suggests an asymmetry between baryons and anti-baryons in the early universe

at the level of one part in a billion. Resolving this BAU question has become more urgent

with the recent success of inflation in high-precision tests of the anisotropy of the cosmic

microwave background (CMB) [1]. Even if some baryon asymmetry existed at the beginning

of the Universe, inflation would have diluted it by e−N where the e-fold N needs to be larger

than 50 in order to solve the horizon and flatness problems [2]. Therefore, the present-day

BAU must have been generated after inflation by a micro-causal mechanism. Such a mech-

anism must satisfy three conditions, as pointed out by Sakharov [3]: (1) violation of baryon

number, (2) violation of C and CP, and (3) departure from thermal equilibrium.

While there are many possible mechanisms for creating a baryon asymmetry, there are

two general directions that are popular in the literature. One is leptogenesis [4], which is

an automatic consequence of the origin of the small neutrino mass from the so-called seesaw

mechanism [5–7]. Unfortunately, this mechanism is difficult to test experimentally because it

relies on physics at very high-energy scales (see, however Ref. [8] and a recent discussion on

a potential test using gravitational waves in Ref. [9]).

The other popular mechanism which explains the BAU is electroweak baryogenesis (see

Ref. [10] by Andrew Cohen, David B. Kaplan, and Ann E. Nelson for a pioneering review and
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[11, 12] for recent updates). This mechanism is motivated by the fact that the SM in principle

satisfies all of the Sakharov conditions, with B violation in the anomalous SU(2) sphaleron

process, C violation in the weak interaction, CP violation in the CKM matrix, and departure

from thermal equilibrium in a first-order electroweak phase transition. However, the degree

of CP violation in the CKM matrix is too small to account for the needed asymmetry [13–15],

and with the observed Higgs boson mass of 125 GeV, the SM electroweak phase transition is

crossover [16–18]. Mechanisms for electroweak (EW) baryogenesis therefore must introduce

some additional particle content such as singlet scalars [19] and extended higgs sectors [20]

in order to fully realize conditions (2) and (3). This new content is often accessible at high-

energy colliders such as the Large Hadron Collider (LHC) and may be tested by precision

measurements at much lower energies, making it very falsifiable.

Unfortunately these models are, in some sense, too falsifiable. They tend to predict an

electric dipole moment (EDM) of the electron, neutron, and atoms at levels which are highly

constrained by recent experimental results [21]. Thus, it is worthwhile to look for theories

that achieve EW baryogenesis or something similar and can be tested by current or future

experiments. Recent attempts in this direction have considered CP violation from strong

CP violation [22], varying Yukawas [23], SM leptons [24, 25], a dark sector [26, 27], and

higher-scale sources if the EW phase transition happens at higher temperatures [28, 29].

In this paper, we propose a model that achieves baryogenesis at energies just above the

EW scale with very few new degrees of freedom through electroweak-like baryogenesis in a

dark sector. In our model, a first-order phase transition in a dark sector with two Higgs

doublets generates an asymmetry through the charge transport mechanism, with “baryon”

number violation from an anomalous dark gauge group and CP violation from a non-trivial

phase in the dark Higgs. The dark sector is connected to the SM by a renormalizable neutrino

portal, and so the dark-sector asymmetry is converted into a SM baryon asymmetry through

the SM sphaleron. Our model closely resembles “darkogenesis” by Shelton and Zurek [30].

Unlike darkogenesis, our model uses the neutrino portal instead of a messenger sector or

higher-dimensional operator and thus is fully renormalizeable; we do not attempt to realise

asymmetric dark matter.

Producing a primordial asymmetry in a dark sector which is then transferred to the

visible sector without requiring violation of baryon or lepton number beyond the SM (BSM)

was previously explored in [31] (case II). There, the origin of the dark asymmetry was not

specified; the emphasis was on using a higher-dimensional Higgs portal for the transfer and

realizing asymmetric dark matter. In this paper, we provide a UV completion in which

the transfer operator involves new singlet leptons and the Higgs such that the EW phase

transition does not have to be first-order, only the dark phase transition has to be. In

addition, our model predicts new relativistic degrees of freedom in the Universe today at the

level detectable by near-future CMB experiments. Furthermore, it retains the salient feature

of EW baryogenesis that leads to the stochastic gravitational wave signature.
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Figure 1. The schematics of the evolution of asymmetries. During step I, reflection by bubble walls

and the dark SU(2) sphaleron generate the initial dark sector asymmetries. In step II, Nu decays to

LSM and the SM sphaleron actively converts some of this asymmetry to BSM . Nd decays to LSM in

step III.

