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ABSTRACT

We discuss the production of multiple astrophysical messengers (neutrinos, cosmic rays, gamma-

rays) in the Gamma-Ray Burst (GRB) internal shock scenario, focusing on the impact of the collision
dynamics between two shells on the fireball evolution. In addition to the inelastic case, in which plasma
shells merge when they collide, we study the Ultra Efficient Shock scenario, in which a fraction of the

internal energy is re-converted into kinetic energy and, consequently, the two shells survive and remain
in the system. We find that in all cases a quasi-diffuse neutrino flux from GRBs at the level of 10−11

to 10−10 GeV cm−2 s−1 sr−1 (per flavor) is expected for protons and a baryonic loading of ten, which
is potentially within the reach of IceCube-Gen2. The highest impact of the collision model for multi-

messenger production is observed for the Ultra Efficient Shock scenario, that promises high conversion
efficiencies from kinetic to radiated energy. However, the assumption that the plasma shells separate
after a collision and survive as separate shells within the fireball is found to be justified too rarely in

a multi-collision model that uses hydrodynamical simulations with the PLUTO code for individual
shell collisions.

1. INTRODUCTION

Gamma-Ray Bursts (GRBs) have been proposed as
plausible candidates for the origin of the Ultra-High En-
ergy Cosmic Rays (UHECRs) and neutrinos, invoking
photohadronic interactions in the fireball scenario (Wax-

man & Bahcall 1997). It is however evident from GRB
stacking searches that GRBs cannot be the dominant
source of the observed diffuse astrophysical neutrino
flux (Abbasi et al. 2012; Aartsen et al. 2017). In radia-
tion models of high-luminosity GRBs where all emission
regions look alike (one-zone models), the nominal pre-

dictions for the neutrino flux are in tension with these
stacking searches in spite of recently improved neutrino
flux estimates (Hummer et al. 2012; Li 2012; He et al.
2012). Dedicated scans of the source parameters (in-
cluding the baryonic loading, the luminosity in protons
versus gamma-rays) and fits to the UHECR spectrum
and composition data confirm that the simple one zone
emission picture is in tension with neutrino data for
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most of the parameter space (Baerwald et al. 2015; Biehl
et al. 2018).

As a possible solution multi-collision models have
been proposed, which tend to predict a lower neu-
trino flux (Globus et al. 2015; Bustamante et al. 2014,

2017) for the same baryonic loading. These models also
demonstrate that the different messengers (neutrinos,
cosmic rays, gamma-rays) are predominantly emitted at
different radii within the GRB jet (Bustamante et al.
2014). Also the stochasticity pattern and the time de-
lays between different energy bands in the light curves
can contain information on the neutrino production ef-
ficiency (Bustamante et al. 2017).

As specific implementations of the fireball model (Rees
& Meszaros 1992, 1994), most GRB multi-collision mod-
els invoke emission from internal shocks (Kobayashi
et al. 1997; Daigne & Mochkovitch 1998), in which a
set of plasma shells is emitted from an intermittent cen-
tral engine with a specific distribution of Lorentz fac-

tors. The emitted shells can have, for instance, equal
masses or equal energies, which are related through the
relation Ekin = Γm. Because of the different velocities,
the shells will eventually catch up with each other and
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collide inelastically, forming a merged shell that contin-
ues to propagate through the jet. In each shell collision,
shocks form that accelerate particles, converting inter-
nal energy (from the inelastic collision) into non-thermal
radiation.

In principle, multi-collision models provide a natural
explanation for the the fast time variability and vari-
ety of light curve shapes observed in GRBs; see e.g.
Kobayashi et al. (1997); Daigne & Mochkovitch (1998);
Spada et al. (2000); Beloborodov (2000); Kobayashi &
Sari (2001); Daigne & Mochkovitch (2003). A funda-
mental problem is, however, the moderate dissipation
efficiency of kinetic energy into non-thermal particles.
On one hand, the afterglow emission caused by the shells
running into the circumburst medium after the prompt
phase might be too high if a large amount of energy
remains in the jet. One the other hand extremely pow-
erful engines are required to reach the observed gamma-
ray luminosities. The Ultra Efficient Shock scenario

has been proposed as a potential solution to this prob-
lem (Kobayashi & Sari 2001), in which a fraction of the
internal energy is re-converted into kinetic energy. Con-
sequently, the two shells survive and remain in the sys-

tem after the collision, resulting in swift thermalization.
In this scenario a high overall dissipation efficiency can
be achieved, even if the efficiency of each individual two-

shell collision is low. A key ingredient of the scenario is
the assumption that two shells remain after each col-
lision, whereas hydrodynamical studies and analytical

estimates (Kino et al. 2004) demonstrate that this as-
sumption is depending on the collision parameters and
that most collisions likely result in only one merged shell.

In this work, we revisit the multi-collision multi-

messenger models in Bustamante et al. (2014, 2017)
from the point of view of the collision dynamics and
study the impact on the production of multiple mes-

sengers. We employ the methods from Baerwald et al.
(2012); Hummer et al. (2012); Biehl et al. (2018) for the
radiation calculations and use broken power-law target
photon spectra that resemble observations. After re-
capping the previous approach, i.e., the fully inelastic
case with equal mass injection in Section 2, we scan
the parameter space for the two-shell collision for con-
figurations with two post-collision shells, and scrutinize
the plausability of this assumption in the fireball evo-
lution. The multi-messenger production is studied in

Section 4 for alternative collision models: A) a version
of the reference model, in which a fraction of the in-
ternal energy is converted into adiabatic expansion of
the merged shell; B) the ideal Ultra Efficient scenario
according to Kobayashi & Sari (2001); and C) a “hy-
brid” model, where PLUTO is used to determine the

fate of each two-shell collision individually. We discuss
the impact on the observables (light curves and neutrino
fluxes) in Section 5 and conclude in Section 7.

2. METHODS AND REFERENCE MODEL

As the reference case, we pick the collision model from
Bustamante et al. (2017), based on Kobayashi et al.
(1997) and recapitulate the main ideas and mathemat-
ical expressions before entering the discussion of alter-
natives in the next sections.

The relativistic outflow of the jet is discretized as
a one-dimensional sequence of spherical plasma shells
with different velocities and masses. When a faster shell
catches up with a slower one, they interact and colli-
sionless shocks convert kinetic energy into internal en-
ergy (which will be radiated as non-thermal particles).
During the interaction, the two shells merge into a sin-

gle new shell which will continue to propagate as a part
of the jet (see Bustamante et al. (2017) and first sub-
section for a detailed description). The internal energy
remaining from the collision is converted into radiation

through the interaction of accelerated particles, based on
the model from an updated version of the NeuCosmA
software (Biehl et al. 2018).1

In this section, the “GRB 1” in Bustamante et al.
(2017) acts as a reference parameters set, but with an
equal-mass instead of equal-energy setup, resulting in

a few quantitative differences, which are discussed in
Appendix C.1. It will become clear in the next sections
why this choice allows for a better comparison with the
alternative models. For the sake of simplicity, we focus

on the proton-only case in this study. Changing the
composition would not affect the level of the neutrino
flux, as it mainly depends on the energy injected per

nucleon. However the maximal energy of neutrino flux
is lower for heavier injection, as the maximal rigidity is
reduced by Z/A. See Biehl et al. (2018) for a detailed
discussion of nuclear injection in GRBs.

