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Abstract: At finite density, the spontaneous breakdown of an internal non-Abelian

symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra

and proportional to the chemical potential: the gapped Goldstones. Generically the gap

of these states is comparable to that of other non-universal excitations or to the energy

scale where the dynamics is strongly coupled. This makes it non-straightforward to

derive a universal effective field theory (EFT) description realizing all the symmetries.

Focusing on the illustrative example of a fully broken SU(2) group, we demonstrate

that such an EFT can be constructed by carving out around the Goldstones, gapless

and gapped, at small 3-momentum. The rules governing the EFT, where the gapless

Goldstones are soft while the gapped ones are slow, are those of standard nonrelativistic

EFTs, like for instance nonrelativistic QED. In particular, the EFT Lagrangian formally

preserves gapped Goldstone number, and processes where such number is not conserved

are described inclusively by allowing for imaginary parts in the Wilson coefficients. Thus,

while the symmetry is manifestly realized in the EFT, unitarity is not. We comment on

the application of our construction to the study of the large charge sector of conformal

field theories with non-Abelian symmetries.

Keywords: Goldstone theorem, Gapped Goldstone, Nonrelativistic effective field

theory, Finite density, CFT
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1 Introduction

Spontaneously broken symmetries have far reaching consequences in the study of physical

systems. That is mainly because of the existence of Nambu-Goldstone bosons [1, 2],

whose low-energy dynamics is largely dictated by symmetry, independently of other

details of the microscopic physics [3–5]. As a result, the experimental study of the

dynamics of Goldstone bosons at low energies and long distances allows to robustly infer

the nature of fundamental symmetries and the pattern of their spontaneous breaking.

In a standard Lorentz invariant setup there are as many Goldstones as broken

generators, they are all massless and move at the speed of light. However, Nature is

pervaded with systems that spontaneously break spacetime symmetries as well, in which

case Goldstone theorem allows for a much richer set of possibilities (see, e.g., [6–9]). In

this work we focus on those systems that are at finite density for a certain spontaneously

broken charge. When the latter does not commute with other broken charges, the

spectrum of the theory contains the so-called gapped Goldstones [10–14].

More precisely, consider a relativistic system that is at finite density for a given

charge Q and whose time evolution is governed by a Hamiltonian H. In this case, the

ground state of the system can be found as the state with lowest eigenvalue with respect

to the modified Hamiltonian (see, for instance, [15])

H̄ = H + µQ , (1.1)

where µ is the chemical potential. In this work we focus on systems of this sort that break

boost invariance (like all condensed matter states [16]), time translations generated by

H, the internal charge Q, as well as another set of internal charges Qi. The modified

Hamiltonian H̄ is unbroken by construction. When Q does not commute with some of the

Qi’s, Goldstone theorem implies the existence of both gapless modes and gapped ones,1

whose gap, ω(k = 0) ∝ µ, is completely fixed nonperturbatively [10, 12]. Independently

of the presence of the gap, all Goldstone modes share a defining property: their scattering

amplitudes vanish with their 3-momentum—the so-called Adler’s zeros [18].2 In other

words, all Goldstone bosons are free when their 3-momentum vanishes. An effective

field theory (EFT) description of their dynamics should then focus on the regime of

1Strictly speaking, nonrelativistic Goldstone theorem requires the existence of zero-momentum

excitations, but does not say anything about finite momentum ones. For instance, phonons in superfluids

have a finite width, which vanishes in the limit where their momentum goes to zero (see, e.g., [17]).
2Note that the presence of Adler’s zeros for gapless Goldstones is not always guaranteed due to

possible kinematic singularities, cf. [18]. On the other hand, the gap of the gapped Goldstones precludes

these singularities, and Adler’s zeros for them are always present.
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small 3-momentum. For gapless modes this coincides with the regime of low energy,

while for the gapped ones it instead coincides with the regime of low kinetic energy or,

equivalently, low velocity.

The presence of both gapless and gapped modes, however, makes the piecing

together of an EFT approach not straightforward. This is immediately appreciated

by considering the process of annihilation of two gapped modes into two gapless ones;

a process that is generically allowed. Even if the spatial momentum of the incoming

states approaches zero, their total energy is of order µ, and so are the momenta of

the final state quanta. Now, when the underlying microscopic dynamics is strong, the

gap scale µ should coincide, by simple dimensional analysis, with the momentum scale

where the gapless modes become strongly coupled.3 In that case, while the amplitude

is still suppressed at small initial momenta, the emission and exchange of additional

gapless modes will contribute O(1) relative corrections to the total rate, thus making it

practically incalculable. In other words the interaction among slow gapped modes can

lead to the production of very energetic gapless ones, beyond the reach of the ordinary

EFT description of their dynamics.

The question is then how to properly describe this state of affairs. On the one hand,

the gapped Goldstones are free at zero momentum/velocity, as dictated by symmetry,

while on the other, at arbitrarily small velocity, the processes involving them do not

seem calculable. Integrating out the gapped modes in favor of an ordinary EFT for the

gapless ones, while certainly doable, does not seem satisfactory, as it would preclude

describing those aspects of the dynamics that are dictated by symmetry (like the relation

between the gap and the chemical potential or the freedom of gapped modes at zero

velocity). Relatedly that would make the underlying symmetry breaking pattern not

visible in the EFT.4 In this paper we address the problem by constructing a proper

EFT that allows for a more limited but systematic description of the gapped Goldstone

dynamics. The construction is fully analogous to the nonrelativistic EFT (NREFT)

used, for instance, to describe positronium [20]. Like in the positronium case, the price

to pay is the existence of absorbitive (imaginary) terms in the effective action [21, 22].

Within this NREFT approach, we shall illustrate how to describe the dynamics in a

systematic small momentum expansion.

