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Abstract

We compare two approaches to evaluate cross sections of heavy-quarkonium pro-
duction at next-to-leading order in nonrelativistic QCD involving S- and P-wave
Fock states: the customary approach based on phase space slicing and the approach
based on dipole subtraction recently elaborated by us. We find reasonable agreement
between the numerical results of the two implementations, but the dipole subtrac-
tion implementation outperforms the phase space slicing one both with regard to
accuracy and speed.
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1 Introduction

The conjectured factorization theorem [1] of nonrelativistic QCD (NRQCD) [2] is the
most frequently used framework for calculations of inclusive heavy-quarkonium produc-
tion. It is based on a factorization into perturbative short-distance cross sections for
heavy-quark-antiquark pairs in certain Fock states n, and nonperturbative long-distance
matrix elements (LDMEs). The numerical values of the latter are extracted from fits to
experimental data, and are predicted to scale with certain powers of the relative heavy-
quark-antiquark velocity v [3]. For the phenomenologically important quarkonia, the lead-
ing and next-to-leading contributions in the v expansion involve S- and P-wave bound
states. Many calculations of these contributions have been performed at next-to-leading
order (NLO) in the strong-coupling constant c,. These works were almost exclusively
done using the two-cutoff phase space slicing scheme as described in Ref. [4]. To our
knowledge, the only exception is the work of Ref. [5], where color-singlet S-wave-state
production was treated in the massless Catani-Seymour dipole subtraction scheme [6]. In
Ref. [7], we have formulated a subtraction scheme covering S- and P-wave color-singlet
and color-octet states for the important example of hadroproduction. It is based on
Ref. [6] and its extension to massive quarks by Phaf and Weinzierl [8]. In particular, it
takes into account the bound-state structure of the projected amplitudes and introduces
new kinds of subtraction terms for the case of P-wave-state production.

This paper describes a numerical comparison of our implementations of two-cutoff
phase space slicing and dipole subtraction for inclusive quarkonium hadroproduction. In
Section 2, we briefly review the singularity structure of the encountered real-correction
squared amplitudes and their cancellation by other contributions. We summarize phase
space slicing in Section 3 and dipole subtraction in Section 4, providing many previ-
ously unpublished technical details. In Section 5, we then numerically compare the two
implementations, before summarizing our results in Section 6.

2 Singular cross section contributions

The factorization theorems of QCD and NRQCD imply that the inclusive cross section
to produce a heavy-quarkonium state H is given by

do(AB—>H+X)=> Y / dzodzy fora(2a) foy(2) (O [n])dé (ab — QQ[n] + X),

a,b,X n
(1)
with the partonic cross sections
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Here, fo/a(x,) is the parton distribution function (PDF) describing the probability to
find parton a with longitudinal momentum fraction z, inside hadron A. (O"[n]) is the
LDME of NRQCD associated with the intermediate Fock state n, which has N, color
and N, polarization degrees of freedom. p; and py are the four-momenta of partons a
and b, ne, and npe their color and spin averaging factors. dPS is the phase space and Fyyr,
the symmetry factor associated with the outgoing particles. |ab — QQ[n] + X) denotes
the matrix element of the partonic subprocess ab — QQ[n] + X, which is calculated by
applying spin and color projectors to the usual QCD amplitudes as described in Ref. [7].
A summation of spin and color degrees of freedom of the Q@ pair and all incoming
and outgoing partons is always implicitly understood in the squared amplitudes, but no
averaging. At this point, we deviate from the definition of the bra and ket symbols used
in Refs. [6,8]. We denote the momentum of the Q@ pair as py and set p2 = 4mé, with mg
being the heavy-quark mass. Our real-correction partonic amplitudes have two further
light QCD partons, to which we assign momenta p3 and py.

In the limit where an outgoing gluon with momentum p; gets soft, the squared pro-
duction amplitude becomes, for the Fock states considered in our analysis,
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I[P, py soft) |2 = Sy (P py) + So (PR ST ) + S5 (36 ),
PP, p; soft)||? = S1CPY ™ py) + SaCPYH 281 ) + S50 Y py),  (3)
with
- pi-p Do - Pi po-p e
Sl(n;pj)=9§Z<— S o el il 2)
ihe1 Pi PPk Pi DPoPipPi-Pi Po-Pipk-pi  (Po-ps)
i)k
x (n, Born|T;Tk|n, Born) (4)
4 8 B 2,8
—p) Do Di D; Pop;
Sg(n,m;pj)zélggz + T — L] 3
— \pi-pjpo-p;i  pi-pio-p;)? (Do pj)
i#]
x eg(my)(n, Born|Ty(T¢q — Tg)|m, Born) (5)

aff 2. a, B
g PoP;P;

53(7"1;29'):493 - -
’ (po-pi)*  (po-p;)?

x €, (my)eg(my) (m, Born|(Tq — Ty)(Tq — Tg)|m, Born), (6)

where |m, Born) is the Born amplitude of QQ[m] production without the soft gluon. T;
acts on |m,Born) by inserting at the corresponding place T, if parton ¢ is an outgoing
quark or incoming antiquark, —7, if parton ¢ is an incoming antiquark or outgoing quark,
and i f. if parton ¢ is a gluon, where ¢, a, and b are the color indices of the soft, splitting,
and other outgoing gluons, respectively. T inserts 7. at the place of the outgoing heavy



quark @, Tg inserts —T, at the place of the outgoing heavy antiquark Q, with ¢ being
the color index of @ or Q.

