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Abstract

We discuss various improvements of the prediction for the light MSSM Higgs boson
mass in the hybrid framework of the public code FeynHiggs, which combines fixed-
order and effective field theory results. First, we discuss the resummation of logarith-
mic contributions proportional to the bottom-Yukawa coupling including two-loop ∆b

resummation. For large tanβ, these improvements can lead to large upward shifts of
the Higgs mass compared to the existing fixed-order calculations. Second, we improve
the implemented EFT calculation by fully taking into account the effect of CP-violating
phases. As a third improvement, we discuss the inclusion of partial N3LL resummation.
The presented improvements will be implemented into FeynHiggs.
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1 Introduction
The discovery of a Higgs boson at the LHC [1,2] was an important step towards the under-
standing of the fundamental laws of Nature. The properties of the detected particle allow
a sensitive test of the predictions of the Standard Model (SM) and of theories of physics
beyond the SM (BSM). In particular, in the Minimal Supersymmetric extension of the SM
(MSSM) [3, 4], based upon the concept of supersymmetry (SUSY), the mass of the discov-
ered boson is not a free parameter, as in the SM, but is predicted in terms of the model
parameters.

While the SM-like Higgs mass in the MSSM is smaller or equal to the mass of the Z boson
at the tree-level, large quantum corrections shift it upwards towards the experimentally
measured value of Mh ∼ 125 GeV. In order to allow the use of the SM-like Higgs mass
as a precision constraint on the MSSM parameter space, the precise determination of these
quantum corrections is crucial [5].

The quantum corrections can be calculated in different frameworks. In the most direct
approach, quantum corrections to the Higgs self-energies are calculated diagrammatically in
the full theory (for recent works see [6–13]). This approach has the advantage of capturing
all corrections at a specific order in perturbation theory. If the scale of SUSY particles is,
however, much larger than the electroweak scale, large logarithms emerge in the fixed-order
corrections exacerbating the behaviour of the perturbative expansion. In such situations,
effective field theory (EFT) techniques allow the resummation of large logarithmic corrections
(for recent works see [14–21]). Without including higher-dimensional operators into the low-
energy EFT, terms suppressed by the SUSY scale are, however, missed in this approach.1
Therefore, the accuracy of the EFT approach can be diminished if one or more SUSY scales
are comparable to the electroweak scale. In order to obtain a precise prediction for the SM-
like Higgs boson mass for low, intermediary as well as high SUSY scales, both approaches
– the fixed-order and the EFT approach – can be combined. Such hybrid approaches have
been developed in [5, 17, 22–30].

In this paper, we focus on the hybrid approach implemented in the publicly available
code FeynHiggs [22,23,26,31–36]. We will discuss various improvements of the incorporated
EFT calculation as well as their combination with the implemented fixed-order calculation:
resummation of large logarithms proportional to the bottom Yukawa coupling (including two-
loop ∆b resummation [37–39]), extension of the EFT calculation fully taking into account
the effects of complex input parameters as well as an inclusion of partial N3LL resummation.

This paper is structured as follows: In Section 2, we explain how the resummation of
logarithms proportional to the bottom Yukawa coupling is incorporated into the hybrid
framework. The extension of the EFT calculation for complex input parameters is discussed
in Section 3. We explain the implementation of partial N3LL resummation in Section 4.
Numerical results are presented in Section 5. In Section 6, we give our conclusions. In
the Appendices, we provide more details regarding the calculation of the two-loop threshold
corrections (see App. A), analytic expressions for the threshold corrections to the SM-Higgs
self coupling and to the couplings of the Split-SUSY model (see App. B), more details
regarding the dependence of ∆b on CP-violating phases (see App. C), and explicit formulas
for the one- and two-loop logarithmic corrections to Mh proportional to the bottom-Yukawa

1An EFT study including the dominant dimension-six operators can be found in [16].
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coupling (see App. D).

2 Resummation of logarithmic bottom Yukawa contribu-
tions

In this Section, we describe the procedure for resumming logarithmic contributions con-
trolled by the bottom Yukawa coupling in our hybrid framework. We first describe the
employed fixed-order and EFT calculations separately. Then we discuss their combination.
The resummation of the bottom Yukawa coupling for large tan β is discussed in Section 2.4.

2.1 Fixed-order calculation

The fixed-order part of the calculation consists of the full one-loop and O(αtαs, α
2
t ) correc-

tions (αs = g2
3/(4π) with g2

3 being the strong gauge coupling, and αt = y2
t /(4π) with yt

being the top Yukawa coupling) implemented into FeynHiggs [40–42]. In these corrections
CP-violating phases are fully taken into account.

Also, two-loop corrections proportional to the bottom-Yukawa coupling have been calcu-
lated using different renormalisation schemes for the sbottom sector. In Section 5, we will
compare the results of two different schemes.

Renormalisation scheme 1

The present public version of FeynHiggs (version 2.16.1) includes the O(αbαs, αbαt, α
2
b)

corrections derived in [43, 44] (αb = y2
b/(4π) with yb being the bottom Yukawa coupling).

For these corrections the following renormalisation scheme is employed: The squark masses,
m2
q̃, and mixing angles θq̃, and the top quark mass are renormalised in the on-shell (OS)

scheme,

δm2
q̃i

= Re Σq̃iq̃i(m
2
q̃i

), δθq̃ =
Re Σq̃1q̃2(m

2
q̃1

) + Re Σq̃1q̃2(m
2
q̃1

)

2(m2
q̃1
−m2

q̃2
)

,

δMt =
Mt

2
Re
[
ΣL
t (M2

t ) + ΣR
t (M2

t ) + 2ΣS
t (M2

t )
]
,

(1)

where Σq̃iq̃i is used to denote the respective scalar self-energy, ΣL
t , ΣR

t and ΣS
t are the

coefficients in the Lorentz decomposition of the unrenormalised top-quark self-energy,

Σt(p) = /pPLΣL
t (p2) + /pPRΣR

t (p2) +MtΣ
S
t (p2) +Mtγ5ΣP

t (p2). (2)

Additionally, Re denotes the real part, and Mt is the OS top-quark mass.
The corrections in [43,44] have been calculated assuming vanishing CP-violating phases.

Moreover, they have been derived in the large tan β limit which implies that the bottom-
quark mass mb is put to zero if it is not multiplied with tan β. In this approach, the soft
SUSY-breaking masses, the trilinear couplings of the stop and sbottom sector, as well as the
top-quark mass are independent parameters. In contrast, the bottom-quark mass is treated
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as a dependent quantity and the expression for its counterterm is derived from the equation
connecting the bottom-quark mass and the sbottom mixing angle,2

s2θb̃
=

2mbµtβ
m2
b̃2
−m2

b̃1

, (3)

where we introduced the abbreviations

sγ = sin γ, cγ = cos γ, tγ = tan γ (4)

for a generic angle γ. Following the discussion in Refs. [43,44] we omitted terms proportional
to ∼ Ab in Eq. (3), since they are not enhanced by factors of tan β.

Therefore, the one-loop counterterm for the bottom-quark mass in this scheme has the
following form,

δmb = mb

(
δm2

b̃2
− δm2

b̃1

m2
b̃2
−m2

b̃1

+
δs2θb

s2θb

− δµ

µ
− δtβ

)
, (5)

where δµ is the counterterm for the Higgsino mass parameter µ. The actual bottom quark
mass, which is used in the calculation, is then given by

m̂b = mDR,MSSM
b (Q)

(
1 +

δm2
b̃2
− δm2

b̃1

m2
b̃2
−m2

b̃1

+
δs2θb

s2θb

− δµ

µ
− δtβ

)∣∣∣∣∣
fin

. (6)

It can be shown by explicit calculation that the renormalisation scale dependence ofmDR,MSSM
b (Q)

is canceled out by the scale dependence contained in the combination of the counterterms
δm2

b̃2
, δm2

b̃1
and δs2θb in the bracket of Eq. (6). Therefore, m̂b is scale independent at the

one-loop level if the Higgsino mass parameter µ and tβ are renormalised in the DR3 scheme
as assumed throughout this work. In FeynHiggs, the associated renormalisation scale is by
default set equal to Mt.

Due to the SU(2)L gauge symmetry, the bilinear soft SUSY-breaking parameters mb̃L
and mt̃L

are equal to each other at the tree level. This relation is broken at the one-loop
level. The counterterms for mt̃L

and mb̃L
read

δm2
t̃L

= cos2 θt̃ δm
2
t̃1

+ sin2 θt̃ δm
2
t̃2

+ (m2
t̃2
−m2

t̃1
) sin 2θt̃ δθt̃ − 2 mt δmt, (7a)

δm2
b̃L

= cos2 θb̃ δm
2
b̃1

+ sin2 θb̃ δm
2
b̃2

+ (m2
b̃2
−m2

b̃1
) sin 2θb̃ δθb̃ − 2 mb δmb, (7b)

and are in general not equal to each other. In the following, we will assume that m2
t̃L

is given
as an input parameter. Then the renormalised soft sbottom mass m2

b̃L
is given by

m2
b̃L

= m2
t̃L

+ δm2
t̃L
− δm2

b̃L
. (8)

The trilinear soft SUSY-breaking parameter Ab is fixed via the sbottom–sbottom–A-boson
vertex function (see [43,44] for more details).

2We use a different sign convention for µ in comparison to [43,44].
3To be more precise, these parameters are defined in the DR

′
scheme [45]. We will, however, not make

any distinction between DR and DR
′
schemes throughout this paper except of Section 4.
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Renormalisation scheme 2

For our present study, we, however, do not make use of the O(αbαs, αbαt, α
2
b) corrections

already implemented in FeynHiggs. Instead, we employ the O(αbαs, αbαt, α
2
b) corrections

presented in [8, 10] (see also [46, 47]). These also include terms subleading in tan β, allow
for easier control of the renormalisation scheme and take CP-violating phases fully into
account. They will be part of an upcoming FeynHiggs release. For the present work, we
evaluate them, however, externally and feed the numerical result back to FeynHiggs.4 In
this scheme the soft SUSY-breaking mass mb̃L

is not treated as an independent parameter
and set equal to mt̃L

. This implies

δm2
b̃L

= δm2
t̃L
, (9)

where δm2
t̃L

is given by Eq. (7a). The consequence of this relation is that only one of the
sbottom masses can be set on-shell. As a matter of convention, the mass of the second
sbottom is defined in the on-shell scheme,

δm2
b̃2

= Re Σb̃2b̃2
(m2

b̃2
). (10)

We treat the mass of the bottom quark as an independent parameter which is renormalised
in the DR scheme,

δmb =
mb

2
Re
[
ΣL
b (m2

b) + ΣR
b (m2

b) + 2ΣS
b (m2

b)
]∣∣

div
, (11)

where ΣL
b , ΣR

b and ΣS
b are defined in analogy to Eq. (2). The trilinear soft SUSY-breaking

parameter Ab is also defined in the DR scheme,

δADR
b =

1

mb

[(
δm2, DR

b̃1
− δm2, DR

b̃2

)
Ub̃11

U∗
b̃12

+ δm2, DR
b̃12

Ub̃21
U∗
b̃12

+ δm2, DR
b̃21

Ub̃11
U∗
b̃22

]

− (Ab − µ∗ tβ)
δmDR

b

mb

+ tβ δµ
∗, DR + µ∗ tβ δt

DR
β , (12)

where Ub̃ is the mixing matrix of the sbottom sector, and

δm2, DR
b̃12

=
1

2

(
Σ

(1)

b̃1b̃2
(m2

b̃1
)
∣∣∣
div

+ Σ
(1)

b̃1b̃2
(m2

b̃2
)
∣∣∣
div

)
= (m2

b̃1
−m2

b̃2
)δθDR

b̃
, (13a)

δm2, DR
b̃21

=
(
δm2, DR

b̃12

)∗
. (13b)

Eqs. (9)–(13) fix the renormalisation conditions for all parameters of the sector.
In both schemes described above it is assumed that the stop sector is renormalised using

the OS scheme. We furthermore implemented a pure DR renormalisation of the stop and
sbottom sector as an additional option.

4In practice, we use the FHAddSelf functionality (see feynhiggs.de).
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2.2 EFT calculation

We build upon the existing EFT calculation in FeynHiggs [22, 23, 26, 36]. At the sfermion
mass scale, MSUSY, all sfermions as well as the non-SM-like Higgs bosons are integrated
out.5 Performing the renormalisation-group running to lower scales and passing two addi-
tional independent thresholds for electroweakinos (charginos and neutralinos) and the gluino,
the SM is recovered as EFT.6 The currently implemented EFT calculation resums leading
and next-to-leading (LL and NLL) logarithms as well as next-to-next-to-leading logarithms
(NNLL) in the limit of vanishing electroweak gauge couplings. So far, however, all corrections
proportional to the bottom Yukawa coupling are set to zero in the EFT calculation.

For the incorporation of the bottom Yukawa contributions, our aim was to reach the same
level of accuracy as for the other corrections. For implementing LL and NLL resummation,
we include the bottom Yukawa contributions to the one-loop matching condition of the SM
Higgs self-coupling, λ [14, 16]. Also the one- and two-loop RGEs are extended by the RGE
of the bottom-Yukawa coupling and by bottom-Yukawa contributions to the RGEs of the
other couplings (see e.g. [48]).

To achieve resummation at the NNLL level, we derive the O(αbαs, αbαt, α
2
b) threshold

corrections for λ making use of the two-loop Higgs self-energy corrections obtained in [8,
10, 42]. Details are given in App. A. In the limit of vanishing CP-violating phases, we
find agreement with the expressions derived in [16] using the effective-potential approach.
We also add the bottom Yukawa contributions to the three-loop SM RGEs in the limit of
vanishing electroweak gauge couplings [49–53] and to the calculation of the SM MS vev at
the electroweak scale.

For the EFT calculation, all sbottom input parameters are defined in the DR scheme at
the scale MSUSY. We choose to define tan β in the DR scheme at the scale MSUSY.