3That is, for instance, the case in QCD, where the ρ mass parametrically coincides with the scale

where π interactions become strong
4For instance in the case of a fully broken non-Abelian group G the gapless modes are purely

described by the spontaneous breaking of the Cartan subgroup of G [19], with seemingly no visible

low-energy remnant of the non-Abelian nature of the original group.
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Besides the above mentioned conceptual issues, understanding the consequences

of a spontaneously broken non-Abelian symmetry at finite density is also a question

of phenomenological relevance. Indeed, gapped Goldstones appear in many different

contexts [14], ranging from condensed matter systems [23–25], to QCD at finite isospin

density in the chiral limit [26–29]. Furthermore, they are also relevant in conformal field

theories, where one can use the state/operator correspondence to map operators with

large internal quantum numbers to finite density states [19, 30–33]. As such, gapped

Goldstones appear in the description of the spectrum of deformations of critical points

in statistical physics.

In this paper we illustrate our ideas by focusing on a simple system with an SU(2)

symmetry fully broken by the finite density of one of its charges. The resulting spectrum

features a gapless and a gapped Goldstone, whose gap is precisely µ. In section 2 we

introduce a simple model that exhibits this symmetry breaking pattern and verify the

presence of Adler’s zero in the amplitudes for the gapped Goldstones. This will be

our benchmark for the rest of the paper. In section 3 we construct a nonrelativistic

effective field theory for gapless and gapped Goldstones at small 3-momentum, showing

how their interactions are constrained by the full symmetry group. Remarkably, such

a construction is applicable for any value of the chemical potential, even when it is

of the same order as the UV cutoff of the theory. In order to account for the gapped

Goldstone’s decay or annihilation, we argue that the NREFT must contain imaginary

coefficients, which makes it non-unitary. The lack of unitarity is simply due to the

limited class of degrees of freedom that make up our EFT, and is of course not a

fundamental property. Power counting and interactions in such a theory are analyzed

in detail. Finally, in section 4 we discuss the reasons why there is no remnant of the

non-Abelian part of the broken symmetry at energies much smaller than the chemical

potential. In the Conclusions we comment on possible applications of this NREFT,

with particular attention to the case of a strongly interacting conformal O(3) model.

2 A benchmark model: the linear triplet

In this section we present a simple model with internal SU(2) symmetry, admitting

a finite density state for one of the charges where SU(2) and time translations are

broken down to a diagonal subgroup, H × SU(2)→ H̄. We study perturbations around

such state, identify the gapped Goldstone modes and examine the amplitudes for their

scattering and annihilation in the regime where their 3-momentum is small. The model
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is weakly coupled and renormalizable, and hence all observables can be computed

perturbatively. Because of that, we will use it as the main example to match the

effective theory developed in the rest of the paper.

2.1 The model

Consider the following renormalizable Lagrangian for an O(3) triplet Φ in four spacetime

dimensions:

L =
1

2
(∂Φ)2 − m2

2
Φ2 − λ

4
Φ4 , (2.1)

where λ > 0, and we do not make any assumptions on the sign on m2. The classical

field configuration that realizes the desired symmetry breaking pattern is

Φ0 = e−iµtQ3

φ0

0

0

 , φ2
0 =

µ2 −m2

λ
> 0 , (2.2)

where (Qi)jk = −iεijk are the generators in the defining representation of SO(3). If

m2 > 0 then spontaneous symmetry breaking happens only for µ2 > m2. The state

described by this configuration is indeed at finite density for the charge Q3, as one can

check by computing the corresponding Noether’s current. Moreover, since it depends

explicitly on time, this vacuum expectation value (VEV) breaks both boosts and time

translations.5 On top of that, it also breaks the internal O(3) symmetry down to Z2

corresponding to Φ3 → −Φ3, but preserves the combination H̄ = H + µQ3. This is

then precisely a setup where the charge at finite density does not commute with other

broken charges.

Before studying the full spectrum, let us give a simple argument for the existence

of gapped Goldstones. Starting from the configuration (2.2) and performing, say, a

small rotation along Q1, one obtains another solution, where the third component of

the triplet oscillates with precisely frequency µ: δΦ3(x) = −φ0 sinµt. The existence of

5Note that the VEV (2.2) also breaks Galilei boosts in the non-relativistic limit. This can be

seen in different ways. Most simply, since it singles out a particular reference frame, boosts must

be broken regardless on whether one is considering Lorentz or Galilei. Equivalently, one can notice

that both groups feature the same number of charges, while this theory preserves a smaller number

of them. Or, more explicitly, we have that, under a boost with velocity v, the phase transforms as

ψ → ψ + tv ·∇ψ − v·x
c2 ∂0ψ + 1

2
v2

c2 t∂0ψ + O(1/c4), and hence the chemical potential (µ ∼ mc2 [34])

transforms under non-relativistic boosts (c→∞) as µt→ µt−mv · x+ 1
2mv

2t, making the VEV not

invariant.
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a mode with energy µ when at rest is therefore dictated by SU(2). This is parallel to

what happens with a rotation generated by Q3, which instead ensures the existence of a

gapless mode. At the same time, this provides an intuitive argument for why gapped

Goldstones are free when they are at rest: their zero-mode corresponds to nothing but

a global transformation.6

The fluctuations around equilibrium can be conveniently parametrized in terms of

three real fields, ψ(x), θ(x) and h(x):

Φ(x) = e−i(µt+ψ(x)/φ0)Q3

φ0 + h(x)

0

θ(x)

 . (2.3)

The unbroken Z2 acts as θ → −θ. The Lagrangian then reads

L =
1

2
(∂θ)2 − µ2

2
θ2 +

1

2
(∂ψ)2 +

1

2
(∂h)2 + 2µhψ̇ − λφ2

0h
2 (2.4)

− λφ0h
(
h2 + θ2

)
− λ

4

(
h4 + θ4 + 2h2θ2

)
+

µ

φ0

h2ψ̇ +
1

φ0

h(∂ψ)2 +
1

2φ2
0

h2(∂ψ)2 .

