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Abstract Accurate simulation of physical processes is
crucial for the success of modern particle physics. How-

ever, simulating the development and interaction of par-
ticle showers with calorimeter detectors is a time con-
suming process and drives the computing needs of large

experiments at the LHC and future colliders. Recently,
generative machine learning models based on deep neu-
ral networks have shown promise in speeding up this
task by several orders of magnitude. We investigate

the use of a new architecture — the Bounded Infor-
mation Bottleneck Autoencoder — for modelling elec-
tromagnetic showers in the central region of the Silicon-

Tungsten calorimeter of the proposed International Large
Detector. Combined with a novel second post-processing
network, this approach achieves an accurate simulation

of differential distributions including for the first time
the shape of the minimum-ionizing-particle peak com-
pared to a full Geant4 simulation for a high-granularity
calorimeter with 27k simulated channels. The results

are validated by comparing to established architectures.
Our results further strengthen the case of using genera-
tive networks for fast simulation and demonstrate that
physically relevant differential distributions can be de-
scribed with high accuracy.
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1 Introduction

Precisely measuring nature’s fundamental parameters

and discovering new elementary particles in modern
high energy physics is only made possible by our deep
mathematical understanding of the Standard Model and
our ability to reliably simulate interactions of these par-

ticles with complex detectors. While essential for our
scientific progress, the production of these simulations
is increasingly costly. This cost is already a potential

bottleneck at the LHC, and the problem will be exac-
erbated by higher luminosity, larger amounts of pile-
up and more complex and granular detectors at the

High-Luminosity LHC and planned future colliders. A
promising way to accelerate the simulation is offered by
generative machine learning models and was pioneered
in Ref. [1]. The present work focuses on simulating a

very high-resolution calorimeter prototype with greater
fidelity of physically relevant distributions, paving the
road for practical applications 1.

Advanced machine learning methods, based on deep
neural networks, are rapidly transforming and improv-
ing the way to explore the fundamental interactions of
nature in particle physics — see for example Ref. [2]
for a recent overview of neural network architectures
developed to identify hadronically decaying top quarks.
However, we are only beginning to explore the poten-
tial benefits from unsupervised techniques designed to
model the underlying high-dimensional density distri-
bution of data. This allows, e.g., anomaly detection
algorithms to identify signals from new physics theo-

ries without making specific model assumptions [3–12].
Furthermore, once the phase space density is encoded

1 Implementations of the network architectures as well as
instructions to produce training data are available on
https://github.com/FLC-QU-hep/getting_high.
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in a neural network, it can be sampled from very effi-
ciently. This makes synthetic models of particle interac-
tions many orders of magnitude faster than classical ap-
proaches, where for example for a particle showering in
a calorimeter many secondary shower particles have to
be created and individually tracked through the mate-
rial of the detector according to the underlying physics
processes.

Calorimeters are a crucial part of experiments in
high energy physics, where the incident primary parti-
cles create showers of secondary particles in dense mate-
rials that are used to measure the energy. In sandwich
calorimeters, layers of dense materials are interleaved
with sensitive layers recording energy depositions from
secondary shower particles mostly from ionization. The
details of the shower development via creation of sec-
ondary particles as well as their energy loss is typically
simulated with great accuracy using the Geant4 [13]
toolkit.

The crucial role of calorimeter simulation as a time-
consuming bottleneck in the simulation chain at the
LHC is well established. For example, the ATLAS ex-
periment uses more than half of its total CPU time on

the LHC Computing Grid for Monte Carlo simulation,
which in turn is entirely dominated by the calorimeter
simulation [14].

While generative neural network techniques promise
enormous speed-ups for simulating the calorimeter re-
sponse, it is of extreme importance that all relevant

physical shower properties are reproduced accurately in
great detail. This is particularly challenging for highly
granular calorimeters, with a much higher spatial res-

olution, foreseen for most future colliders. Such con-
cepts, as developed for the International Linear Collider
(ILC), are also being used to upgrade detectors at the
LHC for upcoming data-taking periods. One prominent
example is the calorimeter endcap upgrade of the CMS
experiment [15] with about 6 million readout channels.
These factors make the timely development of precise
simulation tools for high-resolution detectors relevant
and motivate our investigation of a prototype calorime-
ter for the International Large Detector (ILD).

Outside of particle physics, generative adversarial
neural networks [16] (GANs) have been used to produce
synthetic data — such as photo-realistic images [17]
— with great success. A traditional GAN consists of
two networks, a generator and a discriminator separat-
ing artificial samples from real ones, which are trained
against each other. An alternative to GANs for simula-
tion are Variational Autoencoders [18] (VAE). A VAE
consists of an encoder mapping from input data to a la-
tent space, and a decoder, which maps from the latent

space to data. If the probability distribution in latent

space is known, it can be sampled from and used to
generate synthetic data. A third path towards genera-
tive models is offered by normalizing flows [19–23]. In
such models, a simple base probability distribution is
transformed by a series of invertible mappings into a
complex shape.

Recently, a novel architecture unifying several gen-
erative models such as GANs, VAEs, and others was
proposed: the Bounded-Information-Bottleneck autoen-
coder (BIB-AE) [24]. We will show that by using a mod-
ified BIB-AE for generation we can accurately model all
tested relevant physics distributions to a higher degree
than achieved by traditional GANs. A detailed intro-
duction to this architecture is provided in Section 3.3.