2.3 Combination in the hybrid approach

For the combination of the fixed-order and the EFT calculation, we follow the procedure
described in [22, 23, 26, 28]. For the self-energy of the SM-like Higgs boson, the result of
the fixed-order calculation, Σ̂FO

hh (p2), and the EFT result, −2λ(Mt)(vMS)2 (with vMS being
the SM MS vev at the scale Mt), are summed. Subtraction terms are used to ensure that
contributions included in both results are not counted twice,

Σ̂hybrid
hh (p2) = Σ̂FO

hh (p2)− 2λ(Mt)v
2 − (subtraction terms). (14)

In order to ease this combination, we choose to define the sbottom input parameters in the
same scheme in the fixed-order and the EFT calculations: We fix them in the DR scheme at
the scale MSUSY. Also tan β and µ are fixed in the DR scheme at the scale MSUSY.

A complication arises through the use of the DR bottom quark mass in the EFT as well
as the fixed-order calculation. After adding both results as shown in Eq. (14), the Higgs pole

5In this paper, we do not consider the FeynHiggs implementation incorporating a Two-Higgs-Doublet-
Model as EFT below the sfermion scale [17].

6The case of the gluino being much heavier than the rest of the MSSM spectrum requires special care.
This case was considered in [21].
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masses are determined taking into account the momentum dependence of the fixed-order self-
energy. As discussed in detail in [28], this momentum dependence arises only from SM-type
corrections as well as contributions suppressed by the SUSY scale. In order to match the
result of a pure EFT calculation, in which the Higgs pole mass is determined in the SM, we
have to ensure that the SM-type corrections are evaluated using only SM quantities. The
DR bottom-quark mass, however, is an MSSM quantity. For this reason, we reparametrise
the SM bottom-quark contributions to the Higgs self-energies in terms of the SM MS bottom
quark mass at the scale Mt.

In our implementation, this is achieved by subtracting the UV-finite O(αb) self-energy,
containing only the SM contributions and parametrised in terms of the MSSM bottom
quark mDR,MSSM

b (MSUSY), and then adding back the same quantity but parametrised via
mMS,SM
b (Mt). The explicit expression for the one-loop SM Higgs boson self-energy renor-

malised in the MS scheme with the tadpoles renormalised to zero is given by

Σ̃MS,SM
hh (p2) =

3m2
b

16π2v2
(p2 − 4m2

b)B
fin
0 (p2,m2

b ,m
2
b), (15)

where the superscript “fin” means that in this expression we take only the finite part of the
one-loop scalar integral function B0(p2,m2

1,m
2
2), for which we use the definition given in [54].

Since the SM-like Higgs mass is determined via an iterative solution of the pole equation,
the same procedure has to be applied to the derivative of Σ̃ MS,SM

hh (p2) with respect to the
external momentum. The O(αbαs, αtαb, α

2
b) SM self-energies computed in the gaugeless limit

are extracted from the code FlexibleSUSY [24, 27,55] and Refs. [56, 57].
In order to allow for an OS definition of the stop input parameters, a conversion of

the OS parameters, used in the fixed-order calculation, to the DR scheme, used in the
EFT calculation, is necessary. As argued in [5, 22, 23, 26], for this conversion only one-loop
logarithmic terms should be taken into account. Only in the conversion formula for the
stop mixing parameter, Xt, large logarithms appear. For the present study, we extend the
formula given in [23] by including the bottom Yukawa contributions,

XDR
t (MSUSY) = XOS

t

{
1 +

[
αs
π
− 3αt

16π

(
1− |Xt|2

M2
SUSY

)

+
3αb
16π

(
1 +

|Xb|2
M2

SUSY

)]
ln
M2

SUSY

M2
t

}
, (16)

where Xb is the sbottom mixing parameter (Xb = Ab − µ∗ tan β).

2.4 Determination of the MSSM bottom quark mass and Yukawa
coupling

Here, we describe how we obtain the DR bottom quark mass used in the fixed-order calcu-
lation as well as the DR bottom Yukawa coupling used in the EFT calculation. As input,
we use the SM MS bottom Yukawa coupling, yMS,SM

b , and the SM MS vev, vMS,SM, at the
scale Mt. These are evolved to the SUSY scale. At this scale we determine the MSSM DR
bottom Yukawa coupling, hDR,MSSM

b (with hbcβ = yb at the tree level), and the MSSM DR
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vev, vDR,MSSM, by matching the SM to the MSSM,
(
hDR,MSSM
b cβ

)
(MSUSY) = yMS,SM

b (MSUSY) (1 + ∆yb) , (17)

vDR,MSSM(MSUSY) = vMS,SM(MSUSY) (1 + ∆v) , (18)

where the one-loop expression for ∆v is given in Eq. (64) below. The DR bottom quark
mass is then determined by

mDR,MSSM
b (MSUSY) =

(
hDR,MSSM
b cβ

)
(MSUSY)vDR,MSSM(MSUSY). (19)

It is well-known that the relation between the DR bottom quark mass and the SMMS bottom
Yukawa coupling includes terms proportional to tan β. For large tan β, the leading tan β-
enhanced terms can be resummed as described in [43,44,58–63]. Typically, this resummation
is written in the form

mDR,MSSM
b = mMS,SM

b

1 + εb
|1 + ∆b|

, (20)

where ∆b includes tan β-enhanced terms, which are not suppressed by powers of mb/mt.
εb contains all other terms from the one-loop relation between mDR,MSSM

b and mMS,SM
b . We

employ a similar relation for the matching of the bottom Yukawa coupling,7

(
hDR,MSSM
b cβ

)
(MSUSY) = yMS,SM

b (MSUSY)
1 + εb −∆v

|1 + ∆b|
. (21)

A similar procedure for the calculation of the MSSM bottom Yukawa coupling was adopted
in [16]. There, however, non-enhanced terms, εb, and the threshold correction of the vev,
∆v, were included into the definition of ∆b. In our approach, we separate them to re-
sum only tan β enhanced corrections to the bottom-Yukawa coupling in the same way as
in [43, 64]. This results only in a small numerical difference since the main contribution to
hDR,MSSM
b (MSUSY) comes from ∆b (see also the discussion in Section 5).
In our implementation, we include full one-loop corrections to ∆b. The quantity ∆v is

calculated at the one-loop level in the gaugeless limit. In addition, we include the leading
two-loop corrections to ∆b. These two-loop corrections are based on the results from [37–39].8
We, however, perform an expansion of ∆b (at the one- and two-loop level) for large MSUSY

omitting terms of higher-order in O(v2/M2
SUSY). In addition, we adapt the renormalisation

scheme to match our scheme. More precisely, in [37, 39] the soft supersymmetry breaking
parameters in the stop and sbottom sectors as well as the gluino mass are renormalised on-
shell. Moreover, all supersymmetric particles and the top quark are decoupled from the scale
dependence of the strong coupling αs. This decoupling of the top quark and the on-shell

7There are terms proportional to m2
b tan2 β in the one-loop relation between mDR,MSSM

b and mMS,SM
b

as well as in the relation between vDR,MSSM and vMS,SM. These terms are suppressed as ∼ m2
b tanβ/m2

t

compared to the top Yukawa contribution to ∆b and, therefore, numerically irrelevant. Therefore, we will
refer to the terms in εb as “non-enhanced” terms in this paper.

8Similar results have been obtained in [65,66]. Moreover, the authors of [67] derived subleading two-loop
corrections, which are not taken into account in the present work.
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renormalisation of the top sector induces large logarithms, log(M2
SUSY/M

2
t ), implying that

the formulas in [37–39] are not directly applicable in our framework. Since in our case the
low-energy model is the SM with possibly light gluinos (and electroweakinos), we do not
decouple the top quark and the gluino. Also, to be consistent with the other parts of our
EFT calculation we renormalise the gluino mass and the stop/sbottom masses in the DR
scheme at the matching scale Q.

In the limit of all involved non-SM masses having the same value, we obtain

∆2l
b = ∆

2l,O(α2
s)

b + ∆
2l,O(αtαs)
b , (22)

∆
2l,O(α2

s)
b =

αs(Q)2CF
12π2

µ

MSUSY
tβ

(
2CA − CF + 6TR

− (3CA − 2CF − 9TR) log
M2

SUSY

Q2

)
, (23)

∆
2l,O(αtαs)
b = −αs(Q)y2

t (Q)CF
384π3

At
MSUSY

tβ

(
7 + 10 log

M2
SUSY

Q2

)
. (24)

Here, At is the stop trilinear coupling (At = Xt + µ∗/ tan β), Q is the renormalisation scale,
CA = 3, CF = 4

3
and TR = 1

2
. Formulas also valid for non-degenerate masses are distributed

as ancillary files together with this paper.

3 EFT calculation for complex input parameters
In the fixed-order approach, the dependence on CP-violating phases is known at the one-
and two-loop level [35, 40–42, 68]. In the EFT framework, the phase dependence has so far
only been considered in case of a low-energy Two-Higgs-Doublet-Model [20,69–72]. Here, we
work out the dependence on CP-violating phases in the case of the SM (and the SM plus
electroweakinos and/or gluinos) as EFT, for which so far only an interpolation of the result
in case of real input parameters has been available [36].

We first discuss the case of the SM as low-energy EFT. Since the SM includes no phases
(apart from the CKM phase, whose effect is negligible for the determination of the Higgs
mass), CP-violating effects in the full MSSM enter only via threshold corrections to real
parameters. At the one-loop level, the only contribution to the matching of the Higgs
self-coupling with a non-vanishing phase dependence is the electroweakino contribution. It
depends on the phases of the bino and wino soft-breaking masses, φM1 and φM2 , as well as
of the Higgsino mass parameter, φµ (explicit expressions are listed in App. B). This implies
that at the one-loop level, there is no dependence on the phases of the squark sector (at least
if the absolute values of the squark mixing parameters, |Xq|, are kept constant).

The phases of the stop and sbottom sector along with the gluino phase, φM3 , however,
enter the matching of the Higgs self-coupling at the two-loop level. Based upon the fixed-
order results presented in [8,10,41,42], we extract the dependence of the two-loop threshold
correction on these phases at O(αb,tαs, α

2
b , αbαt, α

2
t ) without assumptions on the internal

masses (details are given in App. A). In case of real input parameters, we find full agreement
with the results of [14, 16, 73]. By analysing the obtained expressions, it becomes clear
how the expressions derived in [14, 16, 73] can be generalised to the case of complex input
parameters:
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• O(αqαs) where q = t, b: The expression for zero phases is a polynomial in X̂q. To
get the expression for non-zero phases every odd power of X̂q has to be multiplied by
cos(φXq − φM3), and X̂q has to replaced by |X̂q|.

• O(α2
q) where q = t, b: The expression for zero phases is a sum of monomials in the

variables X̂q and Ŷq = X̂q +
2µ̂∗

sin 2β
of one of three types: the monomials which contain

only even powers of X̂q, the ones which contain only even powers of Ŷq and the ones
which contain both X̂q and Ŷq. The latter contain only even or only odd powers of X̂q

and Ŷq at the same time. To get the expression for non-zero phases, every monomial
which contains odd powers of X̂q and Ŷq has to be multiplied by cos(φXq − φYq), and
every X̂q and Ŷq has to be replaced by |X̂q| and |Ŷq|, respectively.

The generalisation of the O(αbαt) expression from the CP-conserving case to the CP-
violating case is slightly more complicated since different multiplicative factors arise.

Full explicit expressions in the limit of all sfermions having the same mass are given in
App. B.2. Fully general expressions can be found in ancillary files distributed alongside this
paper.

If the low-energy theory is the SM plus electroweakinos, effective Higgs–Higgsino–gaugino
couplings are induced. These are potentially complex-valued. An explicit matching calcula-
tion at the one-loop level, however, shows that their phase is zero even if one or more of the
electroweakino phases in the MSSM are non-zero. Correspondingly, also the RGEs of the
SM plus electroweakinos are not modified in the presence of non-zero phases. The phases,
however, enter in the threshold corrections for the bottom and top Yukawa couplings as
well as the Higgs self-coupling when integrating out the electroweakinos (full expressions are
listed in App. B).

In addition to the phase dependencies discussed above, also the ∆b corrections (see Sec-
tion 2.4) depend on φµ, φM1,2,3 and φAt . The phase dependence of the one-loop correction
has been derived in [64,74,75]. The phase dependence of the two-loop correction, which we
derived based upon the result of [37–39] (see Section 2.4), has, however, been unknown so
far. We find that this dependence is the same as for the one-loop result. Namely, Eq. (23)
has to be multiplied by cos(φµ + φM3) and Eq. (24) has to be multiplied by cos(φµ + φAt).

This can be understood by looking at the explicit two-loop diagrams (see App. C). They
fall into three categories: either a gluon, a gluino or a sbottom quark is added to the one-
loop graph. If a gluon is added, the phase dependence of the one-loop graph is obviously
not changed, since the two additionally appearing strong gauge couplings do not include a
phase dependence. The same is true if a sbottom quark is coupled to the one-loop graph
by a four-sfermion vertex. Working in the chiral basis, it is again obvious that this coupling
does not induce an additional phase dependence. The case of adding a gluino is slightly
more complicated. The two additional gluon-gluino-sbottom couplings do depend on the
phase of the gluino mass parameter. Working again in the chiral basis, it is easy to see that
one of these two additional couplings is a left-handed coupling and the other one is a right-
handed coupling. The dependence on the gluino phase cancels between the left-handed and
the right-handed coupling. More details and all relevant two-loop diagrams can be found in
App. C.