Extracting the propagator from (2.4), one finds that, as expected, the spectrum of the

theory consists of

• A gapless Goldstone, π3, with dispersion relation

ω2
k = k2 + 3µ2 −m2 −

√
(3µ2 −m2)2 + 4k2µ2

=
µ2 −m2

3µ2 −m2
k2 +O

(
k4

µ2

)
. (2.5)

• A gapped Goldstone, θ, with gap µ:

ω2
k = k2 + µ2 . (2.6)

• A radial mode, ρ, with gap m2
ρ = 6µ2 − 2m2 and dispersion relation:

ω2
k = k2 + 3µ2 −m2 +

√
(3µ2 −m2)2 + 4k2µ2

= 6µ2 − 2m2 +
5µ2 −m2

3µ2 −m2
k2 +O

(
k4

µ2

)
.

6Note that, at infinite volume, the action of the global charges is not defined, and consequently

neither is the zero-mode. Strictly speaking one should work at finite volume, and add an infinitesimal

perturbation explicitly breaking the symmetry before taking the infinite volume limit [5, 9].
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The masses of the gapless and the gapped Goldstone are fixed by symmetry and cannot

be renormalized by loop effects [12, 35]. Notice that due to the mixing term in (2.4),

the radial mode and the gapless one are interpolated both by ψ and h—which decouple

only for µ = 0.

Finally note that if chemical potential is large enough, µ2 & |m2|, the mass of the

radial mode and that of the gapped Goldstone can be of the same order, mρ ∼ µ. At

low energies, mρ sets the cutoff of the standard quasi-relativistic effective theory for the

Goldstone bosons. In the setup we are considering, the gapped Goldstones might hence

lie outside the regime of validity of such EFT.

2.2 Interactions of slow gapped Goldstones

Given the action (2.4) we can now compute the amplitudes for the two processes

involving the gapped Goldstone on the external legs: the θθ → θθ scattering and the

θθ → π3π3 annihilation. We examine the amplitudes in the limit when the gapped

Goldstones are slow. The reason for doing that is twofold. First, we verify the existence

of Adler’s zero in the amplitudes when one of the gapped Goldstones is at rest. Note

that the interaction strength is not manifestly controlled by the gapped Goldstone’s

3-momentum. Consequently, when the latter vanishes, the amplitude does not vanish

diagram by diagram, but only once all of them are taken into account. Second, we will

use these results as our reference point to match the NREFT we will build in the next

sections. In particular, the second process does not preserve the number of gapped

Goldstones and, as anticipated in the Introduction, will be included in the NREFT

through an imaginary part for some of the effective coefficients.

Note that, because of the kinetic mixing between h and ψ, the calculation of the

scattering amplitude is rather tedious (but straightforward). We spare the reader the

details.

Consider first the elastic scattering, θ(pa) + θ(pb) → θ(pc) + θ(pd), in the limit

where the gapped Goldstones are slow. In the presence of a slow massive particle, it

is customary to power-count interactions in terms of its velocity, v � 1 [36], which is

related to its momentum and kinetic energy by p = µv and ε = ω − µ ∼ µv2. We then

expand the tree-level matrix element for the scattering in powers of velocity:

M =M(1) +M(2) + . . . , with M(n) ∼ O(p2n/µ2n) . (2.7)

The leading order contribution is O(v2) and is given by

M(1) =
λ

µ2 −m2

[
(p 2

a − p 2
c )2

(pa − pc)2
+

(p 2
a − p 2

d )2

(pa − pd)2
− (pa + pb)

2

]
. (2.8)
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Setting one of the momenta to zero, say pa = 0, this amplitude vanishes by conservation

of energy, which implies p2
b = p2

c +p2
d at the lowest order in velocity. Notice also that the

amplitude is bounded albeit discontinuous in the collinear limits, pa → pc or pa → pd.

For the purpose of matching with the NREFT it is also instructive to compute the

next order amplitude, which reads

M(2) =
λ

µ2(µ2 −m2)

{
µ2

µ2 −m2

(
p 2
ap

2
b + p 2

c p
2
d

)
− µ2 +m2

4(µ2 −m2)
(p2

a + p2
b)

2

+
7µ2 +m2

µ2 −m2
(pa · pb)2 +

2µ2

µ2 −m2
[(pa · pc)(pb · pd) + (pa · pd)(pb · pc)]

− 2µ2

µ2 −m2
(p 2

a + p 2
b )(pa · pb) (2.9)

+
(p 2

a − p 2
c )2

(pa − pc)2

[
3µ2 −m2

4(µ2 −m2)

(p 2
a − p 2

c )2

(pa − pc)2
− 1

2
(p2

a + p2
b) +

1

2

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]
+

(p 2
a − p 2

d )2

(pa − pd)2

[
3µ2 −m2

4(µ2 −m2)

(p 2
a − p 2

d )2

(pa − pd)2
− 1

2
(p2

a + p2
b) +

1

2

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

]}
.

Again one can check the existence of Adler’s zero when one of the 3-momenta vanishes.

Note also that s-channel exchange of the radial mode ρ gives terms whose expansion in

momenta is controlled by p2

m2
ρ−4µ2

∝ p2

µ2−m2 . The expansion therefore breaks down for

momenta p ∼
√
µ2 −m2 or, alternatively, in the limit µ2 → m2 where the expectation

value φ2
0 ∝ (µ2 −m2) vanishes and the symmetry is restored.

Since the internal symmetry group is fully broken, there is no symmetry left to

protect the number of gapped Goldstones. Indeed, two of them may annihilate into two

gapless Goldstones via the process θ(pa) + θ(pb)→ π3(ka) + π3(kb). Since the gapped

Goldstones have energies ≥ µ, the final products of this annihilation have momenta and

energies ≥ µ. Consequently, in the regime µ ∼ mρ, this process is beyond the regime of

applicability of an ordinary low-energy EFT.

At the leading order in the gapped Goldstones’ velocities the annihilation amplitude

reads

M =
λ

µ2 −m2

[
α (pa · pb) + β

(pa · k)(pb · k)

µ2

]
+O

(
p2(p · k)

µ4

)
, (2.10)

where at the lowest order ka = −kb ≡ k, with |k| = µ, and the dimensionless coefficients

α and β can be found in appendix A.1. Once again the amplitude vanishes when either

initial 3-momenta is set to zero. The leading order total annihilation cross section reads

σann '
1

2µ|pa − pb|

[
(γ + δ)

(pa · pb)2

µ4
+ δ

p2
a p

2
b

µ4

]
, (2.11)

– 8 –



where γ and δ are dimensionless coefficients again given in appendix A.1.