2 Basic Idea

We employ an SU(2)D gauge theory with two Higgs doublets. Here, D stands for “dark” and

we refer to the equivalent SM gauge group as SU(2)SM. We introduce one set of “leptons”

that consists of a left-handed SU(2)D doublet L1 = (L1u, L1d), and two right-handed singlets

Nu,d (note that they do not form a doublet under SU(2)D). One eigenstate “top lepton” has

O(1) Yukawa couplings and plays the role of the top quark in the original EW baryogenesis,

while the other eigenstate “bottom lepton” is analogous to the bottom quark, and we assume

it has a much smaller Yukawa coupling so that we can ignore it from the dynamics of the

bubble walls. In order to cancel Witten’s anomaly, we need another doublet L2, but we do

not introduce accompanying right-handed fermions to prevent any leakage of L2 charge into

SM B+L. We also impose a Z2 symmetry under which L2 is the only odd field to forbid the

mass term L1L2.

We assume the phase transition is first order and happens before EW symmetry breaking.

The potential of the two Higgs doublets is

V (Φ) = µ2
1Φ†1Φ1 + µ2

2Φ†2Φ2 − µ2
3(Φ†1Φ2 + c.c.)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†1Φ2)(Φ†2Φ2) + c.c.

]
.

(2.1)

The couplings λ5,6,7 are complex and their imaginary parts violate CP. The Yukawa couplings

consistent with the Z2 symmetry are

LY =− YaαL̄1ΦaNα − ỸaαL̄1Φ̃aNα + c.c. (2.2)
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field SU(2)D γ5 Q1 Q2 Z2

Φ1,2 2 0 0 0 +

L1 2 −1 +1 0 +

Nu,d 1 +1 +1 0 +

L2 2 −1 0 +1 −

Table 1. The particle content of the dark sector.

Here, Φ̃a = iσ2Φ∗a, and a = 1, 2, α = u, d. L2 remains exactly massless while Nα carry Q1

charge. At this stage, we find an exact Q1 −Q2 symmetry.

The leptons L1 and Nu,d play the role of the top quark to produce the Q1+Q2 asymmetry.

Since Q1 − Q2 is conserved by the SU(2)D sphaleron, the generated asymmetries satisfy

Q1 = Q2. This is the first step in Fig. 1. On the other hand, the Q1 charge can equilibrate

with the Standard Model leptons `i through the Yukawa couplings

∆LY = −yiα ¯̀
iNαH̃ + c.c., (2.3)

where H is the standard model Higgs doublet and H̃ = iσ2H
∗. The conserved (non-

anomalous) quantity is then

Q ≡ Q1 −Q2 + LSM −BSM. (2.4)

As the “top lepton” decays into the SM leptons, the lepton asymmetry LSM is then generated,

which is partially converted to the baryon asymmetry BSM through the sphaleron transitions

in SU(2)SM. This is the second step in Fig. 1. Finally, the SM sphaleron freezes out and BSM

becomes fixed, while the “bottom lepton” decays and the remaining Q1 is converted to LSM.

This is the last step in Fig. 1. Note that it is also possible for the “bottom lepton” to decay

into the SM before the sphaleron freeze-out, depending on its mass.

The most general Lagrangian consistent with the symmetries includes also Majorana

masses for Nu,d,

LM =
1

2
mαβNαNβ + c.c. (2.5)

This term violates Q. In order to maintain the baryon asymmetry, we need to make sure that

Q violation is small. Approximately, we need

m2

T 2
∗
<

T∗
MPl

, (2.6)

at the time of the sphaleron freeze-out at T∗ = (131.7 ± 2.3) GeV [32], and hence m . keV.