COLLISION MODEL

A plasma shell is characterized by its mass (m), width
(l) and the Lorentz factor (Γ) with respect to the en-
gine frame. When a fast (“rapid”, index r) shell collides
with a slow (index s) shell, forward and reverse shocks
develop. They propagate from the contact discontinu-

1 The update impacts the description of the optically thick (to
photo-hadronic interactions) case, see App. C of Biehl et al.
(2018) for details. This leads to slightly lower predicted cos-
mic ray fluxes at the highest energies. The baryonic loading is
defined with respect to the injection luminosity (previously, the
steady state density), resulting in a more transparent evaluation
of the energy budget.
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ity (”CD”, which is the surface separating the initial
slow from the fast shell) through the joint density pro-
file initially compressing the matter (see Fig. 2 for an
illustration of the setup). After the shock waves reach
the edges of the density profile, two rarefaction waves
develop that propagate back towards the CD. They de-
compress the matter and reconvert internal energy into
kinetic energy. The kinetic properties of the k-th shell
are determined by the Lorentz factor Γk, the mass mk or
the kinetic energy Ekin,k, the radius Rk and the width
lk. The other properties, such as the speed βk, the vol-
ume Vk = 4π R2

k lk and the density ρk, can be derived.
In the following, all unprimed quantities (unless explic-
itly given in the observer’s frame) are given in the engine
frame, and all primed quantities refer to the shock rest
(or merged shell) frame.

The simulation of the reference model initially con-
tains 1000 shells with their Lorentz factors Γk’s sampled
from a log-normal distribution

ln

(
Γk − 1

Γ0 − 1

)
= A · x , (1)

where x is distributed as a Gaussian P (x)dx =

exp(−x2)/
√

2πdx with Γ0 = 500 and A = 1.0. We fur-
ther assume that the spatial separation for all shells is
equal to their width (lk = Lk = 0.01 c s, equivalent

to the temporal separation δtk = 0.01 s for relativistic
shells) and that the innermost shell starts at a radius
Rmin. The initial distribution of kinetic energies Ekin,k

is a free model choice, and typical assumptions are equal
shell masses mk, energies Ekin,k or densities ρk. As pre-
viously mentioned, the reference model uses the equal-
mass case. From this initial setup the system evolves

until all shells have reached the circumburst medium at
Rmax.

For the collision between a rapid and a slow shell the
properties for the merged shell (index m) are determined
from simple analytical expressions following Kobayashi
et al. (1997). The Lorentz factor Γm follows from the
conservation of momentum as

Γm =

√
mrΓr +msΓs
mr/Γr +ms/Γs

(2)

(using the approximation β = 1−1/(2Γ2) that holds for
Γ � 1). The internal energy available for radiation is
then the difference of kinetic energies before and after
the (inelastic) collision:

Eint,m = mrΓr +msΓs − (mr +ms)Γm . (3)

We define the efficiency of each collision as the ratio

between the dissipated energy and the produced internal

energy:

η =
Ediss,m

Eint,m
(4)

The idealized assumption of η = 1 in the Reference
model will be modified for the alternative models in Sec-
tion (4).

The Lorentz factors of the forward (fs) and the reverse
shock (rs) are determined from

Γfs (rs) = Γm ·

√
1 + 2Γm/Γs (r)

2 + Γm/Γs (r)
. (5)

The timescale of emission tem is estimated from the
time taken by the reverse shock to cross the rapid shell

δtem =
lr

βr − βrs
. (6)

This timescale is observed Doppler-boosted in the ob-
server’s frame. The width of the compressed merged

shell is computed from

lm = ls
βfs − βm
βfs − βs

+ lr
βm − βrs
βr − βrs

. (7)

For Eq. (5) to Eq. (7) we follow the description given

in Kobayashi et al. (1997). This formulation might not
be valid in the non-relativistic regime, however colli-
sions in the non-relativistic regime dissipate little energy

and therefore contribute only marginally to the multi-
messenger emission. Even though tem and lm might be
slightly miss-estimated for those collisions, the impact
on our main results is therefore small.

RADIATION MODEL

The collision parameters derived in the previous sec-

tion are now used for the computation of the energy
density and the emission spectra in the merged shell
(primed frame). It is assumed that fractions of the in-
jected luminosity L′diss,m ' E′diss c/l

′
m are distributed

into protons (εp), electrons (εe), and the magnetic field
(εB), such that εp+ εe+ εB = 1. Normally it is assumed
that the non-thermal electrons loose energy quickly via
synchrotron radiation, implying that gamma-rays will
carry a comparable amount of energy εγ ' εe. We as-
sume a baryonic loading of εp/εγ = 10. It is convenient
to relate these quantities to the (observed gamma rays),
consequently εγ = εB = 1/12 and εp = 10/12.

We assume a power-law spectrum motivated by Fermi
shock acceleration (∝ (E′p)

−2 exp(−E′p/E′p,max)) for the

injected proton component. The maximal energy E′p,max

is found by comparing the timescales of efficient accel-
eration t′−1 ' c/R′L (R′L is the Larmor radius), pho-
tohadronic and adiabatic energy losses (for a detailed
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discussion of the maximum energies see also Samuelsson
et al. (2018)). The proton spectrum is normalized to the
available luminosity fraction (εp) as outlined above.

For the target photon spectrum, we do not perform ex-
plicit self-consistent radiation calculations, but instead
assume a shape motivated by observations– a broken
power law with spectral indices −1 and −2 below and
above the break energy ε′break ' 1 keV, respectively
Gruber et al. (2014). The maximal photon energy is as-
sumed to be limited to ε′max = 106 GeV and reduced in
case γγ-annihilation sets in at lower energies. The nor-
malization is performed equivalent to the proton case
with the fraction εγ . With these power-law indices,
the energy densities depend (at most) logarithmically
on the maximal and minimal energies, reducing the im-
pact of our choice of ε′max. Successful modeling of GRB
prompt spectra within the internal shock model has been
performed in e.g. Bosnjak et al. (2009); Daigne et al.
(2011); Bošnjak & Daigne (2014). Realistic values for

the synchrotron peak energy and spectral indices can be
achieved, for instance, by allowing a small fraction of
electrons to be accelerated to high energies (as in Eich-
ler & Waxman (2005); Spitkovsky (2008)). However, an

explicit modeling of photon synchrotron spectra is not
within the scope of this work.

The coupled proton-neutron system is evolved to the

steady state using NeuCosmA (Biehl et al. 2018), which
takes photohadronic, pairproduction, adiabatic and syn-
chrotron losses into account. The neutrons escape

freely, whereas the protons are assumed to be magnet-
ically confined and to escape only from the boundaries
(within their Larmor radius), referred to as “direct es-
cape” (Baerwald et al. 2013). This assumption implies

that close to the photosphere the cosmic ray emission
is dominated by neutron escape, and for large collision
radii by direct proton escape (Bustamante et al. 2014).

The mechanism for cosmic ray escape is currently dis-
cussed, and it is likely that several competing compo-
nents contribute; see discussion in Zhang et al. (2018).
The implementation for secondary particle emission is
described in great detail in Biehl et al. (2018).

The model does not account for the emission from sub-
photospheric collisions, for which the optical thickness

to Thomson scattering is larger than one – resulting in
a different, thermalized shape of the target photon spec-
tra. Even if cosmic-ray acceleration could take place at
such low radii, the high radiation densities will prevent
the particles from reaching the UHE range. Since the
pion production efficiency scales with the density similar
to the Thomson optical depth, the neutrino production
is most efficient close to the photosphere. There could
be a significant contribution from sub-photospheric col-

lisions; hence, our neutrino flux estimate shall be consid-
ered as minimal prediction. We chose examples in which
the fraction of sub-photospheric collisions is small to re-
duce the impact of this effect.

DISCUSSION OF REFERENCE MODEL

We will use the format of Fig. 1 to characterize the
behavior of different models, and hence explain it here
in greater detail. Since the initial configuration of the
1000 shells is drawn from the distribution in Eq. (1),
the model naturally produces stochastic fluctuations in
the variables. We compute 100 representations if not
otherwise noted. In the figures, we show the average as
a solid curve and the region between the edge cases with
a shaded band.