In the limit where an outgoing light parton with momentum p; becomes collinear to
an incoming light parton with momentum p;, its main contribution stems from Feynman
diagrams where parton ¢ splits into j and a parton with momentum p;;y = p; — p; taking
away the fraction z of the incoming parton’s longitudinal momentum. The squared matrix
element in that limit is given by

.. ncol(i) g2 »
||p; ini. coll. p;)||* = — — *— (Born|P; ;;)(x, p1 ) |Born)
: nea((i))pal (i) (pi - ;) e
Osgr if 7 is a quark or antiquark (7)
e, (pi)es(pi) if i is a gluon ’

where ]%,(ij)(x) are the spin-dependent Altarelli-Parisi splitting functions as given in
Ref. [7]. The squared amplitude in the limit where the outgoing partons 3 and 4 are
collinear is given by those Feynman diagrams where a final-state parton with momentum
D34y = P3 + p4 splits into the outgoing partons 3 and 4, and reads

2
Ilps final coll. ) | = 2 (Born| Py (2. p1 ) [Borm) (8)

The phase space integrations in D = 4 — 2¢ dimensions yield and < poles, which
are canceled by similar poles in the virtual corrections, by the mass factomzatzon coun-
terterms, and by the operator renormalization counterterms: A part of the initial-state
collinear singularities is absorbed into the PDFs according to the MS prescription, thereby
leading to mass factorization counterterms,

daMFC(a + b— QQ Z/dl’P;_(” dUBorn((Z]) + b— QQ[ ] )

(i4)
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where 41, is the renormalization scale, iy is the QCD factorization scale, and P;(ij)(z) are
the regularized Altarelli-Parisi splitting functions as listed in Ref. [7]. The singularites of
the S5 part of the soft singularities are canceled by NLO corrections to LDMEs, where
ultraviolet singularities are removed by MS renormalization. These operator renormaliza-
tion contributions are, for the Fock states relevant to our analysis, given by
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2 4 2 € 1
P opseny = %y (M) g (<)
1272mg \ py €

x s (mi)es(my) (*Sy, Born| (T — Tg)(Tq — Tg)*Sy”, Borm), (11)

and
d“lsyuls}f] e, = azb;( C;g / dxodxy fara(a) fos(Ts) NCOl(i(;; [)lﬁjl]()lﬂ[c])
2—2
y m dPS2ncol(a)npj’z};)lii;)(b)npol(b)H|1 P, op.ren.)|?, (12)
with
II'P{, op.ren.)||* = 127523% (42572“6"”3)59“’3 <—%)

x € (mi)eg(mi) (1 Sy, Born|(Tq — Tg)(To — Tg)|'Sy, Born), (13)

where gy is the NRQCD factorization scale.

3 Phase space slicing implementation

Our implementation of phase space slicing follows the lines of Ref. [4]. Here, the real-
correction phase space is split into three regions by introducing two cut-off parameters,
0s and d.: The soft region, where ps or p4 is soft, the hard-collinear region, where ps3
and py are hard and p3 or ps is collinear to another massless parton, and the hard-
noncollinear region. The condition of p; being soft is defined by ds > 2E;//s and the
condition of p; being collinear to p; by d. > [2p; - p;|/+/s with s = (p1 + p2)?. Since
the hard-noncollinear region is free of singularities, the phase space integration is done
there numerically, while, in the other two regions, the phase space integrations are done
analytically in D = 4 — 2¢ dimensions. This is possible because not only the squared
matrix elements factorize as described above, but also the phase space elements factorize,
schematically as dPS3 = dPS»dPS,,, where p; is soft, and dPS3 = dPS,dPS,,,,, where p;
is collinear to p;. Here,

D—1
dP—1p,; 4 m ifi=1,2and j = 3,4
dPS,, = ngf ) dPSp,|p; = 2512;*)%-1%{3(”) e . : (14)
2(27T> Ej W EE; if + and j =3, 4

The dependencies of all contributions on d, and d. cancel in the sum.



3.1 Hard-collinear part

Integrating Eq. (7) analytically over the hard-collinear phase space part and adding the
corresponding contribution of the mass factorization counterterm in Eq. (9), we obtain in
the limit 6, — 0

1-6s65,4
[/ dPSpp, |||ps ini. 0011-29]'>||2] = / dz|[|Born)|” [5(1 — &) Fin,is(ij).4
pi”Pj +MFC

ZTmin

2
gz (1 —x)de.s
+ 32 (Pé,(ij)(x) In 2 - z'/,(ij)(x) )

Ky

(15)

where the Born amplitude |Born) is defined with an incoming momentum pg;) = zp;
instead of p;. d;4 is 1 if particle j is a gluon, otherwise 0. Fi, ;) are given by

2 1 m2 11
F}va_ﬂqg = 97806 <_ +1In —Q) (20,4 Inds + FCA — E) ,

872 € It 3
2 2
9s 1 mQ 3
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with Cy = 3, Cp = 4/3, and C. = (4mpfe " /m3). Furthermore, P ;) and P/, are
the O(e°) and O(e) parts of the spin-averaged splitting functions, namely

14 22
qu(l’ :CF 1— 5
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1 1 —x)?
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=—z(l —x). (17)

Integrating Eq. (8) analytically over the hard-collinear phase space part, we obtain in
the limit 6, — 0

[ Sl fin.coll.pa) ! = 1Borm)*Fi - (18)
p3i|pa
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3.2 Soft part: S; terms

The integral of the S; terms in Eq. (4) over the soft phase space region can be written as

4
/ dPS,,S1(n,p;) = g2 | —Cooloo — Z 2051, | (20)
p; soft i k=0
{i,j,k} distinct
with
_ _ Pi - Dk
i = (Born|T;Ty|Born), Iy — / aps, — P (21)
p; soft Di - DPj Pk * Py
where we define To = Tg + Ty and use T; = _Z4k:0 Tj, with p; being the soft
ki,
momentum. Evaluating the integrals I;;, following Ref. [4], we obtain
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with ¢; = —2pg - pi, & = —2pa) - pi, and piay = ps + ps — pj.

3.3 Soft part: S, terms

The integral of the Sy terms in Eq. (5) over the soft phase space region is

4

/ dPS,,Sa(n, m,p;) = 4g2ez(my) Z(n, Born|T;(Tq — Tg)|m, Born)
p; soft =
=
B cm B 2,8
> / dPSpJ_ o pl —I— pO pl p] - o p()p] . . (23)
pj soft pi-pjpo-pj  pi-Pi(po-py) (po - ps)

_of
=

To evaluate the phase space integrals involving p? , we use the tensor decomposition
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B _ 8
Q500 —p(34)/
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where the pg terms vanish upon contraction with eg(my;) in Eq. (23). As for Q;_1 o2, the

angular integrals needed to evaluate fpj i Pi-Pi/ (po-p;)* and fpj wofe 3701/ ((Po-p;)* (Di-py))
are not listed in Ref. [4] or the references cited therein. We obtain these by relating the
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phase space integrals to cut virtual-correction loop integrals and evaluating the latter by
means of the integration-by-parts technique [9]. The final results are