With or without the Majorana mass terms, there are three massless states (see Eq. (2.7)

below where the mass matrix is rank 2). They make massive fermions pseudo-Dirac, namely

split Dirac fermions into nearly degenerate two Majorana fermions each. The light neutrino

masses as observed by neutrino oscillation must come from another source, such as the popular

seesaw mechanism at high energy scales. Therefore, the Majorana mass terms in Eq. (2.5)
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are unimportant for phenomenology as long as the bound is satisfied, and we will ignore them

in the discussions below.

Once all Higgs fields acquire expectation values 〈H〉 = v and |〈Φ1〉|2 + |〈Φ2〉|2 = V 2, the

neutral lepton sector has a mass matrix

(
L̄1u L̄1d ν̄e ν̄µ ν̄τ

)

Mu 0

0 Md

ye1v ye2v

yµ1v yµ2v

yτ1v yτ2v


(
Nu

Nd

)
. (2.7)

Here we have made an SU(2)D gauge rotation as well as the U(2) basis rotation of Nu,d to

diagonalize the upper 2 × 2 block to diag(Mu,Md) where both eigenvalues Mα are real and

positive. Henceforth we refer to the dark lepton states in this basis where L1u, Nu refer to

the top lepton, while L1d, Nd to the bottom lepton. Then the massive Dirac eigenstates are

given approximately by

L′1u = L1u + εiuνi, (2.8)

L′1d = L1d + εidνi, (2.9)

for the top and bottom leptons, respectively, while the massless states are given by

ν ′i = νi − ε∗iuL1u − ε∗idL1d. (2.10)

Here, εiα = yiαv/Mα. For the discussions below, we assume V ∼1–100 TeV, and Mu ≈ V ,

but it is easy to see how phenomenology changes for different parameters.

3 Asymmetries

We assume that the dark sector undergoes a first-order phase transition. The phases of the

Higgs fields vary inside the bubble walls due to the CP-violating couplings in the potential.

This CP violation affects the reflection coefficients of the (dark) top lepton, which induces

the asymmetry in Q1 and also Q2.

Since the sphaleron in SU(2)D preserves Q1 −Q2, we find

Q1 = Q2 6= 0. (3.1)

If the dark phase transition is strong enough, the dark sphaleron will be suppressed subse-

quently and washout is avoided. From this point on, there are no interactions that can change

Q2, and hence the asymmetry is stored and protected. The Q1 charge transforms to Standard

Model leptons by the decay Nu → νih, νimZ with the rate

Γ(Nu) =
1

32π
|εiu|2

M3
u

v2
βf (Mu,mh)2 +

1

64π
g2
Z |εiu|2Mu

(
2 +

M2
u

m2
Z

)
βf (Mu,mZ)2, (3.2)
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where the phase space factor is

βf (M,m) = 1− m2

M2
. (3.3)

For this process to reach equilibrium before the sphaleron process freezes out, we need

Γ(Nu) > H(T∗). Assuming Mu � mh,mZ ,

|εiu|2 > 5.02× 10−17 ×
(

T∗
131.7 GeV

)2(TeV

Mu

)3

, (3.4)

a very weak constraint. Hereafter we assume it is satisfied.

Most SM interactions are in equilibrium at this stage as is the SM weak sphaleron, but

the charge combination LSM +Q1 −BSM is conserved. Using the established approach [33],

the initial Q1 spreads across the SM degrees of freedom. The actual numbers then depend

on when the neutrinos that carry the Q1 charge decay and whether the EW phase transition

in the SM is strongly first order or not. We always assumed Nu decays before EW symmetry

breaking so far, but now consider the other case as well.