The left panel shows the differential energy dissipa-
tion in the engine frame for the different messengers:
neutrinos, UHECRS above 1010 GeV, gamma-rays, and

gamma-rays above 1 GeV only. In the dark-shaded re-
gion, all collisions occur below the photosphere, in the
light-shaded region, the collision may be above or be-
low the photosphere (depending on the other shell pa-

rameters). The result is consistent with earlier works
(Bustamante et al. 2014, 2017): neutrinos originate near
the photosphere due to the high density; UHECRs pre-

fer intermediate collision radii since high magnetic fields
are required for efficient acceleration – but not as high
as that radiation losses (such as synchrotron radiation)

limit the maximal energy; gamma-rays trace the region
where most energy is dissipated (see middle panel and
discussion below); HE gamma-rays above 1 GeV in the
source frame prefer larger collision radii where maxi-

mal energies are not dominated by losses. The different
astrophysical messengers originate from different radii
of the same jet, thus drawing attention to the collision

model that defines the connections among these differ-
ent regions. The statistical fluctuations from the initial
shell setup (shaded areas) imply some variability in this
picture, but they do not change it qualitatively.

The middle panel of Fig. 1 shows the distribution
of radius and dissipated energy of the individual col-
lisions in arbitrary units. This figure demonstrates that
most of the relevant collisions happen above the photo-
sphere and there is a not very noticable anti-correlation
between RC and Ediss, confirming the relation to the

gamma-ray output in the left panel.
The maximal cosmic ray energy in the upper right

panel of Fig. 1 exhibits a similar shape as the UHECR
curve in the left panel, that only accounts for cosmic
rays with Ep,max within the red-shaded area. The lower
panel shows the magnetic field B′ (left axis, black curve)
and the optical thickness to photohadronic interactions
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(a) (b) (c)

Figure 1. Reference model, corresponding to GRB 1 from Bustamante et al. (2017) for Eγ,iso = 5.2 · 1052 erg but for a
constant mass injection rate: (a) Energy dissipated in neutrinos, high-energy (HE) gamma rays, gamma-rays and UHECR
as a function of collision radius. We define “HE gamma rays” as gamma rays that have energies above 1 GeV in the source
frame, and UHECRs as cosmic rays that have energies above 1010 GeV. In the dark gray-shaded area only sub-photospheric
collisions occur, while in the light gray-shaded both sub- and super-photospheric collisions occur; subphotospheric collisions are
not included in this model. (b) The number of collisions as a function of collision radius and dissipated energy (the contour plot
shows the density of the number of collisions). (c) The averaged maximal proton energy (upper panel), as well as the obtained
magnetic field and the optical depth to pγ reactions (different colors/axes) as a function of radius (lower panel). All plots have
been computed averaging over 100 random seeds for the initial shell distribution. The curves show the average, and the shaded
areas the fluctuations.

evaluated at Ep,max(RC) (right axis, green curve). Both
scale with the collision radius, τpγ ∼ R−2C and B′ ∼ R−1C .

The collisions close to the photosphere are optically
thick to photohadronic interactions, and are responsi-
ble for most of the neutrino production (see left panel).

We define the overall energy dissipation efficiency from
kinetic energy to radiation as

ε ≡ Etot
diss/E

tot
kin (8)

In contrast to η it describes the efficiency of the whole
system and is an output instead of an input parameter.

For the Reference model we find ε ≈ 36%, i.e., some-
what higher than for the equal-energy setup in Busta-
mante et al. (2014, 2017). The reason for this is that
the efficiency for individual collision η is higher in the
equal mass case (Kino et al. 2004). Compared to the
equal-energy setup, the Reference model discussed here
relatively efficiently converts the kinetic energy drawn
from the GRB engine into secondaries. We discuss this
issue in greater detail in Section (4) for alternative model
assumptions, and we compare to the literature in Sec-

tion (6.1). The kinetic energies assumed in our mod-
els (see Tab. 2) are at the higher end of observations
(Gruber et al. 2014), motivated by the higher baryonic
loading required to reach the UHECR energy density
observed at Earth.

3. PROBABILITY FOR TWO-SHELL FINAL

STATES

The key ingredient of the the Ultra Efficient model
by Kobayashi & Sari (2001) is the emergence of two

shells after a collision. Here, we study the probabil-
ity of such events using ranges of collision parameters
from stochastic GRB multi-collision models with hydro-
dynamical simulations, see Appendix (A) for details. We

use the PLUTO code (Mignone et al. 2007) with a one-
dimensional setup. A study for a two-dimensional setup
demonstrated qualitatively similar behavior to one di-

mension (Mimica et al. 2004). Magnetic fields are ne-
glected. The colliding shells are assumed to be cold.
For a treatment of arbitrarily hot plasma shells see e.g.
Pe’er et al. (2017), who find a possible suppression of
the shock formation and a dependence of the energy per
particle after the collision on the pre-collision plasma
temperature.

The collision process and the post-collision shell con-
figurations are illustrated in Fig. 2. Panel (a) demon-
strates the equal energy case (in the source frame) and
panel (b) the equal masses case. In both panels the shells
are shown at t′ = 0, the slow shell is depicted in blue,
the fast one in red. The mass density profiles at t′shock,
when both shocks have crossed the respective shells, are
shown in purple. In Fig. 2 (a), the resulting mass density
profile is clearly single-peaked, while in Fig. 2 (b) two
distinct peaks moving at different speeds can be seen. In
order to identify two-shell post-collision configurations,
we evaluate the mass density profile at the time when
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(a) (b)

Figure 2. Collision of a rapid (r) and slow (s) shell in frame of the contact discontunuity (CD) in the case of equal initial
energies (a) or equal masses (b). The mass density profiles at t′ = 0 are in red and blue and the hatched common profile is a
snapshot at t′shock after the collision. The velocity profile β of the hatched surface is shown in the lower panels in units of c.
The Lorentz factors for the initial shells are Γr = 500 and Γs = 100 and the widths are equal in the source frame (ls = lr). The
snapshot (after the collision) time t′shock is defined when the reverse and forward shocks have crossed the respective shell. The
parameter d∗ = ρMax − ρMin is the depth of the density dip (where ρMax the density at the lower peak) which will be used later
as a discriminator between single- and double-peaked profiles.

both shocks have crossed the shells and the internal en-

ergy is maximal. For a given snapshot in time, the mass
density can exhibit multiple peaks; Kino et al. (2004)
predict up to three peaks. Theoretical estimates com-

paring the time scales of the wave propagation (when the
shock and rarefaction waves cross the two shells) may re-
sult in unrealistic approximations, since double-peaked
profiles can rapidly evolve into single-peaked ones. After

t′shock, the density profile continues to evolve since the
velocity profile is not uniform across the shell(s) (cf.,
lower panels of Fig. 2). Instead, the shell edges move in

opposite directions in the CD frame. This leads to a di-
lution of the density profile as time evolves, invalidating
the assumption of a constant shell width for the entire
duration of a simulation (see also Pe’er et al. (2017)).
As discussed below, the dissipation of internal energy
reduces this effect by slowing down the thermal expan-
sion that ultimately leads to a washed-out single-peaked
profile.

For the classification of a two-shell collision, we define
the relative depth of the dip between two mass peaks

d =
d∗

ρMax
=
ρMax − ρMin

ρMax
, (9)

where ρMin is the density at the dip between the two
maxima and ρMax the density at the lower peak (illus-
tration see Fig. 2 (b)).

The main impact on the post-collision mass density

profile comes from the pre-collision mass ratio (mr/ms),
the Lorentz factors (Γr/Γs) and the shell widths (lr/ls).
We fix the width ratio lr/ls = 1 since in GRB inter-

nal shock models (see e.g. Kobayashi & Sari (2001);
Kobayashi et al. (1997); Daigne & Mochkovitch (1998)
and Globus et al. (2015); Bustamante et al. (2017);
Bosnjak et al. (2009)), plasma shells are ejected at con-

stant time intervals resulting in equal widths. An alter-
native choice lr = 0.1 ls is discussed in the Appendix.

