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Abstract
We consider a detailed account on the construction of the heavy-quark parton distribution functions
for charm and bottom, starting from n f = 3 light flavors in the fixed-flavor number (FFN) scheme
and by using the standard decoupling relations for heavy quarks in QCD. We also account for two-
mass effects. Furthermore, different implementations of the variable-flavor-number (VFN) scheme
in deep-inelastic scattering (DIS) are studied, with the particular focus on the resummation of large
logarithms in Q2/m2

h, the ratio the virtuality of the exchanged gauge-boson Q2 to the heavy-quark
mass squared m2

h. A little impact of resummation effects if found in the kinematic range of the
existing data on the DIS charm-quark production so that they can be described very well within
the FFN scheme. Finally, we study the theoretical uncertainties associated to the VFN scheme,
which manifest predominantly at small Q2.



I. INTRODUCTION

The process of deep-inelastic scattering (DIS) of leptons off a nucleon target provides important
information on the nucleon structure and the parton content. Therefore, it plays a central role in
the determination of the parton distribution functions (PDFs), especially for the proton PDFs [1].
At large values of Bjorken x the DIS data constrain the valence quark distributions, while at small
x they are sensitive to the sea-quark and gluon distributions. In addition, the DIS cross sections
at small x contain substantial contributions from charm and bottom quarks. The virtuality Q2

of the exchanged gauge-boson is the other important kinematic variable in DIS. It offers a wide
range of scales to probe, for instance, in electron-proton scattering the parton dynamics inside the
proton. Depending on the value of Q2, different theoretical descriptions of DIS within Quantum
Chromodynamics (QCD) may be applied. This concerns in particular the number n f of active
quark flavors and the treatment of the heavy quarks, as charm and bottom.

At low scales, when Q2 is of the order of the heavy quark mass squared m2
h, one typically

works with n f = 3 massless quark flavors. Then, the proton structure function is composed only
out of light-quark PDFs for up, down and strange and of the gluon PDF. Massive quarks appear
in the final state only or contribute as purely virtual corrections. At higher scales, for Q2 �

m2
c ,m

2
b compared to the charm and bottom quark masses squared, additional dynamical degrees of

freedom lead to theories with n f = 4 or 5 effectively light flavors, depending on whether charm
is considered massless, or even both, charm and bottom. The massive renormalization group
equations rule these dynamics and provide the corresponding scale evolution, linking to n f = 3
massless quarks at very low virtualities. In general, the transition for the flavor dependence of
the strong coupling αs, i.e., αs(n f ) → αs(n f + 1), is achieved at some matching scale µ0 with
the decoupling relations [2] which can be implemented perturbatively in QCD. These decoupling
relations introduce a logarithmic dependence on the heavy quark masses mc, mb. In a similar
manner, this is realized for the PDF fi of a parton i with the help of suitable heavy-quark operator
matrix elements (OMEs) [3, 4], which, in the perturbative expansion, also depend logarithmically
on the heavy-quark masses. The transition fi(n f )→ fi(n f +1), again at a matching scale µ0, implies
also the introduction of new heavy-quark PDFs for charm or bottom when they become effectively
light flavors, and can then be considered as effective dynamical degrees of freedom inside the
proton.

For a given fixed value of n f , and having decoupled the heavy quarks in an appropriate manner,
one may define the fixed-flavor number (FFN) scheme. In the FFN scheme used in the ABMP16
global fit of proton PDFs [5], only light quarks and gluons are considered in the initial state, while
heavy quarks appear in the final state as a result of the hard scattering of the incoming massless
partons. Existing data on the heavy-quark DIS production are well described by the FFN scheme
with n f = 3, see Refs. [1, 6]. However, many PDF fits, like those of CT18 [7], MMHT14 [8] and
NNPDF3.1 [9] employ various different versions of the so-called variable-flavor-number (VFN)
scheme. In the VFN scheme the quark flavors charm and bottom are considered also in the initial
state from a certain mass scale onward and are dealt with as partonic components in the proton.
As a consequence, the original distributions fi(n f ) are mapped into the distributions fi(n f + 1) at
a chosen scale µ0, cf. [3]. In addition, the VFN scheme effectively performs a resummation of
logarithms in the ratio Q2/m2

c (or Q2/m2
b) through the parton evolution equations for the charm

(or bottom) PDF [10], although the corresponding logarithms are not necessarily large for realistic
kinematics.

The difference in modeling of the heavy quark contribution, i.e., the choice for the FFN or the
VFN scheme, has an impact on the PDFs obtained in global fits [1, 11]. Therefore, a detailed
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comparison of the two approaches is mandatory in view of the use of the respective PDF sets in
QCD precision phenomenology.

A particular prescription for a VFN scheme has been proposed in [3], commonly referred to as
BMSN-scheme. In PDF fits, the VFN scheme using this approach yields results which are not very
different from the ones in the FFN scheme [12]. This happens due to a smooth transition between
the n f - and (n f + 1)-flavor regimes at the matching scales µ0 = mc and µ0 = mb, respectively,
which is imposed in the BMSN ansatz. However, the BMSN prescription is based on heavy-quark
PDFs, i.e., charm and bottom, which are derived with the help of fixed-order matching conditions.
Therefore, the results of our previous study [12] cannot be directly compared to the PDF fits in
Refs. [7–9] which apply heavy-quark PDF evolution.

In the present article we study the phenomenology of a modified BMSN prescription, which
also includes the scale evolution of heavy-quark PDFs in order to clarify the basic features of
such VFN schemes. Our studies are limited to the case of DIS charm-quark production, since this
process is most essential phenomenologically and, at the same time, a representative case.

