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Figure 1. Density contrast at three different redshifts (z = 19.09, z = 1.72 and z = 0) for
the 2D Schrédinger-Poisson system for L = 1000 Mpc/h, kg = 1 Mpc?/h? and N = 8192. In
the bottom-right, the density PDF at various redshifts is shown.

smoothing length 2 Mpc/h. For a given set of simulation parameters, the PDF without
filtering has similar shape as the smoothed one, apart from the high-density tail.

The matter power spectrum is shown in figure 2. The time evolution of the SP
system imprints three different types of features on the power spectrum, which we list

below:

1. A strong exponential (Jeans) suppression at small scales (section 4.1);

2. Sampling noise on large scales that were not present in the initial conditions
(section 4.3);

3. A slight loss of power for all modes at low redshift (section 4.2).

The first effect is a physical property in fuzzy dark matter models related to the
Jeans scale (2.16), but should be considered as a systematic limitation when applying
the SP method to describe the phase space evolution of cold dark matter. Notice that,
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Figure 2. Matter power spectrum divided by the linear power spectrum at redshifts z =
0,1.72,6.39, 19.09, 53.6.

at late time, the Jeans scale does not suppress all power on small scales. So non-linear
growth seems to be less affected than one would expect from the linear analysis of the
system. As shown below, the second item is essentially analogous to sampling noise
in N-body simulations, which is related to the finite number of modes. The third
feature has already been recognized in the context of fuzzy dark matter [40], and is a
systematic error of the (discretized) SP method for both fuzzy and cold dark matter.

4 The systematics of the Schrodinger-Poisson method

In this section, we quantify each one of the three systematics effects mentioned above
and evaluate their dependence on the simulation parameters, including the box size
L, the number of lattice points in each dimension N, and the phase space resohition
controlled by the value of h. Since the latter enters in the rescaled SP equations (2.19)
only via the function k(n) (see (2.17)), we trade h for kg, the present value of k. We
study variations around the fiducial values L = 1000 Mpe/h, N = 4096 and x5 = 1
Mpe?/h?, which we found to be parameters that describe the BAO peak reasonably
well while requiring a feasible amount of computational time (see appendix D). Fur-
thermore, we use a fixed initial redshift z = 147. For comparison, the original work
[33] used N = 256 and L = 150 Mpc/h in 2D.

In figure 3, we show the dependence of the PDF on the simulation parameters
(N, on the left; L in the middle and &g on the right). In the strict limit of (infinitely)
cold dark matter, the PDF is not expected to converge uniformly (without any coarse-
graining) when increasing N/L, since smaller and smaller structures are resolved [55].
However, for the Schrodinger-Poisson system with fixed ki (i.e. fixed k), the Jeans
scale acts as a coarse-graining length which should improve convergence. We find
that increasing the number of lattice points enhances the deviation from a Gaussian
distribution, and increases the tails of the PDF. Nevertheless, for N = 8192 the PDF
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Figure 3. Dependence of the PDF of the matter density on the simulation parameters: For
different grid sizes N on the left; for different box sizes L (in units of Mpec/h) in the middle,
and for different kg oc i (in units of MPCEJ{{ hﬂj on the right. We use a top-hat filter in position
space with a smoothing scale of 2Mpc/h.

did not converge yet. As mentioned before, for the PDF we apply a top-hat filter
in position space with smoothing length 2 Mpe/h (see also appendix E, in which we
explore the convergence for the 1D case). Decreasing the box size L with N fixed also
improves the resolution of the non-linear modes, while increasing the box size too much
leads to a loss of resolution. Decreasing kg leads to similar effects that are accompanied
by an overall loss of power in the fluctuations. Larger values of kp, in turn, increase
the quantum pressure what also suppresses non-linearities. For intermediate values of
kp the result is relatively stable. While no clear picture emerges for the PDFs, the role
of the different parameters will become more clear in the following when we study the
pOWer spectrum.