10



4 N3LL resummation
Up to now, the EFT calculation implemented in FeynHiggs was restricted to full LL and
NLL resummation as well as NNLL resummation in the limit of vanishing electroweak gauge
couplings. In this Section, we discuss the implementation of N3LL resummation at O(αtα

2
s)

based upon the work presented in [18].
The following ingredients are needed in addition to the already implemented corrections

for NNLL resummation:

• SM O(αtα
2
s) Higgs self-energy corrections,

• leading QCD corrections to the three-loop RGEs of the Higgs self-coupling, the strong
gauge coupling as well as the top Yukawa coupling,

• O(α3
s) extraction of the MS top Yukawa coupling at the electroweak scale,

• O(αtα
2
s) matching condition for the Higgs self-coupling between the SM and the MSSM.

The SM O(αtα
2
s) corrections to the Higgs self-energy have been obtained in [57, 76, 77]; the

necessary RGEs in [77, 78]. Formulas for extracting the SM MS couplings at the three-loop
level can be found in [48]. The O(αtα

2
s) matching condition of the Higgs self-coupling was

computed in [18] based on the O(α2
tα

2
s) fixed-order calculation performed in [9, 79,80]. The

result is implemented in the publicly available code Himalaya [9, 18]. As discussed in [18],
this calculation is based on an expansion of three-loop diagrams for certain mass hierarchies.
Himalaya provides an uncertainty estimate for this truncation error.

We implemented all these corrections into the EFT calculation of FeynHiggs (the link to
Himalaya has already been implemented for the work presented in [5]). By default, Himalaya
uses the DR′ scheme [45] for the renormalisation of the squark input parameters [18]. Corre-
spondingly, also the input parameters of FeynHiggs are defined in the DR′ scheme if N3LL
resummation is activated. In case of complex input parameters, we interpolate the Himalaya
result.9

The inclusion of N3LL resummation in the EFT calculation can also be used within the
hybrid approach. In this case we, however, require that also in the fixed-order calculation
the parameters entering the three-loop threshold correction are renormalised in the DR′

scheme. The two-loop conversion, that would be necessary between OS parameters used in
the fixed-order calculation and DR′ parameters used in the EFT calculation, is beyond the
scope of the present paper.10

5 Numerical results
In this Section, we discuss the numerical effects of the various improvements discussed above.

9An interpolation in case of a complexM3 is not possible, since the expressions implemented in Himalaya
are not dependent on the sign of M3.

10The necessary two-loop squark self-energy corrections have already been calculated in [81,82].
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Figure 1: Predictions for Mh (left) and mb (right), which denotes the bottom mass used
in the different calculations (see text), as a function of tanβ for different accuracy levels
in the calculation of ∆b. For this plot we consider the same MSSM scenario as in Fig. 2
of [16].

5.1 Resummation of logarithmic bottom Yukawa contributions

Here, we investigate the numerical effect of resumming logarithmic contributions propor-
tional to the bottom Yukawa coupling. First, we concentrate on a scenario presented in
Ref. [16]. Namely, we assume that all soft SUSY-breaking masses are equal to MSUSY =
1.5 TeV except the gluino mass which is fixed by M3 = 2.5 TeV. The stop mixing parame-
ter is set by Xt =

√
6MSUSY, and the trilinear couplings of the third generation fermions are

equal to each other, Ab = Aτ = At. The Higgsino mass parameter, µ, is chosen to be equal
to −1.5 TeV. Due to this choice of the signs of M3, Xt and µ the MSSM bottom Yukawa
coupling is enhanced by the one-loop threshold corrections proportional to the top Yukawa
coupling and the strong coupling. As in Ref. [16] all the input parameters listed above and
tan β are assumed to be DR parameters at the scale MSUSY.11

In the left panel of Fig. 1 we present results for Mh in dependence on tan β. In addition
to showing results obtained with the calculation presented in this paper, we display results
obtained using the most recent public version of FeynHiggs (version 2.16.1). Moreover, we
show the result presented in Fig. 2 of [16] for comparison. This result was obtained in a pure
EFT framework using a private code written by the authors of the paper which is formally
equivalent to the code HSSUSY [24,27] at the discussed order. In the right panel of Fig. 1 we
show the bottom mass, mb, which is used in the corresponding calculations. In the case of
the red dashed curve it is the “OS” bottom mass, m̂b, defined by Eq. (6) and in case of the
blue, red, orange and green solid lines it is mDR,MSSM

b (MSUSY) given by Eq. (20).
In the first step of our numerical analysis, we focus on the various EFT results in the

left panel of Fig. 1: the black dot-dashed line corresponds to the result obtained in [16]
(red solid line in Fig. 2 of [16]). For this curve the full LL and NLL resummation of large

11In the considered scenario the ratioM3/MSUSY equals 5/3. According to the analysis carried out in [21],
the hierarchy between the gluino and squark masses is not so large that a resummation of the M3-enhanced
contributions would be required, see e.g. Fig. 1 of [21].
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logarithms is performed. In addition to that, NNLL logarithms are resummed to all orders
in the gaugeless limit (i.e., the electroweak gauge couplings are neglected in the two-loop
threshold corrections to λ). One-loop ∆b resummation, including O(αs, αt) corrections, is
used in the one-loop threshold correction for the bottom Yukawa coupling. The red, blue,
green and orange solid lines correspond to the results of our EFT calculation with different
approximation levels used in the calculation of the bottom Yukawa threshold correction. We
should note here that the results presented in [16] have been obtained using the SM MS top
Yukawa coupling extracted at the N3LO level while we by default use the NNLO value. For
a proper comparison with the results of [16], we adapted our calculation to use the same
level of corrections (see also the discussion in Sections 4 and 5.3). We use this determination
of the SM MS top Yukawa coupling for all curves of Fig. 1.

We observe a very good agreement between our EFT result using only O(αs, αt) correc-
tions in the calculation of ∆b (solid red curve), which is the same level of accuracy as used
in [16], and the result of [16] (black dot-dashed curve). The absolute difference between the
two curves equals ∼ 0.04 GeV for tβ = 15 and ∼ 0.7 GeV for tβ = 42 where the curves
have a very steep behavior. This difference comes mainly from the determination of the
MSSM bottom Yukawa coupling at the scale MSUSY. In [16], the threshold correction for
the vacuum expectation value, ∆v, and non-enhanced terms were included in the definition
of ∆b while we do not include them (see Eq. (21)). If we include them into ∆b as in [16],
the absolute difference between our calculation and the calculation presented in [16] shrinks
down even further (∼ 0.2 GeV for tβ = 42).

For the green solid curve in the left plot of Fig. 1, we take into account electroweak
corrections in the calculation of ∆b in addition to the O(αs, αt) corrections used for the solid
red curve. As a consequence of Eq. (62), this choice leads to a partial cancellation in the
calculation of ∆b and hence to a suppression of the MSSM bottom mass at the scale MSUSY

as one can see on the right panel of Fig. 1 showing mDR,MSSM
b (MSUSY) in dependence of

tan β. This in turn reduces the downward shift in the Higgs mass by the one-loop threshold
corrections to the SM Higgs self-coupling, λ, that is proportional to the bottom Yukawa
coupling.

The blue solid curve in the left plot of Fig. 1 shows the prediction for Mh neglecting the
electroweak one-loop contributions to ∆b but including the leading two-loop QCD corrections
to ∆b. For our parameter choice, these corrections increase the absolute value of ∆b by
approximately 5%. Correspondingly, also the MSSM bottom mass is increased as can be
seen in the right plot of Fig. 1. This results in a significant change of the resulting Higgs
mass for tan β & 40 where the dependence on tan β is very pronounced. The orange curves
in the left plot of Fig. 1 correspond to the inclusion of all corrections to ∆b mentioned above.
For the considered parameter choice, the electroweak corrections to ∆b are roughly three
times larger by absolute value than the two-loop corrections to ∆b. This explains why the
orange and the green curves lie quite close to each other.

The orange dashed curve represents the result of the hybrid calculation of Mh. Namely,
we have merged the fixed-order result with the NNLL EFT calculation (see Section 2).
The orange solid and dashed curves differ essentially by the inclusion of terms which are
suppressed by the ratio v2/M2

SUSY into the hybrid result. Since in our case MSUSY is chosen
above the TeV scale, the size of these terms is, as expected, quite small. Therefore, the
observed good agreement between the two methods serves as a consistency check of our
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hybrid calculation.
Finally, the red dashed curve shows the prediction forMh obtained by FeynHiggs-2.16.1

which we ran using the default flags as explained in [36].12 As only modification of this
version, we have used the N3LO instead of the NNLO SM MS top Yukawa coupling to allow
for a direct comparison to the result of [16]. We see that the agreement between all the
seven curves is quite good for small values of tan β, but for tan β & 30 the red dashed curve
shows a steep fall-off, while for the other curves the large downward shift from b/b̃-sector
corrections sets in only at higher values of tan β. The reason for this behaviour becomes
clear when looking at the right panel of Fig. 1: the red dashed curve, which corresponds
to m̂b defined in Eq. (6), increases much more rapidly for rising tan β than the other four
lines.13 This expression for the bottom mass is inserted in the leading one-loop fixed order
result which gives rise to a large downward shift of Mh [83–85],

(∆M2
h)1−loop,bottom ' −m̂

4
b tan4 β

16π2v2
. (25)

This term grows rapidly in absolute value with increasing tan β. A similar effect occurs
for all other curves but there the dependence of the bottom mass on tan β is much milder.
This is a consequence of our choice of the renormalisation scheme. Namely, the bottom
mass used in our setup is the DR MSSM bottom mass calculated at the scale MSUSY. All
the quantities entering the calculation of ∆b and εb are also DR MSSM quantities at this
scale. The most important ones are the top Yukawa coupling αt and the strong Yukawa
coupling αs (see Eq. (62) in App. B). Since their values decrease with increasing scale, 14

the ∆b correction calculated in our approach is smaller than the corresponding correction
in FeynHiggs-2.16.1. In this way our approach yields more stable results for large values
of tan β and for regions of the MSSM parameter space where the signs of the products µM3

and µAt are negative.

Next, we discuss the numerical effect induced by the resummation of logarithms pro-
portional to the bottom Yukawa coupling. First of all, to have an idea how numerically
important the effect is, it is instructive to have a look at the analytic one- and two-loop
expressions which one can find in App. D. The bottom mass we use in our calculation, even
though being potentially enhanced by ∆b effects, is the smallest mass taken into account in
our EFT calculation. The only way corrections containing the bottom mass may become
sizeable is when these terms are additionally proportional to tan β. This is the case when
mb is, for example, multiplied by X̂b, Ŷt, tβ or 1/cβ. We only find such enhancements in the
two-loop next-to-leading logarithmic contributions when the stop mixing parameter, X̂t, is
renormalised in the OS scheme (see Eqs. (83) and (84)). As a consequence, we expect the
effect of the resummation to be small if we renormalise X̂t in the DR scheme.

This qualitative consideration turns out to be reflected in the numerical results as one can
see in the left panel of Fig. 2. The red curve corresponds to the hybrid result including the
effects of the bottom Yukawa coupling only at the one-loop level in the fixed order calculation.

12For reference, here we list the values of these input flags: mssmpart = 4, higgsmix = 2, p2approx = 4,
looplevel = 2, loglevel = 3, runningMT = 1, botResum = 1, tlCplxApprox = 0.

13Note that the red dashed and the red solid line have the same accuracy level of ∆b.
14Note that we have also included the leading two-loop QCD corrections to ∆b which reduces its scale

dependence.
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Figure 2: Mh as a function ofMSUSY (left) and X̂DR
t (MSUSY) (right). The red lines show

the prediction of our hybrid calculation including only the one-loop fixed-order O(αb) cor-
rection. For the blue lines, we additionally included the fixed-order O(αbαs, αbαt, α

2
b) cor-

rections. The green lines contain additionally the resummation of logarithms proportional
to the bottom Yukawa coupling up to the NNLL level.

The used MSSM DR bottom mass, mDR,MSSM
b (MSUSY), contains all the corrections discussed

above (i.e. the level of accuracy corresponds to the orange curves in Fig. 1). The green curve
includes additionally the O(αbαs, αbαt, α

2
b) fixed-order corrections from [8, 10]. Finally, the

blue curve also contains the resummation of LL, NLL and NNLL logarithms controlled by
the bottom Yukawa coupling. The same color scheme also applies to the right panel of Fig. 2
and to both plots in Fig. 3. For these plots we have picked a MSSM scenario where all
soft-breaking masses and µ are equal by absolute value to the common mass scale MSUSY.
Moreover, we set Ab = 2.5MSUSY and tβ = 45. The bino, wino and gluino masses are chosen
to be positive, M1,2,3 > 0, while the Higgsino mass parameter is negative, µ < 0.