Specifically in particle physics, first results for the
simulation of calorimeters focused on GANs achieved
an impressive speed-up by up to five orders of magni-
tude compared to Geant4 [1, 25, 26]. Similarly, an ap-
proach using a Wasserstein-GAN (WGAN) architecture

achieved realistic modeling of particle showers in air-
shower detectors [27] and a high granularity sampling
calorimeter [28]. In the context of future colliders, an

architecture inspired by GANs was used for the fast
simulation of showers in a high granularity electromag-
netic calorimeter [29]. Generative models based on VAE
and WGAN architectures were studied for concrete ap-

plication by the ATLAS collaboration [30–32].

Beyond producing calorimeter showers, generative

models in HEP have also been explored for modeling
muon interactions with a dense target [33], parton show-
ers [34–37], phase space integration [38–41], event gen-

eration [42–47], event subtraction [48] and unfolding [49].

The rest of this paper is organised as follows: in Sec-

tion 2 we introduce the concrete problem and training
data, in Section 3 the used generative architectures are
discussed, and in Section 4 the obtained results are pre-
sented and compared. Finally, Section 5 provides con-

clusions and outlook.

2 Data Set

The ILD [50] detector is one of two detector concepts
proposed for the ILC. It is optimized for Particle Flow,
an algorithm that aims at reconstructing every individ-
ual particle in order to optimize the overall detector

resolution. ILD combines high-precision tracking and
vertexing capabilities with very good hermiticity and
highly granular electromagnetic and hadronic calorime-
ters. For this study, one of the two proposed electromag-
netic calorimeters for ILD, the Si-W ECal is chosen. It
consists of 30 active silicon layers in a tungsten absorber
stack with 20 layers of 2.1 mm followed by 10 layers of
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4.2 mm thickness respectively. The silicon sensors have
5× 5 mm2 cell sizes. Throughout this work, we project
the sensors onto a rectangular grid of 30×30×30 cells.
Each cell in this grid corresponds to exactly one sen-
sor. As the underlying geometry of sensors in a realistic
calorimeter prototype is not exactly regular, we will
encounter some effects of this staggering. This makes
the learning task more challenging for the network, but
does not pose a fundamental problem. Architectures
that more accurately encode irregular calorimeter ge-
ometries in neural networks exist [51], but are not the
focus of this work.

ILD uses the iLCSoft [52] ecosystem for detector
simulation, reconstruction and analysis. For the full sim-
ulation with Geant4, a detailed and realistic detector
model implemented in DD4hep [53] is used. The train-
ing data of photon showers in the ILD ECal are sim-
ulated with Geant4 version 10.4 (with QGSP BERT
physics list) and DD4hep version 1.11. The photons are

Fig. 1 A simulated 60 GeV photon shower in the ILD de-
tector, as used in the training data.

Fig. 2 Overlay of 2000 projections of 50 GeV Geant4 photon
showers along the y direction.

shot at perpendicular incident angle into the ECal bar-
rel with energies uniformly2 distributed between 10-100
GeV. All incident photons are aimed at the x−y center
of the grid — i.e. at the point in the middle between the
four most central cells of the front layer. An example
event display showing such a photon shower is depicted
in Figure 1.

The incoming photon enters from the bottom at
z = 0 and traverses along the z-axis, hitting cells in
the center of the x − y plane. No variations of the in-
cident angle and impact point are performed in this
study. The overlay of 2000 showers summed over the
y-axis is shown in Figure 2. As can be seen, the cells
in the ILD ECal are staggered due to the specific bar-
rel geometry. The whole data set for training consists
of 950k showers with continuous energies between 10-
100 GeV. For the evaluations we generated additional,
statistically independent, sets of events: 40k events uni-
formly distributed between 10-100 GeV and 4k events
each at discrete energies in steps of 10 GeV between 20
and 90 GeV.

3 Generative Models

Generative models are designed to learn an underlying
data distribution in a way that allows later sampling

and thereby producing new examples. In the following,
we first present two approaches — GAN and WGAN
— which represent the state-of-the-art in generating

calorimeter data and which we use to benchmark our
results. We then introduce BIB-AE as a novel approach
to this problem and discuss further refinement methods

to improve the quality of generated data.

3.1 Generative Adversarial Network

The GAN architecture was proposed in 2014 [16] and
had remarkable success in a number of generative tasks.
It introduces generative models by an adversarial pro-
cess, in which a generator G competes against an adver-
sary (or discriminator) D. The goal of this framework
is to train G in order to generate samples x̃ = G(z) out
of noise z, which are indistinguishable from real sam-
ples x. The adversary network D is trained to maximize

the probability of correctly classifying whether or not
a sample came from real data using the binary cross-
entropy. The generator, on the other hand, is trained
to fool the adversary D. This is represented by the loss

2 Due to technical issues with the Geant4 generation step,
the produced sample has a difference in statistics of 1% be-
tween the lowest and highest energies
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Fig. 3 Overview of the GAN (top) and WGAN (bottom)
architectures. The blue line shows where the true energy is
used as an input. The loss functions and feedback loops are
explained in the text.

function as

L = min
G

max
D

E[ logD(x)] + E[log(1−D(G(z)))], (1)

and a schematic of the GAN training is provided in
Fig. 3 (top).

For practical applications, the GAN needs to simu-
late showers of a specific energy. To this end, we param-
eterise generator and discriminator as functions of the

photon energy E [54]. In general, we attempted to min-
imally modify the CaloGAN formulation [26] to work
with the present dataset.

