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We analyse the leading logarithmic corrections to the a2 scaling of lattice artefacts in QCD, fol-
lowing the seminal work of Balog, Niedermayer and Weisz in the O(n) non-linear sigma model.
Restricting our attention to contributions from the action, the leading logarithmic corrections can
be determined by the anomalous dimensions of a minimal on-shell basis of mass-dimension 6
operators. We present results for the SU(N) pure gauge theory. In this theory the logarithmic
corrections reduce the cutoff effects. These computations are the first step towards a study of full
lattice QCD at O(a2), which is in progress.
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1. Introduction

Symanzik effective field theory [1, 2, 3, 4] has been used extensively for so called on-shell im-
provement. This removes the lattice artifacts at leading order in the lattice spacing a [5, 6, 7, 8]. We
follow here a related path and compute the leading logarithmic corrections to classical a2 scaling in
pure gauge theory originating from the action as a first step towards full lattice QCD. This fills a gap
in the theoretical control over continuum extrapolations, where one usually assumes pure a2 scal-
ing, although for an asymptotically free theory leading corrections have the form a2[ḡ2(1/a)]γ̂1

with coupling ḡ2(1/a) ∼ −1/ ln(aΛ) for small a. The parameter γ̂1 is proportional to a 1-loop
anomalous dimension. Therefore, whether a continuum extrapolation with classical a2 scaling is
accurate, depends on γ̂1 and the available lattice spacings.

For example in the 2d non-linear sigma-model, classical a2 scaling turned out far from real-
istic. There a pioneering analysis has been performed [9, 10] solving a long-standing puzzle of
lattice artifacts, which seemed to behave more like O(a) than the classically expected O(a2). The
issue was solved by large logarithmic corrections, i.e. distinctly negative γ̂1.

2. Symanzik effective theory

To describe lattice artifacts impacting expectation values obtained on lattices with finite lattice
spacing we use a continuum Symanzik effective theory [1, 2, 3, 4]. There are different sources of
lattice artifacts. Firstly, the discretised action described by the effective Lagrangian

Leff = L +a2
δL +O(a4), (2.1)

with the Lagrangian of the targeted continuum theory

L =− 1
2g2

0
tr(FµνFµν), Fµν = ∂µAν −∂νAµ +[Aµ ,Aν ] (2.2)

and secondly any local field ΦR involved in correlation functions of interest1

Φeff;R(x) = ΦR(x)+a2
δΦ(x)+O(a4). (2.3)

Thirdly, the renormalisation condition employed on the lattice. For now we will assume the use
of lattice perturbation theory in the MS lattice (lat) renormalisation scheme [11] and postpone the
inclusion of the third contribution to the end of this section.

Consequently, to parametrise all possible lattice artifacts in δL and δΦ we also need two
distinct minimal on-shell bases of operators Oi and ϒi

δL = ci(aµ, ḡ)ZO
i j O j , δΦ = di(aµ, ḡ)ZΦZϒ

i jϒ j (2.4)

with free coefficients ci and di, renormalised coupling ḡ = ḡ(µ) and renormalisation scale µ . Fur-
thermore we introduced the mixing matrices ZO and Zϒ satisfying

Oi;R = ZO
i j O j , ϒi;R = ZΦZϒ

i jϒ j , ΦR = ZΦ
Φ , (2.5)

1Renormalised local fields have to be used to match the lattice theory and the effective theory.
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where, for later use, Zϒ is defined with the renormalisation factor ZΦ of the continuum operator Φ

divided out, assuming, for simplicity, no mixing for Φ itself.
Which operators are actually allowed to contribute is determined by the symmetries of the

lattice quantity, i.e. for the lattice Yang Mills action we only allow operators complying with

• Local SU(N) gauge symmetry,

• C-, P- and T-symmetry,

• discrete rotation and translation invariance (at least in manifolds without boundaries), i.e. the
O(4) symmetry of L is partially broken and reduced to hypercubic symmetry.