Intermezzo: gapped Goldstone decay

Notice that θ is odd under the unbroken Z2 symmetry. Processes with an odd number of

θ legs are thus forbidden, and θ is stable. The Z2 symmetry is an accident of the simple

model under consideration and not a structural property of gapped Goldstones. That is

appreciated, for instance, by showing that the addition of a new field allows to write

Z2-breaking terms and induce θ-decay—see appendix A.2 for an explicit construction

using a complex U(2) doublet. One finds that the decay amplitude vanishes when the

3-momentum of θ approaches zero. The total decay rate for a gapped Goldstone with

momentum p to leading order in velocity reads

Γ = c
p2

µ
, (2.12)

where c is a dimensionless coefficient which depends on the couplings.

In summary, just like for standard Goldstones, the interaction strength of gapped

Goldstones is set by their spatial momentum. This is due to the fact that the zero mode

of θ is not dynamical, but corresponds to a symmetry transformation of the vacuum, as

discussed in section 2.1. More precisely, one can prove the existence of Adler’s zeros [5]

for the matrix elements of gapped Goldstones at rest [18]. Lastly, since no symmetry

protects the number of gapped Goldstones, they may decay and/or annihilate into final

states with energies of order µ. When µ ∼ mρ such final states cannot be described

within any low-energy EFT, which is valid at energies much smaller than mρ itself.

However, in this very situation, the decay and annihilation processes happen within a

short distance scale. As we shall see, that allows to consistently describe these effects

via local operators in the NREFT. These operators are however non-Hermitian, which

makes the NREFT non-unitary.

3 The Nonrelativistic EFT: the universal description of slowly

moving gapped Goldstones

In the presence of spontaneous symmetry breaking one expects the low-energy dynamics

to be effectively describable in terms of symmetries, and through a systematic derivative

expansion. Such a construction (also known in jargon as coset or CCWZ construction)

is expected to apply universally, i.e. purely on the basis of the symmetry breaking
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pattern and independently of the details of the underlying microscopic physics. In the

known examples, it applies equally well to cases that purely involve the breaking of

internal symmetries [3, 4], and to cases that involve the breaking of the spacetime ones

(see, e.g., [13, 37, 38]).

In the presence of gapped Goldstone bosons the situation can however be more

involved. That depends on the existence of two in principle distinguished scales: the

chemical potential µ, which controls the gap of some of the Goldstones, and the scale Λ

which controls the gap of non-Goldstone degrees of freedom, as well as the derivative

expansion.7 The existence of a hierarchy, µ� Λ, should generically correspond to the

existence and smoothness of the limit µ → 0, where the charge density goes to zero,

Lorentz invariance is recovered and the Goldstone bosons are the only light modes.

An example of this situation is given by the linear σ-model of the previous section

for the choice m2 < 0, where the symmetry is broken already at µ = 0, where the

density vanishes. Generically, µ � Λ thus corresponds to the situation where the

internal symmetry is partially broken already at zero density, and where the state with

finite charge density (and the corresponding Lorentz breaking) is fully described as

a particular solution of the original relativistic Goldstone EFT. Previous studies of

the finite density systems based on the EFT methods [13, 14, 18] have all focused on

this case. In this setup the construction of the effective Lagrangian for the Goldstones

proceeds in a way similar to the Lorentz invariant case, where there is a well defined

derivative expansion, whose strength is controlled by Λ itself. For µ� Λ, besides the

counting of Goldstone degrees of freedom, there are no major structural novelties with

respect to the standard relativistic CCWZ construction.

The novelties appear when there is basically a single mass scale, µ ∼ Λ, which is

indeed a minimal option for a system at finite density. Again, intuitively this regime

corresponds to the situation where all symmetry breaking is fully dominated by the

presence of finite density. The limit µ→ 0 cannot therefore be smooth. An example

of this situation is given by the linear σ-model in the regime µ2 � m2 > 0, where µ

controls both the gap of the Goldstones and the gap of the radial non-Goldstone mode

ρ. In fact, this situation is unavoidably realized whenever the system is (approximately)

scale invariant with µ representing the dominant spontaneous source of breaking of scale

invariance. This class of systems includes the physically relevant cases of conformal

field theories (CFTs) in the large charge regime [19, 30–32], and finite density QCD

with large isospin chemical potential µI & ΛQCD [26–29].

7We are working under the simplifying assumption that the typical speed of the excitations around

the cut of scale Λ are O(1) so that there is no need to distinguish energy and momentum cutoffs.
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The goal of this section is to present general, systematic and self-consistent rules

for constructing the effective Lagrangian. The relevant degrees of freedom will be the

small 3-momentum modes: soft gapless and slow gapped. The first step will be to

show explicitly how to organize the derivative expansion, which involves of course both

time and space derivatives, as an expansion in the 3-momentum. Secondly, we will

have to properly interpret the result according to the rules of nonrelativistic EFTs. In

particular, the conservation of the number of gapped Goldstones will emerge as a formal

symmetry of the effective action. Processes where the gapped Goldstone number is

not conserved will then be described consistently, but in an inclusive manner only, by

allowing for absorbitive imaginary coefficients in the effective Lagrangian.

We shall focus on the general class of models where a global SU(2) is nonlinearly

realized at finite chemical potential µ. The triplet model discussed in the previous

section is a particular weakly coupled renormalizable example. It will serve as template

and test case for our results. Our discussion wants to be general, and applies in particular

to the case µ ∼ Λ. In fact, our EFT construction will even apply to the case where

non-Goldstone degrees of freedom with gap Λ� µ have been integrated out. However

for economy of thought we shall mostly stick to the case µ ∼ Λ when picturing our

scenario. Under our assumptions, any process where the number of gapped Goldstones

is not conserved necessarily leads to the production of states with momentum ∼ µ

(either gapless Goldstones or non-Goldstone states with gap less than µ) that lie outside

the domain of validity of the EFT. Our effective Lagrangian must thus necessarily be

endowed with an effectively conserved gapped Goldstone number. We will concretely

see how this happens.