The original formulation of a GAN produces a gen-
erator that minimizes the Jensen-Shannon divergence
between true and generated data. In general, the train-
ing of GANs is known to be technically challenging and
subject to instabilities [55]. Recent progress on genera-
tive models improves upon this by modifying the learn-
ing objective.

3.2 Wasserstein-GAN

One alternative to classical GAN training is to use the

Wasserstein-1 distance, also known as earth mover’s
distance, as a loss function. This distance evaluates
dissimilarity between two multi-dimensional distribu-
tions and informally gives the cost expectation for mov-
ing a mass of probability along optimal transportation
paths [56]. Using the Kantorovich-Rubinstein duality,
the Wasserstein loss can be calculated as

L = supf∈Lip1
{E[f(x)]− E[f(x̃)]}. (2)

The supremum is over all 1-Lipschitz functions f , which
is approximated by a discriminator network D during
the adversarial training. This discriminator is called
critic since it is trained to estimate the Wasserstein
distance between real and generated images.

In order to enforce the 1-Lipschitz constraint on the
critic [57], a gradient penalty term should be added to
(2), yielding the critic loss function:

LCritic = E[D(G(z))]− E[D(x)]

+ λ E[(‖ ∇x̂D(x̂) ‖2 −1)2],
(3)

where λ is a hyper parameter for scaling the gradient
penalty. The term x̂ is a mixture of real data x and gen-
erated G(z) showers. Following [57], it is sampled uni-
formly along linear interpolations between x and G(z).

Finally, we again need to ensure that generated show-
ers accurately resemble photons of the requested energy.
We achieve this by parametrising the generator and
critic networks in E and by adding a constrainer [28]
network a. The loss function for the generator then
reads:

LGenerator =− E[D(x̃, E)]

+ κ · E[
∣∣(a(x̃)− E)2 − (a(x)− E)2

∣∣], (4)

where x̃ are generated showers and κ is the relative

strength of the conditioning term. This combined net-
work is illustrated in Fig. 3. The constrainer network
is trained solely on the Geant4 showers; its weights are

fixed during the generator training. We use the mean
absolute error (L1) as loss 3:

LConstrainer = |E − a(x)| . (5)

3.3 Bounded Information Bottleneck-Autoencoder

Autoencoder architectures map input to output data
via a latent space. Using a structured latent space al-
lows for later sampling and thereby generation of new
data. The BIB-AE [24] architecture was introduced as
a theoretical overarching generative model. Most com-
monly employed generative models — e.g. GAN [16],

VAE [18], and adversarial autoencoder (AAE) [58] —
can be seen as different subsets of the BIB-AE. This
leads to better control over the latent space distribu-
tions and promises better generative performance and
interpretability. In the following, we focus on the practi-
cal advantage gained from utilizing the individual BIB-
AE components and refer to the original publication [24]
for an information-theoretical discussion.

3 Using L1 loss here gives better performance than L2, as
L2 seems to introduce too large a penalisation for the occa-
sionally expected outliers in the total energy sum due to the
finite calorimeter resolution.
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Fig. 4 Diagram of the BIB-AE architecture, including the additional MMD term defined in Sec. 3.4 and the Post Processor
Network defined in Sec. 3.5. The blue line shows where the true energy is used as an input. The loss functions and feedback
loops are explained in the text.

As it is an overarching model, an instructive way
for describing the base BIB-AE framework is by taking
a VAE and expanding upon it. A default VAE consist
of four general components: an encoder, a decoder, a
latent-space regularized by the Kullback–Leibler diver-
gence (KLD), and an LN -norm to determine the differ-
ence between the original and the reconstructed data.

These components are all present as well in the BIB-
AE setup. Additionally, one introduces a GAN-like ad-
versarial network, trained to distinguish between real

and reconstructed data, as well as a sampling based
method of regularizing the latent space, such as an-
other adversarial network or a maximum mean discrep-
ancy (MMD, as described in the next section) term. In

total this adds up to four loss terms: The KLD on the
latent space, the sampling regularization on the latent
space, the LN -norm on the reconstructed samples and

the adversary on the reconstructed samples. The guid-
ing principle behind this is that the two latent space and
the two reconstruction losses complement each other
and, in combination, allow the network to learn a more
detailed description of the data. Specifically looking at
the two reconstruction terms we have, on the one hand,
the adversarial network: from tests on utilizing GANs

for shower generation we know that such adversarial
networks are uniquely qualified to teach a generator to
reproduce realistic looking individual showers. On the
other hand, we have the LN -norm: while our trials with
pure VAE setups have shown that LN -norms have great
difficulty capturing the finer structures of the electro-

magnetic showers, an LN -norm also forces the encoder-
decoder structure to have an expressive latent space,
as the original images could not be reconstructed with-
out any latent space information. Therefore, the ad-
versarial network forces the individual images to look
realistic, while the LN -norm forces latent space utiliza-
tion, thereby improving how well the overall properties
of the data set are reproduced. The latent space loss

terms have a similar interaction. Here the KLD term
regularizes our complete latent space by reducing the
difference between the average latent space distribution
and a normal Gaussian. The KLD is, however, largely

blind to the shape of the individual latent space dimen-
sions, as it only cares about the average. The sampling
based latent space regularization term fills this niche by

looking at every latent space dimension individually.
Our specific implementation of the BIB-AE frame-

work is shown in Fig. 4. For our sampling based la-
tent regularization we use both an adversary and an

MMD term. The adversaries are implemented as crit-
ics trained with gradient penalty, similar to the WGAN
approach. The main difference in our setup compared

to the one described in [24] is that we replaced the
LN -norm with a third critic, trained to minimize the
difference between input and reconstruction. We chose
this because we found that using the LN -norm to com-

pare the input and the reconstructed output resulted
in smeared out images.