Fig. 3 shows the depth d as a function of mr/ms and

Γr/Γs for the parameter ranges that enclose most of the
collisions in our models (see Section (4)). As already
noticed by Kino et al. (2004), pronounced dips, and
hence double-peaked density profiles, occur for almost
equal shell rest masses and for high Lorentz factor ratios
Γr/Γs. The latter can be understood from the shock-
/ rarefaction-wave timescales: If Γr/Γs is high, then

l′s � l′r. Therefore, the reverse shock takes substantially
longer to cross the fast shell than the forward shock to
cross the slow one. As a result, the rarefaction wave
from the direction of the slow shell has enough time to
create a pronounced dip separating the two shells.

The radiation model assumes that a fraction of the
internal energy is converted into non-thermal electrons
and/or ions which leave the system, which effectively
cools the system. To study the impact on the collision
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(a) (b) (c)

Figure 3. Relative depth of the dip d between the two shells after the collisions (see Eq. (9)) as a function of the pre-collision
mass ratio (mr/ms) and the ratio of Lorentz factors (Γr/Γs), in all cases we fixed Γs = 100 and lr = ls. The system is evolved
until both shocks have crossed the respective shells. For panel (a) energy dissipation in not included, in panel (b) 20% of the
(theoretically) produced internal energy is removed from the system, in (c) 50%. The red (black) curve corresponds to the case
where the colliding shells share the same initial kinetic energy (rest mass). The dots represent the cases shown in Fig. 2.

dynamics we introduce a simplified energy dissipation

term in our PLUTO simulations that removes internal
energy from the system until a certain threshold has
been reached (for more details see Appendix (A)). The
rate of this process is assumed to be proportional to the

available internal energy. The impact on the occurrence
of two-shell configurations is demonstrated by the con-
tours in Fig. 3 (b) and (c) for two efficiency choices.

The dissipation of internal energy reduces the velocity
and amplitude of the rarefaction waves, since those are
powered from the available internal energy. Too slow

rarefaction waves result in shallower dips in the mass
density profile (see also Figure Fig. 7), decreasing d and
moving up the contours in Fig. 3.

For the Ultra Efficient shock scenario, this result

means that the dissipation of internal energy into non-
thermal particles significantly reduces the probability for
two-shell final states. At the same time, the reduction of
internal energy available to drive the rarefaction waves
increases the lifetime of a two-shell configuration since
the thermal expansion of a the double-peaked profile
slows down. Hence, a higher energy dissipation rate re-
duces the emergence probability of two-shell configura-
tions, but increases their lifetime. The model “PLUTO”
described in the next section takes the first effect more
rigorously into account.

4. ALTERNATIVE COLLISION MODELS

In this section, we define three alternative models that
use different assumptions for the collision of two shells,
and study the impact on the multi-messenger produc-
tion. The format of the discussion follows Section (2)

where the details on the Reference model can be found,
which is used as benchmark case.

The Reduced Efficiency model assumes that in each
collision a fraction η = 0.5 of the internal energy in
Eq. (3) is dissipated as radiation, whereas the remain-

ing kinetic energy goes into the adiabatic expansion of
a single merged shell; the Ultra Efficient model assumes
partially inelastic collisions in which the remaining in-
ternal energy is re-converted into kinetic energy, always

resulting in two shells after the collision (Kobayashi &
Sari 2001); in the PLUTO model each two-shell collision
is simulated individually with the PLUTO code.

Since each model would produce a different result for
the same initial shell setup, we modify the setup of each
model to re-produce comparative burst durations, vari-

ability times derived from the light curve, and total
gamma-ray luminosities. Here, the variability timescale
refers to the fastest time variability observed on top of
longer-lasting light curve pulses. By construction, all
GRBs are normalized to release the same amount of en-
ergy in photons in the optically thin regime. The burst
duration ist determined by the initial size of the sys-

tem (the sum of all initial shell widths and separations),
which matches among the different models. The time
variability primarily depends on the number of colli-
sions for a constant burst duration, which scales with
the number of initial shells. However, in the Ultra Ef-
ficient model shells do not merge when colliding, lead-
ing to substantially more collisions for the same number
of initial shells. We compensate for this by reducing
N shells

initial = 1000 to 125. While the resulting variabil-
ity timescales are rather small, they do not necessar-
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ily translate into observed time variabilities, since these
are limited by the instrument’s response (i.e., the ac-
tual variability could be smaller). We have verified that
our results related to the multi-messenger production
are not qualitatively affected by the choice of 1000 ini-
tial of shells, see App. C.3. In all cases we assume an
engine with a constant mass outflow and constant up-
and downtimes resulting in equal initial shell widths and
separations. As previously discussed, a constant mass
outflow is more likely to result in a splitting into two
shells, which the Ultra Efficient model is based on. An
overview of the model parameters is given in Tab. 1.

4.1. Reduced Efficiency model

The Reduced Efficiency model closely follows the Ref-
erence model from Section (2) except that in each col-
lision only a fraction η = 0.5 of the internal energy is

dissipated as radiation. In the other models η neces-
sarily has to be smaller than one, as some energy is
reconverted to kinetic energy. We therefore chose this

model to quantify the impact of the reduced efficiency
η compared to the Reference model (η = 1). During the
collision the merged shell gets compressed according to

Eq. (7); we assume that the emission takes place at this
time. The remaining internal energy results in thermal
expansion of the shell to the width lm = lr + ls, which is
the largest possible value which will never overlap with

neighboring shells. The reduction of η translates into
a reduced overall efficiency ε ' 18%, see Tab. 2. As
we choose to normalize the total gamma-ray output to

the same value for each model, the inital kinetic en-
ergy budget has to be increased. As a consequence, the
shells have higher density, and the photosphere moves
to somewhat larger radii, see Fig. 4, first row.

In comparison to the Reference model, differences are
visible mainly at large collision radii, cf., solid versus
dashed curves in Fig. 4. We observe lower magnetic
fields, slightly decreased optical depths, higher maxi-
mum proton energies and a generally more energy re-
leased in UHECRs. This effect comes from the thermal
expansion of the merged shells that gain about a fac-
tor of two in width per collision, whereas in the Refer-
ence model the merged shell is still compressed. Conse-
quently, the radiation density decreases at later stages of

the fireball evolution, which is populated by previously
collided shells. Since the maximal proton energies are
higher and the photohadronic losses lower, the energy
dissipated in UHECRs increases.

4.2. Ultra Efficient model

In the Ultra Efficient Shock scenario proposed by
Kobayashi & Sari (2001) the fraction 1 − η of Eint is

reconverted to kinetic energy, which causes the merged
shell to split into two shells. The dissipated energy Eint

is calculated from Eq. (3) with η = 0.5, the value same
as in the Reduced Efficiency model. The Lorentz factors
of the reflected shells are given by

Γ̄r = (M2 + (mr)
2 − (ms)

2)/2mrM ,

Γ̄s = (M2 − (ms)
2 + (mr)

2)/2msM
(10)

in the center-of-mass frame, with M = (mrΓr +msΓs −
η · Eint/c

2)/γm. Converting back to the engine frame,
this leads to

Γr = Γ̄rγm −
√

(Γ̄2
r − 1)(γ2m − 1) and

Γs = Γ̄sγm −
√

(Γ̄2
s − 1)(γ2m − 1) .

(11)

As in the Reduced Efficiency model, the particle accel-
eration and emission is assumed to take place in the

compressed merged shell, calculated as in Section (2).
After the collision, both shells are assumed recover their
initial masses and widths, see Kobayashi & Sari (2001)

for a more refined discussion of these assumptions.
In the Ultra Efficient model, shells repeatedly bounce

off each other causing the fireball to thermalize and lead-

ing to an efficient conversion ε ' 36% of the kinetic
energy into radiation. For the same moderate dissipa-
tion per collision η = 0.5 this model yields twice the
overall efficiency of the Reduced Efficiency model that

reaches ε ' 18%. The consequent reduction of the en-
gine’s power requirements leads to a smaller deposition
of kinetic energy in the afterglow.