3 C.p! (1 W2+ Amg (i +2&)  —b; s s 62s
Qiiorn; = — - = In—s —=In—5 —In—>;
7 A2 | € & (?/)z‘ + 4m§2) dmg & 4Amg me
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N (R
42 I (s — 4mé)3 Wi + 4m2Q 4mé2
16mb; + s* (Yi + 8mi
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3.4 Soft part: S3 terms

The integral of the S5 terms in Eq. (6) over the soft phase space region is

/ dPS,, S3(m, p;) = 4gZe’,(my)es(my) (m, Born|(Tq — Tg)(Tq — Tg)|m, Born)
p; soft

afB 2 o
x/ dps,, | ——— — OBt (27)
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To evaluate the integral involving p%

; pf , we use the tensor decomposition

a, B

P3P} o o o o a
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where the p¢ and p{ terms vanish upon contraction with es(m;) in Eq. (27). Evaluating the
integrals analytically and adding the corresponding operator renormalization counterterm
contribution of Egs. (10) or (12), we arrive at the finite expression

(Q‘?‘B) _ g8 [_ (s+ 4m22)2 L1, 4dks lnm—é
7 ) vopren.  48m{m? | 9 (s — 4m2Q)2 2 mg ux
. ( 2 3 Gmp 3 ) s ]
(s —4m2)’ (s —4m2)” s—4my  2(s—4mp) | 4mj
N p?34)12’€334) [_ 252 - 2s . 1 2
m (s—4md)"  (s—4md)"  6(s—4md)

253 — 352 (s — 4m2Q) +s (s — 4m2Q)2 b ®
(s — 4m22)5 4m22

+ + (po terms) . (30)

3.5 A remark on the tensor decomposition

We note that the tensor decompositions of Egs. (24) and (28) involve momentum p(s4).
A potential pitfall is that ps) does not appear in the integrand of Eq. (28), nor does it
in Eq. (24) in the cases i = 1 or 2, and one might naively think that dPS,, only involves
momentum p;, of which py) is independent in the limit of p; being soft. Thus, one
might be led to assume that the structures with p(s4) are not necessary in the above-
mentioned cases. Using a tensor decomposition with the p4) structures omitted then
leads to incorrect results for Q?:lorlj and Q;?‘B . Incidentally, this does not spoil the
the infrared finiteness, which would have served as a crucial check otherwise. So, this
mistake is easily made and more easily overlooked. As already mentioned in Ref. [12],
Ref. [11] is affected by this mistake. The numerical effects of this are discernible in Fig. 2
of Ref. [11], where the dashed curves, indicating the 3P}8} contributions, are subject to
visible deviations. Fortunately, the effects on the physical results in Fig. 1 of Ref. [11] are
insignificant, being of the order of the numerical uncertainty. We believe that this easy-
to-miss mistake has also creeped into other authors’ calculations. In fact, Egs. (5) and
(6) of Ref. [13] only hold if the incorrect tensor decomposition is applied. Furthermore,
purposely including this mistake, we are able to approximately reproduce the results
shown in Fig. 3 of Ref. [14] and Fig. 2 of Ref. [15], while our correct evaluations significantly
differ from these results.

4 Dipole subtraction implementation

4.1 Summary of dipole subtraction formalism

Our implementation of dipole subtraction, which is based on Refs. [6,8] is explained in
detail in Ref. [7]. For the reader’s convenience, we recall the main formulas here. We
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calculate the NLO corrections to our partonic cross sections as

o dgreal da'subtr ~
/d _/dPS3 |:dPS ( pT,m1n> dPSg 9(pT pT,mm):|

dgvirtual + da’MFC + da’op. ren.
+ / dPS2 |: dP82 9(pT pT,mln)
~ d&subtr
dx|0 - min dp ipole™ ;7o 1
#0007 ~ pras) [ AP gt g

where dPS; and dPS;3 are the two- and three-particle phase space factors. The latter
factorize in some way as dPS2dPSqipole 0r dPSadxdPSgipele, Where dz matches its counter-
part in Eq. (9). d6real, d0yirtual, donpc, and doop. ren. are the real-correction contributions,
the virtual-correction contributions, the mass factorization counterterms, and operator
renormalization counterterms, respectively. The subtraction term dégupi, is given by

dosube(a+b— QQ[n] + X) 1 1

dPS; B Ncol(n)Npol(n) 2(]91 +p2)2
Fyym(X)

Ncol (@) Mot (@) Mol (D) ol ()

X

||abn, subtr)||?, (32)

with

4 2 4 .
-1 1 Tu)T
llabn, subtr)[2 =357 S ”Czl(z) = (n, Born| V™51 —W9) 2k ;) Born)

j=3 i=1 k=0 Neol Z])) 2pz p;T ik T%Z])
k#1,7
4 3 4 .
—1 fin,s; L(ij) Tk Lot =1,2
22 > (n, Born| V5 == | Born) ¢ ¥
p e i 2R M T 1 ifk#1,2
2751,2,_]]{,‘ 7,7
4 4
+ Z Z VSi,ijEB(mlx% Born|T;;)(Tq — Tg)|m(n), Born)
=3
4
+ > VgPen(m)es(my)(m(n), Born|(Tq — Tg)(Tq — Tg)|m(n), Born).
j=3

(33)

This term is defined in terms of 2 — 3 kinematic variables in the same way as do,ea
and constructed so that it matches do,e, in all singular limits: We call each term in the
sum a dipole. The dipoles in the first and second lines of Eq. (33) reproduce doe, in
the initial- and final-state collinear limits as well as the S; part of the soft limits, while
the dipoles in the last two lines reproduce the S, and S5 parts of the soft limits. As for
the Born amplitudes in Eq. (33), partons i and j are replaced by (ij), which is a gluon,
light quark, or the QQ pair, according to the soft or collinear limits to be approximated.
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The contribution in Eq. (32) is set to zero if there is no collinear or soft singularity in
the considered limit. In the dipoles for the S5 and S5 terms, m(3P9/ 8}) = 35[11/ * and

m(lP[ll/ 8]) = 15([)1/ ¥l Since the Born amplitudes are defined in terms of 2 — 2 kinematic
variables, we need for each dipole a mapping of the 2 — 3 process momenta to 2 — 2
kinematics momenta p;. These momentum mappings are constructed in such a way that
the Born amplitudes in Eq. (33) equal their counterparts in the factorization formulae of
the respective collinear and soft limits. Furthermore, we define

o Umb - DEED) L5+

5
- —4m ) g ’
' § ¢ Ty /S (93 + 4m})

5= (P +p2)* t = (po—p1)°, S = (pa+ps)° P2 = T2pp, (35)
where p, and pg are the momenta of the incoming hadrons.