For the precise implementation of the loss functions
we define the encoder network N , the decoder network
D, the latent critic CL, the critic network C, and the
difference critic CD. The loss function for the latent
critic CL is given by

LCL
=E[CL(NE(x))]− E[CL(N (0, 1))]

+ λ E[(‖ ∇x̂CL(x̂) ‖2 −1)2].
(6)

Here x̂ is a mixture of the encoded input image N(x)
and samples from a normal distribution N (0, 1)) and
the E subscript indicates that the network receives the
photon energy label as an input. The loss function for
the main critic C is given by

LC =E[CE(DE(NE(x)))]− E[CE(x)]

+ λ E[(‖ ∇x̂CE(x̂) ‖2 −1)2].
(7)

Where x̂ is a mixture of the reconstructed image D(N(x))
and the original images x. Finally, the loss function for
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the difference critic CD is given by

LCD
= E[CD,E(DE(NE(x))− x)]− E[CD,E(x− x = 0)]

+ λ E[(‖ ∇x̂CD,E(x̂) ‖2 −1)2].

(8)

Where x̂ is a mixture of the difference D(N(x))−x and
the difference x−x = 0. With different β factors giving
the relative weights for the individual loss terms, the
combined loss for the encoder and decoder parts of the
BIB-AE can be expressed as:

LBIB-AE =− βCL
· E[CL(NE(x))]

− βC · E[CE(DE(NE(x)))]

− βCD
· E[CD,E(DE(NE(x))− x)]

+ βKLD ·KLD(NE(x))

+ βMMD ·MMD(NE(x),N (0, 1))).

(9)

3.4 Maximum Mean Discrepancy

One major challenge in generating realistic photon show-

ers is the spectrum of the individual cell energies, which
is shown in Fig. 6 (left) in Section 4. The real spectrum
shows an edge around the energy that a minimal ioniz-
ing particle (MIP) would deposit. Since the well-defined

energy deposition of a MIP is often used to calibrate a
calorimeter, we cannot simply ignore it. However, we
found that purely adversarial based methods tend to

smooth out this and other similar low energy features,
an observation in line with other efforts to use gen-
erative networks for shower simulation [28]. A way of

dealing with this is using MMD [59] to compare and
minimize the distance between the real (DR) and fake
(DF ) hit-energy distributions:

MMD(DR, DF ) =〈k(x, x′)〉+ 〈k(y, y′)〉
− 2〈k(x, y)〉,

(10)

where x and y are samples drawn from DR and DF

respectively and k is any positive definite kernel func-
tion. MMD based losses have previously been used in
the generation of LHC events [46].

A naive implementation of the MMD would be to
compare every pixel value from a real shower with ev-
ery value from a generated shower. This approach is
however not feasible since it would involve comput-
ing Equation (10) approximately (303)2 times for each
shower. To make the MMD calculation tractable, we

introduce a novel version of the MMD, termed Sorted-
Kernel-MMD. We first sort both, real and generated,
hit-energies in descending order, and then take the n
highest fake energies and compare them to the n high-
est real energies. Following this we move the n-sized

comparison window by m and recompute the MMD.
This process is repeated N

m -times, where N is the to-
tal number of pixels one wants to compare. The ad-
vantage of this approach is two-fold, for one the num-
ber of computations is linear in N , as opposed to the
naive implementation which shows quadratic behavior.
The second advantage is that energies will only be com-
pared to similar values, thereby incentivising the model
to fine-tune the energy. Specifically, the values m=25,
and n=100 are used and we chose N=2000, as this is ap-
proximately the maximum occupancy observed in our
training data before any low energy cutoffs. In our ex-
periments, adding this MMD term with the kernel func-
tion

k(x, x′) = e−α(x
2+x′2−2xx′) (11)

with α = 200 to the loss term of either a GAN or a
BIB-AE fixes the per-cell hit energy spectrum to be
near identical to the training data. This however comes

at a price, as the additional pixels with the energies
used to fix the spectrum are often placed in unphysical
locations, specifically at the edges of the 30 × 30 × 30

cube.

3.5 Post Processing

In the previous section we found that using an MMD
term in the loss function represents a trade off between

correctly reproducing either the hit energy spectrum or
the shower shape. To solve this, we split the problem
into two networks that are applied consecutively but

trained with different loss functions. The first network
is a GAN or BIB-AE trained without the MMD term.
This produces showers with correct shapes, but an in-
correct hit-energy spectrum. The second network then

takes these showers as its input and applies a series of
convolutions with kernel size one. Therefore this second
network can only modify the values of existing pixels,

but not easily add or remove pixels. This second net-
work, here called Post Processor Network, is trained
using only the MMD term to fix the hit energy spec-
trum, and the mean squared error (MSE) between the
input and output images, ensuring the change from the
Post Processor Network is as minimal as possible.

4 Results

In the following we present the ability of our gener-
ative models to accurately predict a number of per-
shower variables as well as global observables and anal-
yse the achievable gain in computing performance. We
include our implementation of a simple GAN (Sec. 3.1),
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Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-

able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually

to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant differential
distributions and correlations.

In Figure 6 a comparison between two differential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for

setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-off are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN and WGAN setups slightly un-

derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.