As specified in the Introduction, we are interested in systems which spontaneously

break an SU(2) internal symmetry, as well as time translations and boosts, leaving

unbroken the combination H̄ = H + µQ3. In general we could parametrize the degrees

of freedom of our EFT using the coset construction generalized to include spacetime

symmetries [13, 37, 38]. This construction is illustrated in appendix B. We however find

it more convenient to employ an equivalent approach: we define our fields in terms of the

Lorentz-preserving SU(2) coset which involves three Goldstone fields, and then consider

a generic time-dependent solution which further breaks spacetime symmetries down to

spatial rotations, spatial translations and the modified time translation H̄ = H + µQ3.

Our dynamical variable just corresponds to a general SU(2) matrix, Ω(x), on which

the group acts on the left:

Ω(x) → gΩ(x) , g ∈ SU(2) . (3.1)
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We can now choose local Lie parameters, the Goldstone fields, to parametrize Ω. We will

work with two different parametrizations, each showing advantages and disadvantages.

The first parametrization, which we will name “Left”, is

Ω(χ, α) = eiχQ3eiα
Q+
2

+iα∗Q−
2 ≡ eiχQ3 ΩL(α) , (3.2)

where χ and α ≡ α1+iα2, represent the three real Goldstone scalars, and Q± ≡ Q1±iQ2.

Notice that ΩL parametrizes the coset SU(2)/U3(1), with obvious notation. The other

parametrization, which we dub as “Right”, is instead

Ω(χ, π) = eiπ
Q+
2

+iπ∗Q−
2 eiχQ3 ≡ ΩR(π) eiχQ3 , (3.3)

with similar comments. The mapping between Left and Right parametrization is simply

given by π = eiχα.

3.1 Building the EFT with the Left parametrization

The CCWZ prescription [3, 4] allows to construct an SU(2) invariant Lagrangian for the

Goldstone fields χ and α. Explicitly, the Maurer-Cartan one-form defines the covariant

derivatives of the Goldstones [38] as

Ω−1∂µΩ = i∂µχΩ−1
L Q3ΩL + Ω−1

L ∂µΩL

≡ iDµχQ3 + iDµα
Q+

2
+ iDµα

∗Q−
2
, (3.4)

where

Dµχ = ∂µχ cos (|α|) +
iα∗∂µα− iα∂µα∗

|α|2
sin2 (|α|/2) , (3.5)

Dµα = i∂µχα
sin (|α|)
|α|

+
1

2
∂µα

(
1 +

sin |α|
|α|

)
+

α

2α∗
∂µα

∗
(

1− sin |α|
|α|

)
. (3.6)

Then the most general SU(2) invariant Lagrangian for χ and α is an arbitrary

function of the covariant derivatives in (3.4) and ∂µ:

L = F [Dµχ,Dµα,Dµα
∗, ∂µ] , (3.7)

with spacetime indices contracted in a Lorentz invariant way.

We are interested in a setup where spacetime symmetries are spontaneously broken

as well. To this aim, we notice that the equations of motion deriving from (3.7)

generically admit a solution of the form

χ = µt , α = v , (3.8)
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where v is a constant whose value depends on µ. This is particularly easy to show using

the Left parametrization (3.2). Indeed, the Euler-Lagrange equation for the field χ

takes the form

−∂µ
∂L

∂(∂µχ)
+ ∂µ∂ν

∂L
∂(∂µ∂νχ)

+ . . . = 0 , (3.9)

which is automatically satisfied since the Lagrangian and its derivatives do not depend

on x on the ansatz (3.8). Similarly, the only nontrivial contribution from the equation

for α is

∂L
∂α

= µ

{
−v
∗ sin(|v|)

2|v|
∂F

∂D0χ
+

1

2

[
cos(|v|) +

sin(|v|)
|v|

]
∂F

∂D0α

+
v∗

2v

[
cos(|v|)− sin(|v|)

|v|

]
∂F

∂D0α∗

}
= 0 , (3.10)

where the derivatives of the Lagrangian are evaluated on the ansatz. This is an algebraic

equation determining the complex value of v ≡ v(µ).

It is convenient to perform a field redefinition of the form

Ω(χ, α) ≡ Ω(χ′, α′) exp

[
iv
Q+

2
+ iv∗

Q−
2

]
(3.11)

to bring the solution (3.8) to the form

χ′ = µt , α′ = 0 . (3.12)

With the field redefinition (3.11), the covariant derivatives in (3.4) are a linear com-

bination of the ones for χ′ and α′, computed from Ω−1(χ′, α′)∂µΩ(χ′, α′). Hence, by

redefining its coefficients, the Lagrangian (3.7) takes an analogous form in terms of the

fields χ′ and α′, and we can work equivalently with the primed fields. The use of the

primed variables corresponds to the request of tadpole cancellation imposed in ref. [13].8

In the following we shall drop the prime superscript.

The solution (3.12) spontaneously breaks time translations and boosts while being

invariant under the action of H̄. Therefore, to explicitly realize a symmetry breaking

pattern of the desired form it is enough to expand the generic Lagrangian in (3.7)

around the background (3.12).

Notice that in this way of proceeding we did not need to introduce Goldstone fields

for the broken boost generators. It is indeed known that, in order to realize spacetime

8In ref. [19] it was wrongly concluded that tadpoles imply a deviation of the gap from µ. This

wrong conclusion has however no further consequence on the results there derived.
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symmetries nonlinearly, one normally needs fewer Goldstones than the number of broken

generators [39]. In the procedure detailed in appendix B, where one introduces a coset

parametrizing the full spacetime symmetry group [13, 37, 38], the boost Goldstone

bosons are eliminated via an inverse Higgs constraint [40]. The final result is equivalent

to the simple construction presented above.

The field parametrization in Eq. (3.2), expanded around the background (3.12),

makes clear the origin of the gap for the massive Goldstone. Indeed, as a consequence

of the SU(2) symmetry, the Goldstone fields admit a solution where χ(x) = µt and the

α field oscillate in time with frequency µ. To see this, it is enough to show that such

a configuration is generated by a symmetry transformation of the background (3.12).