For the left plot of Fig. 2 we have chosen X̂DR
t (MSUSY) ≡ XDR

t (MSUSY)/MSUSY =
√

6.
First, we note that the green and the blue curves agree very well with each other for low values
ofMSUSY. The difference between the two amounts to only ∼ 0.3 GeV forMSUSY = 700 GeV.
In this region, where the scale separation is relatively small, the resummation of higher-order
logarithmic contributions is expected to be subdominant.15 However, the two curves lie quite
close to each other for the whole range of scales, even for MSUSY as high as 105 GeV. This
is in line with our qualitative analysis above: the logarithms containing bottom Yukawa
coupling are numerically small if X̂DR

t (MSUSY) is used as an input parameter.
On the other hand, a large shift of about 10 GeV between the red and the green curves

15It is worth noting here that the different treatment of the vacuum expectation value in the fixed-order
calculation, where vGF

is used, and in the EFT calculation, where vDR,MSSM(MSUSY) is used, induces
differences at order O(m2

bα(αt +αb)) which are beyond the accuracy level of our calculation and hence may
be regarded as part of the uncertainties from unknown higher-order corrections. Moreover, the different
treatment of the vacuum expectation value in the two-loop threshold corrections and in the respective pieces
of the fixed-order calculation, inducing a difference at the three-loop order, contributes to the small shift
between the result containing the two-loop fixed order result in the b/b̃-sector and the one including the
resummation of higher-order logarithmic contributions. A similar effect was also discussed in [26].
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in this Figure can be observed for small values of MSUSY. It decreases for rising MSUSY

and amounts to about 0.5 GeV for MSUSY = 105 GeV. This result indicates that for this
scenario ∆b by itself is not a good approximation for the higher-order effects controlled
by the bottom Yukawa coupling in the region of small MSUSY, since the MSSM bottom
mass mDR,MSSM

b (MSUSY) is large in this region due to the large and negative value of ∆b.16
Thus, in this scenario two-loop fixed-order corrections from the b/b̃-sector that go beyond
the ∆b contribution are numerically important.17 With increasing MSUSY the bottom mass
mDR,MSSM
b (MSUSY) decreases and the three curves get close to each other.
In the plot on the right panel of Fig. 2 we fix MSUSY = 1.5 TeV and vary X̂DR

t . One
can see that for negative X̂DR

t all three curves give roughly the same result. This is due
to the fact that the contributions to ∆b proportional to the strong coupling and to the top
Yukawa coupling partially cancel each other. Correspondingly, the bottom mass does not
acquire a significant enhancement for negative X̂DR

t . The inclusion of the two-loop fixed-
order corrections as well as the resummation of the logarithms has only a small effect in this
case. On the contrary, for positive X̂t the top Yukawa and strong corrections to ∆b add up
and enhance the bottom mass.18 In accordance with Eq. (25), this shifts the Higgs mass
downwards at the one-loop level. This effect can be seen in the shape of the red curve: while
for scenarios where contribution of the b/b̃-sector is numerically small (see e.g. Fig. 9 in [5])
the local maximum forMh at positive values of X̂DR

t is typically several GeV higher than the
one at negative values of X̂DR

t , for the red curve in the right plot of Fig. 2 the maximum at
positive values of X̂DR

t is about 2 GeV lower than the one at negative values of X̂DR
t . Because

of the large value of mDR,MSSM
b (MSUSY) the incorporation of the two-loop corrections in the

b/b̃-sector (green curve) has a significant effect for X̂DR
t =

√
6, giving rise to an upward shift

of more than 3 GeV. Since there is only a moderate splitting between MSUSY and Mt, the
effect of the resummation of higher-order logarithmic contributions remains relatively small
(blue curve). It amounts to a downward shift of less than 1 GeV for X̂DR

t =
√

6.

In Fig. 3, we renormalise the stop sector in the OS scheme. In the left plot X̂OS
t = 2 is

chosen. This plot shares the same features at low MSUSY as the corresponding plot in Fig. 2.
However, for large MSUSY the effect of the resummation becomes more prominent due to the
presence of logarithmic terms of O(m2

bm
4
t ) that are enhanced by t2β (see Eq. (83) below),

(M2L,NLL
h )2

bot,OS ' 3κ2m
2
bm

4
t

v4
t2β|Ât|2(6− |Ât|2) log

M2
SUSY

M2
t

. (26)

In the considered scenario, the resummation gives rise to a downward shift of the Higgs
mass, visible as the difference between the blue curve and the green curve, by ∼ 2 GeV for
MSUSY = 10 TeV and by ∼ 2.5 GeV forMSUSY = 100 TeV. On the right panel of this Figure
we show the result of varying X̂OS

t with fixed MSUSY = 1.5 TeV. As in the case of the DR
stop input parameters the three lines are very close to each other for X̂OS

t < 0. The effect of

16For example, for MSUSY = 700 GeV it amounts to mDR,MSSM
b (MSUSY) ' 7.5 GeV.

17It is worth noting that due to the parameter choices, which enhance ∆b, different levels of approximation
in ∆b yield very different results for Mh in this scenario.

18In particular, in the considered scenario and for X̂DR
t =

√
6 the top-Yukawa and strong contributions to

the one-loop ∆b amount to ∆
O(αt)
b ' −0.33 and ∆

O(αs)
b ' −0.41, respectively.
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Figure 3: Same as Fig. 2 but Xt is renormalised in the OS scheme.

the inclusion of the two-loop O(αbαs, αbαt, α
2
b) fixed-order corrections (green curve) and the

resummation (blue curve) becomes sizeable in the region X̂OS
t & 1. Because of the moderate

value of MSUSY = 1.5 TeV the impact of the higher-order logarithmic contributions is not
significantly enhanced compared to the result expressed in terms of X̂DR

t shown in the right
plot of Fig. 2.

As a final phenomenological application of our improved calculation, we consider the
M125,µ−

h benchmark scenario recently defined in [86], accompanying the benchmark scenarios
proposed in [87,88]. In this scenario the SUSY input parameters are fixed as

MQ3 = MU3 = MD3 = 1.5 TeV, ML3 = ME3 = 2 TeV,

µ = −2 TeV, M1 = 1 TeV, M2 = 1 TeV, M3 = 2.5 TeV,

Xt = 2.8 TeV, Ab = Aτ = At .

For the SM parameters the ones recommended by the LHC-HXSWG [89] are used:

mpole
t = 172.5 GeV, αs(MZ) = 0.118, GF = 1.16637 · 10−5 GeV−2,

mb(mb) = 4.18 GeV, MZ = 91.1876 GeV, MW = 80.385 GeV .

The stop SUSY soft-breaking parameters are defined in the OS scheme. In [86], also the
sbottom trilinear coupling is renormalised in the OS scheme. For better comparison with our
previous results, we instead choose to fix Ab and the sbottom masses in the DR scheme.19
In addition, we define tan β at the scale MSUSY instead of at the scale Mt, which was used
in [86].

Note that for this scenario µ = −2 TeV is chosen implying relatively large ∆b corrections
which enhance the cross section times branching ratio for the heavy Higgs bosons decaying
to a pair of bottom quarks. In addition, the ∆b corrections also affect the prediction for the
SM-like Higgs boson, which we will investigate here.

19The difference to the corresponding result using the OS scheme for the renormalisation of the sbottom
sector is very small.
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Figure 4: Predicted contour lines for Mh in the M125,µ−
h scenario using a calculation

including only the leading corrections to ∆b, corresponding to the one used in [86] (red
dashed lines), and our improved calculation presented in this paper (green solid lines).

The stop mass scale is equal to 1.5 TeV, so we do not expect the resummation of log-
arithms controlled by the bottom Yukawa coupling to have a major numerical impact in
this case (see discussion above). On the other hand, as we have seen in Figs.1–3, large ∆b

corrections imply that the prediction for Mh can be sensitive to the level of accuracy in the
determination of the bottom mass which is used in the fixed-order corrections at the one-
and the two-loop level.

In Fig. 4 we present, in the (MA, tan β) plane, the contour lines of the SM-like Higgs
boson mass ranging from 122 GeV to 125 GeV.20 We do not consider any of the experimental
constraints described in detail in [86–88] and concentrate only on the prediction for the mass
of the lightest Higgs boson of the MSSM. The red dashed and green solid lines correspond to
two different computational setups. We calculated the red contours including only the leading
one-loop corrections to ∆b of O(αs, αt) and evaluated the bottom-quark mass according to
Renormalisation scheme 1 as described in Section 2. Apart from the different definition of
some of the input parameters, as mentioned above, this corresponds to the default settings of
FeynHiggs-2.16.1, which was used in [86] for the analysis of the benchmark scenario. The
green lines show the prediction based on the improved calculation described in this paper. In
comparison to the red contours, we also include electroweak one-loop as well as the leading
two-loop corrections to ∆b, evaluate the bottom-quark mass at the SUSY scale according to
Eq. (20) and resum logarithms proportional to the bottom-Yukawa coupling.

We notice that in the region of small tan β both calculations agree with each other very
well since in this region the corrections from the bottom/sbottom sector are negligible. In

20Throughout the plane, Mh < 125 GeV. Therefore, no 125 GeV contours appear.
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this region the Higgs mass grows with increasing tan β mainly due to the growth of the tree-
level mass. With a further increase of tan β the Higgs mass starts to decrease due to large
∆b corrections and the rapid increase of the DR bottom mass in the MSSM. This behaviour
corresponds to the one that we observed in the left plot of Fig. 1. As discussed there, the
mass of the SM-like Higgs computed using FeynHiggs-2.16.1 falls faster with increasing
tan β than the mass computed using the calculation presented in the current paper due to the
lower accuracy level in the calculation of ∆b of the previous result. Consequently, the tan β-
region in which the SM-like Higgs mass is compatible (taking into account the theoretical
uncertainties) with the experimentally measured value is enlarged. The corresponding upper
bound on tan β in this scenario is shifted from ∼ 28 to ∼ 33.

5.2 EFT calculation for complex input parameters

In this Section, we discuss the numerical effect of including the full phase dependence into
the two-loop threshold corrections to the Higgs self-coupling. First, let us briefly review the
method used in FeynHiggs to handle non-zero phases so far. The treatment of the two-loop
corrections in the presence of complex parameters is controlled by the flag tlCplxApprox.
When it equals 3, the fixed-order O(αtαs, α

2
t ) corrections including the full phase dependence

are activated and combined with the fixed-order O(αbαs, αbαt, α
2
b) corrections. Since the

implementation of the latter corrections up to now is based on the results of [43, 44], that
were obtained for the case of real parameters, an interpolation in the phases is invoked for this
part of the two-loop corrections. Specifically, an interpolation is carried out in FeynHiggs
when the phases of µ, M3, Xt or Xb are non-zero. The user can choose between interpolation
in At or Xt, and Ab or Xb. In the EFT part of the code the interpolation is always carried out
in the following way. First, the RGEs are integrated numerically and the subtraction terms
are calculated for all possible combinations of +|P | and −|P | (where P ∈ {µ,Xt/At,M3}).21
After that, linear interpolation is performed on the obtained grid. In this Section, we choose
to interpolate Xt in the comparison with our new results when the phase of Xt or At is
non-zero.

The phases of the above-mentioned parameters enter the hybrid calculation via threshold
corrections to the Higgs self-coupling and via the subtraction terms. As we mentioned in
Section 3, both of them depend only on the absolute value |X̂t| at the one-loop level, so the
interpolation would give a correct result if only LL and NLL resummation were included
and the interpolation was performed in Xt. However, the two-loop threshold corrections to
the Higgs self-coupling (and hence the two-loop non-logarithmic subtraction terms) do not
depend just on the absolute value of Xt. For example, the O(αtαs) threshold correction also
depends on the cosine of the phase difference, cos(φXt−φM3), and the formula for the O(α2

t )

threshold correction depends on |Ŷt| and cos(φXt − φYt). In comparison to the full formula,
the application of interpolation leads to deviations at the next-to-next-to-leading logarithmic
order. The phases also enter the expression for the two-loop threshold corrections of the
bottom Yukawa coupling and ∆b. First, we will, however, concentrate on MSSM scenarios
in which the effect of the bottom Yukawa coupling on the Higgs mass is negligible and so
we will not include any two-loop corrections of O(αbαs, αbαt, α

2
b) for the results that are

21The threshold corrections in FH-2.16.1 do not depend on Xb or Ab.
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Figure 5: Left: Mh as a function of φM3 setting φXt = φYt = 0 calculated using the
pure EFT calculation. The results obtained by using an interpolation of the phase and
by including the full phase dependence are compared. Right: Same as left plot, but the
results of the hybrid calculation are shown.

presented in Fig. 5 and Fig. 6.

In order to test our approach we first consider the same MSSM scenario as in Fig. 3 of [36]:
all soft SUSY breaking masses and µ are equal to the common mass scale MSUSY = 2 TeV,
tan β = 10 and X̂DR

t (MSUSY) =
√

6. We vary the phase of the gluino mass parameter M3 in
the interval [−π,+π] and assume all the other input parameters to be real. In this way, we
test the phase dependence of the O(αtαs) threshold correction.

In the left plot of Fig. 5, we show the comparison between the pure EFT prediction of
FeynHiggs-2.16.1 (red line) and our new calculation including the full phase dependence
(green line). First, we notice that the two methods give the same answer for φM3 = 0,±π
which is expected because in these casesM3 is a real parameter. This serves as a cross-check
for our implementation. Second, we see that the interpolation in this particular scenario
is a fairly good approximation: the absolute difference between the two curves does not
exceed ∼ 0.3 GeV. The largest deviations occur for φM3 ' ±π

4
and φM3 ' ±3π

4
. Since the

interpolation is only performed in one parameter, φM3 , the resulting curve consists of two
straight lines.

In the case of the hybrid calculation (see right plot of Fig. 5), the phase dependence at
the two-loop level is fully included in the fixed-order part of the calculation. However, the
subtraction terms are interpolated in the same way as the EFT calculation. As a consequence
of those phase-dependent contributions in the fixed-order part and the subtraction terms,
the curve showing the interpolated hybrid calculation (red) has a different behaviour than
the interpolated EFT calculation shown in the left plot. As in the left plot of Fig. 5, the
overall difference between the full hybrid and the interpolated hybrid calculation does not
exceed ∼ 0.3 GeV.

Next, we proceed with a scenario which is similar to the one described above, but we
assume that X̂t and Ŷt are purely imaginary while keeping the same absolute value for
|X̂t| =

√
6 as before. As one can see in the left plot of Fig. 6, where again the result of the

pure EFT calculation varying the phase ofM3 is shown, the trilinear interpolation procedure
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Figure 6: Left: The same as the left plot of Fig. 5 but for φXt = φYt = π/2. Right: Mh

as a function of φXt setting φM3 = φXt and φµ = 0. The results obtained by interpolating
the EFT calculation and by including the full phase dependence are compared.

results in a straight line that does not depend on φM3 . In the chosen scenario, this line
overestimates the result for the full expression for the Higgs mass for φM3/π ∈ [−0.87,−0.13]
and underestimates it for the other values of φM3 . The absolute difference between the two
approaches amounts to ∼ 1.2 GeV for φM3 ' π

2
. The two results do not agree for φM3 = 0,±π

since Xt and Yt are chosen purely imaginary, and therefore an interpolation is also carried
out with respect to those phases.