Due to the distribution of fewer initial shells across
the same system size (to match the total burst duration)
the widths and, more importantly, the separations are

increased. Compared to the Reduced Efficiency model
the shells travel longer before collisions appear and thus
the bulk of collisions moves out to larger radii. This
qualitative change of collision patterns and of average
collision radii is visible in the middle panel of the second
row in Fig. 4 (compared to the upper middle panel). Be-
cause the fireball thermalizes, the relative Lorentz factor
difference of the colliding shells shrinks, leading to less
dissipated energy per collision at late times of the evo-
lution. Therefore, the collisions at large radii insignif-
icantly contribute to the fireball’s total emission (left

panel of second row). The consequence is a reduced
neutrino flux (see Tab. 2) since neutrinos are predomi-
nantly produced in collisions close to the photosphere,
where the densities and pγ interaction rates are high
(see also discussion in next section).
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Initial setup Single collision result

Model name N shells
inital

lshellsinitial
c

N shells
post−coll. η lshellspost−coll.

Reference 1000 0.01s 1 1 < lr + ls

Reduced Efficiency 1000 0.01s 1 0.5 = lr + ls

Ultra Efficient 125 0.08s 2 0.5 lr, ls

PLUTO 1000 0.01s 1-2 0.5 < lr + ls

Table 1. Qualitative comparison of the different collision models. Here N shells
inital is the number of shells ejected by the source,

lshellsinitial are the initial shell widths (assumed to be equal for all shells) and N shells
post−coll. is the number of shells produced by a single

collision. In each collision, the dissipated energy is given by η ≡ Ediss/Eint, and the width of the shell(s) after the collision is
given by lshellspost−coll.. In the case of the PLUTO model, the number of post-collision shells as well as their widths are obtained
from an analysis of the post-collision mass density profile from the simulation.

ε [%] tν [ms] Ncoll Etot
kin [1054 erg] Eiso

p,tot/E
iso
γ,tot Eiso

ν,tot/E
iso
γ,tot Ep,max [1012 GeV]

Reference 35.8 ± 1.4 55.2 ± 1.3 970.1 ± 3.3 1.75 ± 0.07 0.42 ± 0.03 0.29 ± 0.05 1.2 ± 0.4

Reduced Efficiency 17.9 ± 0.7 54.8 ± 1.3 976.0 ± 3.3 3.50 ± 0.13 0.56 ± 0.04 0.24 ± 0.05 1.2 ± 0.4

Ultra Efficient 36.0 ± 4.3 47.5 ± 10.7 1107 ± 220 1.76 ± 0.22 0.62 ± 0.06 0.14 ± 0.06 1.2 ± 0.5

PLUTO 21.2 ± 1.4 50.2 ± 1.5 1055 ± 9 2.95 ± 0.20 0.96 ± 0.4 0.18 ± 0.04 1.4 ± 0.6

Table 2. Results for the different models: ε ≡ Etot
diss/E

tot
kin describes the overall dissipation efficiency of the burst, tν the

(observable) time variability of the light curve assuming a redshift of z = 2, Ncoll the total number of collisions and Etot
kin the

total initial kinetic energy. The energies Eiso
ν,tot, E

iso
γ,tot and Eiso

p,tot are the total energies released in neutrinos, gamma-rays and
UHECRs above 1010 GeV in the engine frame (where only super-photospheric collisions are taken into account), and Ep,max is
the maximal cosmic ray energy achieved in the engine frame. We show the mean value over all statistical realizations as well as
the standard deviation obtained from the Monte Carlo simulation.

4.3. PLUTO model

In the PLUTO model, each collision is individually

simulated with PLUTO, using η = 0.5 and d = 0.7 (see
Section (3) and Appendix (A) for more details). We
analyze the resulting mass density profile to obtain the

post-collision shell masses, widths and Lorentz factors
by fitting box distributions to the obtained mass den-
sity profile and calculating the weighted average of the
Lorentz factor profile. In contrast to the Reduced Effi-

ciency model, the thermal expansion of the shell(s) after
the collision is not taken into account.

The result for the PLUTO model is demonstrated in

the third row of Fig. 4. Note that the ensemble size has
been reduced to twenty due to computational complex-
ity. The distribution of collisions resembles the Refer-
ence model very closely. Only a small fraction (about
8%) of the collisions results in two post-collision shells
that move the result closer to the Ultra Efficient model.
The magnetic field strength, the optical depth to pγ re-
actions, and the maximum proton energy are closer to
the Reference model than the Reduced Efficiency model,
since shells do not thermally expand after the collision.

The overall dissipation efficiency is higher (21% com-
pared to 18%) than in the Reduced Efficiency model,
see Tab. 2.

Despite choosing the initial conditions to enhance the
occurrence of two-shell configurations as in the the Ul-
tra Efficient model, our results indicate that these con-

ditions can only be maintained under special circum-
stances.

5. IMPACT ON OBSERVATIONS

So far, we have discussed and compared the evolution
of the system, including the production of the astrophys-

ical messengers, in the engine frame. Here we we focus
on two observables: the expected quasi-diffuse neutrino
flux in comparison with the current stacking limit, and
the light curves. If not noted otherwise, we use z = 2 in
this section, and all quantities are given in the observer’s
frame.

5.1. Neutrino flux prediction

A model comparison of the expected quasi-diffuse
neutrino fluxes among the different models, including
the ranges expected from the ensemble fluctuations, is
shown in Fig. 5. All predictions are relatively similar,
except for the Ultra Efficient model, which has a sub-
stantial amount of collisions at larger radii, as previously

discussed and summarized in Table 2.
The expected neutrino flux is at the level of 10−11

to 10−10 GeV cm−2 s−1 sr−1 (per flavor). Note the pre-
dicted flux in the equal-mass reference setup is about
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(a) (b) (c)

Figure 4. Same format as Fig. 1 but for the alternative models (in rows). Note that the ensemble results for the PLUTO
model (average and shaded areas lower row) have been only computed for twenty realizations due to computational restrictions.

a factor of two higher than in the equal-energy setup
used in Bustamante et al. (2017), see discussion in Ap-
pendix C and Fig. 10. Since the GRB stacking search
is basically background-free due to a probability density
function including direction, time window and energy,
we expect an improvement of a factor of seven to ten
in the proposed next generation experiment IceCube-

Gen2 (Aartsen et al. 2014). Therefore, if taking the

prediction at face value there is a good chance to find
GRB neutrinos with the next generation detector.

There are several caveats here: the normalization

method has been chosen to be compatible with the Ice-
Cube method to compute the stacking limit, namely:
The fluence of one GRB is converted into a quasi-diffuse
flux with a certain number of GRBs contributing per
year (that can be related to the local GRB rate if the cos-
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Figure 5. Model comparison of the expected neutrino fluxes
excluding sub-photospheric contributions. We derive the all-
sky quasi-diffuse νµ + ν̄µ flux Jνµ by scaling the fluence of

one GRB Fνµ as Jνµ = (4π)−1 · Fνµ · Ṅ , assuming a rate

of Ṅ = 667 identical GRBs per year at z = 2 contributing
to this flux (see Abbasi et al. (2012); Aartsen et al. (2017)).
Curves correspond to the average, the shaded area to the
range of neutrino fluxes obtained in the simulations. The
GRB stacking limit, shown for comparison, is taken from
the best limit obtained in Aartsen et al. (2017).

mological distribution of GRBs is known or measured),

the baryonic loading of ten is an ad-hoc choice here, and
the cosmological distribution of sources is not taken into
account (in consistency with the stacking method, be-

cause for most GRBs the redshift is not known). The
normalization of the flux prediction is therefore some-
what arbitrary, where some factors (number of GRBs
per year and redshift) have been chosen in consistency

with the stacking method and are expected to influence
both the stacking limit and flux prediction in a similar
way.