The paper is organized as follows. Basic features of QCD factorization, the VFN scheme and
the BMSN prescription are outlined in Sec. II. In Sec. III we describe the particularities introduced
by the heavy-quark PDF evolution and Sec. IV contains the benchmarking of various factorization
schemes based on existing data for DIS charm-quark production. We address implications of VFN
schemes for predictions at hadron colliders Sec. V and conclude in Sec. VI. Technical details of
the various implementations of heavy-quark schemes are summarized in App. A.

II. HEAVY-QUARK PDFS

The dynamics of massless partons in the proton are parameterized in terms of the PDFs fi with
i = u,d, s,g for up, down, strange quarks and the gluon. These define the set of flavor-singlet quark
and gluon PDFs, qs and g,

qs(n f ,µ
2) =

n f∑
l=1

( fl(n f ,µ
2) + f̄l(n f ),µ2) , g(n f ,µ

2) = fg(n f ,µ
2) , (1)

where µ denotes the factorization scale and we suppress the dependence on the momentum frac-
tions x here and below.

Using standard QCD factorization 1, the PDFs for the heavy quarks charm and bottom (h = c,b)
at the scale µ in the MS scheme and using on-shell renormalization for the mass mh are then
constructed from the quark-singlet and gluon PDFs in Eq. (1) and the heavy-quark OMEs Ai j as
follows [3, 4]

fh+h̄(n f + 1,µ2) = Aps
hq

(
n f ,

µ2

m2
h

)
⊗qs(n f ,µ

2) + As
hg

(
n f ,

µ2

m2
h

)
⊗g(n f ,µ

2) , (2)

where h = c,b and ‘⊗’ denotes the Mellin convolution in the momentum fractions x. Typically,
the matching conditions are imposed at the scale µ0 = mh, and we further assume that fh+h̄ = 0
at scales µ ≤ mh. In addition, the transition {qs(n f ),g(n f )} → {qs(n f + 1),g(n f + 1)} for the set of

1 A variant of the VFN scheme is used in the NNPDF3.1 fit of Ref. [9], where the heavy-quark PDFs are parameter-
ized by some functional form, which is then fitted to the data.
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the light-quark singlet and the gluon distributions with the respective heavy-quark OMEs has to
account for operator mixing in the singlet sector

qs(n f + 1,µ2) =

Ans
qq,h

(
n f ,

µ2

m2
h

)
+ Aps

qq,h

(
n f ,

µ2

m2
h

)
+ Aps

hq

(
n f ,

µ2

m2
h

)⊗qs(n f ,µ
2)

+

As
qg,h

(
n f ,

µ2

m2
h

)
+ As

hg

(
n f ,

µ2

m2
h

)⊗g(n f ,µ
2) , (3)

g(n f + 1,µ2) = As
gq,h

(
n f ,

µ2

m2
h

)
⊗qs(n f ,µ

2) + As
gg,h

(
n f ,

µ2

m2
h

)
⊗g(n f ,µ

2) , (4)

with h = c,b, see Refs. [3, 4], also for matching relations for the non-singlet distributions.
The perturbative expansion of the OMEs in powers of the strong coupling constant αs reads

(using as = αs/(4π) as a short-hand),

Ai j = δi j +

∞∑
k=1

ak
s A(k)

i j = δi j +

∞∑
k=1

ak
s

k∑
`=0

a(k,`)
i j ln`

 µ2

m2
h

 , (5)

where the expressions a(k,0)
i j contain the information, which is genuinely new at the k-th order. The

leading-order (LO) and next-to-leading order (NLO) contributions to the OMEs are given by the
coefficients at order as and a2

s in Eq. (5), respectively. They have been determined analytically
in closed form in Refs. [3, 13–15] 2. At next-to-next-to-leading (NNLO) the heavy-quark OMEs
are known either exactly or to a good approximation [4, 5, 16–19]. This includes specifically the
non-singlet and pure-singlet constant parts a(3,0)

hq in Eq. (5) and the term a(3,0)
hg at order a3

s . In the
latter case an approximation based on fixed Mellin moments [4] with a residual uncertainty in the
small-x region has been given in Ref. [5, 17].

It should be noted that, the decoupling relations in Eqs. (2)–(4) assume the presence of a single
heavy quark at each step only. Thus, the bottom-quark contributions are ignored in the transition
from n f = 3 to 4 and in the construction of the charm-quark PDF. However, starting at two-loop
order, the perturbative corrections to the heavy-quark OMEs contain graphs with both, charm- and
bottom-quark lines. With the ratio of masses (mc/mb)2 ≈ 1/10, charm quarks generally cannot be
taken as massless at the scale of the bottom-quark. Such two-mass contributions to the heavy-quark
OMEs have been computed recently [20–22]. At three–loop order (and beyond), these corrections
can neither be attributed to the charm- nor to the bottom-quark PDFs separately. Rather, one has
to decouple charm and bottom quarks together at some large scale and the corresponding VFN
scheme, i.e. the simultaneous transition with two massive quarks, fi(n f )→ fi(n f + 2), has been
discussed recently in Ref. [23]. This proceeds in close analogy to the simultaneous decoupling of
bottom and charm quarks in the strong coupling constant αs, see for instance Ref. [24]. We will
elaborate on these aspects further below.