With these restrictions and the requirement of linear independence only the following operators are
left [8]

O1 =
1
g2

0
tr(DµFνρDµFνρ) , O2 =

1
g2

0
∑
µ

tr(DµFµρDµFµρ) , O3 =
1
g2

0
tr(DµFµνDρFρν)

EOM
= 0 . (2.6)

As indicated, the operator O3 can be dropped from the basis as well since we are only interested in
a minimal on-shell basis and thus can use equations of motion (EOM) [8, 12], i.e. DµFµν = 0, for
the reduction of the basis.

In analogy to [9, 10] we can write, as an example, the lattice artifacts of a renormalised con-
nected 2-point function as

〈Φlat(x)Φlat(y)〉con
lattice

〈Φlat(x)Φlat(y)〉con
cont

= 1+a2

(
∑

i
di(1, ḡ)δ ϒ

i (x,y;1/a)−
2

∑
j=1

c j(1, ḡ)δO
j (x,y;1/a)

)
+O(a4), (2.7)

where 〈. . .〉con
lattice

and 〈. . .〉con
cont

are the expectation values in the lattice theory at lattice spacing a and
zero respectively. In the continuum theory we introduce the shorthand

δ
ϒ
i (x,y; µ) =

〈ΦR(x)ϒi;R(y)〉con + 〈ϒi;R(x)ΦR(y)〉con
〈ΦR(x)ΦR(y)〉con

∣∣∣∣
µ

, (2.8)

δ
O
j (x,y; µ) =

∫
d4z

〈
ΦR(x)ΦR(y)O j;R(z)

〉
con

〈ΦR(x)ΦR(y)〉con

∣∣∣∣∣
µ

(2.9)

and choose the renormalisation scale as µ = 1/a when matching our Symanzik effective theory to
the lattice theory. As an example we choose on the lattice the regulator independent (RI) renormal-
isation condition (with scale µ

−1
RI = |xRI|) [13]

〈ΦRI(xRI)ΦRI(0)〉con
lattice

= 〈Φ(xRI)Φ(0)〉con
lattice

∣∣∣g0=0
a=0

= ΞRI,lat(ḡlat(1/a);a)〈Φlat(xRI)Φlat(0)〉con
lattice

.

(2.10)

The equation defines ΞRI,lat which relates the MS lattice to our RI scheme in terms of the correlator
at a specific distance. For this choice we find for the leading lattice artifacts as a↘ 0

〈ΦRI(x)ΦRI(y)〉con
lattice

〈ΦRI(x)ΦRI(y)〉con
cont

= 1+a2

(
∑

i
d(0)

i

{
δ

ϒ
i (x,y;1/a)−δ

ϒ
i (xRI,0;1/a)

}
(2.11)

−
2

∑
j=1

c(0)j

{
δ

O
j (x,y;1/a)−δ

O
j (xRI,0;1/a)

})
× [1+O(ḡ2(1/a))]+O(a4),

2
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where d(0)
i and c(0)j are the tree-level values of the coefficients and can be obtained from a simple

Taylor-expansion in a in the classical theory. Note that if a coefficient vanishes at tree-level the
1-loop coefficient might be needed to obtain the leading powers in the coupling.

3. Lattice artifacts and the Renormalisation Group

In order to understand in which way the δ ϒ
i (x,y;1/a) and δO

j (x,y;1/a) have an impact on pure
a2 scaling we need to understand how they react to a change in the lattice spacing or equivalently to
a change of the renormalisation scale µ . This is governed by the Renormalisation Group equations

µ
dδ

χ

i (x,y; µ)

dµ
= γ

χ

ikδ
χ

k (x,y; µ), χ ∈ {O,ϒ}, (3.1)

with the anomalous dimension matrices

γ
χ

ik = µ
dZχ

i j

dµ
(Zχ)−1

jk =−(γ(0)χ )ikḡ2(µ)+O(ḡ4(µ)) (3.2)

and the corresponding mixing matrices Zχ . We choose now the operator bases such that γ
(0)
χ =

diag{γ(0)
χ,1, . . . ,γ

(0)
χ,n} and introduce the Renormalisation Group Invariants (RGI)