The baryonic loading, however, is chosen in consis-
tency with early estimates of the ultra-high energy cos-
mic ray (UHECR) energy budget, see e.g. Waxman &
Bahcall (1997), assuming that GRBs are the sources of
the UHECRs. Details, however, depend on the UHECR
composition (especially in the light of recent Auger mea-
surements, see e.g. Aab et al. (2017)), spectral shape,
and the cosmic ray escape mechanism from the source.
Recent approaches therefore fit the cosmic ray data ob-
taining the baryonic loading from a fit, see Baerwald

et al. (2015) and Biehl et al. (2018) in the one-zone
model for protons and nuclei, respectively, and Bonci-
oli et al. (2019) for low luminosity GRBs. A similar

(a)

(b)

Figure 6. Energy flux as a function of time for one example
GRB for (a) the Reference model, (b) the Ultra Efficient
model.

approach (without explicit derivation of the baryonic
loading and parameter space scan) has been used for a
multi-collision model in Globus et al. (2015).

When comparing the energy output of 2 to 4 ·1052 erg
in UHECRs per GRB (Tab. 2, depending on the collision
model) with the 3 to 11 ·1053 erg to power UHECRs (see

in Tab. 1 in Baerwald et al. (2015), depending on the
source evolution), the baryonic loading (times gamma-
ray luminosity) in our model will need to be a factor of
7− 50 higher if UHECR data are to be fit. This implies

that the neutrino limit may be more severe than shown
here, and that the collision model and escape mechanism
in internal shocks can be already tested. A more detailed

parameter space study is beyond the scope of this work
and will be presented elsewhere.

If, on the other hand, GRBs are not the dominant
source of UHECRs, the GRB neutrino stacking searches
allow to derive an upper bound for the baryonic load-
ing of GRBs and their contribution to the UHECR
flux. Independent information can come from the spec-
tral energy distribution (SED), which may be altered
in the presence of hadronic processes (for instance in
the Fermi-LAT band Asano et al. (2011); Wang et al.
(2018)). It is an open question how large baryonic load-
ings can be tolerated in self-consistent SED computa-
tions of GRBs (see e.g. Asano & Inoue (2007); Asano
et al. (2009); Asano & Mszros (2014)).

5.2. Light curves



12

Another interesting question concerns the impact of
the collision model on GRB light curves that are pre-
dicted by the multi-collision models. Fig. 6 shows
two examples generated with the Reference model and
the Ultra Efficient model; the Reduced Efficiency and
PLUTO model light curves are very similar to the Ref-
erence model. Recall that the total burst durations are
chosen to be equal by construction. We also checked dif-
ferent wavelength bands (not shown here), but did not
observe significant differences (such as time delays) be-
cause of the stochasticity of the setup chosen here – in
consistency with Bustamante et al. (2017) (see discus-
sion therein).

The light curves for the Reference model are composed
of many numerous thin peaks of comparable height, sim-
ilar to Kobayashi et al. (1997). In contrast the Ultra
Efficient model produces light curves that are domi-
nated by pronounced, broad pulses – modulated by some
time variability, see also Kobayashi & Sari (2001). The

widening of the pulses originates from the wider initial
shells, and hence comes from the properties of the en-
gine. A few collisions with high energy dissipation re-
sult in a few pronounced pulses contributing most of the

photon counts.
Despite qualitative differences in the shape of the light

curves, the time variability, derived by dividing the total

burst duration by the number of collisions, is similar for
both models (see Tab. 2).

6. DISCUSSION

6.1. Dissipation efficiency

Originally, the Ultra Efficient collision model
(Kobayashi & Sari 2001) was introduced to increase the
emission efficiency of the prompt fireball phase. This

is achieved at the cost of reduced efficiency for individ-
ual collisions and a higher count of multiple collisions
within the fireball. We indeed find a higher efficiency,
see Section 3 and Tab.1 but only for a small subset of
fine-tuned shell parameters. The more realistic Pluto
and the Reduced Efficiency models result in lower effi-
ciencies and as a consequence require the initial kinetic

energy to be significantly higher for the same gamma-
ray output. The Reference model reaches efficiency val-
ues comparable to the Ultra Efficient model due to high
single-collision efficiencies under the ideal assumption of
η = 1. The efficiencies of either model are higher than
the 1–15 % discussed, for example, in Pe’er (2015) and
in the multi-messenger context in Globus et al. (2015).
This is related to the combination of a large spread in
initial shell Lorentz factors and a equal-mass outflow,
two features that are known to increase the efficiency
(Sari & Piran 1997; Kino et al. 2004). Those are techni-

cal parameters of the internal shock fireball model that,
at present, lack clear experimental constraints.

The inferred efficiency of detected GRBs is usually
based on observations of the energy content in after-
glows. Comparing the inferred efficiency to that of the
internal shock model has given rise to criticism. This
statement is, however, derived from an incomplete ob-
servation of the afterglow spectrum and recent observa-
tions of high-energy emission (Acciari et al. 2019a; Ab-
dalla et al. 2019) support the arguments (Fan & Piran
2006; Beniamini et al. 2015, 2016) that these estimates
may underestimate the energy content in the afterglow.

6.2. Model assumptions

We discuss our choices of model parameters in the con-
text of previous studies. The choice of 1000 initial shells
(leading to approximately 1000 collisions) is at the upper
end of the typical range and may lead to a short time-

variability. The number of collisions (and thus the num-
ber of initial shells) and the short time variability are di-
rectly related by Ncoll ≈ T90/tmin,var. When comparing

to observations, we find that MacLachlan et al. (2013)
show values ranging from T90/tmin,var ≈ 100 to 1000.
In Golkhou & Butler (2014); Golkhou et al. (2015) the
values seem to be more in the range of 10− 100, with a

significant fraction of values smaller than that. However,
this critically depends on tmin,var – and in practice, the
observable short-time variability is constrained by the

instrument’s response, limiting the possibilities to rule
out very small values. On the same note,there is cur-
rently no evidence for a very high initial spread of shell
Lorentz factors (as assumed in our log-normal distribu-

tion). However this choice is not uncommon in attempts
to reach high dissipation efficiencies (Kobayashi et al.
1997; Kobayashi & Sari 2001; Bustamante et al. 2017).

Since in this paper we study the impact of modifications
to the single-collision model on the multi-messenger pro-
duction and emission, we do not attempt to depart from
these previous assumptions for the sake of comparability
with previous results in Bustamante et al. (2017).

Another feature that can be compared to other GRB-
related studies is the required engine kinetic energy. For

our assumptions the (isotropic-equivalent) engine power
of a few times 1054 ergs is required, which seems to be
at the upper end of observations (Gruber et al. 2014).
As outlined in (Beniamini et al. 2015), the actual kinetic
energies may be higher but it is disputed if the timescale
applied in Beniamini et al. (2015) is appropriate. The
recent discovery of inverse Compton emission from GRB
190114C also yields values in this ballpark (Acciari et al.
2019b). In general, such energies are unavoidable to
power the UHECR flux, see e.g. Sec. 2 in Baerwald et al.
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(2015). At present, there is no direct observational evi-
dence for cosmic ray emission from Gamma-Ray Bursts,
due to the lack of high-energy neutrino observations in
coincidence with detected GRBs – although in our model
neutrinos are not expected for the current generation of
neutrino detectors, see Fig. 5.

In summary, some of our assumptions seem extreme,
especially in their combination. This has been partially
motivated by the comparison to the existing literature,
partially by the paradigm that GRBs would be the dom-
inant source of UHECRs.

7. SUMMARY AND CONCLUSIONS

We have studied the production of multiple astrophys-
ical messengers (gamma-rays, neutrinos, and UHECR
protons) in the Gamma-ray Burst internal shock sce-
nario. We have used a multi-collision scenario involving
a set of plasma shells emitted from the central engine

with different Lorentz factors, where we have computed
the production/emission of the messengers in each col-
lision individually. The focus of this work has been the

impact of the collision model between two shells on the
multi-messenger production in the entire fireball, where
we have tested different scenarios:

Reference: Plasma shells merge (inelastic collision)
and all internal energy is dissipated in non-thermal
radiation

Reduced Efficiency: Plasma shells merge and a frac-
tion of internal energy is dissipated (the rest goes
into thermal expansion).