We first consider the schematics in Fig. 1 where Nd decays after the SM sphalerons

become inefficient. This is the most interesting scenario because it provides the collider

signatures discussed in the next section. Without any additional new particles, the SM phase

transition is a crossover, where sphaleron effects continue to exist down to T∗. Then the

chemical equilibrium is achieved in the broken phase, and one finds

BSM = − 36

133
Q2 , LSM =

97

133
Q2 . (3.5)

If the SM phase transition is strongly first order instead, the sphaleron freezes out immediately

after the phase transition. Then the chemical equilibrium achieved in the unbroken phase

determines the asymmetries, yielding

BSM = − 28

101
Q2 , LSM =

73

101
Q2 . (3.6)

If Nd is heavy, it may decay before the EW sphalerons freeze out. This scenario yields

BSM = −12

37
Q2 , LSM =

25

37
Q2 , (3.7)

when the SM is crossover, or

BSM = −28

79
Q2 , LSM =

51

79
Q2 . (3.8)

if the SM has a strongly first-order phase transition. These are the same results as in Ref. [33].

The final question is if sufficient initial Q1 charge can be produced from the SU(2)D
phase transition. The picture we have in mind is akin to the usual EW baryogenesis in the

two Higgs doublet model (see [20]). However, there are several factors that work in favor of
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the dark sector. First, since the spectrum of the dark scalars is not constrained, the phase

transition does not need to rely on the interplay of the two scalars. If the Higgses are light

enough, strong enough phase transitions can be obtained through the thermal contributions

of the SU(2)D gauge bosons, 〈Φ〉 /T ' g3
D/λ, where λ is a generic quartic scalar coupling in

the dark sector (notice that this also solves issues with Landau poles that often occur in the

two-Higgs doublet extensions of the SM setup). Second, all dark Higgses can be of similar

mass which tends to increase the change of the complex phases in the Higgs fields during the

phase transitions. Third, the SU(2)D gauge coupling could be substantially larger than that

of SU(2)SM and hence enhance the BAU due to a larger (dark) sphaleron rate and a stronger

phase transition. Finally, the L1 fields do not carry color and hence diffuse farther into the

symmetric phase and do not suffer from suppression by the strong sphalerons. Altogether,

we expect that the model can potentially produce a BAU that is a few orders of magnitude

larger than the observed one.

4 Laboratory Signatures

Lepton universality in τ− → µ−ν̄µντ , τ− → e−ν̄eντ , and µ− → e−ν̄eνµ is tested at the

permille level [34] which implies 1 − |εiu|2 − |εid|2 are the same among i = e, µ, τ at the level

of 10−3. Barring the conspiracy where εiα are the same to all three i, we typically need

|εiα|2 . 10−3. Improved measurements of τ properties at Belle II may be able to discover

non-universality.

If Nd is lighter than Z, the decay Z → Ndν̄i + N̄dνi has the branching fraction

BR(Z → Ndν̄i + N̄dνi) = |εid|2BR(Z → νiν̄i)β
2
f (3− βf )

= 0.067|εid|2β2
f (3− βf ). (4.1)

Nd subsequently decays as Nd → `−j qq̄
′, `−j `

+
k νk picking up the mixing εjd. The search for

neutral heavy leptons was performed by DELPHI at LEP [35], and the upper limit on the

mixing angle squared is as strong as |εid|2 < 2×10−5 for a range of masses and decay lengths,

while is weaker for Md & 50 GeV and reverts to the limit from universality once Md > mZ .

For very light Md . 2 GeV, there are stronger limits from fixed-target experiments. Future

Z factories (GigaZ at ILC or TeraZ at FCCee) will better probe this decay.

If Nd is lighter than the Higgs boson of mass mh = 125 GeV, the Higgs boson can decay

into N̄dνi +Ndν̄i. Using BR(h→ τ+τ−) = 6.3× 10−2 [36], we find

BR(h→ N̄dνi +Ndν̄i) = 6.3× 10−2 ×
∣∣∣∣εidMd

mτ

∣∣∣∣2 β2
f

= 1.80× 10−4 |εid|2

10−5

(
Md

30 GeV

)2

βf (mh,Md)
2.

(4.2)

This can be sizable and appears as an exotic decay of the Higgs boson. This can be probed

down to the level of 10−4 or better at future e+e− Higgs factories [37].
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There is no contribution to the electric dipole moment of quarks in this model. That

of the electron is suppressed by |εeu|2, |εed|2. This suppression factor makes the proposed

model of baryogenesis here perfectly compatible with the stringent constraint from the ACME

collaboration [21].