Acting with a rotation generated by, say, Q1 on the coset element one gets

eiξQ1Ω(χ, α) = eiχQ3
(
e−iχQ3eiξQ1eiχQ3

)
ΩL(α)

= eiχQ3e
iξ
(
e−iχ

Q+
2

+eiχ
Q−
2

)
ΩL(α) ≡ eiχ̃Q3ΩL(α̃) .

(3.13)

When one acts on the background χ = µt and α = 0, the transformed field, α̃ = e−iµtξ,

is oscillating with frequency µ.

When spacetime symmetries are unbroken, the Goldstone fields transform with a

constant shift under an infinitesimal group transformation of the background. Standard

relativistic EFTs describe the dynamics of slowly varying fields, corresponding to those

configurations which are indistinguishable from a symmetry transformation at short

distances. The situation is quite different when considering a background of the form

(3.12). Indeed, we saw in Eq. (3.13) that an SU(2) rotation can generate a configuration

oscillating in time with a frequency of the order of the cutoff of the theory. This is the

main disadvantage of the Left parametrization. Then, to proceed formulating the EFT,

it is more convenient to use the alternative field parametrization (3.3), for which the

group action takes a different form.

3.2 Building the EFT with the Right parametrization

In the field parametrization (3.3), the background solution reads as in (3.12):

χ = µt+ π3 , π3 = π = 0 . (3.14)

However, the group action takes now a different form. As a result, a generic infinitesimal

SU(2) transformation acting on the background provides a solution of the form π3 =

constant and π = constant, precisely like in a Poincarè invariant coset. In analogy
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with that case the EFT will thus be limited to the slowly varying field configurations,

∂π � µπ , ∂π3 � µπ3, in the Right parametrization (3.3).

Notice that, despite π = constant being a solution, the field π describes a gapped

mode with frequency µ. To see this, recall that the gap is measured by the action

of the unbroken generator of time translations: H̄ = H + µQ3. It is then possible

to verify that under the action of H̄, the field acquires a phase proportional to µ:

π(t,x)→ e−iµδtπ(t+ δt,x). Thus, in this parametrization, low frequency modes for the

field π are associated with slowly moving gapped Goldstones. The EFT thus consists

of modes with small 3-momentum, and with eigenvalues of H̄ = H + µQ3 around

respectively 0 for π3 and µ for π. Modes that do not satisfy these requirements should

be thought as having been integrated out.

Because of the unusual transformation property of the field π under the unbroken

time translations, the Lagrangian (3.7), written in the Right parametrization, is cor-

respondingly unusual: it is explicitly time dependent when expanded in fluctuations

around (3.12). To see this explicitly, let us compute the Maurer-Cartan one-form. Using

(3.3), we write it as follows

Ω−1∂µΩ = e−iχQ3Ω−1
R ∂µΩRe

iχQ3 + i∂µχQ3

= e−iχQ3

(
idµπ

Q+

2
+ idµπ

∗Q−
2

+ iAµQ3

)
eiχQ3 + i∂µχQ3

= i

(
e−iχdµπ

Q+

2
+ eiχdµπ

∗Q−
2

+DµχQ3

)
. (3.15)

Here dµπ and Aµ are the covariant derivative and the connection for the SU(2)/U3(1)

coset, given by

dµπ = π
π∗∂µπ − π∂µπ∗

2|π|3
sin
(
|π|
)

+ π
π∗∂µπ + π∂µπ

∗

2|π|2
, (3.16)

Aµ = i
π∗∂µπ − π∂µπ∗

|π|2
sin2

(
|π|/2

)
. (3.17)

The full SU(2) covariant derivatives (3.4) are written in terms of these as

Dµα = e−iχdµπ , Dµχ = ∂µχ+ Aµ . (3.18)

By Eqs. (3.15)-(3.18) a generic invariant Lagrangian, through the factor eiχ, contains

terms that explicitly depend on time on the background. This seems a rather un-

pleasant property. However one must keep in mind that our EFT only contains low

frequency/low momentum modes (∂π � µπ , ∂π3 � µπ3). Then, by simple Fourier
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analysis, Lagrangian terms involving a non-trivial power of eiχ integrate to zero in the

action, as its fast oscillation cannot be compensated by any finite combination of EFT

modes. Only terms featuring no power of eiχ survive. These are invariant under an

emergent U(1) symmetry, Uπ(1), acting as dµπ → eiξdµπ,9 which is nothing but the

particle number conservation of nonrelativistic theories (see e.g. [41]). As typical of

a nonrelativistic limit, this property emerges naturally after factoring out the mass

contribution from the time evolution of the gapped fields, as we did switching from the

Left to the Right parametrization.

The emergence of this U(1) symmetry does not allow to describe processes where

the number of gapped Goldstones is changed, such as decay or annihilation. Physically

this is because they necessarily feature modes with momentum ∼ µ in the final state,

outside the regime of validity of the effective theory. As a consequence the resulting

nonrelativistic EFT cannot be unitary. Indeed, through the optical theorem, these

processes give rise to imaginary parts in the gapped Goldstone propagators and matrix

elements, which can only be matched in the nonrelativistic EFT by allowing for imaginary

parts in the Wilson coefficients [22]. We will discuss this matching in some detail for

the linear triplet model in the following sections.

We would now like to expand the Lagrangian (3.7) in a series of higher derivative

terms. In order to power count, it is useful to indicate by ∂s � µ the small derivatives

of our EFT modes. More precisely, the spacial part ∂ obviously represents the small

momentum for both π3 and π, while ∂t, represents respectively energy and kinetic energy

for π3 and π. Remember indeed that in the Right parametrization we have in practice

subtracted µ from the oscillation frequency of π excitations.