Dχ

j (x,y) = lim
µ→∞

[
2b0ḡ2(µ)

]−γ̂
χ

j
δ

χ

j (x,y; µ) , γ̂
χ

j =
γ
(0)
χ, j

2b0
, (3.3)

where b0 is the 1-loop coefficient of the β -function. This allows to rewrite

δ
χ

i (x,y; µ) =
[
2b0ḡ2(µ)

]γ̂χ

i Pexp

 ḡ(µ)∫
0

du
{

γχ(u)
β (u)

− 2γ̂χ

u

}
i j

Dχ

j (x,y) (3.4)

=
[
2b0ḡ2(µ)

]γ̂χ

i Dχ

i (x,y)+O
([

ḡ2(µ)
]1+γ̂

χ

i

)
, (3.5)

where Pexp denotes the path ordered exponential with decreasing ḡ from the left to the right. As
a result all dependence on the renormalisation scale is absorbed into the prefactor of the RGI.
Inserting this into equation (2.11) yields the desired form

〈ΦRI(x)ΦRI(y)〉con
lattice

〈ΦRI(x)ΦRI(y)〉con
cont

= 1+a2

(
∑

i
d(0)

i [2b0ḡ2(1/a)]γ̂
ϒ
i

{
Dϒ

i (x,y)−Dϒ
i (xRI,0)

}
(3.6)

−
2

∑
j=1

c(0)j [2b0ḡ2(1/a)]γ̂
O
j

{
DO

j (x,y)−DO
j (xRI,0)

})
× [1+O(ḡ2(1/a))]+O(a4).

So far we included contributions of the field Φ to the leading lattice artifacts. Since they depend
on the fields of interest, we now restrict ourselves to the contributions from the action. This is
sufficient for spectral quantities, such as masses and energies. Such quantities depend only on the
quantum numbers of the fields from which they are extracted.

3
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4. Computing 1-loop anomalous dimensions

In equation (3.6) we need the leading anomalous dimensions of the operators Oi. We employed
two strategies extracting these anomalous dimensions from different types of Euclidean Green’s
functions:

(i) connected on-shell Green’s functions of fundamental gauge fields A with insertion of an
operator Õ[A](q) carrying an overall momentum q 6= 0, see e.g. [14],

Gab
i (p1, p2;q) =

〈
η1 · Ãa

R(p1) η2 · Ãb
R(p2) Õi[A](q)

〉
con

(4.1)

Gabc
i (p1, p2, p3;q) =

〈
η1 · Ãa

R(p1) η2 · Ãb
R(p2) η3 · Ãc

R(p3) Õi[A](q)
〉

con
(4.2)

with external momenta p j and polarisation vectors η j fulfilling the (Minkowskian) on-shell
condition

(p j)
2
0 =−~p2

j , p j ·η j = 0 . (4.3)

(ii) 1PI off-shell Green’s functions of classical background fields B with insertion of an opera-
tor Õ[B+A](q) using the background field (BGF) method [15, 16]

Γ
ab
i (p1, p2;q) =

〈
η1 · B̃a(p1) η2 · B̃b(p2) Õi[B+A](q)

〉
1PI

(4.4)

Γ
abc
i (p1, p2, p3;q) =

〈
η1 · B̃a(p1) η2 · B̃b(p2) η3 · B̃c(p3)Õi[B+A](q)

〉
1PI

(4.5)

with q = 0 but no additional constraints on the external momenta p j.

Both strategies allow us to restrict considerations to 2- and 3-point functions as well as 1-loop
computations. However this results in an enlarged set of operators during renormalisation by intro-
ducing additional redundant operators namely total divergence operators

/O1 =
1
g2

0
∂µ tr(FνρDµFνρ) , /O2 =

1
g2

0
∑
µ

∂µ tr(FµρDµFµρ) , (4.6)

for case (i) and the previously discarded EOM vanishing operator E1 = O3 for case (ii).
In the presence of either set of redundant operators we can extract the desired on-shell mixing

matrix ZO from (
Oi

Qk

)
R

=

(
ZO

i j ZOQ
il

0 ZQ
kl

)(
O j

Ql

)
, Q ∈ { /O,E } , (4.7)

where the triangular mixing matrix ensures that the renormalised Q vanish for operator momentum
q = 0 (Q = /O) and on-shell quantities (Q = E ). Due to this structure we only need tree-level
contributions from the redundant operators to determine ZOQ in order to extract ZO at 1-loop.