First, we will limit our studies to the case of the charm-quark PDF and apply Eqs. (2)–(4) to
change from n f = 3 to 4. At LO only the heavy-quark OME As

hg contributes and the coefficients
are

a(1,0)
hg (x) = 0 , a(1,1)

hg (x) = 4T f (1−2x + 2x2) =
P(0)

qg (x)
n f

, (6)

2 The initial calculation of the two-loop OMEs As, (2)
hg and As, (2)

gg,h in Ref. [3] was incomplete, cf. Ref. [15].
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i.e., the constant term of the unrenormalized massive OME As, (1)
hg vanishes and the logarithmic one

with T f = 1/2 is proportional to the LO quark-gluon splitting function P(0)
qg in the normalization of

Ref. [25]. For four active flavors we abbreviate the charm PDF in Eq. (2) as c(x,µ2) ≡ fc+c̄(4, x,µ2)
and consider its perturbative expansion

c(x,µ2) = c(1)(x,µ2) + c(2)(x,µ2) + . . . , (7)

where the LO term c(1)(x,µ2) has a particularly simple form,

c(1)(x,µ2) = as(µ2) ln
(
µ2

m2
c

) ∫ 1

x

dz
z

a(1,1)
hg (z) g

(
n f = 3,

x
z
,µ2

)
. (8)

Here, g denotes the gluon PDF in the 3-flavor scheme. This expression is used in the BMSN
prescription [3] of the VFN scheme and determines the charm-quark distribution at all scales
µ ≥ mc at fixed-order perturbation theory (FOPT).

On the contrary, other VFN prescriptions, like ACOT [26–28], FONLL [29] or RT [30] use
Eq. (8) as a boundary condition for c(x,µ2) at µ= mc and derive the scale dependence with the help
of the standard QCD evolution equations (DGLAP) for massless quarks. The evolution resums
logarithmic terms to all orders, so that the charm-quark distribution acquires additional higher
order contributions which are not present in the FOPT expression in Eq. (8). In order to illustrate
the numerical difference between these two approaches, we consider the derivative of c(x,µ2)

dc(1)(x,µ2)
d lnµ2 = as(µ2)

∫ 1

x

dz
z

a(1,1)
hg (z) g

( x
z
,µ2

)
+

(
das

d lnµ2

)
c(1)(x,µ2)

as

+as(µ2) ln
(
µ2

m2
c

)∫ 1

x

dz
z

a(1,1)
hg (z) ġ

( x
z
,µ2

)
, (9)

where ġ(x,µ2) ≡ dg(x,µ2)/d lnµ2.
The first term in Eq. (9) corresponds to the right hand side of the standard DGLAP evolution

equations, recall Eq. (6), i.e., a(1,1)
hg is proportional to P(0)

qg . The second and the third term, however,
account for the difference between the FOPT distributions and the evolved ones. These terms
vanish at the matching scale µ0 = mc as they should by definition. For scales µ > mc the second
term proportional to the QCD β function is negative, since das/d lnµ2 = β(as)/(4π) < 0. However,
the net effect of the difference between the FOPT and the DGLAP evolved distributions shown in
Fig. 1 on the left is positive at small x and driven by ġ in the third term. Only at large x, where the
gluon PDF is negligible, the term proportional to β(as) dominates and the net difference between
the FOPT and the DGLAP evolved distributions is negative.

The matching conditions for the charm-quark at NLO are more involved. The NLO term
c(2)(x,µ2) in Eq. (7) has the form

c(2)(x,µ2) = a2
s(µ2)

∫ 1

x

dz
z

As, (2)
hg

(
n f = 3,z,

µ2

m2
c

)
g
(
n f = 3,

x
z
,µ2

)
+a2

s(µ2)
∫ 1

x

dz
z

Aps, (2)
hq

(
n f = 3,z,

µ2

m2
c

)
qs

(
n f = 3,

x
z
,µ2

)
. (10)

It includes the NLO corrections to the massive OMEs As, (2)
hg and Aps, (2)

hq for n f = 3, see Eq. (5), the
gluon and the quark-singlet PDFs, g and q(s), are taken in the 3-flavor scheme again, cf. Eq. (1).
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FIG. 1. The difference between the evolved c-quark distributions and the ones obtained with the FOPT con-
ditions in various orders of QCD (LO: dots, NLO: dashes, and NNLO∗: solid lines) versus the factorization
scale µ and at representative values of the parton momentum fraction x (left: x = 0.0002, right: x = 0.002)
taking the matching scale µ0 = mc = 1.4 GeV, where mc is the pole mass of c-quark mass. The vertical
dash-dotted lines display the upper margin for the HERA collider kinematics.

FIG. 2. The same as in Fig. 1 for the scale derivatives of the charm-quark PDF, ċ(x,µ2) ≡ dc(x,µ2)/d lnµ2.

Since a(2,0)
hg and a(2,0)

hq in Eq. (5) are non-zero in the MS scheme, c(x,µ2) at NLO does not vanish
anymore at the matching scale µ0 = mc, see the off-set in Fig. 1 on the right.
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FIG. 3. The same as in Fig. 1 at NNLO∗ and different values of the matching scale µ0 (solid line: µ0 = mc,
dashes: µ0 = 2mc).

The comparison of the charm-quark FOPT distributions at NLO based on Eqs. (8) and (10) and
the evolved ones, using c(x,µ2) only as the boundary condition at the matching scale, shows in
Fig. 1 qualitatively the same pattern as at LO, although the numerical differences are smaller now.
At small x, driven by the scale derivative ġ of the gluon PDF, the FOPT distributions are larger
while at large x the terms proportional to β(as) dominate and the DGLAP evolved distributions
are larger. These observations can be expressed in quantitative form through the scale derivative
of the NLO term c(2)(x,µ2), which reads

dc(2)(x,µ2)
d lnµ2 = a2

s(µ2)
∫ 1

x

dz
z

(
a(2,1)

hg (z)+2ln
(
µ2

m2
c

)
a(2,2)

hg (z)
)

g
( x

z
,µ2
)

+a2
s(µ2)