Since we apply a cutoff removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-off will have difficulties cor-

rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the

same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower

than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight

deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed difference. Sampling from a modified dis-
tribution would remove the problem.
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Fig. 6 Differential distributions comparing the per-cell energy (left) and the number of hits above 0.1 MeV (right) between
Geant4 and the different generative models. Shown are Geant4 (grey, filled), our GAN setup (blue, dashed), our WGAN (red,
dotted) and the BIB-AE (green, solid). The energy per-cell is measured in MeV for the bottom axis and in multiples of the
expected energy deposit of a minimum ionizing particle (MIP) for the top axis.

Finally, the two plots on the bottom show the lon-
gitudinal and radial energy distributions. We see that

while all models are able the reproduce the bulk of the
distributions very well, deviations for the WGAN ap-
pear around the edges.

We next test how well the relation of visible energy

to the incident photon energy is reproduced. To this end
we use a Geant4 sample where we simulated photons at
discrete energies ranging from 20 to 90 GeV in 10 GeV
steps. We then use our models to generate showers for
these energies and calculate the mean and root-mean-
square of the 90% core of the distribution, labeled µ90

and σ90 respectively, for all sets of showers. The results
are shown in Fig. 8. Overall the mean (left) is correctly
modelled, showing only deviations in the order of one to
two percent. The relative width, σ90/µ90 (right) looks

worse: GAN and WGAN overestimate the Geant4 value
at all energies. While the BIB-AE on average correctly
models the width, it still shows deviations of up to ten
percent at high energies. Note that the width cannot
be interpreted as energy resolution of the calorimeter
due to the two different absorber thicknesses used in
the ECal, requiring different calibrations.

Finally, we verify whether correlations between indi-
vidual shower properties present in Geant4 are correctly
reproduced by our generative setups. The properties
chosen for this are: The first and second moments in x,
y and z direction, labeled as m1,x through m2,z, the vis-
ible energy deposited in the calorimeter Evis, the energy

of the simulated incident particle Einc, the number of
hits nhit, and the ratio between the energy deposited in

the 1st/2nd/3rd third of the calorimeter and the total
visible energy, labeled E1/Evis through E3/Evis. The
results are shown in Fig. 9. The top left plot shows the
correlations for Geant4 showers. We then present the

difference to Geant4 for the GAN (top right), WGAN
(bottom left), and BIB-AE (bottom right). The small-
est differences are observed for the GAN (absolute max-
imum difference of 0.2), followed BIB-AE (0.36) and
WGAN (0.57).

Fig. 10 shows examples of 2D scatter plots: the num-
ber of hits and the visible energy (top row) as well as

the center of gravity and the visible energy (bottom
row). These allow us insight into the full correlations
between these variables beyond the simple correlation
coefficients. Similar to Fig. 9 we see that the GAN
matches the Geant4 correlations exceptionally well, while
the WGAN and the BIB-AE display some slight corre-
lation mis-matching. The discrepancy in the BIB-AE
center of gravity and visible energy correlation can be
traced back to the mismodelling of the center of gravity
as seen in Fig. 7.

The distributions of physical observables shown above

are expected to be the major factor for assessing the
quality of a simulation tool. While the correlations are
also useful as they provide additional insight, our main
focus when evaluating network performance are the phys-
ics distributions.
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Fig. 7 Additional differential distributions comparing physical observables between Geant4 and the different generative mod-
els. Shown are Geant4 (grey, filled), our GAN setup (blue, dashed), our WGAN (red, dotted) and the BIB-AE with Post
Processing (green, solid).

4.2 The importance of post processing

In the previous section we demonstrated that our pro-

posed architecture — the BIB-AE with a Post Proces-
sor Network — achieved excellent performance in sim-
ulating important calorimeter observables. In the fol-
lowing, we will dissect this improvement. To this end
we compare a WGAN trained with an additional sim-
ple MMD kernel (labelled WGAN MMD), a WGAN
trained with the full post processing (labelled WGAN

PP), a BIB-AE without post processing (labelled BIB-
AE) to Geant4 and to the combined BIB-AE network
including post processing (labelled BIB-AE PP) from
the main text. We do not investigate a simple GAN
with post processing as we expect it to exhibit largely
the same behaviour as the WGAN.

In Fig. 11 we show the performance of these ap-
proaches. The top left panel of Fig. 11 demonstrates
that removing post-processing from the BIB-AE leads
to a smeared out MIP peak, while adding the simple
MMD term or the more complex post processing to the
WGAN result in good modelling of the per-cell hit en-
ergy spectrum. However, now this improvement comes
at a price: the distribution of the number of hits (top
right) is too narrow compared to Geant4 and the longi-

tudinal (bottom center) and radial (bottom right) en-
ergy profiles are described badly as additional energy
is deposited at the edges of the shower. Especially no-

ticeable is the additional energy in the first and last
layers. This would be problematic for standard recon-
struction methods that rely on the precise position of
the shower start and end. These energy deposits along

the image edges are the main reason why the BIB-AE
Post Processor is implemented as a separate network
rather than integrated in the main decoder structure.
The latter would require applying the MMD loss to the
entire decoder, which in our test led to energy deposits
similar to what can be seen in the WGAN MMD line.