4.1 Jeans suppression

The exponential loss of power at some scale kg, related to the Jeans scale (2.16) is a
characteristic property of the SP system. The Heisenberg uncertainty principle inhibits
the formation of structures that are smaller than the Jeans scale. In the context of
using the SP method to describe cold dark matter, the Jeans suppression has to be
considered as a source of systematic errors. In the left panel of figure 2, we can see
that shortly after initializing the simulation, the Jeans suppression strongly affects
the power spectrum above around ~ 1h/Mpe. To quantify the scale kpn where the
exponential suppression appears, we define it to be the largest mode for which the
ratio of the power spectrum to the corresponding linearly evolved ACDM input power
spectrum P, (k, 2) is smaller than 90%

P(k, 2pef)
Pty < 0.9. (4.1)
We measure this scale at n = —4 (2,.; = 53.6), when the other systematic effects are
still irrelevant and the system already had enough time to develop Jeans suppression
after being initialized with a ACDM spectrum at z = 147. For the fiducial simulations
used here we find &gy ~ 0.3h/Mpec.

kg = min(k) for which
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Figure 4. Schridinger-Poisson systems in the linear regime feature a characteristic length
scale below which structures are strongly suppressed due to the uncertainty principle. We
quantify this scale in Fourier space as kg, which we found to be proportional to \,.-""11{_&
The diamonds correspond to a variation of kg around its fiducial value (shown by the black
point). The line corresponds to kgy = 0.84/1/K(2pef).

In figure 4, we show the dependence of this cutoff scale on kg, which we find to
be the single parameter that affects kpp. Reducing kg allows structures on smaller
scales to form and therefore shifts the exponential suppression to larger wavenumbers,
as expected. Parametrically, we find

k[aﬂ o % . (4*2}
which implies a slight time-dependence of this scale (in comoving momenta) of K=/
exp(n/4) o< a'/*. This confirms the interpretation as suppression related to the Jeans
scale (2.16). Note that the interpretation of the wave-function obtained from the
SP equations in terms of the Madelung representation, and the associated quantum
pressure, are potentially ambiguous at these scales, as discussed above. Nevertheless,
the Jeans analysis appears to predict the correct scaling of kg at early redshifts. At
low redshift, additional structure on smaller scales starts to form as mentioned before.

4.2 The amplitude problem

The simulations show another effect that is a little bit more subtle and harder to
understand. It is a loss of power towards the end of the simulation. This loss of power
is evident for the smallest wavenumbers where one would expect linear evolution. In
figure 5, we display the evolution of the power spectrum as a function of 7 for three
different modes (continuous lines). We compare with the linear evolution (dashed
lines). It is possible to visualize a specific time, close to the end of the simulation
(n = 0) for which each of the perturbation modes decouples and stops growing. The
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amplitude loss is essentially given by the amount of linear growth after this decoupling.
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Figure 5. Amplitude loss of the (2D) power spectrum versus time 5 = In(a), for three
different wavenumbers. Solid lines show the simulation result and dashed lines the expected

linear growth. The perturbations decouple and stop growing at a particular time, which
depends on the simulation parameters (see main text, the plot is for our fiducial choice).

To quantify this loss in power, we fit a straight-line coefficient A? to the ratio
of the measured P(k) to the rescaled power spectrum of the initial conditions P as
expected by the linear growth function (for the modes k < kp)

mit,rescaled /[ poge

In the left panel of figure 6, we display the evolution of A? with time 7. For our fiducial
set of simulation parameters, the power loss sets in at n ~ —2 (z ~ 6.4), when the
non-linear evolution becomes more relevant. For larger V, the SP power loss is less
than 2% up to p ~ —1 (2 ~ 1.7).

In the right panel of figure 6, we display the dependence of the amplitude loss at
z = 0 on the simulation parameters N, L, and k. We find that the amplitude loss
depends only on the combination kg/N/L. It has the unit of a distance, and we find
the critical length scale above which the amplitude loss effect becomes irrelevant to be

KkoIN

~7— 2 lasito = 10Mpc/h. (4.4)

This can also be written as a condition on the lattice spacing L/N,
L K h 1
— —_ R
= < (45)

leito M Holesieo
In Ref. [32] it was speculated that the lattice spacing L/N has to be smaller than
the de Broglie wavelength A = h/muv, where v is the typical group velocity of a wave
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Figure 6. Left: Amplitude loss versus time 5 for the fiducial choice of parameters (black)
and for a higher resolution (N = 8192, green). Right: Dependence of the amplitude loss
at z = 0 on the combination of the simulation parameters kgN/L. The different symbols

correspond to variation of either N, L or kg while keeping the other parameters fixed at
their fiducial values. The dashed line corresponds to the scaling A? oc (kgN/L)%3, which is

inferred in the text.

packet. This sugpests that the length scale [ is related to the velocity

lee = 7=/, (4.6)

with u determined from the wave-function as given by (2.13). Here, we defined [ not
at redshift zero but at general redshift as it would be measured on the lattice without
introducing additional factors a or H according to (2.13), see discussion below.