∫ 1

x

dz
z

(
a(2,1)

hq (z)+2ln
(
µ2

m2
c

)
a(2,2)

hq (z)
)

qs
( x

z
,µ2
)
+ 2
(

das

d lnµ2

)
c(2)(x,µ2)

as

+a2
s(µ2)

∫ 1

x

dz
z

As, (2)
hg

(
z,
µ2

m2
c

)
ġ
( x

z
,µ2
)
+a2

s(µ2)
∫ 1

x

dz
z

Aps, (2)
hq

(
z,
µ2

m2
c

)
q̇s
( x

z
,µ2
)
,

(11)

where, again, ġ(x,µ2) ≡ dg(x,µ2)/d lnµ2 and q̇s(x,µ2) ≡ dqs(x,µ2)/d lnµ2.
Here, the first two terms in the right hand side contain the expressions used in the standard

DGLAP equations to evolve the charm-quark PDF, since the NLO splitting functions P(1)
qg and P(1)

qq

appear in the terms a(2,1)
hg and a(2,1)

hq , cf. [3, 4]. However, there are also other contributions, since the
heavy-quark OMEs enjoy their own (massive) renormalization group equation. In addition, the full
expression dc(x,µ2)/d lnµ2 at NLO contains, of course, also the terms from ċ(1)(x,µ2) in Eq. (9)
expanded to higher order in as, for example the term proportional to β(as). In summary, these terms
are responsible for decreasing the difference between the FOPT and the evolved distributions at
NLO in Fig. 1.
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As a further variant in the study of the DGLAP evolved charm-quark PDF, one can perform
the evolution using the full NNLO splitting functions P(2)

i j of Ref. [25] starting at the matching
scale µ0 = mc from the boundary condition for c(x,m2

c) at NLO in Eqs. (8) and (10). We denote
this variant as NNLO∗, since there is a mismatch in the orders of perturbation theory between
the heavy-quark OMEs and the accuracy of the evolution equations. The difference with the NLO
variant is due to terms which are formally of higher order, but nevertheless have significant numer-
ical impact at small x as shown in Fig. 1. There, the FOPT distributions at NLO and the evolved
ones at NNLO∗ accuracy are very similar in the entire µ-range. Only at large x, the increased order
in the DGLAP evolution is negligible.

In Fig. 2 we display the scale derivatives of the charm-quark PDF ċ(x,µ2) ≡ dc(x,µ2)/d lnµ2

calculated using Eqs. (9) and (11). We consider the difference of ċ(x,µ2) determined in FOPT,
ċFOPT, and the one evolved with the standard DGLAP evolution, ċevol, choosing n f = 4 and starting
from the expressions in Eqs. (8) and (10) at the matching scale µ0 = mc = 1.4 GeV. Evidently,
at LO the difference ċFOPT − ċevol has to vanish at the matching scale, while at NLO or in the
NNLO∗ variant some finite off-set at µ0 = mc = 1.4 GeV remains. Remarkably, the results at NLO
and at NNLO∗, i.e., using NLO boundary conditions from Eqs. (8) and (10) and NNLO splitting
functions in the evolution of ċevol are very different at low factorization scales and only converge
above µ2 & 102 . . .103 GeV2, depending on the value of x. These large scales, however, at which
the NLO and the NNLO∗ variants become of similar size, are typically well outside the kinematic
range of the HERA collider, whose upper limit is indicated by the vertical arrow. These findings
indicate that there is a substantial numerical uncertainty in the VFN prescriptions ACOT [26–28],
FONLL [29] or RT [30] due to the order of the QCD evolution applied. In particular the additional
higher order terms in the NNLO∗ variant do have a sizable effect within the µ-range covered by
experimental data on DIS charm-quark production and, hence, on the quality of the description of
those data in a fit using such VFN prescriptions.

An additional source of uncertainty in the VFN scheme concerns the choice of the matching
scale µ0. Conventionally it is set to the corresponding heavy-quark mass, mc and mb for the 4-
and 5-flavor PDFs, respectively. A variation of µ0 leads to a modification of the shape of the
evolved heavy-quark PDFs, whereas, in contrast, the FOPT ones remain unchanged by construc-
tion. Therefore, for µ0 > mh a difference between the FOPT and the evolved heavy-quark PDFs is
generally becoming smaller, in particular within the phase-space region covered by existing data,
cf. Fig. 3. Such a variation of µ0 also implies the use of the FFN scheme to describe data in a wider
kinematic range, e.g., up to µ0 = 2mc instead of µ0 = mc for the illustration in Fig. 3. Therefore, the
uncertainty due to a variation of matching scale is not completely independent from those related
to the choice of heavy-quark PDFs employed in the VFN scheme.

III. BMSN PRESCRIPTION OF THE VFN SCHEME

The heavy-quark distribution derived using the matching conditions Eqs. (2), (3) enter the zero-
mass VFN scheme (ZMVFN) expression for F2,h

FZMVFN
2,h =

∞∑
k=0

ak
s(n f + 1)

∑
i=q,g,h

C(k)
2,i (n f + 1)⊗ fi(n f + 1) , (12)

where C(k)
2,i are the massless DIS Wilson coefficients at the k-th order, which are known to next-

to-next-to-next-to-leading order (N3LO) [31]. This expression is valid at asymptotically large
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momentum transfer Q2 � m2
h, while it is unsuitable for scales Q2 ' m2

h since the heavy-quark
decoupling is not applicable. Therefore, a realistic implementation of the VFN scheme commonly
includes a combination of the ZMVFN expression in Eq. (12) with the FFN one

FFFN
2,h =

∞∑
k=1

ak
s(n f )