While we were not able to improve the WGAN ap-
proach via post processing, we are not aware of funda-
mental reasons why a better performance using a simi-
lar method should not be possible for GAN and WGAN
based architectures as well. One reason why AE based
architectures might allow better training of post pro-
cessing steps is however the higher correlation between

real input and fake samples via the latent space em-
bedding. Nonetheless, the ability of the BIB-AE frame-
work to make use of this post processing setup moti-
vates future studies of this rather novel architecture for
calorimeter shower generation.
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Fig. 8 Plot of mean (µ90, left) and relative width (σ90/µ90, right) of the energy deposited in the calorimeter for various
incident particle energies. In order to avoid edge effects, the phase space boundary regions of 10 and 100 GeV are removed for
the response and resolution studies. In the bottom panels, the relative offset of these quantities with respect to the Geant4
simulation is shown.

4.3 Computational Performance

Beyond the physics performance of our generative mod-

els, discussed in the previous section, the major argu-
ment for these approaches is of course the potential
gain in production time. To this end, we benchmark

the per-shower generation time both on CPU and GPU
hardware architectures. In Table 4.3, we provide the
performance for 4 (3) batch sizes for the WGAN5 (BIB-

AE). We observe a speed-up by evaluating generative
models on GPU vs. Geant4 on CPU of up to almost a
factor of three thousand. Moreover, the evaluation time
of our generative models is independent of the incident
photon energy while this is not the case for the Geant4
simulation.

5 Conclusion

The accelerated simulation of calorimeters with gener-
ative deep neural networks is an active area of research.
Early works [1, 25, 26] established generative networks
as a fast and very promising tool for particle physics

and simulated the positron, photon, and charged pion
response of an idealised perfect calorimeter with 3 lay-
ers and a total of 504 cells (3×96, 12×12, and 12×6).

Using the WGAN architecture and an energy con-
strainer network [28] allowed the correct simulation of
the observed total energy of electrons for a calorime-
ter consisting of seven layers with a total of 1,260 cells

5 The time evaluation of the GAN network is not reported
since the generator architecture is very similar to the WGAN.

(12 × 15 cells per layers). However, a mismodelling of
individual cell energies below 10 MIPs, also leading to

an observed deviation in the hit multiplicity distribu-
tion, was observed and studied. Our implementation
of a WGAN based on [28] reproduces this effect (see

Fig. 6 (left)). The proposed BIB-AE architecture with
additional MMD loss term and Post Processor Network
leads to a reliable description of low energy deposits.

The ATLAS collaboration also reported the accu-
rate simulation of high-level observables for photons in

a four-layer calorimeter segment with a total of 276
cells (7 × 3, 57 × 4, 7 × 7 and 7 × 5) using a VAE
architecture [31] and 266 cells using a WGAN [32]. Re-
cent progress was made applying a GAN architecture
to simulating electrons in a high granularity calorime-
ter prototype [29]. The considered detector consists of
25 layers with 51× 51 cells per layer, leading to a total
of 65k cells to be simulated. On this very challenging
problem, good agreement with Geant4 was achieved for
a number of differential distributions and correlations
of high-level observables. Specifically, the per-cell en-

ergy distribution was not reported, however the dis-
agreement in the hit multiplicity again implies a mis-
modeling of the MIP peak region.

Our specific contribution is the first high fidelity
simulation for a number of challenging quantities rele-

vant for downstream analysis, including the overall en-
ergy response and per-cell energy distribution around
the MIP peak, for a realistic high-granularity calorime-
ter. This is made possible by the first application of the
BIB-AE architecture — unifying GAN and VAE ap-
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Fig. 9 Linear correlation coefficients between various quantities described in the text in Geant4 (top left). Difference between
these correlations in Geant4 and GAN (top right), Geant4 and WGAN (bottom left), and Geant4 and BIB-AE with post
processing (bottom right). The mean absolute differences compared to Geant4 are 0.058 for the GAN, 0.187 for the WGAN
and 0.132 for the BIB-AE.

proaches — in physics. Modifications to this architec-
ture, specifically an additional kernel-based MMD loss
term and a Post Processor Network, were developed.
These improvements can potentially also be applied to
other generative architectures and models. Planned fu-
ture work includes the extension of this approach to
also cover multiple particle types, incident positions and
angles towards a complete, fast, and physically reliable
synthetic calorimeter simulation.
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Fig. 10 Scatter plot showing the correlations between visible energy and number of hits (top) and visible energy and center
of gravity (bottom).

Table 1 Overview of computational performance of WGAN and BIB-AE model, compared to Geant4 full simulation. Evalu-
ated on both a single core of a Intel® Xeon® CPU E5-2640 v4 (CPU) and NVIDIA® V100 with 32 GB of memory (GPU).
Numerical values represent the mean and standard deviation of 25 runs.

Simulator Hardware Batch Size 15 GeV Speed-up 10-100 GeV Flat Speed-up

Geant4 CPU N/A 1445.05± 19.34 ms - 4081.53± 169.92 ms -
WGAN CPU 1 64.34± 0.58 ms x23 63.14± 0.34 ms x65

10 59.53± 0.45 ms x24 56.65± 0.33 ms x72
100 58.31± 0.93 ms x25 58.11± 0.13 ms x70
1000 57.99± 0.97 ms x25 57.99± 0.18 ms x70

BIB-AE CPU 1 426.60± 3.27 ms x3 426.32± 3.62 ms x10
10 422.60± 0.26 ms x3 424.71± 3.53 ms x10
100 419.64± 0.07 ms x3 418.04± 0.20 ms x10

WGAN GPU 1 3.24± 0.01 ms x446 3.25± 0.01 ms x1256
10 6.13± 0.02 ms x236 6.13± 0.02 ms x666
100 5.43± 0.01 ms x266 5.43± 0.01 ms x752
1000 5.43± 0.01 ms x266 5.43± 0.01 ms x752

BIB-AE GPU 1 3.14± 0.01 ms x460 3.19± 0.01 ms x1279
10 1.56± 0.01 ms x926 1.57± 0.01 ms x2600
100 1.42± 0.01 ms x1017 1.42± 0.01 ms x2874

vation Pool project AMALEA that provided a stimulating
scientific environment for parts of the research done here.