5 Excess radiation and ∆Neff

L2 has a small asymmetry, but since it is massless, it has a thermal abundance and can

contribute non-negligibly to the energy density of the early, radiation-dominated Universe.

The total energy density, ρr, is parameterized by its relation to the photon energy density,

ργ , via

ρr =

(
1 +

7

8

(
4

11

)4/3

Neff

)
ργ , (5.1)

where Neff is the effective number of neutrinos. The SM neutrinos contribute 3.046 [38, 39]

to Neff (due to their incomplete decoupling by the time of electron-positron annihilation),

and in general, any relativistic BSM particles contribute as well. Planck recently measured

Neff = 2.99+0.34
−0.33 (95% CL) [40], while the measurements of primordial abundances from Big

bang nucleosynthesis (BBN) imply Neff = 2.85 ± 0.28 [41]. Both of these measurements are

consistent with the SM prediction and constrain any BSM relativistic species.

To determine L2’s contribution to Neff, it is necessary to track when it kinetically decou-

ples from the SM bath. L2 can equilibrate with the SM neutrinos via W 3
D exchange picking

up the small L1 component in ν ′i with the cross section

σ(L2ν
′
i → L2ν

′
i) =

1

16π
(|εiu|2 − |εid|2)2 s

V 4
,

σ(L2ν̄
′
i → L2ν̄

′
i) =

1

48π
(|εiu|2 − |εid|2)2 s

V 4
, (5.2)

where s is the usual Mandelstam variable. The thermal average of s yields

〈s〉 = 2
(ρ
n

)2
= 2

(
7π4

180ξ(3)

)2

T 2. (5.3)

Assuming the mixing angles are dominated by one neutrino flavor νi, the rate for scattering

is

Γ = nν′i 〈σv〉 (L2ν
′
i → L2ν

′
i) + nν̄′i 〈σv〉 (L2ν̄

′
i → L2ν̄

′
i) , (5.4)

where nν′i is the number density of the SM neutrino. When this rate drops below the Hubble

rate,

H =

√
g∗π2

90

T 2

MPl
(5.5)
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Figure 2. Left: The schematic plot of the decoupling temperature Td as a function of the mixing

|εid|2. The red (blue) curves act as upper (lower) limits on the decoupling temperature. In case Md

is between these two bounds, the decoupling temperature is given by Md. See text for details. The

DELPHI limit [35] requires |εid|2 to be on the left of the green curve. When green and red lines cross,

the red line below the green curve is still possible if |εiu|2 replaces the role of |εid|2. Right: ∆Neff for

various decoupling temperatures Td of L2. Also shown are the expected sensitivities at CMB Stage 3

and 4 experiments.

L2 falls out of equilibrium. This occurs at

T = 66.0 GeV

(
g∗(Td)

103.9

)1/6 ∣∣∣∣
10−5

|εiu|2 − |εid|2

∣∣∣∣
2/3(

V

TeV

)4/3

. (5.6)

This is the declining upper red line in Fig. 2.

It is also possible that Nd acts as a mediator in equilibrating L2. This requires that Nd is

light enough to be abundant (T � Md) and also that the interactions of Nd are strong enough

to maintain equilibrium both with L2 and the SM particles. The equilibrium between L2 and

Nd is due to cross sections

σ(L2L1d → L2L1d) =
1

16π

s

V 4
,

σ(L2L̄1d → L2L̄1d) =
1

48π

s

V 4
, (5.7)

and persists down to the temperature

T > 22.6 MeV
( g∗
16.89

)1/6
(

V

TeV

)4/3

. (5.8)

Except for the highest values of V (e.g., V = 100 TeV shown as the dashed blue line in

Fig. 2), this process is in equilibrium for T � Md.
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As for the equilibrium between Nd and SM, first study the case when Md < mZ . The

equilibrium with the SM is due to its decay and inverse decay through an off-shell Z-boson

exchange with the rate

Γ(Nd → νiff̄) =
N

768π3
|εid|2G2

FM
5
d , (5.9)

where N is the effective number of neutrinos in the final state. Actually, for f = νi, the Fermi

statistics doubles this contribution. By adding also f = e, µ contributions, 2[(2s2
W )2 + (1 −

2s2
W )2] = 1.01, we have N = 5.01. For Md higher than ∼ mπ0 , additional contributions from

hadrons need to be included. The decay and inverse decay are then in equilibrium down to

T > 1.64 GeV

(
5.01

N

)1/3(g∗(T )

86.31

)1/6(10−5

|εid|2

)1/3

. (5.10)

This is shown as the declining blue line in Fig. 2.