Ultra Efficient: Plasma shells do not merge and a
part of the internal energy is reconverted into ki-

netic energy that separates the shells.

PLUTO: Fate of plasma shells determined for each
collision individually from hydrodynamical simu-

lations

We have also tested different assumptions for the be-
havior of the central engine (outflow at equal-mass or
equal-energy rate), while fixing the observables of the
GRB (gamma-ray luminosity, duration, time variability,
observed broken power-law spectrum) for better compa-
rability. Compared to earlier works, we have also studied
the impact of ensemble fluctuations from the stochastic
setup on the results.

For all models, we have recovered the qualitative be-

havior of the multi-messenger emission, the different
astrophysical messengers are emitted from different re-
gions of the same object: neutrinos come from the in-
nermost collision radii where the radiation densities are

highest, gamma-rays come from a wide range of collision
radii, where most energy is dissipated, HE gamma-rays
prefer large collision radii because they can escape the
optically thin shells, and UHECRs come from interme-
diate radii requiring balanced magnetic fields strengths
that sustain acceleration up to high energies without
introducing too strong synchrotron losses. Additional
contribution to the neutrino flux may come from below
the photosphere; given the lack of observational con-
straints on the photon density and the maximal proton
energies, the current modeling framework does not per-
mit to include this component. Thus, our neutrino flux
estimations are conservative, lower limits in this regard.

Substantial differences in the distribution of colli-
sion radii have been found in the Ultra Efficient case,
coming with a quantitative impact on e.g. the neu-
trino flux, UHECR production radius and shape of the

GRB lightcurve. In that case, a smaller number of ini-
tial shells (with larger widths and inter-shell spacings)
bounce frequently off each until the system thermalizes.

Consequently, more collisions occur at large radii com-
pared to the other models, while more energy is dis-
sipated in the first collisions. For this case we have

found the highest dissipation efficiency (kinetic energy
converted into radiation) of about 40% and about a fac-
tor of two lower neutrino flux.

We have scrutinized the assumptions of the Ultra

Efficient scenario in hydrodynamical simulations with
PLUTO. We have found that the bounce back (instead
of merging) of shells only hold for very specific condi-

tions: A collision only results in two shells if energy
dissipation is not included, the shells are set up with
roughly equal masses and there is a large ratio between

Lorentz factors of the rapid and the slow shell. These
optimal conditions are occur less likely at later stages of
the fireball evolution where multiple preceding collisions
gradually thermalize the system. In that case most colli-
sions result in a single dispersing shell. We have coupled
the simulation of the fireball with the explicit PLUTO
simulation for the collisions of individual shells, and for

this study included energy dissipation in the PLUTO
simulations. That has demonstrated that the emergence
probability of two-shell configurations – as assumed in
the Ultra Efficient scenario – is very rare (∼ 8%), which
means that our Reference model result is roughly recov-
ered. As a result, the promise of an increased efficiency
(like in the Ultra efficient model) can’t be kept and the
efficiency-related problems of the fireball model remain
unsolved.

In all cases, the expected neutrino flux has been in the

range 10−11 to 10−10 GeV cm−2 s−1 sr−1 (per flavor) for
a baryonic loading of ten, which is potentially in reach
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of the next generation neutrino observatories, such as
IceCube-Gen2. However, we have also noted that the
normalization of this flux is somewhat arbitrary. For
example, if GRBs are to be the origin of the UHECRs,
the baryonic loading will emerge as a deduced quantity
from a fit to the observed UHECR flux and composition.
From energy budget considerations, we anticipate that
the UHECR output will be not sufficient to power UHE-
CRs with the current parameters and the assumptions
for the UHECR escape. Further studies will therefore be
needed to establish when and if neutrinos can rule out
the UHECR origin from GRBs in the framework of in-
ternal shock multi-collision models, and to what extent
an observation will depend on the UHECR composition,
the escape assumptions, and the collision model.
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Appendices
Here we provide additional information referred to in the main text.

A. PLUTO METHODS

We simulate the collision with PLUTO v4.2 (Mignone et al. 2007), an open source modular numerical code designed
to describe high MACH number astrophysical flows containing discontinuities. Since we neglect magnetization (studies
including magnetic fields have e.g. been presented in Mimica et al. (2007); Mimica & Aloy (2010)), we apply the
Relativistic HydoDynamics (RHD) physics module and the ideal equation of state. The system is evolved in the
rest frame of the contact discontinuity (CD, variables in the CD frame are denoted with the superscript ′), the gas
adiabatic index is set to γ̂ = 4/3 (relativistic) if the Lorentz factor of the fast shell in the CD frame is above two
(Γ′r > 2) and γ̂ = 5/3 (non-relativistic) else. The simulations are performed using Cartesian geometry, a linear
reconstruction, Hancock time-stepping and the CD-restoring HLLC approximate Riemann solver (for more details
about these methods, see the PLUTO user guide).

The simulation starts at t′ = 0, the time at which both shells get in contact. The coordinate system is defined such
that the bondary between initial shells is at x′ = 0 for t′ = 0. The fast shell (x′ < 0) has a positive velocity and the
slow shell (x′ > 0) negative. The shells are surrounded by low density plasma (ρ/ρshell = 10−12), moving at the same
speed as the neighboring shell. The simulation is stopped after both the reverse and the forward shocks have crossed
the shells.

To account for energy dissipation due to acceleration of cosmic rays and/ or electrons, we add a term to the differential
equation solved by PLUTO. In a very simplified treatment, we assume the dissipation rate of internal energy at a given
point in time and space to be proportional to the available internal energy. We withdraw energy from the system until

a threshold η∗Eint,th is reached, setting the dissipation rate to zero afterwards:

∂ρ e

∂t
=

−χ · ρ e Ediss,total ≤ η∗Eint,th

0 else
(12)

where ρ is the rest mass density, e the internal energy per unit mass (thus ρe is the internal energy density) and χ
a freely chosen parameter, η∗ controls the total dissipated energy by relating it to Eint,th, the dissipated energy as
predicted by the internal shock model (Eq. (3)). We set χ = 10 η∗/t′shock and η∗ = η in the multicollision modeling.

B. ADDITIONAL FIGURES: HYDRODYNAMIC SIMULATIONS

As an addition to Section (3), we illustrate the impact of energy dissipation on the evolution of the hydrodynamic
system in Fig. 7 and discuss the impact of the relative shell widths on the final shell configuration.

In Section (3) we equal shell widths lr = ls in the source frame. Since the relative shock and rarefaction wave
timescales define the produced mass density profile (Kino et al. 2004), it is natural to expect an impact of relative

shell widths on the final shell configuration. The parameter scan for lr = 0.1 · ls is shown in Fig. 8. In contrast to the
findings in Section (3), we observe low Lorentz factor ratios Γr/Γs to increase the dip depth d. Without a detailed
quantitave discussion, we want to explain this result in a qualitative way, looking at the changing ratios of ρs/ρr and
l′s > l′r (primed quantities refer to the frame of the contact discontinuity (CD)). While for lr = ls generally ρs > ρr and
l′s < l′r, both relationships change to the opposite for lr = 0.1 · ls. As a result, the dip separating the two post-collision
shells is created in the slow shell instead of the fast one. While before increasing the ratio of the shock crossing times

t′shock,rs/t
′
shock,fs (rs refers to the reverse shock, fs to the forward shock) led to more pronounced dips in the mass

density profile, this will now be the case for t′shock,fs/t
′
shock,rs. As a result, the opposite changes in Γr/Γs are favorable

for the formation of two, distinct shells and the plot flips with respect to the y-axis.
This result illustrates the strong dependence of the resulting mass density profile on the individual shell parameters

and the difficulty of finding universally applicable predictions. It supports our approach in the multi-collision modeling,
where we account for the variety of possible impacts by modeling each collision individually with PLUTO instead of
using simplified, universal formulas.
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Figure 7. Snapshot of the mass density profile (in the frame of the contact discontinuity) of a single two-shell collision for three
choices of η∗ in Eq. (12). In this example we set Γr/Γs = 6.0 and mr = ms, the snapshot is taken at t′ = t′shock = 2.8 s (which
equals the shock crossing time of the reverse shock). For η∗ = 0, both the reverse and the forward shocks have crossed the
respective shells. For higher η∗, the step in the mass density profile at the left side of the figure indicates, that the reverse shock
has not yet completely crossed the slow shell, implying that energy dissipation slows down the shocks. Also, the dip between
the two shells, which is clearly visible for η∗ = 0, disappears for higher η∗. We conclude that energy dissipation reduces the
separation between the shells after the collision.