To obtain the value of [.;; applicable to cold dark matter, one has to extrapolate
the numerical results for (u?) to A — 0 since u also suffers from a suppression just as
the power spectrum. We find that [ o ~ 15 Mpec/h. Alternatively, one can estimate
[ in linear theory. Using the linear growing mode relation u = —aHV4/A for the
EdS background considered here gives

i _ ([ &K Hen{th)”z
erit T ( {2?1’:]3 kz 1

(4.7)

which yields 1%, , ~ 10 Mpc/h. This fits well with the scale inferred from the behavior
of the power loss.

Here, a couple of comments are in order. First, u relates to the average peculiar
velocity in the fluid and has no direct connection to the microscopic motion of the
particles or wave packets. Hence, k/(m./(u?)) strictly speaking does not represent
the de Broglie wave length. Nevertheless, it appears to provide a valid estimate of the
amplitude loss effect. In fact, the suppression of the power spectrum probably arises
from the fact that a maximal velocity exists on the lattice [38], and is probably not

15



intrinsic of our numerical scheme. Due to the spatial discretization V¢/h < 7 N/L
which turns into the bound
[ul < N 4.8
o ST (4.8)

So the relation (4.5) can be read as a requirement on the lattice spacing to resolve all
relevant velocities in the simulation. We tested this by studying the relative phases
between neighboring grid points. In Fig. 7 we show the suppression factor A2, the
average of the relative phases and the fraction of large relative phases (> m/4). The
suppression happens in tandem with the occurrence of large relative phases. As a cross-
check we also confirmed that energy is approximately conserved in our simulations (see
Appendix B) which would indicate a failure of our numerical integration of the equation
of motion.

14
—_ L]
—_ 2
12 — . F
10 i
08 7
06 i
04 /
g
o N A
i r
nn _-_._._._l"'.-"r’"" —
00 —3F 30 2% —20 —i% —i0 —0% 00

Figure 7. The plot shows the suppression factor A2, the average of the relative phases and
the fraction of large relative phases (> w/4) versus time.

Second, note that the quantity {u?) is dominated by long wavelength modes. In
linear approximation, this is apparent in Fourier space, noticing that |u?| ~ |8|*(aH)?/k>.
The integral over the corresponding power spectrum in (4.7) is dominated by modes
k < 0.1h/Mpec. This property fits quite well with the observation that the suppression
in the power spectrum is rather wavenumber-independent.

Third, we find that at finite redshift (4.5) is generalized to

£k R 1 N h
e ma?Hlg — amy/(u?)’

Notice that the time-dependence in (4.7) implies I; o a in the linear regime and
hence &/l oc a2, Therefore, the amplitude loss sets in when

KUN,'L)W

lerit,0

L
< (4.9)

a > Gy ™ ( (4.10)
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Figure 8. Sampling variance of the power spectrum at z = (0 obtained from 64 realizations,
normalized to the power spectrum as a function of the wavenumber. We also show a line
that corresponds to the expected scaling based on the number of Fourier modes in 2D.

twofold: First, the computational time increases because the argument of potential
rotations Uy becomes larger, which requires to reduce the time step [see (2.17)]. Sec-
ond, lowering kg makes the amplitude loss problem described above more severe. The
best alternative would then be to reduce kg while increasing N, at the cost of more
demanding simulations.

In order to mitigate the loss of power at late times, one can either increase kg or
make the lattice spacing L /N smaller. The first alternative comes with the price of an
exponential suppression at a smaller ky;. Increasing N increases the computational
cost (see appendix D), while decreasing L increases the sampling noise. For the 2D
simulation with L = 1000 Mpe/h, kg = 1 Mpc?/h? and N = 8192, we measured the
amplitude loss, Jeans suppression and sampling noise at z = 0, to be

A2 =08, (4.12)
ken = 0.3 h/Mpe, (4.13)
a/P ~ 10%. (4.14)

In this context, it is interesting to explore the 1D case, for which we can substantially
increase the resolution (see appendix E). In that case, we can decrease the loss in power
for the SP system for N = 80.192 down to the percent level.

Instead of increasing kg/N/L, one may wonder whether it is possible to apply a
correction that compensates for the amplitude power loss. The simplest possibility is to
rescale the power spectrum by 1/4%. However, the extent to which this naive rescaling
captures non-linear growth is unclear. Nevertheless, we followed this approach to
investigate the correlation function around the BAO peak (see below). Alternatively,
one could run the simulation somewhat longer in the hope that this captures the non-
linear effects better than just a rescaling. However, it turns out that this only works

18
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Figure 9. Correlation function z°¢(x) for redshift z = 0 (left) and = = 1.72 (right). We
show the SP result obtained from averaging over 64 simulations with fiducial parameters,
from a single simulation with parameters as in figure 2, in linear theory and for Zel’dovich
approximation.

figure 10, we display the overdensity field for three different redshifts in a slice of the
simulation volume, after calculating the mean of 10 bins along the z axis.