When Md > mZ ,mh, the decay and inverse decay Nd ↔ νiZ, νih is in equilibrium by

T = Md as long as |εid|2 & 10−14(Md/TeV)−1. We do not consider such small mixing angles

below. Therefore, once Md > mZ ,mh, the equilibrium is established before T = Md. On the

other hand, we expect Md < V from the perturbativity which cuts off the allowed region at

V .

In summary, L2 can stay in equilibrium either through direct interactions with the SM

down to temperatures as in (5.6) or through Nd if (5.8), (5.10) and T &Md are met. In Fig. 2

the red (blue) curves act as upper (lower) limits on the decoupling temperature. In case Md

is between these two bounds, the decoupling temperature is given by Md. Recall that Md

can only be below the green curve from the DELPHI constraints if |εiu|2 replaces the role of

|εid|2.

Once L2 (a doublet under SU(2)D) kinetically decouples from the SM bath, its energy

density is subsequently diluted relative to the SM bath. After the SM neutrinos decouple

from the bath, the remaining energy density in L2 adds to Neff:

∆Neff = 2

(
gν∗s
gdec
∗s

)4/3

(5.11)

where gdec
∗s is the number of relativistic degrees of freedom in the SM bath just after L2

kinetically decouples and

gν∗s = 2(γ) +
7

8
(3× 2(ν) + 4× 2(e)) = 10.75 (5.12)

is the number of relativistic degrees of freedom when the SM neutrinos decouple just before

BBN.

We show ∆Neff in Fig. 2 as a function of the decoupling temperature Td for L2, for

two cases whether Td is higher or lower than Md. Additionally shown, future CMB stage 3

experiments will be sensitive to ∆Neff ∼ 0.06 [42–45] and CMB stage 4 experiments hope to

reach ∆Neff = 0.027 [46], such that all of our models are discoverable at near-future CMB

observatories. We have assumed that there are no additional degrees of freedom at high

energies.
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Figure 3. GW signal associated with the strong 1st-order phase transitions from the Dark Higgs

compared with power law integrated sensitivity curves based on noise curves of LISA [48], LIGO [49],

ET [50], and BBO [51]. Black: α = 0.5, β/H = 100. Red: α = 0.5, β/H = 300. Blue: α = 2,

β/H = 100 (see [47] for definitions of α and β/H). In all cases, the bubble wall velocity is v = 0.2.

Such small velocity could occur for a strongly first-order phase transition if there are large friction

effects from new degrees of freedom in the plasma with sizeable interactions with the dark Higgs.

6 Stochastic Gravitational Waves

Depending on the scale V and the wall velocities, we can detect stochastic gravitational wave

background from the first order phase transition at LISA or future missions BBO or DECIGO

(See, e.g., [47] for a review of the theoretical framework for predictions).

Note that the scale of the dark SU(2)D phase transition V can be much higher than

the EW scale without spoiling the baryogenesis. The peak frequency in the gravitational

wave spectrum would be higher in this case, and may be in the Einstein Telescope or even in

LIGO/VIRGO/KAGRA windows, see Fig. 3. For higher scale phase transitions, we may lose

collider signatures once Nd is above mZ and mh while the Neff signature remains unchanged.

7 Conclusion

We proposed a very simple and minimal model of baryogenesis using a dark SU(2)D gauge

group with a first-order phase transition. Unlike standard EW baryogenesis, it is not subject

to the stringent constraints from electric dipole moments. Yet, it provides verifiable signatures

in Neff at future CMB experiments, as well as exotic Higgs and Z decays at future e+e−

experiments. Depending on the symmetry breaking scale and the wall velocities, stochastic

gravitational waves from the first-order phase transition may be detectable at LISA, or future

missions such as ET, BBO and DECIGO.
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