∑
i=q,g

H(k)
2,i (n f )⊗ fi(n f ) , (13)

where H(k)
2,i are the Wilson coefficients for the DIS heavy-quark production, all known exactly at

NLO [32] and H(3)
2,g to a good approximation at NNLO [5, 17]. Furthermore, in order to avoid

double counting, a subtraction has to be carried out when combining Eqs. (12) and (13). For
the BMSN prescription of the VFN scheme [3] this subtraction arises from the asymptotic FFN
expression as follows

Fasy
2,h =

∞∑
k=1

ak
s(n f )

∑
i=q,g

H(k),asy
2,i (n f )⊗ fi(n f ) , (14)

where H(k),asy
2,i is derived from H(k)

2,i taken in the limit of Q2�m2
h. In summary BMSN prescription

then reads
FBMS N

2,h = FFFN
2,h + FZMVFN

2,h −Fasy
2,h , (15)

where a factorization scale µF = mh is used throughout.
The asymptotic Wilson coefficients Hasy

2,i can be expanded into a linear combination of the
massless Wilson coefficients C2,i and the massive OMEs [3, 4, 13]. For this reason, the asymptotic
expression of Eq. (14) coincides with the ZMVFN one of Eq. (12), when the FOPT matching
conditions Eqs. (2)–(4) are employed, up to the subleading non-singlet terms and the difference
between ak

s(n f + 1) and ak
s(n f ) [12]. The latter exhibits a small discontinuity at Q2 ' m2

h beyond
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with the NNLO splitting functions). The PDFs obtained in the FFN fit are used throughout.

one loop [33, 34], which is numerically negligible, so that FZMVFN
2,h and Fasy

2,h in Eq. (15) essentially
cancel. Therefore, at small Q2 one obtains FBMS N

2,h → FFFN
2,h . On the other hand, at large scales

Q2� m2
h the FFN term is canceled by Fasy

2,h and one has in this limit, that FBMS N
2,h → FZMVFN

2,h . In
summary, the BMSN prescription Eq. (15) provides a smooth transition between FFN scheme at
small momentum transfer to the ZMVFN scheme at large scales, cf. Fig. 4.

A version of the BMSN prescription based on the NLO evolution of the (n f + 1)-flavor PDFs
also allows for a smooth matching with the FFN scheme at Q2 = m2

h, because the NLO-evolved
PDFs do not have a discontinuity with respect to the FOPT ones at the matching point, cf. Figs. 1
and 5. For the variant denoted NNLO∗ which uses NNLO-evolved PDFs the trend is different:
the slope of F2,h at Q2 = m2

h predicted by the BMSN prescription is substantially larger than the
one obtained with the FFN scheme. This is in line with the difference between the NNLO and
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FIG. 8. Left panel: The relative uncertainty in the 3-flavor gluon distribution xg(x,µ) at the factorization
scale µ = 3 GeV versus x obtained in the fit based on the BMSN VFN prescription with the FOPT heavy-
flavor PDFs (hatched area) in comparison to the relative variation of its central value due to switching to the
NLO- (dashes) and NNLO∗-evolved (dots) PDFs. Right panel: the same for the total light-flavor sea quark
distribution xS (x,µ).

FOPT PDFs. Obviously, this difference is not explained by the impact of the resummation of
large logarithms, but rather by the mismatch in the perturbative order of the matching conditions
and evolution kernels employed to obtain the NNLO heavy-quark PDFs. Therefore, the difference
between the NLO and NNLO∗ variants of the VFN scheme should essentially quantify its uncer-
tainty due to the missing NNLO corrections to the massive OMEs. A choice of the matching scale
µ0 = mh, i.e., at the mass of the heavy quark, is a matter of convention rather than appearing as a
consequence of solid theoretical arguments. Also note, that for DIS charm production, the match-
ing scale µ0 cannot be significantly shifted to scales much lower than mc, because in this case the
matching would be performed at scales well below 1 GeV, where QCD perturbative expansions
are not converging anymore. When µ0 is shifted upwards, e.g., µ0 = 2mh, the difference between
the NLO and NNLO∗ variants of the VFN scheme is becoming less significant. This is particularly
due to the fact, that then essential parts of the problematic small-Q2 region are left for a theoretical
description within the FFN scheme, cf. Fig. 6.

The impact of scheme variations and the choice of the matching scale are qualitatively similar
for the c- and b-quark production. Nonetheless, the effects are less pronounced for the b-quark
case [35], mainly because of the smaller numerical value of strong coupling at the scale mb. For
this reason, and also due to more representative kinematics of data, all our phenomenological
comparisons are focused on the c-quark contribution.

IV. BENCHMARKING OF THE FFN AND VFN SCHEMES WITH THE HERA DATA

To study the phenomenological impact of the VFN scheme uncertainties we consider several
variants of ABMP16 PDF fit [5], which include the recent HERA data on heavy-flavor DIS pro-
duction [6]. Furthermore, the inclusive neutral-current DIS HERA data used in the ABMP16 fit
are excluded in order to illuminate the impact of the scheme variation on the PDFs extracted from
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the fit. For the same reason we exclude the collider data on W±- and Z-boson production, which
provide an additional constraint at small-x on the PDFs in the ABMP16 fit. However, in order to
keep the different species of quark flavors disentangled, we add data on DIS off a deuteron target,
analogous to an earlier study in Ref. [36]. For all variants we employ the NLO massive Wilson
coefficients [32] and the pole-mass definition for the heavy-quark masses, so that a consistent
comparison of the FFN scheme with the original formulation of the BMSN prescription and its
modifications is possible. For the same purpose we take the factorization scale µF = mh both for
the FFN and VFN scheme. The values of mpole

c = 1.4 GeV and mpole
b = 4.4 GeV used in the present

study are not perfectly consistent with the ones obtained in the ABMP16 fit with the MSdefinition.
However, they are close to the values in the pole-mass scheme preferred by the HERA data [6] 3.
With these settings, the FFN scheme provides a good description of the c-quark production data,
cf. Fig. 7. The agreement of the fit with the data is equally good, both at small and at large Q2,
underpinning the fact, that any additional large logarithms cannot improve the theoretical data
treatment within the range of kinematics covered by the HERA data. This observation is indeed
long known [38].