Figure 8. Same as Fig. 3 without energy dissipation but with non-equal shell widths: lr = 0.1 · ls in the source frame. Again,
the curves are height lines of the dip depth d = (ρmax − ρmin)/ρmax. In contrast to Fig. 3, we observe low ratios Γr/Γs to
increase d, also slightly smaller mr/ms are favored.
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Figure 9. Upper panel: Reference model, but with a source ejecting matter with a constant power; thus the shells initially
have the same kinetic energy. Lower panel: PLUTO model without energy dissipation in the hydrodynamic simulations. Same
format as Fig. 1.

Table 3. Same as Tab. 2, but for an engine ejecting shells with a constant luminosity (Ė = const.) instead of a constant mass
outflow (labeled Reference E) and a modified version of PLUTO model in which the PLUTO simulations don’t account for
energy dissipation. In both cases, all of the internal energy is radiated.

ε [%] tν [ms] Ncoll Eeng [1054 erg] Eiso
p,tot/E

iso
γ,tot Eiso

ν,tot/E
iso
γ,tot Ep,max [1012 GeV]

Reference 35.8 ± 1.4 55.2 ± 1.3 970.1 ± 3.3 1.75 ± 0.07 0.42 ± 0.03 0.29 ± 0.05 1.2 ± 0.4

Reference E 25.8 ± 1.0 54.5 ± 0.5 987.5 ± 2.8 2.4 ± 0.1 0.27 ± 0.01 0.080 ± 0.006 0.26 ± 0.02

PLUTO no diss. 45.3 ± 2.9 41.2 ± 1.1 1270 ± 19 1.38 ± 0.09 0.54 ± 0.16 0.26 ± 0.04 1.29 ± 0.30

C. ADDITIONAL SCENARIOS

For completeness, we discuss three additional fireball scenarios: (1) a model corresponding to GRB 1 in Bustamante

et al. (2017) (the Reference model, but using a source emitting with a constant luminosity), (2) a PLUTO model,
where energy dissipation is switched off in the hydrodynamic modeling and all of the internal energy is converted into
radiation and (3) a model with a reduced number of initial shells, with otherwise same parameters as the Reference
model.
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Figure 10. Comparison of the expected neutrino fluxes, assuming a rate of 667 identical GRBs per year, excluding the sub-
photospheric extrapolations. Curves correspond to the average, the shaded area to the maximum / miminum neutrino fluxes
achieved in the simulations.

C.1. Equal energy case

The change from equal mass to equal energy, as in Bustamante et al. (2017), has a few relevant implications. For
comparison a panel for the equal energy setup is shown in Fig. 9.2 The main difference is visible in the middle panel:
For the equal energy assumption, the bulk of the collisions occurs at smaller radii, also a smaller spread in the dissipated

energy can be observed. When considering the overall efficiency, the equal-energy scenario is significantly less efficient
in converting the fireball kinetic energy into radiation. This effect can be understood by looking at the efficiency of
single collisions: If two shells of equal mass collide, their kinetic energy is converted much more efficiently into internal

energy than for shells of equal energy (for high Γr/Γs the single-collision efficiency approaches 1 for equal mass shells
and 0.3 for equal energy shells (Kino et al. 2004), the increased single-collision efficiency also is reflected in a higher
overall efficiency, see Table 3). Due to the normalization we apply, a lower overall efficiency translates into an increase

of the required engine power and, subsequently, initial shell masses. More massive shells are more dense, therefore
the fireball reaches the optically thin regime at larger radii and less collisions at small radii are superphotospheric.
Those collisions are efficient neutrino emitters (see Bustamante et al. (2017)), which decreases the neutrino flux in
the equal-energy scenario with respect to the equal-mass scenario (see also Fig. 10). The applied normalization also

increases the magnetic field as well as the optical depths (the first one due to the increase of Eint the latter due to
the increase of the shell masses). As the optical depth to pγ-reactions limits the maximum proton energy in the
collisions, higher values of τpγ decrease the observed Ep,max, see Fig. 9. Comparing the equal energy case with the
models presented in the main text, we conclude that the engine behavior (constant power vs. constant mass outflow)
has a much higher impact on the observed particle fluxes than the choice of collision model.

C.2. PLUTO without energy dissipation

As an other addition to the main text, we here discuss a PLUTO model where energy dissipation is not included in
the hydrodynamic simulations (η∗ = 0 in Eq. (12)). This corresponds to a theoretical approach where the production
of internal energy is completed before particle acceleration and energy dissipation start. After perfoming the hydro-
dynamic simulation, we calculate the internal energy of the merged shell as Eint = Ekin,before − Ekin,after, where the
Ekin is the summed kinetic energy of all shells. The dissipated energy is then given by Ediss = Eint (thus the efficiency

2 Note that we since corrected for a factor (1 + z), which is why
the neutrino output in the source frame is lower by a factor of 3.
This correction does not affect the fluxes shown in the observer
frame.
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(a) (b) (c)

Figure 11. Energy per particle type as a function of radius and the expected neutrino fluxes for the Reference model, with
(a) 100 and (b) 200 initial shells. In panel (c) the neutrino fluxes are compared to our standard assumption with 1000 initial
shells.

is given by η = 1.0). In contrast to the PLUTO model in Section (4), the width of the emitting shell is given by

Eq. (7). Again, we don’t take thermal expansion after the collisions into account since the internal energy that could
potentially power this effect goes into radiation.

As far as the Reference model is concerned , we can confirm the expected neutrino fluxes for the same gamma-ray

luminosity. With the given normalisation, also the evolution of the magnetic field, the optical thickness to pγ reactions
and the maximum proton energies show similar behavior. This once more strengthens our statement about the validity
of the standard collision model. However, an increased amount of collisions (22 ± 1 % of all collisions resulted in two
post-collision shells) increases the overall efficiency of the fireball by roughly 10 %. This is consistent with Kobayashi

& Sari (2001) who increase the efficiency of their bursts by the almost complete thermalization of the system through
multiple shell collisions. The result also once more confirms, that the probability of two post-collision shells increases,
if energy dissipation is lower or not at all included in the hydrodynamic simulations.

C.3. Reduced number of shells

To directly compare with (Bustamante et al. 2014, 2017) we assumed 1000 initial shells throughout the simulations
discussed in the main text. However, this assumption results in variability timescales close to the fastest ever observed
(see discussion in Section 4). We qualitatively discuss here the impact of a smaller choice of initial shells on the

simulations.
Since the rate and spatial distribution of collisions directly impact the light curve it will look qualitatively different.

The shell number can be reduced by either staring with a smaller jet extension or by increasing the separation between
shells without changing the total length. The reduction of the initial jet size will result in shorter burst durations,
typically dominated by only a few bright pulses. Longer quiescent phases between single peaks are expected for larger
shell widths and separations. Fig. 11 shows the emission of messengers for 100 and 200 initial shells, respectively.
Both configurations demonstrate that the production radii of different particles as well as the predicted neutrino fluxes
(when normalized to the same gamma-ray luminosity in the optically thin regime) are similar to the Reference model
with 1000 initial shells. The large statistical fluctuations for 100 initial shells result in higher sample variabilities of
the predicted particle fluxes. Despite wider bands of the neutrino fluxes, and hence larger burst-to-burst variations,
the model does not exceed the limits by IceCube and the conclusions derived with the choice of 1000 initial shells.
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