In the bottom right panel of fisure 10, the PDF of the density field for different
redshifts is shown. Ewven though the PDF departs from its initial shape, developing
some skewness and kurtosis, it is still far from developing the non-linear shape found
in 2D (see e.g. figure 2).

The power spectrum is shown in figure 11. It features Jeans-like suppression at
large k as in 2D, as well as an overall amplitude loss at low redshift. For the 3D simu-
lation, the parameters characterizing the overall power loss and the Jean suppression
scale defined in section 4 are found to be (at 2 = 0)

A =086, (5.1)
kgan = 0.15h/Mpc. (5.2)

Notice that the power loss in terms of A? is in accordance with the parametric depen-
dence on simulation parameters identified in the 2D case. In particular, for the 3D
simulation kg N/L ~ 3.4 Mpe/h, which implies that [.; is close to the 2D value.

In order to obtain acceptable values of the power loss, the box size has been re-
duced and k; increased compared to 2D. The latter leads to a smaller kqy. In principle,
one could increase kg while keeping A? fixed by decreasing k; and L. However, this
is not possible since the BAO peak has to fit into the box. Ultimately, one will have
to keep the box size fixed and increase N. The sampling noise is substantially reduced
compared with the 2D case, because the number of modes for a fixed momentum |k|
is larger and scales as (k L)*.

The correlation function (see figure 12) extracted from a single realization is sub-
stantially less affected by noise as compared to 2D. As before, we rescaled &(x) ex-
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Figure 10. Density field at three different redshifts (z = 19.09, z = 1.72 and =z = 0) for the
3D Schridinger-Poisson system. We projected the density field taking the mean of 10 slices.
In the bottom right panel, the PDF of the density field at various redshifts z is shown.
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Figure 11. Power spectrum obtained from a 3D SP simulation at various redshifts z, using
L = 600 Mpe /h, N = 512 and kg = 4 Mpc? /h2.
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Figure 12. Correlation function for the 3D SP simulation at z = 0 (left) and =z = 1.27
(right).

tracted from the simulation by 1/A4? at each redshift. The result is then found to be
relatively close to the Zel'dovich approximation for z = 1.72, while a slight lack of
BAO broadening is visible at z = 0, similar to the 2D case.

6 Conclusion

We studied the growth of large-scale structure at BAO scales using the Schriodinger-
Poisson approach for cold dark matter. The main question is if large-scale simulations,
competitive with N-body simulations, are feasible in this setup. The appeal of a second
independent approach to large-scale structure is that the Schrédinger-Poisson method
comes with a different methodology for initial conditions, dynamics, no gravitational
softening and hence different systematic uncertainties. Besides, it makes higher mo-
ments of the phase space distribution function and velocity correlation functions more
readily available. We identified three systematic effects (for most parts already seen
previously in refs. [31, 40, 48]) and studied their parametric dependence on the sim-
ulation parameters. There is a Jeans damping scale, an overall suppression of the
amplitude (due to a lack of resolution of the wave packets) as well as sampling noise.
We provide a quantitative criterion to determine the redshift after which amplitude
suppression sets in, and find a particular combination of simulation parameters it de-
pends on. In order to avoid this effect, the simulation parameters should obey

L LIV (6.1)

< ~ .
N 7l amy/{u?)
We interpret this criterion in terms of an effective de Broglie wavelength and the
existence of a maximal velocity in the simulation.
The main challenge in 3D is to clearly separate all the occurring scales in the
simulations (see figure 13). Ideally, the Jeans scale should be substantially smaller
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Figure 14. Convergence of the SP solution when reducing the time step. In the left,
the PDF obtained for #p. = 0.01 and fpa = 0.1 is shown. The PDFs overlap, being
indistinguishable. In the right, the relative difference in the power spectrum is shown.

using f,., = 0.01 instead. In the left panel, both PDFs overlap. In the right panel, we
show the relative difference of the density power spectrum, which is below 10~ over
the entire range of scales considered in this work. The relative difference of the wave-
funection v is of the order of ~ 10~5. We conclude that using #.. = 0.1 is sufficient to
guarantee numerical stability.