Conflict of interest

The authors declare that they have no conflict of inter-
est.

A Network architectures and training
procedure

The network architectures of generative models have a large
number of moving parts and the contributions from various
generators, discriminators, and critics need to be carefully
orchestrated to achieve good results. In the following we pro-
vide details of the implementation and training for the GAN,
WGAN, and BIB-AE models. Due to the high computational
cost of the studies — e.g. the BIB-AE was trained for a total
of four days in parallel on four NVIDIA Tesla V100 (32 GB)
GPUs — no systematic tuning of hyperparameters was per-
formed. For all architectures a good modelling of the Geant4
training distributions was used as stopping criterion. All ar-
chitectures are implemented in PyTorch [60] version 1.3.
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Fig. 11 Differential distributions comparing physics quantities between Geant4 and the different generative models. The
energy per-cell is measured in MeV for the bottom axis and in multiples of the expected energy deposit of a minimum ionizing
particle (MIP) for the top axis.

A.1 GAN Training

Our implementation of the simple GAN is inspired by [1, 25,
26] and it should serve as an easy to implement baseline model
consisting of a generator and a discriminator. In total, the
generator has 1.5M trainable weights and the discriminator
has 2.0M weights. We therefore did not consider additional
modifications to the GAN approach such as training with a
gradient penalty term.

The generator network of the GAN consists of 3-dimen-
sional transposed convolution layers with batch normaliza-
tion. It takes a noise vector of length 100, uniformly dis-
tributed from -1 to 1, and the true energy labels E as in-
puts. A first transposed convolution with a 43 kernel (stride
1) is applied to the noise vector multiplied by E. The main
transposed convolution consists of four layers. The first three
layers have a kernel size of 43 (stride 2) followed by batch
normalization. The final layer has a kernel size of 33 (stride
1). All layers use ReLU [61] as activation function.

The discriminator uses five 3-dimensional convolution lay-
ers followed by two fully connected layers with 257 and 128
nodes respectively. The convolution layers use a 33 kernel.
The stride is 2 for all convolutional layers. Batch normalisa-
tion [62] is applied after each convolution except in the first
and last layer. We flatten the output of the convolutions and
concatenate it the with input energy before passing it to the
fully connected layers. Each fully connected layer except the

final one uses LeakyReLU [63] (slope: −0.2) as an activation
function. The activation in the final layer is sigmoid.

For training, we use the Adam optimizer [64] (learning
rate 2 · 10−5). The training process starts from updating the
discriminator for real and fake showers. After that we freeze
the parameters of the discriminator and update the generator
with a new generated batch of fake showers. The generator
and discriminator are trained alternating until the training is
stopped after 125k weight updates — corresponding to ap-
proximately 6 epochs — when good modelling of the control
distributions is achieved.

A.2 WGAN Training

The WGAN architecture, based on [27,28], consists of 3 net-
works: one generator with 3.7M weights, one critic with 250k
weights, and one constrainer network with 220k weights. The
critic network starts with four 3D convolution layers with
kernel sizes (X,2,2) with X = 10, 6, 4, 4 which have 32, 64,
128, and 1 filters respectively. LayerNorm [65] layers are sand-
wiched between the convolutions. After the last convolution,
the output is concatenated with the E vector required for
E−conditioning. After that, it is flattened and fed into a
fully connected network with 91, 100, 200, 100, 75, 1 nodes.
Throughout the critic, LeakyReLU (slope: −0.2) is used as
activation function.
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The generator network takes a latent vector z (normally
distributed with length 100) and true E labels as input and
separately passes them through a 3D transposed convolution
layer using a 43 kernel with 128 filters. After that, the out-
puts are concatenated and processed through a series of four
3D transposed convolution layers (kernel size 43 with filters
of 256, 128, 64, 32). LayerNorm layers along with ReLU ac-
tivation functions are used throughout the generator.

The energy-constrainer network is similar to the critic:
three 3D convolutions with kernel sizes 33, 33 and 23 along
with 16, 32, and 16 filters are used. The output is then fed into
a fully connected network with 2000, 100, and 1 nodes. Lay-
erNorm layers and LeakyReLU (slope: -0.2) are sandwiched
in between convolutional layers.

The WGAN is trained for a total of 131k weight updates
which corresponds to 20 epochs. The generator and critic net-
work are trained using the Adam optimizer with an initial
learning rate of 10−4. The learning rate is decreased by a
factor of 10 each after the first 50k and after a total of 100k
iterations. For the critic, the initial learning rate is 10−5. It
is reduced by a factor of 10 after 50k iterations. Finally, the
constrainer network is trained using stochastic gradient de-
scent [66] with a learning rate of 10−5. After 30k iterations,
the constrainer weights are frozen. The training of the WGAN
took one week on three NVIDIA Tesla V100 GPUs.

A.3 BIB-AE Training

Our implementation of the BIB-AE architecture consists of
an encoder and a decoder, a latent space critic, a pair of critic
and difference critic, and a network for post processing, and
has 71M weights in total. Of these, 35M weights are used by
the encoder. This is a significantly larger number of weights
than what can be found in the GAN and WGAN models,
however this can largely be attributed to the use of fully con-
nected layers in the BIB-AE, while both GANs are almost
purely convolutions. Regardless of this weight discrepancy
both models remain comparable, since their total comput-
ing time is in the same order of magnitude, as can be seen in
Table 4.3.