Being only interested in 1-loop anomalous dimensions, another simplification can be achieved
by use of the identity, see e.g. [17, 18],

1
(k+ p)2 =

1
k2 +Ω

− 2kp+ p2−Ω

[k2 +Ω](k+ p)2 , (4.8)

where k is the loop momentum, p a constant vector and Ω > 0. Since the second term on the
right hand side is one power less UV divergent we can iterate this step until the terms of the

4
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form [k2 +Ω]−n carry all the UV divergences. The leftover terms are finite or at most IR diver-
gent and can be dropped because only UV divergences contribute to anomalous dimensions in
mass-independent renormalisation schemes such as MS that we employ in D = 4−2ε dimensions.
Consequently only the basic integrals of dimensional regularisation

∫
dDk (k2)m/[k2 +Ω]n are left

to evaluate.
The Feynman graphs contributing to the 2- and 3-point functions were obtained using QGRAF

[19, 20]. The generation of Feynman rules for the operators and the computational steps of dimen-
sional regularisation were then performed in FORM [21].

Independently of the strategy we find2 for the 1-loop mixing matrix ZO in the MS scheme(
O1

O2

)
R

=

1+ 7CA
3ε

ḡ2

(4π)2 0

−7CA
15ε

ḡ2

(4π)2 1+ 21CA
5ε

ḡ2

(4π)2

(O1

O2

)
. (4.9)

Since this basis is not diagonal we switch to the diagonal basis

B1 = O1 , γ̂
B
1 =

7
11
≈ 0.636 B2 = O2−

1
4
O1 , γ̂

B
2 =

63
55
≈ 1.145 . (4.10)

Note that the first anomalous dimension has been known for quite some time [23].

5. Conclusion

Coming back to our example of the 2-point function we find for the lowest contributing
mass mΦ, i.e. the lightest glueball mass mΦ with the quantum numbers of Φ,

mΦ
lattice = − lim

x0→∞

1
a

ln
∑
x

〈
ΦRI(x0 +a0̂,x)ΦRI(0)

〉
con
lattice

∑
x
〈ΦRI(x0,x)ΦRI(0)〉con

lattice

(5.1)

≈ mΦ
cont−

a2

2

(
c̄(0)1 [2b0ḡ2(1/a)]0.636

∆1 + c̄(0)2 [2b0ḡ2(1/a)]1.145
∆2 + . . .

)
+O(a4)

where ∆i = 〈Φ0|Bi;RGI(0)|Φ0〉 with zero-momentum ground state |Φ0〉 and c̄(0)i are the tree-level
coefficients of the diagonalised basis, e.g. c̄(0)1 = 1/48, c̄(0)2 = 1/12 for the plaquette action [8]. As
expected no dependence on the definition of Φ or the chosen renormalisation condition remains for
the spectral quantity.

More generally, since ḡ2(1/a)∼−1/ ln(aΛ) and γ̂B
i > 0, the leading logarithmic corrections

originating from the action accelerate the convergence of the continuum limit. With γ̂B
1 < γ̂B

2 the
leading contribution comes from the O(4) symmetric operator B1. In case of Symanzik improved
actions one replaces c̄(0)i → c̄(n)i [ḡ2(1/a)]n, where n = 1 means tree-level improvement.

This information suffices to back up the usually employed naive a2 extrapolations in lattice
Yang Mills theory for all spectral quantities. However, other quantities need additional information
namely the matching coefficients and leading anomalous dimensions for the ϒi. Especially the
new sector of Gradient flow observables with flow time t, requires the inclusion of an additional
operator, located at the boundary t = 0, in the Symanzik effective action of the 5-dimensional
formulation [24].

2For more details see [22].
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