As a next step, we investigate the effects of the phase dependence in the O(α2
t ) threshold

correction. To enhance the numerical value of this correction, we choose a low value for tan β,
namely tan β = 3. This choice, however, suppresses the tree-level Higgs mass, so to obtain
a predicted value around 125 GeV we have to choose in this scenario a heavy SUSY scale of
MSUSY = 20 TeV. In order to isolate the effects of the phase dependence in the considered
corrections, we fix the phase of the gluino mass parameter to be equal to the phase of Xt.
As a consequence of this choice, the phase dependence in the O(αtαs) threshold correction
vanishes. We also choose the Higgsino mass parameter to be positive, φµ = 0.

The EFT prediction, varying the phase φXt = φM3 , is shown in the right plot of Fig. 6.
Even though we have chosen a low value of tan β = 3 in order to enhance the impact of the
O(α2

t ) threshold correction, the overall phase dependence of the full result (green) is quite
small. The difference between the Higgs mass calculated at φXt = 0 and φXt = π is only
∼ 0.05 GeV. Lowering tan β even further (and pushing MSUSY higher) does not lead to a
stronger phase dependence. The behaviour of the interpolated result (red) is different. As in
the case of Fig. 5, we see that the results of both methods coincide for φXt = 0,±π since for
these three points all parameters are real. For other values of φXt , however, the interpolation
procedure underestimates the value of Mh predicted based on the full expression by up to
∼ 0.5 GeV.

This large deviation can be understood by looking at Fig. 7 showing the Mh prediction
of the EFT calculation including the full phase dependence. The same scenario as in the
right plot of Fig. 6 is used, but φXt and φM3 are varied independently. As visible in the plot,
the contours are almost diagonal due to the small phase dependence of the O(α2

t ) threshold
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Figure 7: Result of the EFT calculation using the full phase dependence. The same
scenario as in the right plot of Fig. 6 is used, but φXt and φM3 are varied independently.

corrections. The parabola-like shape of the interpolated result, as visible for the red curve
in the right plot of Fig. 6, is a consequence of the bilinear interpolation in φXt and φM3 .
For φXt = φM3 > 0, the Higgs mass values at (φXt , φM3) = (0, 0), (0, π), (π, 0), (π, π) enter
the interpolation procedure. For the values (φXt , φM3) = (0, π), (π, 0) the phase dependence
of the O(αtαs) threshold correction is picked up resulting in the large phase dependence
observed for the red curve in the right plot of Fig. 6. In the considered case, an interpolation
in φM3 = φXt rather than in φM3 and φXt separately would improve the quality of the
interpolation.

It should be noted that for the hybrid result the difference between the EFT result
incorporating the full phase dependence and the one based on the interpolation, shown in
the right plot of Fig. 6, is further enhanced because of the different treatment of the phase
dependence in the fixed-order contribution and the subtraction terms. As a consequence, in
this extreme scenario, the incomplete cancellation between the corresponding terms in the
fixed-order part and the subtraction terms leads to an artificial enhancement of the deviation
that can amount up to ∼ 2 GeV.

As a final topic in this Section, we analyse the interplay between the resummation of the
logarithms proportional to the bottom Yukawa coupling and the inclusion of the full phase
dependence into the EFT part of our hybrid calculation. As a starting point we go back to
the scenario discussed in Section 5.1. Namely, we consider a single scale scenario, where all
soft-breaking masses as well as the mass of the charged Higgs boson22 are equal to 1.5 TeV,
ADR
b = 2.5MSUSY, the Higgsino mass parameter is negative, µ = −MSUSY, the bino and wino

masses are chosen to be positive, M1,2 > 0, and X̂OS
t = 2. The phase of the gluino mass

parameter is a free parameter, and we vary it in the interval from −π to +π. We examine
22Since we consider here the CP-violating case, MH± is chosen as an input parameter instead of MA.
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this scenario for tan β = 30 and tan β = 45.
The result for Mh as a function of φM3 is shown in Fig. 8. The colors of the curves on

the left panel correspond to the same levels of accuracy as in Fig. 2, solid lines correspond to
tan β = 30, and dashed lines correspond to tan β = 45. For φM3 = ±π, the results displayed
by all six lines agree with each other within ∼ 0.4 GeV. Here, the strong and the top
Yukawa contributions to ∆b partially cancel each other, and the MSSM bottom mass does
not acquire an enhancement. In fact, for the mentioned points the ∆b correction is positive,
so that the ∆b corrections lead to a suppression of the bottom mass. This is visible in the
right panel of Fig. 8, where the solid line (for which |∆b| is larger) lies below the dashed line
for φM3 ' ±π.

The red dashed curve resembles the cosine-shape line shown in Fig. 5. This is due to the
fact that even for φM3 = 0, where the bottom mass is maximal for tan β = 30, it is still too
small to have a sizeable effect on Mh. Here, the shape of the line can be explained by the
phase dependence of the two-loop fixed-order corrections ofO(αtαs). Adding furthermore the
two-loop fixed-order corrections of O(αbαs, αbαt, α

2
b) (blue dashed line) lifts the prediction

for the Higgs mass by ∼ 0.2 GeV for φM3 = ±π and by ∼ 0.7 GeV for φM3 = 0. The
inclusion of the resummation of the logarithms proportional to the bottom Yukawa coupling
(green dashed line) has a similar numerical effect.

The behaviour as a function of φM3 is significantly different for tan β = 45. The red solid
curve starts to grow when φM3 increases starting from −π, resembling the red dashed line
in shape. However, it reaches a maximum value at φM3 ' −π

3
. This is a consequence of the

fact that the ∆b correction becomes important in this region, leading to a steep increase of
the MSSM bottom mass (see right plot of Fig. 8). Thus, the one-loop corrections involving
the bottom mass (see Eq. (25)) become important, giving rise to a downward shift in Mh.
At φM3 = 0 the bottom mass reaches ∼ 5.8 GeV, and the Higgs mass prediction has a
minimum at ∼ 123 GeV. The point φM3 = 0 in this plot corresponds to the point where
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MSUSY = 1.5 TeV in the left plot of Fig. 3. As in Fig. 3, we observe that the inclusion of the
two-loop fixed-order corrections controlled by the bottom Yukawa coupling (the difference
between the red and the green curves) has a very significant effect. The resummation of
higher-order logarithmic contributions (the difference between the blue and the green curves)
leads to a downward shift of ∼ 1 GeV for φM3 ' ±π

3
and of ∼ 1.2 GeV for φM3 = 0. The

results displayed in Fig. 8 demonstrate that the (s)bottom sector contributions can have
an important impact on the phase dependence. Similarly to Fig. 3, we again find that
the resummation of logarithms proportional to the bottom-Yukawa coupling amount to an
O(1 GeV) effect for large tan β if the OS scheme is used for the renormalization of the stop
sector.

5.3 N3LL resummation

Here, we study the numerical effects of including N3LL resummation at leading order in the
strong gauge coupling (see Section 4) into our hybrid framework. We study a simple single-
scale scenario in which all non-SM masses are set to the common scaleMSUSY. Furthermore,
we set all trilinear soft SUSY-breaking couplings, except for At, to zero. We define the stop
parameters in the DR scheme at the scale MSUSY. We set tan β = 10.

In Fig. 9, we compare the results obtained using three different accuracy levels to each
other: NNLL resummation with the SM top Yukawa coupling extracted at the two-loop
level, NNLL resummation with the SM top Yukawa coupling extracted at the three-loop
level and N3LL resummation, which also involves the SM top-Yukawa coupling extracted at
the three-loop level. The plots in the right part of the Figure display the difference ∆Mh

between the curves in the left panel (see legends of the corresponding plots). In the upper
plots, the different results are shown as a function of MSUSY. In the upper left plot, the
three results (blue, red and green lines) are shown for vanishing stop mixing (solid lines)
and for X̂t = −

√
6 (dashed lines). For vanishing stop mixing, all three results are in good

agreement with each other for lowMSUSY. IfMSUSY is raised, there is, however, an increasing
difference between the NNLL result (with the two-loop level SM top Yukawa coupling) and
the two results involving the three-loop level SM top-Yukawa coupling of up to ∼ 1 GeV
for MSUSY ∼ 100 TeV. This shift is almost completely caused by including the three-loop
corrections to the extraction of the SM top Yukawa coupling, since the NNLL result with
the SM top Yukawa coupling extracted at the three-loop level and the N3LL result are in
very good agreement also for MSUSY ∼ 100 TeV. Also for X̂t = −

√
6, the NNLL result with

the SM top Yukawa coupling extracted at the three-loop level and the N3LL result are in
good agreement across the considered MSUSY range (within ∼ 0.3 GeV). This difference,
is displayed by the red curve in the upper right plot of Fig. 9. The NNLL result with
the SM top Yukawa coupling extracted at the two-loop level deviates from the other two
results by ∼ 0.7 GeV, as shown by the blue curve in the top right plot of Fig. 9. In this
plot, furthermore the estimate of the uncertainty associated with the truncation error in
the calculation of the O(αtα

2
s) threshold correction for the Higgs self-coupling, obtained by

including only partially known terms of higher-order in the hierarchy expansion (see [18] for
more details), is shown as a green band. We find that this estimate is of the same size as
the shift induced by including the O(αtα

2
s) threshold correction.

In the lower plots of Fig. 9, the same quantities as in the upper plots are shown, but
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Figure 9: Top left : Prediction for Mh as a function of MSUSY for X̂t = 0 (solid lines)
and X̂t = −

√
6 (dashed lines). The results using NNLL resummation (blue), NNLL re-

summation with the SM top Yukawa coupling extracted at the three-loop level (red) and
N3LL resummation (green) are compared. Top right : Differences of the Mh predictions
using N3LL and NNLL resummation (blue line) as well as using N3LL and NNLL resum-
mation with the SM top Yukawa coupling extracted at the three-loop level (red line) as a
function of MSUSY for X̂t = −

√
6. In addition, the estimate for the uncertainty associated

with the truncation error of the O(αtα
2
s) Higgs self-coupling threshold correction is shown

(green band). Bottom left : Same as top left, but Mh is shown as a function of X̂t for
MSUSY = 5 TeV. Bottom right : Same as top right, but ∆Mh is shown as a function of X̂t

for MSUSY = 5 TeV.
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MSUSY is set to 5 TeV and X̂t is varied. The shifts between the various results are only
mildly dependent on X̂t (varying X̂t leads to shifts of up to 0.4 GeV). This dependence
would be stronger for lower MSUSY values. The estimate of uncertainty associated with the
truncation error, however, shows a strong dependence on X̂t. Whereas it is negligible for
−1 . X̂t . 1, it increases to up to 0.7 GeV for |X̂t| ∼ 3.5. As shown by the red curve in the
lower right plot of Fig. 9, the difference between the NNLL result with the SM top-Yukawa
coupling extracted at the three-loop level and the N3LL result is rather small except for large
negative values of X̂t. Where this difference exceeds the level of 0.2 GeV, it is smaller than
the estimated uncertainty of the truncation error.

As expected, the results for the N3LL resummation are in very good agreement with
the results of [18]. We observe that the main part of the shift induced by including N3LL
resummation is caused by taking into account the three-loop corrections to the extraction of
the SM MS top Yukawa coupling from the measured top mass. The shift caused by including
the O(αtα

2
s) threshold correction for the Higgs self-coupling is smaller and also associated

with a rather large uncertainty for large |X̂t| values. For small |X̂t| values, the shift induced
by including the O(αtα

2
s) threshold correction for the Higgs self-coupling is found to be very

small. Therefore, we choose in our implementation to use the result obtained using NNLL
resummation with the SM top Yukawa coupling extracted at the three-loop level as default
result until the uncertainty in the calculation of the O(αtα

2
s) threshold correction is further

reduced by incorporating additional higher-order contributions.

6 Conclusions
In this paper, we have presented an improved prediction for the lightest Higgs boson mass in
the MSSM in scenarios with large tan β, complex input parameters and large MSUSY. Our
calculation builds on results that are contained in the publicly available code FeynHiggs.

The first improvement concerning scenarios with large tan β includes the change of the
renormalisation scheme for the bottom mass with respect to the present implementation
in FeynHiggs: instead of treating the bottom mass as a derived quantity, in the scheme
used in our calculation it is as an independent parameter, renormalised in the DR scheme
in the full MSSM at scale MSUSY. The scheme that we have adopted yields numerically
more stable results and turned out to be better suited for the combination with the EFT
calculation. In the calculation of the DR bottom mass, we have taken into account higher-
order corrections enhanced by tan β by means of a resummation of the quantity ∆b. We
have incorporated full one-loop corrections to ∆b. Moreover, we have adapted the leading
two-loop QCD corrections to ∆b obtained in [37–39] such that they are suitable for the
framework of our calculation. The inclusion of this correction is formally a three-loop effect.
While this correction is numerically not relevant for large parts of the parameter space, it
can become sizeable for scenarios with large tan β.

Moreover, we have included one- and two-loop threshold corrections to the SM Higgs
self-coupling proportional to the bottom Yukawa coupling well as the corresponding RGE
contributions up to the three-loop level. This allows resummation up to the next-to-next-
to-leading-order. In contrast to the resummation of the logarithms proportional to the top
Yukawa coupling or electroweak couplings, here the one- and two-loop leading logarithms are
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numerically negligible due to the smallness of the bottom mass. However, at the two-loop
level for the case where the stop sector is renormalised in the OS scheme the next-to-leading
logarithms become parametrically enhanced for large tan β. In this case, the resummation
can become numerically relevant for large tan β and large MSUSY.