The parametrization (3.3) shows that the näıve derivative expansion must be

reorganized when working around the typical background we are interested in. Consider,

in fact, the derivative of the Maurer-Cartan form:

∂µ
[
Ω−1∂νΩ

]
= −i∂µχ

[
Q3,Ω

−1∂νΩ
]

+ e−iχQ3∂µ
(
Ω−1
R ∂νΩR

)
eiχQ3

+ i∂µ∂νχQ3 .
(3.19)

The last two terms are genuinely suppressed by two EFT derivatives, O(∂2
s ). However,

around the background χ = µt, the first term counts as a one-derivative term, O(µ∂s),

unsuppressed with respect to µΩ−1∂νΩ. This shows that some reorganization of terms

is needed in order to write the Lagrangian in a manifest expansion in powers of ∂s.

Notice for that purpose that the first term in (3.19) is not a new independent object;

9This coincides with the U(1) generated by the action of Q3 on the right of the coset.
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instead, it is proportional to the commutator of Q3 with the Maurer Cartan form (3.4).

This indicates how to proceed: one can simply subtract the first term on the right hand

side of Eq. (3.19), so that the remaining terms are O(∂2
s ). Although this term is not

SU(2) invariant, there is a simple SU(2) invariant Lorentz vector that is proportional

to ∂µχ at linear order, i.e. Dµχ. We therefore can define a nonrelativistic derivative in

the following way:

∂̂µ ≡ ∂µ + iDµχ
[
Q3, ·

]
, (3.20)

where by
[
Q3, ·

]
we mean the action of the commutator and the derivative is meant to

act on the Maurer-Cartan form.10 By its definition, the action of any power of ∂̂ on the

Maurer-Cartan form is suppressed by the corresponding power of ∂s:

∂̂µ1 · · · ∂̂µn
[
Ω−1∂νΩ

]
� µ ∂̂µ1 · · · ∂̂µn−1

[
Ω−1∂νΩ

]
. (3.21)

The action on the covariant derivatives of (3.18) reads:

∂̂µDνχ = ∂µDνχ , ∂̂µDνα = (∂µ + iDµχ)Dνα = e−iχ (∂µ + iAµ) dνπ. (3.22)

Since the second term in Eq. (3.20) is not a new object, formulating the EFT in terms

of ∂̂ just amounts to rearranging the terms in the action so as to make the expansion

in powers of ∂s manifest. The new derivative allows us to define a consistent power

counting in the small spatial momentum for both the gapless and gapped Goldstones.

We remark that Eq. (3.20) is not the only possible choice for the definition of the

nonrelativistic derivative. For instance, it is possible to multiply Dµχ by an arbitrary

function of
√
DµχDµχ/µ without affecting the property (3.21).

In summary, to construct an effective action for the Goldstones that is invariant

under the full symmetry group SU(2)×Poincarè, and that has a consistent expansion in

the limit of slow gapped Goldstones one needs to (i) use the coset construction to build

terms that are manifestly invariant under the unbroken group, (ii) consider only operators

that are invariant under an additional Uπ(1) particle conservation symmetry, and (iii)

construct higher derivative terms using the nonrelativistic covariant derivative (3.20).

This recipe can be generalized to different symmetry breaking patterns.

At the lowest derivative order, one finds three invariants under Lorentz and Uπ(1):

DµχD
µχ,

∣∣DµχD
µα
∣∣2 and DµαD

µα∗. It is convenient to organize them in terms of

10Formally, Eq. (3.20) corresponds to the covariant derivative for an SU(2) gauge group acting on

the right of the coset (3.3), with a gauge connection given by AIµ = δI3Dµχ.
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operators whose expectation value vanishes on the background (3.12). To match to

the spacetime coset construction reported in appendix B, we reorganize them in the

following way:

∇0π3 ≡
√
DµχDµχ− µ ,

∣∣∇0α
∣∣2 ≡ ∣∣DµχD

µα
∣∣2

DνχDνχ
=

∣∣Dµχd
µπ
∣∣2

DνχDνχ
,

∣∣∇iα
∣∣2 ≡ ∣∣DµχD

µα
∣∣2

DνχDνχ
−DµαD

µα∗ =

∣∣Dµχd
µπ
∣∣2

DνχDνχ
− dµπ dµπ∗ .

(3.23)

At the leading order in derivatives, the effective nonrelativistic Lagrangian then takes

the form:

Leff = c(1)µ3∇0π3,+c
(2)
1 µ2(∇0π3)2 + c

(2)
2 µ2|∇0α|2 − c(2)

3 µ2|∇iα|2 +O
(
µ∂̂3
)
. (3.24)

The action up to the fourth order in derivatives is given in appendix C.1. In the next

sections we discuss the degrees of freedom in this EFT and illustrate the power counting

by calculating several sample processes.

3.3 The NREFT to quadratic order

Let us expand the Lagrangian (3.24) to quadratic order in the fields:

Leff ⊃c(2)
1 µ2(∂0π3)2 − 1

2
c(1)µ2(∇π3)2 +

1

4
c(1)µ3 [iπ∗∂0π + c.c.]

− c(2)
3 µ2|∇π|2 + c

(2)
2 µ2 |∂0π|2 .

(3.25)

We focus on configurations with small derivatives. From Eq. (3.25) one finds that π3

interpolates a gapless mode with dispersion relation

ω2
k = c2

sk
2 +O

(
k 4/µ2

)
, c2

s ≡
c(1)

2c
(2)
1

. (3.26)

The quantization of π3 then proceeds as usual, i.e.

π3(x) =
cs

µ
√
c(1)

∫
d3k

(2π)3
√

2ωk
ake

−iωkt+ik·x + h.c. , [ak, a
†
p] = (2π)3δ3(k − p) . (3.27)

To quantize the π field, we notice that the last term in (3.25) contains two time

derivatives and can be treated as a higher derivative perturbation of the third one,

which contains only one. Indeed, π has the kinetic term of a nonrelativistic field and is

quantized as

π(x) =

√
2

c(1)µ3

∫
d3p

(2π)3
bpe
−iεpt+ip·x , [bp, b

†
k] = (2π)3δ3(p− k) , (3.28)
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with dispersion relation given by

εp = cm
p2

2µ
+O

(
p 4/µ3

)
, cm ≡

4c
(2)
3

c(1)
. (3.29)

As commented before, due to its transformation properties under H̄, π really is a

gapped field. The ladder operator b†p then creates a gapped Goldstone state with energy

Ep = µ+ εp.
11

The nonrelativistic complex field π only contains annihilation operators (and π∗

contains only creation ones) and thus propagates one degree of freedom.12 As anticipated,

the present effective theory describes a gapless mode and a nonrelativistic gapped mode.