B Energy conservation

As proposed in [37] we also perform the Layzer-Irvine test of energy conservation in
our simulations. In our setup, the kinetic and potential energies are naturally defined
as

K = —gfw*aw, (B.1)

1 _
W=§fvwm (B.2)

Energy conservation is then spoiled by the explicit time dependence of Kk in K and also
in V (see Eq. (2.20)). This yields the relation

1 1
(K +W) = —§K+§W. (B.3)

This motivates the definition

O K+W)-W/2+K/2
— e _
In Fig. 15 we show dy for 1D (L = 1000 Mpec/h, N = 16384 and xy; = 1 Mpe?/h?),
2D (L = 1000 Mpe/h, N = 4096 and kg = 1 Mpc?/h?) and 3D (L = 1000 Mpec/h,
N =256 and kg = 1 Mpe?/h?) simulations.

Sxc (B.4)
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Figure 15. The plot shows dx as a function of time for simulations in 1D, 2D and 3D.
The Layzer-Irvine test is passed (dx < 1) in all cases. See text for the parameters of the
simulations.

C Initialization redshift

In fipure 16 we show the impact of initializing the SP evolution at two different redshifts
Zinit = 147.4 and 2 = 53.6 using L = 1000 Mpc/h, N = 8192 and ko = 1 Mpc?/h®.
The initial redshift has a relatively strong influence on the PDF at z = 0. The relative
difference of the matter power spectrum is below 2% for k¥ < 0.25h/Mpe. N-body
simulation results using Zel'dovich approximation as initial conditions also find similar
discrepancies [13].
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Figure 16. Left: PDF for the matter density field at z = 0 using redshifts zj;; = 147.4 and

zimit = 53.6. Right: Relative difference of the matter power spectrum at z = 0 obtained for
the two initial redshifts z;,;.
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D Computational time

In this appendix, we comment on the computational CPU time required for the
Schridinger-Poisson code. All the simulations were performed on the DESY Theory
Cluster. For the Fourier transformations, we used the FFTW3 package [56].
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Figure 17. Dependence of the CPU core time required for the 2D Schridinger-Poisson
simulations on the simulation parameters kg o« i, N and L. The figure shows variations
around the fiducial values.

In figure 17 we present the dependence of the simulation time (in core hours) on
ko, L and N for the 2D case. Increasing N has a twofold impact on the computational
time: First, the time for each discrete Fourier transformation increases. Second, more
non-linear scales are populated, increasing the argument of the potential rotations Uy.
This requires to decrease the time step As, as discussed in section 3.2. Reducing the
box size L also has similar effects on Uy (note that we use the combination ko N/L on
the horizontal axis in figure 17). Since arg(l},) o< 1/Kkp and arg(Uy ) o kg, extreme
values of k; also reduce the time step and correspondingly lead to an increase in
computational time.

E The 1D case

In this appendix, we present results for the one-dimensional case. As pointed out in the
main text, even though the maximal possible resolution in the 1D case is the highest,
the (sampling) noise is very large due to the small number or modes. Nevertheless, we
find it instructive to consider the 1D case for studying the convergence when increasing
the resolution.

In figure 18 we show the overdensity field at three different redshifts, for a simula-
tion with L = 1000 Mpe/h, kg = 1 Mpe? and N = 2'7 — a substantial increase compared
with both 2D and 3D cases. It is possible to see that a small initial fluctuation, for
instance, at z = 250 Mpc/h, evolves to form an overdense region.
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Figure 18. Overdensity field in the 1D SP system at three different redshifts.

In the left panel of fipure 19, we show the overall amplitude loss in the 1D case,
defined as in equation (4.3) together with the averaged relative phases that indicate
the failure of the grid to resolve the highest velocities. In the right panel of figure 19,
we show the PDF obtained for different values of N. For N = 2, the PDF starts
to converge. We also run simulations with larger volume and larger k to confirm the
reduction of a power loss in these cases. We average over 10 different initial conditions
to reduce noise and finite volume effects.

14
— 1
12 — 1 1 1t — N =213 |
— : — N=pM
10 — N—296
T B 1
. : m
=
06 % 107! k
: \%
04 Ld ]
/ m-?/;
02 = _/,
00 b= = Ll "
—40 -35 30 -25 20 —-15 —10 -0 OO 10 1P 10

elp

Figure 19. Left: The plot shows the suppression factor A2, the average of the relative
phases and the fraction of large relative phases (> 7/4) versus time (analogous to Fig. 7 for
2D). Right: PDF for different grid sizes N averaged over 10 different initial conditions.
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