Secondly, we used the two-loop fixed order results presented in Refs. [8,10] to derive two-
loop threshold corrections to the SM Higgs self-coupling for the matching between the SM
and the MSSM that are valid for the general case of complex input parameters. This enabled
us to perform the EFT calculations for the case of complex parameters. We compared
the results including the full phase dependence to the results obtained by the use of the
interpolation routine that has been adopted in FeynHiggs up to now. For the pure EFT
calculation, we have found the interpolation procedure to perform well in scenarios with only
one non-zero phase. In scenarios with more than one non-zero phase, we observed deviations
in the prediction for Mh of up to 1 GeV. For the hybrid result the incorporation of the full
phase dependence of the EFT part of the calculation yields another important improvement.
Up to now the corresponding contributions in the fixed-order result (containing the full phase
dependence) and the subtraction terms (based on the interpolated EFT contributions) were
treated differently, which could lead to an incomplete cancellation between the two types
of contributions. This can lead to numerical deviations of up to 2 GeV compared to our
improved result where the treatment of the phase dependence is the same in all parts of
the calculation. We furthermore analysed the interplay between the resummation of the
logarithms proportional to the bottom Yukawa coupling and the inclusion of the full phase
dependence into the EFT part of the hybrid calculation. We have found that the impact
of phase variations on the prediction for Mh can be modified very significantly through the
contributions of the b/b̃ sector.

Finally, we combined the publicly available code Himalaya with FeynHiggs in order
to obtain a prediction for Mh including N3LL resummation at leading order in the strong
gauge coupling. A similar analysis was performed in [29], and we find a very good agreement
with the results presented in that paper. The overall effect of the N3LL resummation is
. 1 GeV, and it only weakly depends on MSUSY. We have found that employing the
extraction of the SM top Yukawa coupling at the three-loop level within the existing NNLL
hybrid calculation yields a result that approximates the N3LL resummation well in view of
the remaining theoretical uncertainties of the N3LL contribution.

The improvements described in this paper will be implemented into an upcoming version
of the public code FeynHiggs.
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A Derivation of two-loop threshold corrections
In this Appendix, we derive the two-loop threshold corrections for the SM Higgs self-coupling
for the matching between the SM and the MSSM based on the fixed-order calculations
presented in [8, 10,42]. We fully take into account the dependence on CP-violating phases.

The threshold corrections to the quartic coupling λ can be obtained via the matching
of the four-point vertex function involving the SM Higgs boson as external particle. Here,
however, we follow a different approach. Since in the SM the running mass of the lightest
Higgs boson is related to its quartic coupling via

m2
h = 2λv2, (27)

the threshold corrections to λ can be obtained via the threshold correction to the running
Higgs mass mh.23 Below we outline the method and derive the general formulas for the one-
and two-loop threshold corrections to λ in the gaugeless limit. Similar methods can be found
in [14,30].

In the limit MA � Mt, the SM-like Higgs pole mass in the MSSM up to the two-loop
level is given by24

(Mh)
2
MSSM = m2

h − Σ̂
MSSM,(1)
hh (m2

h)− Σ̂
MSSM,(2)
hh (m2

h)

+ Σ̂
MSSM,(1)
hh (m2

h) Σ̂
MSSM,(1) ′
hh (m2

h),
(28)

wheremh is the MSSM tree-level mass, and the prime indicates the derivative with respect to
the external momentum squared. In the gaugeless limit and the decoupling limit (MA �Mt),
mh = 0 can be inserted. All parameters entering the self-energies Σ̂

MSSM,(1)
hh and Σ̂

MSSM,(2)
hh are

renormalised in the DR scheme while the tadpoles are renormalised to zero. The self-energies
entering Eq. (28) are assumed to be expanded in the limit v/MSUSY → 0.

Below the matching scale Q, the effective field theory is the SM. We write the matching
condition for the SM running Higgs mass m2

h as a loop expansion,

m2
h = m2

h,tree + (∆m1l
h )2 + (∆m2l

h )2 + . . . , (29)

where the ellipsis denotes three-loop terms and higher. Since mh in Eq. (28) equals zero in
the considered approximation, we have mh,tree = 0. The pole mass in the SM can then be
obtained via the solution of the pole equation

M2
h = m2

h − Σ̃MS,SM
hh (M2

h), (30)

where Σ̃MS,SM
hh is the SM Higgs boson self-energy renormalised in the MS scheme with the

tadpoles renormalised to zero. Since the SM is treated as an effective field theory, its pa-
rameters are related to the corresponding parameters in the MSSM. This relation can be

23This method is not sufficient to obtain the threshold corrections for all quartic couplings if the EFT
below MSUSY is the Two-Higgs-Doublet-Model [90].

24In general, only the real part of each term in the sum on the right hand side of Eq. (28) should be
considered, since the Higgs self-energies have imaginary parts arising from the contributions of the particles
which are lighter than the SM-like Higgs. Since in the MSSM the mass of the SM-like Higgs is close to the
electroweak scale, in the usually considered scenarios these imaginary parts arise only from SM particles
and, therefore, cancel out in the matching procedure.
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schematically written as follows,

P SM = PMSSM + ∆P, (31)

where P is a coupling constant, a running quark mass, or the vacuum expectation value.
Inserting this relation into the self-energy Σ̃MS,SM

hh (M2
h) induces a shift at one order higher in

the loop expansion,
Σ̃MS,SM
hh = Σ̃SM

hh

∣∣∣
PSM→PMSSM

+ Σ̂SM,shifts
hh . (32)

The first term on the right-hand side of this equation represents the self-energy which has
the same analytic form as Σ̃MS,SM

hh but with all MS SM coupling constants and masses being
replaced with their DR MSSM counterparts. Therefore, the two self-energies are equal at
the one-loop level (since in the present discussion we neglect electroweak corrections the
different regularisation does not lead to a different result). The difference between the two
self-energies is encoded in the quantity Σ̂SM,shifts

hh which is of two-loop order and higher.
The renormalised self-energy of the SM-like Higgs boson in the full MSSM can be split

into parts,
Σ̂MSSM
hh = Σ̂SM

hh + Σ̂
n/SM
hh , (33)

where the SM part contains contributions from the diagrams with only SM particles and the
non-SM part (indicated as “n/SM”) originates from the diagrams with at least one non-SM
particle.

At the one-loop level, the following identity holds,

Σ̂
SM,(1)
hh = Σ̃

SM,(1)
hh

∣∣∣
PSM→PMSSM

. (34)

where in this equation the symbols “ ̂ ” and “ ˜ ” are used to denote the SM part of the MSSM
Higgs self-energy renormalised in the DR scheme and the SM Higgs self-energy renormalised
in the MS scheme, respectively. This equation means that the SM contributions in the full
MSSM self-energy computed in the DR scheme, Σ̂SM

hh , have the same analytic form as the
self-energy computed in the SM in the MS scheme, Σ̃SM

hh . In Eq. (34) the replacement rule
on the right-hand side, P SM → PMSSM, implies that all MS SM parameters in the SM self-
energy have to be replaced by their DR MSSM counterparts without additional shifts.25 At
the two-loop level, a relation analogous to Eq. (34) holds for the SM-type corrections to
the Higgs mass proportional to the Yukawa couplings, i.e. the corrections of O(α2

t , αtαb, α
2
b)

without including any parameter shifts in the one-loop self-energy. For the mixed Yukawa-
QCD corrections of O(αtαs, αbαs), the two different choices of the regularisation scheme
(dimensional regularisation in the case of the SM and dimensional reduction in the case of
the MSSM) lead to different expressions for the SM part of the self-energy. This can already
be anticipated since the running MS and DR quark masses are not equal to each other at
the one-loop level (see e.g. [84]). By using TwoCalc [91,92] and the scripts described in [68]

25We assume that the self-energies on the left- and the right-hand sides of Eq. (34) are expressed in terms
of quark masses and vacuum expectation values of the SM-like Higgs. In this parametrisation, the SM
self-energy in the full MSSM does not depend on non-SM parameters.
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we explicitly checked the following relation,26

Σ̃
MS,SM,O(αtαs)
hh +

∂

∂mt

Σ̃
MS,SM,(1)
hh ·∆mMS→DR

t = Σ̃
DR,SM,O(αtαs)
hh , (35)

and the analogous relation for the O(αbαs) self-energies. In Eq. (35),27

∆mMS→DR
t =

αs
3π
mt. (36)

As explained above, the one-loop reparametrisation of the couplings and masses in the one-
loop SM self-energy induces shifts at the two-loop order,

Σ̂SM,shifts
hh =

∑

P

∂

∂P
Σ̃
MS,SM,(1)
hh ∆(1)P, (37)

where P are all SM parameters which enter Σ̃
MS,SM,(1)
hh . The one-loop expression for Σ̃

MS,SM,(1)
hh

at zero external momentum of order O(αt, αb) reads

Σ̃
MS,SM,(1)
hh =

∑

q=t,b

3
(
mMS,SM
q (Q)

)4

4π2
(
vMS,SM(Q)

)2 log

(
mMS,SM
q (Q)

)2

Q2
. (38)

In this expression all masses and the vacuum expectation value (i.e., mMS,SM
q (Q) and

vMS,SM(Q)) are SM MS parameters evaluated at the scale Q. They are related to the MSSM
parameters in the DR scheme at the scale Q in the following way

vMS,SM(Q) = vDR,MSSM(Q)
(
1−∆(1)v

)
,

mMS,SM
q (Q) = mDR,MSSM

q (Q)−∆(1)mq, q = t, b,
(39)

where the one-loop shift ∆(1)mq contains contributions of BSM particles as well as the
transition between the DR and MS schemes. This quantity can be computed from the pole
mass matching of the bottom and top masses at the one-loop level. The one-loop shift ∆(1)v
includes non-SM O(αt, αb) terms28 while ∆(1)mq includes O(αt, αb, αs) corrections. With
these definitions and Eq. (34), the two-loop terms which account for the shifts between the
SM and the MSSM quantities acquire the following form,29

Σ̂SM,shifts
hh = −

∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq + 2Σ̂

SM,(1)
hh ∆(1)v. (40)

26Eq. (35) holds only at zero external momenta. At non-zero momenta an additional term, not related to
the top-quark mass, appears (see [19] for details).

27Here we do not specify the renormalisation scheme for the strong coupling and for the top mass since a
change of the renormalisation scheme is of three-loop order.

28Note that the one-loop shift ∆(1)v in this equation is the same quantity as ∆v in Eq. (18) in Section 2.4
for Q = MSUSY.

29For brevity, we will omit arguments of the self-energies in the rest of this section, implying that they
always equal zero.
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Here we have exploited the fact that in the gaugeless limit Σ̂
SM,(1)
hh scales as ∝ 1/v2. In [26] it

was shown that in the heavy SUSY limit the non-SM part of the relative shift in the vacuum
expectation value can be expressed via the non-SM part of the Higgs self-energy derivative,

∆(1)v = −Σ̂
n/SM,(1)′
hh (m2

h)

2
. (41)

Using this relation, Eq. (40) can be rewritten as follows,

Σ̂SM,shifts
hh = −

∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq − Σ̂

SM,(1)
hh Σ̂

n/SM,(1) ′
hh . (42)

Taking into account Eq. (32), Eq. (34) and Eq. (42), the pole equation Eq. (30) can be solved
iteratively up to the two-loop level in the considered approximation,

(Mh)
2
SM = (∆m1l

h )2 + (∆m2l
h )2 − Σ̂

SM,(1)
hh − Σ̃

MS,SM,(2)
hh

− Σ̂
SM,(1)′
hh

(
(∆m1l

h )2 − Σ̂
SM,(1)
hh

)
+
∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq

+ Σ̂
SM,(1)
hh Σ̂

n/SM,(1)′
hh .

(43)

At the matching scale Q, the predictions for the physical Higgs mass, Mh, in the SM and
the MSSM have to be equal order by order,

(Mh)
2
SM = (Mh)

2
MSSM. (44)

By equating the one-loop pieces in Eq. (44) and taking into account Eq. (28) and Eq. (43)
we get,

(∆m1l
h )2 = −Σ̂

MSSM,(1)
hh + Σ̂

SM,(1)
hh = −Σ̂

n/SM,(1)
hh . (45)

After inserting this one-loop solution back into Eq. (43), we arrive at

(Mh)
2
SM = (∆m2l

h )2 − Σ̂
MSSM,(1)
hh − Σ̃

MS,SM,(2)
hh

+ Σ̂
SM,(1)′
hh Σ̂

MSSM,(1)
hh +

∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq

+ Σ̂
SM,(1)
hh Σ̂

n/SM,(1)′
hh .

(46)

By equating the two-loop pieces in Eq. (44) and expanding the one-loop self-energies of the
Higgs boson in the full MSSM according to Eq. (33), we get

(∆m2l
h )2 = − Σ̂

MSSM,(2)
hh + Σ̃

MS,SM,(2)
hh

−
∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq + Σ̂

n/SM,(1)
hh Σ̂

n/SM,(1)′
hh .