The encoder consists of four 3-dimensional convolution
layers with kernel size 43, 43, 43 and 33, stride 2, 2, 2 and 1
and 8, 16, 32 and 64 filters. After each convolution LayerNorm
is applied. The final convolution has an output shape of 64×
5 × 5 × 5. This output is flattened, concatenated with the
true energy label, and passed to a series of dense layers with
8001, 4000, 32 and 2 × 24 nodes. The two sets of 24 final
outputs are interpreted as µ and σ and are used to define 24
Gaussian distributions. We sample once from each Gaussian
to form the latent representation of the input shower. These
24 values are passed to the decoder.

The decoder takes the 24 latent-samples and concatenates
them with 488 points of random Gaussian noise as well as
the true energy label. The resulting tensor is then passed to
dense layers with 513, 768, 4000 and 8000 nodes. We reshape
the output of the dense layers to 8 × 10 × 10 × 10. Using
two transposed convolution layers with kernel sizes 33 and
33, strides 3 and 2, and 8 and 16 filters respectively this is
upsampled to 16× 60× 60× 60 and then reduced back down
to 8× 30× 30× 30 by a kernel-size 23, stride 2 convolution.
This is followed by four more convolutions, all with kernel-
size 33 and stride 1 with 8, 16, 32, and 1 filters respectively.
Once again each (transposed) convolution except for the last
one is followed by LayerNorm. Both encoder and decoder use
LeakyReLU as intermediate activation functions. The final

encoder layer has a linear, the final decoder layer a ReLU
activation.

The BIB-AE latent space critic is a fully connected net-
work with 1, 50, 100, 50, and 1 nodes using LeakyReLU ac-
tivation. The critic is trained using samples from a Normal
distribution as true data and using the latent space samples
as fakes. Each of the 24 sampled latent space variables is
passed individually to the critic.

The BIB-AE critic and difference critic are built as a com-
bined network with four input streams. The first stream takes
the 30× 30× 30 shower image as input and applies 3 convo-
lutions with kernel-size 33, 33, and 33, stride 2, 2, and 1, and
128, 128, and 128 filters, reducing the input to 128×4×4×4.
The convolutions are interspersed with LayerNorms. The con-
volutional output is flattened and passed to a dense layer with
64 output nodes. The second stream is nearly identical to the
first one, except the input is scaled by adding one and ap-
plying the natural logarithm. The third stream consists of a
single dense layer with 303 = 27, 000 input and 64 output
nodes. The input to this stream is the flattened difference
between the reconstructed image and the original image. Fi-
nally, we use the true energy label as input to the fourth
stream. It consists of one dense layer with one input and 64
outputs.

The 64 outputs from each of the four streams are concate-
nated and passed to a final set of dense layers with 256, 128,
128, 128, 1 nodes. We once again use LeakyReLU everywhere
except for the final layer, which has a linear activation. Dur-
ing training the first two streams receive Geant4 images as
real data and reconstructed images as fakes. The third stream
receives Geant4-Geant4 as real and Geant4-reconstructed as
fake. The fourth stream always receives the true energy label.

The Post Processor Network also has two streams. The
first takes a 30 × 30 × 30 image as its input and applies a
kernel-size 13, stride 1 convolution with 128 filters. The sec-
ond one takes the true energy label and the sum over all pixels
in the input image as its input. These are passed to dense lay-
ers with 2, 64, 64, 64 nodes, the output of which is expanded
to a 64×30×30×30 shape. The tensor is then concatenated
along the filter dimension with the 128 × 30 × 30 × 30 out-
put of the first stream. The combined object is passed to five
more convolutions, all with kernel-size 13, stride 1 and 128,
128, 128, 128, and 1 filters. As before, convolutions are inter-
spersed with LayerNorms. We use LeakyReLU save for the
last layer which uses a linear activation. The use of kernel-
size 13 means that the same function is applied to every pixel
value. However the intermittent LayerNorms cause the pre-
cise functions to be different for each individual shower as
well as for each pixel within the showers. As a result, each
shower has its own set of 27000 functions that behave very
similarly, but are still tailored to each of the 27000 possible
pixel positions.

The setup is initially trained for 35 epochs without the
Post Processor, the evolution of the individual loss contri-
butions during this training is shown in Fig.12. The initial
learning rates are 0.5 × 10−3 for encoder, decoder and the
critic, and 2.0× 10−3 for the latent critic. All learning rates
decay by 0.95 after each epoch. For each encoder/decoder up-
date we update the critics 5 times. After these 35 epochs we
train the Post Processor for one epoch using only the MSE
term. This ensured the Post Processors baseline behaviour
is to make as little changes to the images as possible. For
three subsequent epochs the Post Processor is trained using
a combination of MSE and MMD, with the same learning
rate as the encoder/decoder. The initial 35 epochs of train-
ing took 3 days on four NVIDIA Tesla V100 (32 GB) GPUs
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Fig. 12 Evolution of the indiviual loss contributions during the BIB-AE training. From left to right: critic loss, latent critic
loss, KLD loss and latent MMD loss.

and the Post Processor training lasted for one additional day.
We save checkpoints after each epoch. A composite figure of
merit combining a number of 1D distributions was used to
evaluate when stopping was warranted and to select which
checkpoint shows the best agreement with the training data.
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