The idea of the subtraction formalism is that the term in the first square bracket of
Eq. (31) is devoid of singularities and can, therefore, be integrated over numerically in
four dimensions. On the other hand, the various V' terms in Eq. (33) are defined only in
terms of those kinematic variables that we use to parametrize dPSqipole, and are sufficiently
simple to be integrated analytically over dPSgipole. The resulting poles in € then render
the second square bracket in Eq. (33) finite and ready for numerical integration over dPSy
and dzx.

In practice, we need to produce predictions involving experimental cuts on the trans-
verse momentum pr and the rapidity y of the heavy quarkonium, see for example the
low-pr cut in Eq. (31). The implementation of these phase space cuts is, however, un-
problematic, too, since, in the first square bracket of Eq. (31), pr and pr coincide in
the singular limits and, in the second square bracket, the 6 function stands outside the
analytic dPSgipole integration.

Table 1 indicates where one can find the analytic expressions for the various V' terms,
their counterparts upon integration over the respective phase space dPSgipole, and their
respective momentum mappings. As for the V' terms of the Catani-Seymour [6] and
Phaf-Weinzier] [8] papers, V;]n,lﬁsl equals V7 or V¥%* and V;r,lﬁsl equals Vij, or V¥ in
their notations. Indices s and s’ or p and v within Vj;; are to be contracted with the
open polarization indices of particle (ij) in the corresponding Born amplitude. Figure 1
summarizes all dipole terms according to their corresponding singular limits in a graphical
form.

(34)

with

4.2 Organization in terms of computer codes

In this section, we briefly describe how we implement the dipole subtraction procedure
in our computer codes, emphasizing those parts which differ from our implementation of
phase space slicing. All necessary Born diagrams are created with FeynArts and then
treated by a Mathematica script which inserts the color operators T in the various combi-
nations needed and applies the color-singlet and color-octet projectors to evaluate all color
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Figure 1: Numbered list of dipole terms for each of the occurring Born processes with 2 — 2 kinematics. The diagrams
related to the ‘/;;p,lc’sl and VZ?I;S ! terms indicate in which collinear or soft limits the latter contribute. Light-quark lines are
to be summed over all quark flavors.



Di Dk Definition and Integration Applied Mapping

V;;n,lcbl P1 OT P Do PW, section 6.1 MapPW6(p;, p;)
V;;n,‘gsl p1or py pyorpe | CS; section 5.6 (n = ps + ps) | MapCS(p;)
Vil?,i’sl p1 or po  psor py | CS, section 5.3 MapCS(p;)
Vé’;? Do p1 or py | PW, section 6.2 MapPW6(px, pj)

e Do ps or py | PW, section 5.2 MapPW5.2(p;)
Vﬁfgsl P3 OT Py Do PW, section 5.1 MapPW5.1(p;)
Véfgsl p3 or py  p1 or pa | CS, section 5.2 MapCS(px)
Vs,,ij | p1 or pa BK, (75) and section 4.5.1 MapPW6(p;, p;)
Vs,ij | p3 or ps BK, (75) and section 4.5.2 MapPW5.2(p;)
Vs, j BK, (76) and section 4.5.3 MapPW5.2(p;)

Table 1: List of occurring V' terms with given momentum assignments; of where their
definitions and analytic expressions upon integration over the dipole phase spaces may be
found in the Catani-Seymour (CS) [6], Phaf-Weinzier]l (PW) [8], and Butenschoen-Kniehl
(BK) [7] papers; and of momentum mappings, according to the naming scheme of Ref. [7],
to be applied to the numerical integrations of the respective dipole terms over dPSs.

factors in the squared amplitudes. These color factors, together with the yet unsquared
amplitudes, are then passed to two FORM scripts, CalcDipoles and CalcDipolesInteg.
For these two routines, we have prepared an input card which encodes the information of
Figure 1.

CalcDipoles generates the FORTRAN routines encoding the dipole terms. This is
done by squaring the Born amplitudes, written in terms of the p; momenta and with the
respective color insertions, and multiplying them by the necessary factors, in particular
Viik, taking into account the spin correlations in the case of splitting gluons. Then, the
respective momentum mappings are implemented, the resulting expressions are simplified,
and the FORTRAN routine AMP2 Dipoles is generated, which takes as arguments the
number of the dipole and the partonic 2 — 3 kinematic variables.

Similarly, CalcDipolesInteg squares the Born amplitudes with the respective color
insertions, and then multiplies the finite parts of the V' terms integrated over the dipole
phase space dPSgipole- At this point, the mass factorization and operator renormalization
counterterms are included, as described in Ref. [7]. The integrated dipoles have the
general form [h(x)]; f(x)+ g(x), where h(x) is singular in the limit x — 1. The generated
FORTRAN function AMP2 DipolesInteg takes as arguments the number of the dipole,
the 2 — 2 kinematics variables, and the value of x. A second function, AMP2 Dipoles-
IntegSubtr, which only contains the terms h(x)f(1), is generated as well.

Together with the FORTRAN functions for the virtual- and the real-correction squared
amplitudes, we then have the ingredients for the numerical phase space integrations in
the main FORTRAN code. The # functions constraining the 2 — 3 particle phase space
in Eq. (31) have to be implemented for each dipole individually with the respective mo-
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mentum mapping. The x integrations over the plus distributions are thereby explicitly
implemented as

J

| e s@) + o)} = [ oot =) (o) @) + of)] = 1) 1) }

Zmin ,
AMP2 DipolesInteg A¥P2-Dgpzles
ntegSubtr

(36)
so that the singularities of the h(z) terms for x — 1 cancel numerically in the course of
the integration.