(47)

The running Higgs-boson mass m2
h can be related to the threshold corrections to the quartic

coupling λ via the relation

m2
h = 2∆λ(Q)(vMS,SM)2(Q). (48)
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To express the one- and two-loop corrections in terms of the MSSM coupling constants we
have to perform the shift of the vacuum expectation value in Eq. (48),

m2
h = 2∆λ(Q)(vDR,MSSM)2(Q)

(
1 + Σ̂

n/SM,(1)′

hh

)
. (49)

By solving this equation at the one- and two-loop levels, we obtain the expressions for the
matching coefficients for the quartic coupling,

∆λ1l = − Σ̂
n/SM,(1)
hh

2(vDR,MSSM)2(Q)
, (50a)

∆λ2l = − 1

2(vDR,MSSM)2(Q)

(
Σ̂
MSSM,(2)
hh − Σ̃

MS,SM,(2)
hh − 2 Σ̂

n/SM,(1)
hh Σ̂

n/SM,(1)′
hh

+
∑

q=t,b

∂

∂mq

Σ̂
SM,(1)
hh ·∆(1)mq

)
. (50b)

As already mentioned, in the expressions above all couplings are DR MSSM couplings at the
scale Q. Another option is to parametrise these threshold corrections in terms of the MS SM
couplings at Q. In this work, we will use the MS top-Yukawa coupling in the SM and the DR
MSSM bottom-Yukawa coupling to parametrise the one- and two-loop threshold corrections.
To express the two-loop threshold corrections in terms of the SM MS top-Yukawa coupling
we have to reparametrise the top mass and the vacuum expectation value in the one-loop
O(αt) threshold correction. This generates the following two-loop terms,

∆λ

∣∣∣∣
hMSSM
t →ySM

t

= − 1

2(vMS,SM)2

( ∂

∂mt

Σ̂
n/SM,O(αt)
hh ·∆(1)mt (51)

+ 2 Σ̂
n/SM,O(αt)
hh Σ̂

n/SM,(1)′
hh

)
,

which has to be added to Eq. (50b).
We have evaluated the non-SM part of the one-loop Higgs boson self-energy with the help

of FeynArts [93–95] and FormCalc [96] and then expanded in the limit mt̃L
,mt̃R

,mb̃R
�

mt,mb. The explicit expressions for them (and their derivatives) in the gaugeless limit and
for the case mt̃L

= mt̃R
= mb̃R

� mt,mb read

Σ̂
n/SM,(1)
hh = −

∑

q=t,b

3m4
q

4π2v2

(
log

M2
SUSY

Q2
+ |X̂q|2 −

|X̂q|4
12

)
, (52)

Σ̂
n/SM,(1)′
hh =

∑

q=t,b

m2
q

32π2v2
|X̂q|2. (53)

From these expressions and Eq. (50a) it is clear how the one-loop threshold corrections to
λ computed in [16, 73] can be generalised to the case of the MSSM with complex parame-
ters. These corrections are polynomials in the squark mixing parameter X̂q. To obtain the
expression in the MSSM with complex parameters X̂q has to replaced by |X̂q|.
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The two-loop self-energies were taken from [8,10,42] and expanded in the limit

mt̃L
,mt̃R

,mb̃R
,mA, |µ|, |M3| � mt,mb

without any additional assumptions on the internal masses and the phases of Xt, Xb, µ and
M3. The two-loop SM self-energies in the MS scheme were taken from [56,57] and extracted
from the code FlexibleSUSY [24, 27, 55]. Finally, the one-loop shifts ∆(1)mt and ∆(1)mb

have been computed using FeynArts and FormCalc. The resulting two-loop formulas for the
threshold corrections are presented in App. B.2.

B Threshold corrections for the case of non-vanishing
CP-violating phases

B.1 One-loop threshold corrections

If the sfermions and heavy Higgses are integrated out from the MSSM, effective Higgs–
gaugino–Higgsino couplings, g̃1u,1d,2u,2d, are generated (for their exact definition see e.g. [73]).
In principle, they can be complex. An explicit calculation of their matching conditions at
the SUSY scale MSUSY =

√
mt̃L

mt̃R
, however, shows that they remain real if the sfermions

and heavy Higgses are integrated out. All other couplings of the EFT below the SUSY scale
are also real-valued.30

The only exception are the mass parameters of the EWinos for the case of light EWinos.
The phases of these parameters become relevant if the EWinos are integrated out at the
EWino mass scale, Mχ =

√
|M2||µ|, and the SM is recovered as EFT.31

The threshold corrections of the top and bottom Yukawa couplings originate only from
the corrections to the external Higgs leg. They read

ySMt (Mχ) = ySM+EWinos
t (Mχ)

(
1 + κ∆WFR

)
, (54)

ySMb (Mχ) = ySM+EWinos
b (Mχ)

(
1 + κ∆WFR

)
, (55)

∆WFR =
1

12

[
2g̃1ug̃1d cos(φM1 + φµ)f(r1)

+ (g̃2
1u + g̃2

1d)

(
g(r1) + 3 ln

|µ|2
M2

χ

)

+ 6g̃2ug̃2d cos(φM2 + φµ)f(r2)

+ 3(g̃2
2u + g̃2

2d)

(
g(r2) + 3 ln

|µ|2
M2

χ

)]
, (56)

with

r1 =

∣∣∣∣
M1

µ

∣∣∣∣ , r2 =

∣∣∣∣
M2

µ

∣∣∣∣ . (57)

30The CKM phase is neglected here.
31Here, we assume that the absolute values of the EWino mass parameters M1,M2 and µ are of the same

order of magnitude.
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In the expressions above, κ = 1/(4π)2 is used to indicate the loop order, and ∆WFR are the
one-loop corrections to the external Higgs legs. Setting the phases to zero, we recover the
result presented in Ref. [73]. The loop functions f and g are defined in the Appendix of
Ref. [73].

Similarly, also the matching condition of the Higgs self-coupling is modified,

λSM(Mχ) = λSM+EWinos(Mχ) + ∆λ (58)

with

(4π)2∆λ =
1

2

[
2λ
(
g̃2

1u + g̃2
1d + 3g̃2

2d + 3g̃2
2u

)
− g̃4

1u − g̃4
1d − 5g̃2

2u − 5g̃2
2d

− 4g̃1ug̃1dg̃2ug̃2d − 2
(
g̃2

1u + g̃2
2d

)(
g̃2

1d + g̃2
2u

)]
ln
|µ|2
M2

χ

− 7

12

(
g̃4

1u + g̃4
1d

)
f1(r1)− 9

4
f2(r2)

(
g̃4

2u + g̃4
2d

)

+
1

6
g̃2

1ug̃
2
1d

[
2 cos(2φM1 + 2φµ

)
h1(r1)− 11h2(r1)

]

+
1

2
g̃2

2ug̃
2
2d

[
2 cos(2φM2 + 2φµ

)
h1(r2)− 9h3(r2)

]

+
1

3
g̃1ug̃1dg̃2ug̃2d

[
cos(φM1 + φM2 + 2φµ

)
h4(r1, r2)

− 4 cos(φM1 − φM2)
r1r2

r1 + r2

f8(r1, r2)− 7h5(r1, r2)
]

− 1

3

(
g̃2

1ug̃
2
2u + g̃2

1dg̃
2
2d

)[
2 cos(φM1 − φM2)

r1r2

r1 + r2

f8(r1, r2) +
5

2
h6(r1, r2)

]

+
1

6

(
g̃2

1ug̃
2
2d + g̃2

1dg̃
2
2u

)[
cos(φM1 + φM2 + 2φµ)h4(r1, r2)− 4

r1 + r2

f8(r1, r2))
]

− 4

3

(
g̃1ug̃2u + g̃1dg̃2d

)(
g̃1ug̃2d + g̃1dg̃2u

)[ r1

r1 + r2

cos(φM1 + φµ)

+
r2

r1 + r2

cos(φM2 + φµ)
]
f8(r1, r2)

+
2

3
g̃1ug̃1d cos(φM1 + φµ)

[
λ− 2

(
g̃2

1u + g̃2
1d

)]
f(r1)

+ 2g̃2ug̃2d cos(φM2 + φµ)
[
λ− 2

(
g̃2

2u + g̃2
2d

)]
f(r2)

+
1

3
λ
(
g̃2

1u + g̃2
1d

)
g(r1) + λ

(
g̃2

2u + g̃2
2d

)
g(r2). (59)

The loop functions fi are defined in the Appendix of Ref. [73]. The loop functions hi are
defined by

h1(r) = − 6r2

(1− r2)3

[
2− 2r2 + (1 + r2) ln r2

]
, (60a)

h2(r) =
6

11(1− r2)3

[
2 + 3r2 − 4r4 − r6 + r2(4 + 5r2 − r4) ln r2

]
, (60b)

h3(r) =
2

9(1− r2)3

[
6 + 7r2 − 8r4 − 5r6 + r2(12 + 13r2 − r4) ln r2

]
, (60c)
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h4(r1, r2) = − 6r1r2

(1− r2
1)2(1− r2

2)2(r2
1 − r2

2)

[
r2

1(1− r2
2)2 ln r2

1 + (1− r2
1)(1− r2

2)(r2
1 − r2

2)

− (1− r2
1)2r2

2 ln r2
2

]
, (60d)

h5(r1, r2) =
6

7(1− r2
1)2(1− r2

2)2(r2
1 − r2

2)

[
− r6

1(1− r2
2)2 − r2

2(1− r4
2)− r4

1r
2
2(1− r4

2)

+ r2
1(1 + r4

2 − 2r6
2) + r4

1(1 + r2
1)(1− r2

2)2 ln r2
1

− (1− r2
1)2(1 + r2

2)r4
2 ln r2

2

]
, (60e)

h6(r1, r2) =
6

5(1− r2
1)2(1− r2

2)2(r2
1 − r2

2)

[
− (1− r2

1)(1− r2
2)(r4

2 − r2
1r

4
2 − r4

1 + r4
1r

2
2)

+ (1− r2
2)2r6

1 ln r2
1 − (1− r2

1)2r6
2 ln r2

2

]
. (60f)

In the limit of r, r1, r2 → 1 all of the loop functions hi approach 1. Setting all phases to zero,
we again recover the expression given in Ref. [73].

The corresponding expressions for the EWino contribution to the matching between
the SM and the MSSM can be obtained by replacing the effective Higgs–Higgsino–gaugino
couplings g̃1u,1d,2u,2d in Eq. (59) using their tree-level matching conditions [97,98],

g̃1d = g′ cos β, (61a)
g̃2d = g cos β, (61b)
g̃1u = g′ sin β, (61c)
g̃2u = g sin β. (61d)

The expressions for ∆b, εb and ∆v entering the one-loop threshold correction of the bottom
Yukawa coupling (see Eq. (21)) read

(4π)2∆b = CFg
2
3tβ cos(φM3 + φµ)

∣∣∣∣
µ

M3

∣∣∣∣ F̃9

(
MQ3

|M3|
,
MD3

|M3|

)

+
1

2
y2
t tβ cos(φAt + φµ)

∣∣∣∣
At
µ

∣∣∣∣ F̃9

(
MQ3

|µ| ,
MU3

|µ|

)

− 3

4
g2tβ cos(φM2 + φµ)

∣∣∣∣
M2

µ

∣∣∣∣ F̃9

(
MQ3

|µ| ,
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M2

µ

∣∣∣∣
)
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6
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3
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µ
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(
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+
1
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+

∣∣∣∣
M1

µ

∣∣∣∣ F̃9

(
MD3

|µ| ,
∣∣∣∣
M1

µ

∣∣∣∣
)]

, (62)

(4π)2εb =− CFg2
3

[
1 + log

|M3|2
Q2

+ F̃6

(
MQ3

|M3|

)
+ F̃6

(
MD3

|M3|

)

−
∣∣∣∣
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M3

∣∣∣∣ cos(φAb − φM3)F̃9

(
MQ3

|M3|
,
MD3

|M3|

)]
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− y2
b
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β
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+
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)
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At
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36
F̃6

(
MQ3

|M1|

)
+
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, (63)

(4π)2∆v = − y2
t

4

|Xt|2
MQ3MU3

F̃5

(
MQ3

MU3

)
− y2

b

4

|Xb|2
MQ3MD3

F̃5

(
MQ3

MD3

)
. (64)

The functions F̃5,6,8,9(x) are defined in Appendix A of Ref. [73]. Q is the renormalisation
scale, which we set equal to MSUSY. We neglect electroweak contributions to ∆v.

In addition, we give here the result for the one-loop threshold correction for the top
Yukawa coupling, which can be used to reexpress the two-loop threshold corrections of the
Higgs self-coupling in terms of the MSSM top Yukawa coupling (see Section B.2). It is given
by

ySMt (Q) = hMSSM
t sβ (1 + ∆ht) , (65)

(4π)2∆ht =
4

3
g2

3

[
1 + ln

|M3|2
Q2
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(
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|M3|

)
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∣∣∣∣ cos(φM3 − φXt)F̃9

(
MQ3

|M3|
,
MU3

|M3|

)]

+
y2
t

s2
β

[
3

4
ln
|µ|2
Q2
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β
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+
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β

[
1

4
ln
|µ|2
Q2

+
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β
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+
1

2
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(
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+
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)
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− 3
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72

]
(66)

Setting all phases to zero, we again recover the expression given in Ref. [73].

B.2 Two-loop threshold corrections

Here, we list the two-loop threshold corrections to the Higgs self-coupling in the limit where
all involved non-SM particles except for EWinos and gluinos have the same mass,

(4π)4(∆λ)α2
t

= −y6
t

{
3|X̂t|6

2
+

1

t2β

(
cos(φXt − φYt)

(
12(3 + 16K)|X̂t|

− 12(1 + 4K)|X̂t|3
)
|Ŷt|+ 3(3 + 16K)|Ŷt|2

)

− |X̂t|2
(

2(7 + 36K)
|Ŷt|2
t2β
− 3

2s2
β

(
7 + 24K

− 3(5− 8K)c2β + (32|µ̂|2 − 12|µ̂|4)f2(|µ̂|)
))

+ |X̂t|4
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|Ŷt|2
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8s2
β

(
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+
3
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(
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+
(
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)
f̃2(|µ̂|) + 16f̃3(|µ̂|)

)}
, (67a)

(4π)4(∆λ)αtαs = g2
3y

4
t

{
4

3
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(
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)

− 6
(
3 + 4|M̂3|4f̃2(|M̂3|)− |M̂3|2

(
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, (67b)
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(4π)4(∆λ)αbαs = −8

3
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3y
4
b

{
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cos(φXt − φYb)|X̂t||Ŷb|(−9 + 2|X̂t|2 + 12K(−6 + |X̂t|2))

+
1

c2
β

(
36K +

(
− 6 + π2 − |µ̂|2(−15 + 6|µ̂|2 + π2)

)
f̃2(|µ̂|)

− (18 + π2)f̃4(|µ̂|) +
(
12 + |µ̂|2(−6 + π2)

)
f̃5(|µ̂|)

)

+ 3|X̂t|2
(
−2(5 + 8K + 4f̃1(|µ̂|))− 1

s2
β

(1 + 8K + 2|µ̂|2f̃2(|µ̂|))

− 2

c2
β

(
− 1 + 4K + |µ̂|2

(
1 + f̃1(|µ̂|) + f̃2(|µ̂|)

)))

+ |X̂t|4
(
− 3

4

(
1 +

1

c2
β

)
+
(
1 + f̃1(|µ̂|) + f̃2(|µ̂|)

)(
4 +
|µ̂|2
c2
β

))
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(
f̃2(|µ̂|)

(
(3− 2|µ̂|2)|X̂b|4

+ 4(3|µ̂|2 − 5)|X̂b|2 + 4|µ̂|2 + 18
)

+ 16
)
− 32f̃2(|µ̂|)
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The listed expressions are for the case where the one-loop O(αt, αb) corrections are expressed
in terms of the SMMS top Yukawa coupling, yt, and the MSSM DR bottom Yukawa coupling,
yb. Expressions to translate them to the MSSM DR top Yukawa coupling and the SM MS
bottom Yukawa coupling, respectively, are provided in Section B.1.