In order to check this aspect in greater detail we also compare predictions of various versions
of the VFN scheme with the data. Let us consider the VFN predictions for the heavy-quark pro-
duction cross sections which are computed by using the BMSN prescription of Eq. (15) for F2,
while still keeping the FFN scheme for FL. The justification of this approach derives from the
small numerical contribution of FL as compared to F2. In addition, the modeling of FL within
the VFN framework is conceptually problematic [12], because the effects of power corrections in
m2

h/Q
2 cannot be disregarded for this observable [13]. The PDFs used in this comparison are the

ones obtained in the FFN version of the fit. Therefore the obtained pulls display the impact of the
scheme variation only.

As expected, predictions of the VFN scheme based on the BMSN prescription and the FOPT
heavy-flavor PDFs are close to the FFN ones. The same applies to the case of NLO-evolved PDFs,
which are smoothly matched with the FFN ones at small scales, cf. Fig. 5. In contrast, an excess
with respect to the small-Q2 data appears for the variant of the fit with the NNLO∗ PDFs employed.
This excess is clearly related to the mismatch between the FFN scheme and this variant of the VFN
one. At large Q2 the impact of the resummation of large logarithms is marginal, in particular given
the size of the data uncertainties. The latter is true also for the case of NLO-evolved PDFs.

The HERA data on c-quark production used in the present analysis are accurate enough to
provide a sensible constraint on the small-x gluon distribution. Moreover, the latter demonstrate
sensitivity to the choice of the factorization scheme, cf. Fig. 8. The FFN scheme and the BMSN
scheme with the FOPT and the NLO-evolved PDFs are in qualitative agreement, while a much
lower small-x gluon distribution is preferred in the variant based on the NNLO∗ PDFs. This is in
line with the trends observed for the pull comparison, cf. Fig. 7.

The difference between gluon and quark distributions obtained in the NLO- and NNLO∗-based
fits is pronounced at small x due to kinematic correlations with the small-Q2 region, where the dif-
ference between these two approaches is localized, and reaches ∼ 30% at x = 10−4. The description
of the small-x inclusive DIS data is also sensitive to the scheme choice due to a substantial contri-
bution of the heavy-quark production. In order to check this quantitatively, we consider variants of
the fits with various VFN scheme prescriptions and the HERA inclusive data [39] added. In line
with the recent update of the ABMP16 fit [40], we impose strong cuts on the momentum transfer
Q2 > 10 GeV2 and on the hadronic mass W2 > 12.5 GeV2, which allow to avoid any impact of

3 Changing the heavy-quark mass renormalization scheme to the MS-scheme is straightforward, cf. [19, 37].
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FIG. 9. The same as in Fig. 8 for the variants of the fit with the HERA inclusive DIS data appended. Results
of the NNLO FFN fit displayed for comparison (solid lines).
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FIG. 10. The same as in Fig. 9 for a comparison of two variants of the BMSN fit based on the NNLO∗ PDFs
with the matching point at µ0 = mc (dots) and µ0 = 2mc (dashed dots).

higher twist corrections, cf. [41]. The PDF uncertainties are improved due to the additional data
included. However, the sensitivity of the resulting gluon distribution to the choice of heavy-quark
PDF evolution still reaches ∼ 30% at x = 10−4, cf. Fig. 9. Such a spread induces quite essential
uncertainties in the small-x VFN predictions, in particular in the c- and b-quark input distributions
for scattering processes at hadron colliders.

The gluon distribution obtained using the BMSN prescription with the NLO-evolved PDFs is
increased with respect to the FOPT one at x ∼ 0.01, which gives a hint on the impact of the re-
summation of large logarithms at these kinematics. No further substantial change in the gluon
distribution at x & 0.01 is observed, when the NNLO corrections to the evolution are taken into
account. Therefore, one should expect a minor impact of the logarithmic terms at higher order
(higher powers) on the description of the existing DIS data, although the comparison is some-
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FIG. 11. The same as in Fig. 9 for the 5-flavor PDFs at the factorization scale µ = 100 GeV.

what deteriorated by the uncertainty from the mismatch in perturbative orders in the NNLO∗ fits
appearing at x . 0.01. In this context it is also instructive to consider the results of the FFN fit per-
formed with account of the NNLO corrections, which include the terms up to O(ln2(µ2/m2

h)) [5]
and MSmasses mc(mc) = 1.27 GeV, mb(mb) = 4.18 GeV [42]. The gluon distribution obtained
with these settings is similar to the VFN ones at x & 0.01, located between the NLO and NNLO∗

fit results at x ∼ 10−4 and lower by ∼ 5% than both of these variants at x ∼ 0.01, where they agree
with each other, cf. Fig. 9. This plot also yields an upper limit on the estimate of the impact of
missing large logarithms in the NNLO FFN fit. On the other hand, a comparison with the NNLO
VFN fit at small x is inconclusive due to the large uncertainties in the VFN scheme appearing at
these kinematics. A more accurate estimate requires the NNLO VFN fit with a consistent bound-
ary condition based on OMEs at NNLO accuracy [4, 5, 16–19]. Nonetheless, at the present level
of data accuracy this upper limit is comparable with the experimental uncertainties in the gluon
distribution obtained from the fit.