4.3 Numerical tests of the integrated dipole terms

In Ref. [7], we have already described one numerical test of our dipole subtraction imple-
mentation, namely we have shown that our expressions for the dipole terms agree with
the real-correction contributions in the corresponding singular limits. Here, we describe
a further internal test. This time, we test the expressions of the integrated dipole terms.
We do this by evaluating the phase space integrals,

Ii = /dPS39(pT - pT,min) (|Habn7 SU-btr>dipoloi||2)+MFC_|_OP.ren_ ) (37>

of specific dipole terms plus the corresponding mass factorization and operator renormal-
ization counterterms in two different ways and comparing the results. In the first mode
of evaluation, we use the results of the expressions implemented in CalcDipolesInteg
and integrate them numerically over dPSy or dPSsdx. In the second mode of evaluation,
we separate the three-particle phase space as in the phase space slicing implementation
according to the slicing parameters ds and .. For the contributions from the soft and
collinear regions, we take the respective analytic limits of the dipole terms, integrate them
analytically over the corresponding phase space, dPS,; soft or dPS;|;, add the corresponding
mass factorization and operator renormalization counterterms, and then do the integra-
tions over dPSy or dPSydx numerically. For the contribution from the hard-noncollinear
region, we integrate the expressions for the dipole terms as encoded in CalcDipoles
numerically over dPS3;. Both contributions are then combined to yield the final results
of the second mode of evaluation. We perform these tests with groups of one, two, or
three dipoles in order to simplify the analytic integrations of the soft limits in the second
version. We have successfully tested all the dipoles in this way. Typical examples are
presented in Table 2.

5 Comparison of phase space slicing and dipole sub-
traction methods

In Tables 3-6, we compare our dipole subtraction and phase space slicing implementations.
We calculate at NLO total cross sections, including the Born contributions, of inclusive
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DipoleIntegtest gg2cCg for State 3PJ8.

Dipole 8 on.
Dipole 13 on.

Result Analytic:

Result Slicing:

0.000001
0.000010
0.000100
0.001000
0.010000

Dipolelntegtest
Dipole 243 on.

Result Analytic:

Result Slicing:

0.000001
0.000010
0.000100
0.001000
0.010000

Table 2: Numerical tests of integrated dipole subtraction terms as described in Section 4.3.
The finite parts of I; in Eq. (37) are evaluated for g + g — cé[?’P}S]] + ¢g with dipoles
8 and 13 and for g +d — cEPPﬁﬁ + d with dipole 243 using the implementations of
dipole subtraction and phase space slicing, for ny = 3, a, = 1/(4n), puy = 0.5 GeV,
mg = 0.2 GeV, (p1 + p2)? = 100 GeV?, prmm = 2 GeV, 6, = J, and J, = §/1000
with variable value of 0. For a given value of 0 (first column), the soft and collinear
parts (second column), the hard-noncollinear parts (third column), and their sum (forth

-1.4614E+05
-1.0832E+05
-7.4543E+04
-4.4854E+04
-1.9291E+04

1.0517E+01
8.3362E+00
5.6847E+00
3.6687E+00
1.7919E+00

gd2cCd for State 3P21.

-170.1669990971855 =+

4.5608E+02 + 4.0023E-04
3.6877TE+02 £ 3.2966E-04
2.8332E+02 £ 2.7631E-04
1.9636E+02 + 1.9533E-04
1.0978E+02 + 1.0843E-04

1.6171E+05
1.2746E+05
9.4589E+04
6.4916E+04
3.9340E+04

20193.01298070771 £ 2.996135930530795

+ 8.
+ 3.
+ 2.
+ 8.
+ 3.

167E+02
805E+02
637E+02
790E+01
7

8
4
0
2
2753E+01

1.5578494469294161E-004

-6.2616E+02
-5.3970E+02
-4.5313E+02
-3.6631E+02
-2.7811E+02

N NN - =

-1.
-1.
-1.
-1.
-1.

.5567E+04
.9130E+04
.0047E+04
.0063E+04
.0049E+04

7008E+02
T093E+02
6981E+02
6995E+02
6833E+02

H H B H
w 00N W oo

H H H R
Nk RN

.8173E+02
.4815E+02
.0644E+02
.2871E+01
.2802E+01

.3290E-01
.0804E-01
.4900E-01
.1489E-01
.8774E-02

column) are listed. The quoted errors are the numerical-integration uncertainties.
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charmonium production in proton-antiproton collisions at typical center-of-mass-energies
for selected bins of transverse momentum and rapidity. As in Refs. [10,11,12], we treat the
first ny = 3 quark flavors as massless, take the heavy-quark mass, defined in the on-shell
renormalization scheme, to be mg = 1.5 GeV, use set CTEQ6M [16] of proton PDFs,

evaluate oy = 0424) (u,) at two loops with asymptotic scale parameter AS%D = 326 MeV

[16], and choose the renormalization and factorizations scales to be u, = py = /7 + 4mg,

and 11n = mg. For definiteness, we set (O#(35))) = 1 GeV® and (OH (3PI)) = 1 GeV®.
In the phase space slicing implementation, we choose the cut-off parameters to be 5 = o
and 6. = §/1000, vary ¢ from 107% to 1072, and take the evaluation with § = 1073 as
default to be compared with the results obtained using dipole subtraction.

From Tables 3-6, we observe that the results obtained in the selected bins using the
two implementations numerically agree at the level of about 10%, in line with the uncer-
tainty inherent in the application of the phase space slicing method. Besides being more
accurate, the dipole subtraction implementation is also typically much faster than the
phase space slicing implementation. The reason for that is that, in the phase space slic-
ing implementation, there is usually a much stronger numerical cancellation between the
contributions from the analytic and numerical integrations than in the dipole subtraction
implementation, necessitating a higher relative accuracy in the numerical integrations.
However, this advantage is to some extent compensated by the fact that the 6 functions
in the first term of Eq. (31) cut out very different phase space regions and so worsen
the convergence of the numerical Monte-Carlo integrations in the dipole subtraction im-
plementation. Nevertheless, we observe that our dipole implementation achieves a final
accuracy of 1% typically 2 to 6 times faster than the phase space slicing implementation.