In the Eqs. (67a)-(67e), f̃1,2,3,4,5(x) are non-singular functions of µ̂ = µ/MSUSY or M̂3 =

M3/MSUSY. The functions f̃1,2,3(x) are the same as the functions f1,2,3(x) from Ref. [99],

f̃1(x) =
x2 log x2

1− x2
, (68a)

f̃2(x) =
1

1− x2

[
1 +

x2

1− x2
log x2

]
, (68b)

f̃3(x) =
(−1 + 2x2 + 2x4)

(1− x2)2

[
log x2 log(1− x2) + Li2(x2)− π2

6
− x2 log x2

]
, (68c)

f̃4(x) =
x2(log x2 + Li2(1− x2))

(1− x2)2
, (68d)

f̃5(x) =
x2 log x2 + Li2(1− x2)

(1− x2)2
. (68e)

with f̃1(0) = 0, f̃2(0) = 1, f̃3(0) = π2

6
, f̃4(0) = 0, f̃5(0) = π2

6
and f̃1(1) = −1, f̃2(1) =

1
2
, f̃3(1) = −9

4
, f̃4(1) = −1

4
, f̃5(1) = 3

4
. We use a different notation for them than in

Ref. [99], since we have already used the notation fi(x) for the functions in the threshold
correction to the quartic coupling above in Eq. (59).32

The constant K is

K = − 1√
3

∫ π/6

0

dx log(2 cosx) ∼ −0.1953256. (69)

Fully general expressions for the two-loop threshold corrections to the SM Higgs self-coupling
can be found in ancillary files distributed alongside this paper.

C Dependence of ∆2l
b on CP-violating phases

Before deriving the phase dependence of the two-loop correction to ∆b, we first consider the
one-loop correction. The O(αs, αt) one-loop ∆b correction in the heavy SUSY limit can be
obtained by evaluating the diagrams in Fig. 10.33

These diagrams include the incoming and the outgoing b quarks with different chirality.
The diagrams which involve quarks with the same chirality are subleading with respect to
their powers of tan β and do not contribute to ∆b [64]. The diagrams are drawn using the
chiral basis in which the “left” and the “right” squarks propagate and the off-diagonal mass

32We note that these functions are not independent from each other. For example, using the identities for
the Spence function Li2(x2) one can show that f̃3(x) = (1− 2x2 − 2x4)f̃5(x). However, we decided to stick
to the notations of Ref. [99]. So, we expressed our result in terms of f̃1,2,3 and added two more functions for
better readability of the results.

33All diagrams in this Section were produced with Axodraw [100].
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bL bR

b̃L b̃R

g̃

bL bR

t̃R t̃L

H̃±1,2
Figure 10: Diagrams contributing to ∆

O(αs,αt)
b at the leading order in the chiral basis.

term is interpreted as an additional interaction (denoted as
⊗

) which flips the chirality
quantum number of the squark. In the limit MSUSY � v only the diagrams with a single
mass insertion contribute. This can be seen in the following way. The left diagram in Fig. 10
is proportional to

∝ αs mb µ tβ M3 C0(0, 0, 0,m2
t̃L
,m2

t̃R
, |M3|2), (70)

where C0 is a Passarino-Veltman function corresponding to the scalar vertex function with
three external legs. If all soft SUSY-breaking masses are equal to MSUSY, the expression in
Eq. (70) reduces to

∝ αs mb tβ
µ M3

M2
SUSY

= αs mb tβ
µ

MSUSY
. (71)

The diagram with two mass insertions, which is only possible if the two external quarks have
the same chirality, is proportional to

∝ αs (mb µ tβ)2 M3 D0(0, 0, 0, 0, 0, 0,m2
t̃L
,m2

t̃R
,m2

t̃L
, |M3|2) =

= αs (mb µ tβ)2 MSUSY D0(0, 0, 0, 0, 0, 0,M2
SUSY,M

2
SUSY,M

2
SUSY,M

2
SUSY), (72)

where D0 is a Passarino-Veltman function corresponding to the scalar vertex function with
four external legs. If all soft SUSY-breaking masses are equal toMSUSY this diagrams behaves
like

∝ αs mb tβ
µ M3

M2
SUSY

× mb µ tβ
M2

SUSY
= αs mb tβ

µ

MSUSY
× mb µ tβ

M2
SUSY

. (73)

We see that it is suppressed by an additional factor mb/MSUSY compared to the diagram
with one insertion and is therefore subleading. This is consistent with the fact that only
diagrams with external legs of different chirality contribute to ∆b. Clearly, diagrams with
more insertions will be suppressed by additional factors of mb/MSUSY. Following similar
arguments, one can show that diagrams similar to the right diagram in Fig. 10 with more
than one mass insertion are suppressed by powers of mt/MSUSY.

The same kind of argument applies to higher-order corrections to ∆b [38] as can be proven
by using the Kinoshita-Lee-Nauenberg theorem [101,102]. Namely, the diagrams contributing
to the two-loop quantity ∆b of order O(α2

s, αsαt) contain only one mass insertion.
The phases of the complex parameters At, µ andM3 enter the diagrams of Fig. 10 through

the mass insertion and through (bLb̃
∗
Lg̃), and (bLt̃

∗
RH̃

+
2 ) vertices. In particular, the mass

insertion in the left diagram in Fig. 10 yields the phase factor ∝ e+iφµ while both vertices
contain e+i

φM3
2 . The overall diagram is then ∝ ei(φM3

+φµ). The result for the analogous
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Figure 11: The first class of two-loop diagrams contributing to ∆
2l,O(α2

s)
b : a gluon is

added to the O(αs) one-loop graph.

diagram with incoming bR and outgoing bL leads to the phase factor ∝ e−i(φM3
+φµ). The

overall phase dependence is then ∝ cos(φM3 + φµ) (see Eq. (62) in App. B.1). The mass
insertion in the right diagram in Fig. 10 gives the phase factor ∝ e+iφAt , while the (bLt̃

∗
RH̃

+
2 )

and (b̄Rt̃LH̃
−
2 ) vertices contain the entries of the chargino mixing matrices V∗22 and U∗22. In

the gaugeless limit, they are proportional to the phase factors ∝ e+i
φµ
2 . The overall diagram

(together with its complex conjugated) is ∝ cos(φAt + φµ) (see Eq. (62) in App. B.1).

The two-loop diagrams contributing to the quantity ∆b at O(α2
s) can be split into three

categories: either a gluon, a sbottom or a gluino is added to the one-loop O(αs) graph.
Examples of the corresponding diagrams are depicted in Figs. 11-13. The particles which
are added to the one-loop graph are highlighted with red color.34

Following the argumentats given at the end of Section 3, we can conclude that in the
case of the MSSM with complex parameters the two-loop ∆b of O(α2

s) given in Eq. (23) has
to be multiplied by cos(φµ + φM3). The same reasoning can be applied to the O(αsαt) ∆b

corrections: Eq. (24) has to be multiplied by cos(φµ + φAt).35

34The rightmost diagram in Fig. 12 cannot be reduced to the left diagram in Fig. 10. This fact, however,
does not change our arguments that we present here.

35Corresponding two-loop diagrams can be found in Appendix C of [38].
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Figure 12: The second class of two-loop diagrams contributing to ∆
2l,O(α2

s)
b : a sbottom

is added to the O(αs) one-loop graph.

bL bR

g̃

g̃

bL

b̃L
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bR

b̃R

Figure 13: The third class of two-loop diagrams contributing to ∆
2l,O(α2

s)
b : a gluino is

added to the O(αs) one-loop graph.

43



D Leading and next-to-leading logarithms
In this part of the Appendix we present analytic expressions for the leading (LL) and next-
to-leading (NLL) logarithms proportional to the bottom Yukawa coupling, which appear at
the one and two-loop order in the calculation of the lightest Higgs boson mass in the MSSM.
They are derived in the special case of

MA = |M3| = |µ| = MQ3 = MU3 = MD3 = MSUSY. (74)

In the following expressions, κ = 1/(4π)2, L is the logarithm of the ratio of MSUSY and Mt,

L = log
M2

SUSY

M2
t

, (75)

mt is MS SM top mass, mt ≡ mMS,SM
t (mt), mb is the DR MSSM bottom mass at the

scale MSUSY defined in Eq. (20), v is the SM Higgs vacuum expectation value v ≡ vGF =
(2
√

2GF )−1/2 ' 174 GeV. The ratio of the vacuum expectation values of the two Higgs
doublets, tan β, is renormalised in the DR scheme at the scaleMSUSY. g3 is the strong gauge
coupling, g2

3 = 4παs. We do not specify the renormalisation prescription for it, since it
appears in the expressions for Mh starting at the two-loop level. Therefore, a change of the
renormalisation scheme for g3 is a three-loop effect. The parameter X̂b is renormalised in
the DR scheme at the scale MSUSY, while X̂t is fixed either in the OS scheme or in the DR
scheme at the scale MSUSY.

The logarithmic terms can be derived in one of the two following ways. The first method
is an approximate perturbative solution of the renormalisation group equation (RGE) for
the quartic coupling λ

dλ

d logQ2
= κβ

(1)
λ (Q) + κ2β

(2)
λ (Q) + . . . , (76)

where Q is a renormalisation scale, β(1)
λ , β(2)

λ are the one- and two-loop contributions to
the beta function, and the ellipsis encodes higher-order terms. Truncating the result at the
second order, one obtains [85, 103]

λ(Mt) = λ(MSUSY)− β(1)
λ (MSUSY)κL+

1

2
β

(1,1)
λ (MSUSY)κL2 − β(2)

λ (MSUSY)κ2L+ . . . , (77)

where β(1,1)
λ (Q) = dβ

(1)
λ /d logQ2. The running Higgs mass at the scale Mt is obtained

from Eq. (77) by mulitplying the result by 2v2
MS,

(MMS,SM
h )2 = 2λ(Mt)v

2
MS. (78)

The pole Higgs mass is then calculated from the pole equation [26]

(Mh)
2
EFT = 2λ(Mt)v

2
MS − Σ̃SM

hh (m2
h)− Σ̃SM′

hh (m2
h)
(

2λ(Mt)v
2
MS − Σ̃SM

hh (m2
h)−m2

h

)
+ . . . . (79)

The second method is an iterative solution of the Higgs boson pole mass equation in the
MSSM which in the decoupling limit MA �MZ reads [26]

(Mh)
2
FO = m2

h − Σ̂MSSM
hh (m2

h) + Σ̂MSSM
hh (m2

h)Σ̂
MSSM′

hh (m2
h) + . . . , (80)
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where the prime stands for the derivative of the self-energy with respect to the momentum
squared, and m2

h is the lightest Higgs boson mass at the tree level. We have checked analyti-
cally that the logarithmic terms are the same in (Mh)

2
FO and (Mh)

2
EFT. This is an important

cross-check of our calculation.36
At the one-loop level, we obtain the following contribution proportional to the bottom

quark mass,

(M1L
h )2

bot = 6κ
m2
b

v2

(
2m2

b − c2
2βm

2
Z

)
L (81)

At the two-loop level the leading logarithmic terms read

(M2L,LL
h )2

bot = −18κ2m
2
b

v4

(
m4
b −m2

bm
2
t +m4

t

)
L2 + 96κ2 g

2
3m

4
b

v2
L2. (82)

If X̂t is renormalised in the OS scheme, the sub-leading logarithms read

(M2L,NLL
h )2

bot,OS =− 3κ2m
2
bm

4
t

v4

(
−18 + 6|X̂t|2 − |X̂b|2|X̂t|2(6− |X̂t|2) + 24 log

mt

mb

)
L

− 6κ2m
4
bm

2
t

v4

(
1 + 4|X̂t|2 − 4|X̂t||Ŷt| cos(φXt − φYt) +

1

s2
β

)
L

− 18κ2m
6
b

v4

(
−1 + 12 log

mt

mb

+
1

c2
β

)
L

− 32κ2 g
2
3m

4
b

v2

(
−1− 12 log

mt

mb

+ 2|X̂b| cos(φXb − φM3)

)
L.

(83)

If X̂t is renormalised in the DR scheme at the scale MSUSY, we obtain

(M2L,NLL
h )2

bot,DR =− 3κ2m
2
bm

4
t

v4

(
−18 + 6|X̂t|2 + 24 log

mt

mb

)
L

− 6κ2m
4
bm

2
t

v4

(
1 + 4|X̂t|2 − 4|X̂t||Ŷt| cos(φXt − φYt) +

1

s2
β

)
L

− 18κ2m
6
b

v4

(
−1 + 12 log

mt

mb

+
1

c2
β

)
L

− 32κ2 g
2
3m

4
b

v2

(
−1− 12 log

mt

mb

+ 2|X̂b| cos(φXb − φM3)

)
L.

(84)

We see that the choice of the renormalisation scheme for X̂t affects only the logarithmic
terms proportional to m2

bm
4
t .

36Both methods have to give the same answer also for the non-logarithmic terms in leading order of the
expansion in v/MSUSY. Imposing this condition we have derived the two-loop threshold conditions listed in
App. B.
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