Finally, considering a variation of the matching scale for the 4-flavor PDFs from µ0 = mc to
µ0 = 2mc, leads to VFN heavy-flavor predictions being closer to the FFN ones, cf. Fig. 6. The
phenomenological effect of such a variation is more substantial at small Q2 and x due to kinematic
characteristics of the existing DIS experiments. Therefore, the corresponding change of the gluon
distribution due to a matching point variation is significant mostly at x . 10−3, cf. Fig. 10. It is
comparable in size with the VFN scheme uncertainty related to the boundary conditions for the
evolution. However, strictly speaking, these two uncertainty sources should not be considered
independently since the impact of the matching scale variation also manifests itself through the
scheme change.

V. IMPLICATIONS OF VFN SCHEMES FOR PREDICTIONS AT HADRON COLLIDERS

The contribution of heavy flavors to the hadro-production of massive states, like W±-, Z- and
Higgs-bosons, t-quarks, etc., are commonly taken into account within the 4- or 5-flavor scheme.
This allows for great simplifications of the computations, since the VFN PDFs employed in this
case contain resummation effects, which are generally rising with the factorization scale, cf. Fig. 1.
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FIG. 12. The ratio of two-mass contribution Eq. (16) to the DIS structure function F2,c (left panel) and
F2,b (right panel) computed in the VFN scheme using the PDFs from the NNLO∗ variant of the VFN fit
versus momentum transfer Q2 and at various values of Bjorken x (solid line: x=0.0001, dashes: x=0.001,
dotted-dashes: x=0.01).

Therefore, the VFN scheme provides a relevant framework for the phenomenology of heavy par-
ticle hadro-production.

The NNLO 4- and 5-flavor PDFs still suffer from the uncertainty due to the yet unknown exact
NNLO corrections to the massive OMEs. Moreover, for the NNLO PDFs derived from the VFN
fit including the small-x DIS data this uncertainty is enhanced, since the part of those DIS data,
which provides an essential constraint on the PDFs, also populates the matching region. The
observed spread in the 5-flavor gluon distributions, which are obtained from the VFN fits with
varying treatments of the matching ambiguity is somewhat reduced with increasing scales due
to the general properties of the QCD evolution. However, it is still comparable to experimental
uncertainties at x ∼ 0.01 and substantially larger at x ∼ 10−4, cf. Fig. 11.

Altogether, this implies an uncertainty in predictions of the production rates of the Higgs-
boson and t-quark pairs at the Large Hadron Collider (LHC) within a margin of few percent and
somewhat larger at the higher collision energies discussed for future hadron colliders. Note that
in the ABMP16 fit [5], which is based on a combination of both, DIS and hadron collider data,
the FFN and the 5-flavor VFN schemes are used for the theoretical description of these samples,
respectively. This allows to keep the advantages of the VFN scheme at large scales, while avoiding
its problems concerning the DIS data. Nevertheless, the NNLO massive OMEs [4, 5, 16–19] are
still necessary to generate NNLO PDFs free from the matching ambiguity.

In closing the studies of VFN schemes we wish to address a conceptual problem of the 5-
flavor scheme definition due to the fact, that the b-quark mass mb is not too much larger than mc.
This relates to the inherent limitations of the VFN schemes due to the successive decoupling of
one heavy quark at a given time. As discussed above, starting from the two-loop order, the DIS
structure functions also receive contributions which contain two different massive quarks [23].
At two loops, they are given by one-particle reducible Feynman diagrams, while one-particle
irreducible graphs appear at the three-loop order for the first time, cf. [20–22].

Here we will consider the two-loop effects, which arise from virtual corrections with both,
charm and bottom quarks. Thus, no production threshold is involved. For the structure function
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F2 one obtains

F2−mass,(2)
2,h (x,Q2) = −e2

h a2
s(Q2)

16
3

T 2
F x ln

(
Q2

m2
c

)
ln

Q2

m2
b

 1∫
x

dz
z

(
z2 + (1− z)2

)
g
( x

z
,Q2

)
, (16)

which is to be added to Eqs. (12) or (13), with eh denoting the fractional heavy-quark charge and
using TF = 1/2. The effect of the 2-mass contributions rises at small x and large Q2, being more
pronounced for the case of b-quark production, cf. Fig. 12. For the kinematics of the proposed
lepton-proton LHeC collider it reaches up to ∼ 3%, which has impact on the phenomenology of
heavy-quark production.

As demonstrated in Ref. [23], the two-mass diagrams at the two-loop order have the largest
effects for the b- and c-quark distribution at large Q2. The respective PDFs can be obtained by
adding the two-mass contributions to the OMEs in Eq. (2). Comparing the heavy-quark PDFs with
and without the two-mass effects included, one finds that the relative size of the effect is negative:
b-quark distributions with the two-mass contributions included are decreased by -2% to -6% in
the range for Q2 from 30 to 10000 GeV2 at small x, x = 10−4; c-quark distribution the relative
variations are smaller, amounting to -1% to -4% for Q2 = 100 GeV2 to 10000 GeV2 and x = 10−4.
In precision fits these two-mass effects have consequences for all PDFs and require the use of a
different VFN scheme compared to those with the decoupling of a single heavy quark at the time,
cf. [23]. At this point, however, we leave detailed studies of VFN schemes with two massive
quarks, i.e., the simultaneous transition fi(n f )→ fi(n f + 2) for PDFs for future studies.