6 Summary

In this article, we have reviewed the singularity structure of NLO NRQCD calculations of
the production of heavy-quark pairs in S and P wave states and provided details of our
phase space slicing implementation thereof. Thereby, we have identified a common mistake
in the literature. Furthermore, we have summarized the dipole subtraction formalism for
such calculations, which we have recently developed in Ref. [7], added details about its
implementation in terms of computer codes, and performed internal numeric tests. Finally,
we have extensively compared our two implementations numerically and found reasonable
agreement. As expected, the dipole subtraction implementation outperforms the phase
space slicing implementation both with regard to accuracy and speed.
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p+p --> cc[3818] + X: Sqrt[s] = 100 GeV, 2 GeV < p_T < 3 GeV, -0.5 <y < 0.5:

Dipole implementation: 1.8694E+03 =+ 1.8683E+00

Slicing implementation:

0.000010 -4.2106E+04 + 1.3991E+01 4.3677TE+04 + 1.4321E+01 1.5710E+03 =+ 2.0021E+01
0.000032 -3.5355E+04 + 1.0905E+01 3.7067E+04 + 9.5207E+00 1.7120E+03 =+ 1.4477E+01
0.000100 -2.9207E+04 + 8.8019E+00 3.0987E+04 =+ 6.1790E+00 1.7800E+03 =+ 1.0754E+01
0.000320 -2.3394E+04 =+ 6.1821E+00 2.5209E+04 =+ 3.9720E+00 1.8149E+03 =+ 7.3482E+00
0.001000 -1.8171E+04 =+ 4.6479E+00 1.9989E+04 + 2.5723E+00 1.8184E+03 =+ 5.3122E+00
0.003200 -1.3329E+04 =+ 3.3122E+00 1.5139E+04 + 1.6327E+00 1.8103E+03 =+ 3.6927E+00
0.010000 -9.0788E+03 =+ 2.1645E+00 1.0867E+04 + 1.0867E+00 1.7882E+03 =+ 2.4220E+00

Relative difference using default slicing parameter: -2.7Y

Factor of time the dipole implementation is faster: 9.6

p+p --> cc[3818] + X: Sqrtls] = 100 GeV, 6 GeV < p_T < 7 GeV, -0.5 <y < 0.5:

Dipole implementation: 2.6433E+01 + 2.5363E-02

Slicing implementation:
0.000010 -5.9185E+02 + 1.9436E-01 6.1327E+02 + 3.7003E-01 2.1420E+01 + 4.1797E-01
0.000032 -4.9661E+02 + 1.4844E-01 5.2090E+02 =+ 2.4433E-01 2.4290E+01 + 2.8589E-01
0.000100 -4.0982E+02 + 1.1312E-01 4.3508E+02 + 1.0923E-01 2.5260E+01 + 1.5725E-01
0.000320 -3.2764E+02 + 8.2613E-02 3.5340E+02 + 1.6469E-01 2.5761E+01 + 1.8425E-01
0.001000 -2.5363E+02 + 5.8880E-02 2.7997E+02 + 2.3740E-01 2.6338E+01 + 2.4459E-01
0.003200 -1.8482E+02 + 4.0917E-02 2.1062E+02 + 7.1737E-02 2.5795E+01 + 8.2586E-02
0.010000 -1.2431E+02 + 2.6148E-02 1.4989E+02 + 1.9901E-01 2.5578E+01 + 2.0072E-01

Relative difference using default slicing parameter: -0.4Y

Factor of time the dipole implementation is faster: 6.4

p+p --> cc[3818] + X: Sqrtls] = 1960 GeV, 7 GeV < p_T < 8 GeV, -0.6 < y < 0.6:

Dipole implementation: 2.3196E+03 + 2.3170E+00

Slicing implementation:
0.000010 -6.6859E+04 + 2.0831E+01 6.8617E+04 + 1.7129E+02 1.7580E+03 =+ 1.7255E+02
0.000032 -5.6557E+04 + 1.5699E+01 5.8597E+04 + 3.8898E+01 2.0400E+03 + 4.1946E+01
0.000100 -4.7142E+04 + 1.2016E+01 4.9345E+04 =+ 4.0183E+01 2.2030E+03 + 4.1941E+01
0.000320 -3.8205E+04 + 9.0543E+00 4.0421E+04 =+ 1.0403E+01 2.2164E+03 + 1.3791E+01
0.001000 -3.0131E+04 =+ 6.7318E+00 3.2404E+04 =+ 2.0048E+01 2.2727E+03 + 2.1148E+01
0.003200 -2.2592E+04 + 4.6217E+00 2.4810E+04 + 3.9682E+00 2.2180E+03 + 6.0915E+00
0.010000 -1.5909E+04 =+ 3.2149E+00 1.8126E+04 + 7.9005E+00 2.2171E+03 + 8.5296E+00

Relative difference using default slicing parameter: -2.0Y%
Factor of time the dipole implementation is faster: 3.7

Table 3: Numerical comparisons of our implementations of dipole subtraction and phase
space slicing as described in Section 5, for o(pp — cc[3SP] + X) (in nb) with /S =
100 GeV, 2 GeV < pr < 3 GeV, and —0.5 < y < 0.5; VS = 100 GeV, 6 GeV <
pr < 7 GeV, and —0.5 < y < 0.5; and v/S = 1.96 TeV, 7 GeV < pr < 8 GeV, and
—0.6 < y < 0.6. For a given value of § (first column), the hard-collinear contribution
of the real corrections (third column), the residual part including the soft and collinear
contributions (second column), and their sum (forth column) are listed. The quoted errors
are the numerical-integration uncertainties. For the default value § = 1073, the relative
deviations of the phase space slicing results from the dipole subtraction ones and the
factors by which the dipole subtraction implementation is faster than the space slicing
one in achieving a numerical accuracy of 1% are indicated.
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ptP --> cc[3S18] + X: Sqrtl[s] = 7000 GeV, 6 GeV < p_T < 8 GeV, 2.5 <y < 4:

Dipole implementation: 1.5209E+04 £ 1.5039E+01

Slicing implementation:

0.000010 -4.4765E+05 £ 1.3365E+02 4.5846E+05 + 1.6483E+02 1.0810E+04 + 2.1221E+02
0.000032 -3.7798E+05 + 1.0265E+02 3.9071E+05 + 7.0978E+01 1.2732E+04 £ 1.2480E+02
0.000100 -3.1423E+05 + 8.1206E+01 3.2768E+05 £ 7.9244E+01 1.3452E+04 + 1.1346E+02
0.000320 -2.5395E+05 + 6.2502E+01 2.6789E+05 + 3.1169E+01 1.3943E+04 £ 6.9842E+01
0.001000 -1.9945E+05 + 4.4830E+01 2.1363E+05 £ 8.1179E+01 1.4182E+04 + 9.2735E+01
0.003200 -1.4864E+05 £ 3.1923E+01 1.6281E+05 £ 1.6280E+01 1.4167E+04 £ 3.5834E+01
0.010000 -1.0368E+05 + 2.1351E+01 1.1778E+05 + 1.8833E+01 1.4097E+04 £ 2.8470E+01

Relative difference using default slicing parameter: -6.8J

Factor of time the dipole implementation is faster: 4.4

ptp —--> cc[3S18] + X: Sqrtl[s] = 7000 GeV, 20 GeV < p_T < 22 GeV, -0.5 <y < 0.5:

Dipole implementation: 1.6314E+02 £ 1.8166E-01

Slicing implementation:
0.000010 -4.7483E+03 £ 1.4145E+00 4.8660E+03 + 1.6862E+00 1.1770E+02 £+ 2.2009E+00
0.000032 -4.0204E+03 + 1.0596E+00 4.1628E+03 £ 1.0825E+00 1.4245E+02 £ 1.5148E+00
0.000100 -3.3645E+03 + 8.1121E-01 3.5065E+03 £ 7.1555E-01 1.5199E+02 + 1.0817E+00
0.000320 -2.7209E+03 + 6.2684E-01 2.8762E+03 + 4.7362E-01 1.5528E+02 £ 7.8565E-01
0.001000 -2.1458E+03 + 4.6500E-01 2.3026E+03 £ 3.0469E-01 1.56681E+02 + 5.5593E-01
0.003200 -1.6074E+03 + 3.0795E-01 1.7633E+03 + 1.9829E-01 1.5590E+02 + 3.6627E-01
0.010000 -1.1275E+03 £ 2.1164E-01 1.2834E+03 £ 1.2832E-01 1.56587E+02 £ 2.4750E-01

Relative difference using default slicing parameter: -3.9%

Factor of time the dipole implementation is faster: 1.4

ptp --> cc[3S18] + X: Sqrtl[s] = 14000 GeV, 5 GeV < p_T < 8 GeV, 2 <y < 4:

Dipole implementation: 8.9783E+04 + 8.9783E+01

Slicing implementation:
0.000010 -2.7420E+06 + 8.3086E+02 2.8014E+06 £ 1.0012E+03 5.9400E+04 £ 1.3010E+03
0.000032 -2.3177E+06 + 5.9967E+02 2.3901E+06 =+ 7.6892E+02 7.2450E+04 £ 9.7511E+02
0.000100 -1.9297E+06 =+ 4.9280E+02 2.0083E+06 =+ 4.4693E+02 7.8650E+04 + 6.6528E+02
0.000320 -1.5625E+06 + 3.8080E+02 1.6439E+06 + 2.9593E+02 8.1360E+04 + 4.8227E+02
0.001000 -1.2304E+06 + 2.8138E+02 1.3132E+06 £ 1.9530E+02 8.2850E+04 + 3.4252E+02
0.003200 -9.2029E+05 £ 2.0434E+02 1.0037E+06 + 1.2350E+02 8.3410E+04 + 2.3876E+02
0.010000 -6.4571E+05 + 1.3564E+02 7.2853E+05 £ 7.7187E+01 8.2820E+04 + 1.5606E+02

Relative difference using default slicing parameter: -7.7%
Factor of time the dipole implementation is faster: 3.4

Table 4: Same as in Table 3, but for /S = 7 TeV, 6 GeV < pr < 8 GeV, and 2.5 < y < 4;
VS = 7 TeV, 20 GeV < pr < 22 GeV, and —0.5 < y < 0.5; and /S = 14 TeV,
5GeV <pr <8 GeV,and 2 < y < 4.
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ptp --> cc[3P21] + X: Sqrt[s] = 100 GeV, 2 GeV < p_T < 3 GeV, -0.5 <y < 0.5:

Dipole implementation: 3.8434E+02 + 3.8383E-01

Slicing implementation:
0.000010 -1.9969E+04 £ 6.1018E+00 2.0204E+04 £ 8.2940E+00 2.3530E+02
0.000032 -1.6852E+04 + 5.1391E+00 1.7156E+04 + 5.5671E+00 3.0380E+02
0.000100 -1.4010E+04 £ 4.0109E+00 1.4355E+04 + 3.6670E+00 3.4530E+02
0.000320 -1.1317E+04 £ 2.7969E+00 1.1679E+04 + 2.3758E+00 3.6180E+02
0.001000 -8.8920E+03 + 2.0774E+00 9.2572E+03 + 1.5460E+00 3.6520E+02
0.003200 -6.6371E+03 £ 1.4326E+00 7.0012E+03 £ 9.6310E-01 3.6410E+02
0.010000 -4.6511E+03 + 9.3505E-01 5.0079E+03 £ 5.8438E-01 3.5683E+02

Relative difference using default slicing parameter: -5.0%

Factor of time the dipole implementation is faster: 137

p+p -—> cc[3P21] + X: Sqrtls] = 100 GeV, 6 GeV < p_T < 7 GeV, -0.5 <y < 0.5

Dipole implementation: -1.1636E+00 £ 1.1635E-03

Slicing implementation:
0.000010 -2.5001E+01 £ 4.9224E-03 2.3696E+01 £ 1.4019E-02 -1.3046E+00
0.000032 -2.1484E+01 £ 3.6945E-03 2.0258E+01 £ 9.5508E-03 -1.2264E+00
0.000100 -1.8219E+01 + 3.1399E-03 1.7030E+01 + 6.2299E-03 -1.1887E+00
0.000320 -1.5062E+01 + 2.4189E-03 1.3884E+01 + 4.1048E-03 -1.1778E+00
0.001000 -1.2145E+01 4+ 1.8113E-03 1.0976E+01 + 2.7625E-03 -1.1687E+00
0.003200 -9.3531E+00 + 1.3760E-03 8.2043E+00 £ 1.6613E-03 -1.1488E+00
0.010000 -6.8082E+00 + 9.9948E-04 5.7041E+00 £ 1.0307E-03 -1.1041E+00