VI. CONCLUSIONS

The precise description of the parton content in the proton across a large range of scales is a
an important ingredient in precision phenomenology. The treatment of heavy quarks with a mass
mh requires adapting the number of light flavors in QCD to the kinematics under consideration,
set by the factorization scale µ, which is typically associated with the hard scale of the scattering
process. Within the ABMP16 global PDF fit, the FFN scheme with n f = 3 light flavors provides a
good description of the existing world DIS data, while the LHC processes are typically described
with n f = 5 massless flavors by implementing decoupling of heavy quarks and a transition from 3-
to 4- or 5-flavor PDFs, including the possibility for the resummation of large logarithms in Q2/m2

h.
To check the effects of such a resummation on the analysis of existing DIS data we have studied

the c-quark PDF, constructed with the help of massive OMEs in QCD, and we have quantified dif-
ferences between the use of perturbation theory at fixed order and subsequent evolution. We have
found that the impact of the PDF evolution as used in the BMSN prescription of VFN scheme is
sizable and rather x-dependent than Q2-dependent, showing little impact on the large-log resum-
mation on the heavy-quark production at realistic kinematics. Moreover, these differences must
be considered an inherent theoretical uncertainty of VFN schemes since using NLO or NNLO
accuracy for the evolution leads to significantly different results due to mismatch in the orders of
perturbation theory between the heavy-quark OMEs and the accuracy of the evolution equations.
Likewise, and related, the choice of the matching point position employed in the VFN schemes
has the impact on heavy-quark PDFs and therefore brings additional uncertainty.

With the help of variants of the ABMP16 PDF fit, we have confronted the FFN scheme and
different realizations of VFN schemes (FOPT, evolved at NLO, evolved at NNLO) in the BMSN
approach with the combined HERA data and DIS c-quark production. The FFN scheme delivers a
very good description of those data and we have found little need for the additional resummation
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of large logarithms in the kinematic range covered by HERA. From the fit variants, we have also
determined the gluon and the total light-flavor sea quark distributions, illustrating again the sizable
numerical differences, obtained by adopting the respective VFN scheme variants. Depending on
the value of x, the observed differences for the gluon PDF are well outside the experimental uncer-
tainties at low factorization scales and persist as well as at high scales of O(100) GeV. The VFN
scheme choices are, therefore, highly relevant for LHC phenomenology and affect the predictions
for the hadro-production of massive particles within a margin of few percent.

In summary, despite being applicable in a limited kinematic range, the FFN scheme works very
well for the modern PDF fits and contains much smaller theoretical uncertainty than the VFN
schemes currently available. As an avenue of future development, the latter will benefit from im-
proving the perturbative accuracy of the massive OMEs used, including their NNLO corrections,
which are known exactly or to a good approximation. Other features of VFN schemes to be im-
proved concern the simultaneous decoupling of bottom and charm quarks, which is advisable due
to the close proximity of the mass scales mb and mc. We leave these issues for future studies.
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Appendix A: Heavy-quark scheme implementations

We briefly summarize the technical details of the various implementations of heavy-quark
schemes in PDF fits of ABMP16 [5], CT18 [7], MMHT14 [8] and NNPDF3.1 [9].

ABM

The ABMP16 PDF fit [5] is based on the FFN scheme in a part concerning heavy-flavor DIS
production. Nonetheless, for the collider data on t-quark, W- and Z-boson production, where
the VFN scheme is more relevant, the 5-flavor PDFs are constructed from the 3-flavor ones,
see Eqs. (2)–(4), using currently available information on the heavy-quark OMEs and employ-
ing NNLO evolution for the matched PDFs. All relevant formulae are implemented in the code
OPENQCDRAD (version 2.1), which is publicly available [43].

CT

CT18 [7] uses the ACOT VFN scheme [26–28], specifically an NNLO realization [44] of the
so-called S-ACOT-χ variant. The S-ACOT-χ VFN scheme features a slow rescaling of the parton
momentum fractions z in the argument of the respective massless Wilson coefficient functions in

FZMVFN
2,h in Eq. (12) by replacing z→ χ = z

(
1 +

4m2
h

Q2

)
, and restricting the integration range of z in

the convolutions to x
(
1 +

4m2
h

Q2

)
≤ z ≤ 1 with the Bjorken variable x. The slow rescaling is motivated
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by its properties to model energy conservation in the DIS production of heavy final states. Ref. [44]
also explores a wider family of rescaling choices, which interpolate smoothly between z and χ.

MSTW

MMHT14 [8] uses the RT VFN scheme [30], specifically the TR’ prescription from Ref. [45]
for PDF fits at NNLO. The RT scheme requires as a constraint the continuity of physical observ-
ables in the threshold region, i.e., for the expression for FFFN

2,h in Eq. (13) below and FZMVFN
2,h

in Eqs. (12) above threshold. To that end, the derivative of the structure function, dF2/d ln Q2

is supposed to be continuous at the matching point Q2 = m2
h in the gluon sector. To achieve this

modeling constraint, a Q2-independent term is added above the matching point to the expression
for FZMVFN

2,h to maintain continuity of the structure function. The TR’ prescription specifies this
procedure up to NNLO [45].

NNPDF

NNPDF3.1 [9] uses the FONLL VFN scheme [29], which has been devised to combine the
heavy-quark DIS structure functions and the ZMVFN expressions in analogy to Eq. (15). FONLL
suppresses the difference of FZMVFN

2,h in Eq. (12) and the necessary subtraction term, i.e., the
expression analogous to Fasy

2,h in Eq. (14), which is needed to avoid double counting, with a kine-

matical damping factor
(
1− Q2

m2

)2
. In this manner, it is guaranteed, that only FFFN

2,h of Eq. (13)

remains for virtualities Q2 ' m2
h near threshold. The variant FONLL-C is used to determine the

PDFs at NNLO [29].
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