Relative difference using
Factor of time the dipole

p+p -—> cc[3P21] + X:

default slicing parameter: 0.47

implementation is faster: 4.3

Sqrt[s] = 1960 GeV,

7 GeV < p_T < 8 GeV,

-0.6 <y < 0.6:

Dipole implementation:

Slicing implementation:

0.
.000032
.000100
.000320
.001000
.003200
.010000

[elelelNeNeNe]

000010

-2.4577E+03
-2.1184E+03
-1.8032E+03
-1.4983E+03
-1.2168E+03
-9.4671E+02
-6.9965E+02

Relative difference using
Factor of time the dipole

.8300E-01
.8233E-01
.1323E-01
.3867E-01
.9288E-01
.4560E-01
.0889E-01

H H HHH R
R RN W WD

D 0 = = NN

-8.1975E+01 + 1.0328E-01

.3627E+03
.0317E+03
.7206E+03
.4167E+03
.1358E+03
.6743E+02
.248TE+02

H H HHH R
BN WS N

default slicing parameter: -1.1%
implementation is faster: 2.3

.5549E+00
.0440E+00
.0188E-01
.6731E-01
.2025E-01
.1682E-01
.4362E-01

.4960E+01
.6660E+01
.2550E+01
.1640E+01
.1050E+01
.9280E+01
.4780E+01

H H H H HH
RN WON -

HH H H B

R NWDd O

H H HHH R
=N WO N e

Table 5: Same as in Table 3, but for o(pp — ce*P] + X).

20

.0297E+01
.5765E+00
.4345E+00
.6697E+00
.5895E+00
. 7262E+00
.1026E+00

.4858E-02
.0240E-02
.9764E-03
.7645E-03
.3033E-03
.1572E-03
.4357E-03

.6282E+00
.1118E+00
.6860E-01
.2473E-01
.7385E-01
.6117E-01
.8023E-01



ptp —--> cc[3P21] + X: Sqrt[s] = 7000 GeV, 6 GeV < p_T < 8 GeV, 2.5 <y < 4:

Dipole implementation: -5.0338E+02 £ 8.1114E-01

Slicing implementation:
0.000010 -2.1012E+04 £ 4.3885E+00 2.0323E+04 £ 1.4953E+01 -6.8870E+02
0.000032 -1.8013E+04 + 3.3649E+00 1.7425E+04 + 9.6143E+00 -5.8830E+02
0.000100 -1.5239E+04 £ 2.8673E+00 1.4677E+04 + 6.5227E+00 -5.6230E+02
0.000320 -1.2574E+04 £ 2.2069E+00 1.2041E+04 + 4.2413E+00 -5.3310E+02
0.001000 -1.0127E+04 £+ 1.6732E+00 9.6082E+03 £ 2.8694E+00 -5.1900E+02
0.003200 =7.7997E+03 £ 1.2484E+00 7.2897E+03 £ 1.9169E+00 -5.1000E+02
0.010000 -5.6897E+03 + 8.9294E-01 5.2073E+03 £ 1.2364E+00 -4 .8240E+02

Relative difference using default slicing parameter: 3.17

Factor of time the dipole implementation is faster: 2.1

p+tp -—> cc[3P21] + X: Sqrtl[s] = 7000 GeV, 20 GeV < p_T < 22 GeV, -0.5 <y < 0.5:

Dipole implementation: -1.0014E+01 £ 1.0013E-02

Slicing implementation:
0.000010 -6.9249E+01 £ 1.5399E-02 5.8884E+01 £ 2.9578E-02 -1.0365E+01
0.000032 -6.1220E+01 £ 1.3769E-02 5.1169E+01 £ 1.4606E-02 -1.0051E+01
0.000100 -5.3471E+01 + 1.2195E-02 4.3475E+01 + 9.2384E-03 -9.9958E+00
0.000320 -4.5673E+01 £ 1.0564E-02 3.5722E+01 £ 6.4647E-03 -9.9510E+00
0.001000 -3.8146E+01 + 8.9563E-03 2.8256E+01 + 4.7210E-03 -9.8900E+00
0.003200 -3.0578E+01 £ 7.2845E-03 2.0851E+01 £ 3.4411E-03 -9.7273E+00
0.010000 -2.3281E+01 + 5.6306E-03 1.3958E+01 + 2.3551E-03 -9.3230E+00

Relative difference using default slicing parameter: -1.2J

Factor of time the dipole implementation is faster: 0.48

p+p -—> cc[3P21] + X: Sqrtls] = 14000 GeV, 5 GeV < p_T < 8 GeV, 2 <y < 4:

Dipole implementation: -1.5363E+03 £ 5.4212E+00

Slicing implementation:
0.000010 -1.6753E+05 + 4.0603E+01 1.6446E+05 + 4.5001E+01 -3.0702E+03
0.000032 -1.4322E+05 + 3.0717E+01 1.4094E+05 + 3.8639E+01 -2.2820E+03
0.000100 -1.2083E+05 + 2.4876E+01 1.1889E+05 + 2.0610E+01 -1.9426E+03
0.000320 -9.9425E+04 + 2.0367E+01 9.7638E+04 £ 1.3883E+01 -1.7870E+03
0.001000 -7.9823E+04 + 1.4390E+01 7.8121E+04 £+ 9.4865E+00 -1.7020E+03
0.003200 -6.1268E+04 + 1.0435E+01 5.9614E+04 £ 6.3932E+00 -1.6540E+03
0.010000 -4.4537E+04 £ 7.2279E+00 4.2986E+04 + 4.3827E+00 -1.5510E+03

Relative difference using
Factor of time the dipole

default slicing parameter: 10.8%
implementation is faster: 3.3

H H H H HH
BN WD N e

HH H H B

DO P P NW

H H HHH R
O = =N Wb O

Table 6: Same as in Table 4, but for o(pp — ce*Pl] + X).

21

.5584E+01
.0186E+01
.1251E+00
.7811E+00
.3216E+00
.2876E+00
.5251E+00

.3346E-02
.0073E-02
.5299E-02
.2385E-02
.0124E-02
.0564E-03
.1032E-03

.0611E+01
.9361E+01
.2305E+01
.4648E+01
.7235E+01
.2238E+01
.4528E+00
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