As a consistency check, one can see that including higher derivative corrections, such as

the last term in (3.25) or terms constructed with (3.20), generates both new poles as

well as correction to the dispersion relation (3.29). The new poles generically appear for

frequency or momenta of order µ and are outside the regime of validity of our EFT; they

should therefore be discarded. The corrections to the dispersion relation are instead

higher order in the low-momentum expansion, showing that these additional terms can

consistently be considered as perturbations in the EFT.

3.4 Gapped Goldstone number conservation and non-unitarity

The NREFT enjoys a Uπ(1) invariance, π → eiξπ, corresponding to particle number

conservation for the gapped Goldstones. As already remarked, this does not correspond

to a symmetry of the microscopic theory, but it is rather a consequence of the small

momentum and energy window which characterizes the degrees of freedom of our EFT.

In particular the EFT does not contain degrees of freedom with energy and momentum

such that the π can decay or annihilate into them [41]. Hence the conservation of

π-number. On the other hand, in the full theory these processes will in general exist,

with final states involving π3 modes with momentum ∼ µ, and also, possibly, other

non-Goldstone degrees of freedom with gap ∼ µ.

11For the sake of the discussion, we are momentarily considering a theory in which the gapped

Goldstone cannot decay.
12Alternatively one could use the equations of motion to eliminate one of the two real components of

the field α = α1 + iα2 of the Right parametrization (3.2) in terms of the other. Doing so would change

the description of the gapped Goldstone mode from a complex field with one time derivative kinetic

term to a two derivatives real scalar field. To leading order in derivatives, this procedure formally

coincides with imposing an extra inverse Higgs constraint of the form Re[∇0α] = 0. The same inverse

Higgs constraint, but with a different physical interpretation, was discussed in [13] for the case in

which the EFT cutoff is much larger than the chemical potential, Λ � µ. We provide a more detailed

discussion in appendix B.1.
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The EFT cannot describe the π decay or annihilation processes exclusively, since the

final states have short wavelengths. It can however describe them inclusively. Indeed, by

the optical theorem, these processes give rise to imaginary parts in the π propagator and

matrix elements, which can be matched in the NREFT by assigning proper imaginary

parts to the Wilson coefficients. For instance, an imaginary part for the “kinetic energy

coefficient” cm corresponds to a decay width of the gapped Goldstone:

Γp = −2 Im [Ep] = −Im [cm]
p2

µ
. (3.30)

Notice that the above momentum dependence matches the explicit result we found in

Eq. (2.12). The resulting theory is therefore non-unitary and is sometimes called a

complex NREFT [22].

Physically, annihilation and decay can be matched by means of local terms since

these processes are determined by short distance dynamics. More precisely, to match

the imaginary parts of the propagator or scattering amplitudes for a slow π of the full

theory via local terms in the NREFT, requires the latter to be analytical in the spatial

momentum. This is expected to be true as long as the relevant kinematic region is

separated by a finite gap from any excitation which was not included in the NREFT.

Notice also that since the zero gapped Goldstone sector, π = 0, of the theory

reduces to an EFT of a single gapless superfluid Goldstone, which should be unitary, the

effective coefficients that multiply operators which do not contain Dµπ should always

be real. Consistently, we will see that this is the case when we will match our EFT to

the linear triplet in the next section.

3.5 Interactions and power counting

In this section we describe some interaction processes arising in the NREFT we built.

In particular, we focus on two peculiar aspects: power counting and non-unitarity. The

techniques described here are heavily inspired by nonrelativistic QED (NRQED) [20] and

nonrelativistic QCD (NRQCD) [42], which describe the interactions of heavy fermions

in the presence of light gauge fields. Like in those theories, we will find convenient to

power count amplitudes in powers of the velocity v ∼ p/µ of the heavy field.

Consider first the expansion of the covariant derivatives (3.18),

Dµπ3 = ∂µπ3 +
iπ∗∂µπ − iπ∂µπ∗

4
− |π|2 iπ

∗∂µπ − iπ∂µπ∗

48
+O(π6) ,

Dµπ = e−iχ
[
∂µπ + iπ

iπ∗∂µπ − iπ∂µπ∗

12
+O(π5)

]
.

(3.31)
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We see that all terms in the action display derivatives acting on all the fields, making

manifest the vanishing of the interaction strength with the 3-momentum, or equivalently

with the gapped Goldstone velocity, in agreement with the results in section 2.2.

In deriving the dispersion relation (3.29), we realized that time and space derivatives

of the on-shell gapped Goldstone field scale differently—namely ∇π ∼ µv and ∂0π ∼
µv2—and some care is thus required in power counting.13 Indeed, even after subtracting

the mass contribution, a simple power counting in derivatives ∂/µ does not distinguish

between v and v2, retaining more terms than needed at a fixed order in v. As in NRQED

and NRQCD, the power counting in velocity is complicated by the presence of states

with two different forms of dispersion relation [43, 44].

We will now match the results of our NREFT to those of the model presented in

section 2. In particular, this means the gapped Goldstone is stable and its dispersion

relation real, which allows us to put its external legs on-shell.

To facilitate power counting it is convenient to split each field in components

with support on different regions of phase space [36, 44–46]. In particular, we write

π3 = πs
3 + πp

3 + πus
3 and π = πs + πp + πus, where the labels stand respectively for soft,

potential and ultrasoft. We define the different components according to the scaling of

their energy and momemtum (i.e. time and space derivatives) with velocity:14

soft: (ω,k) ∼ (µv, µv) ,

potential: (ω,k) ∼ (µv2, µv) ,

ultrasoft: (ω,k) ∼ (µv2, µv2) .

(3.32)

Note that on-shell gapless Goldstones are contained in both πs
3 and πus

3 , while on-shell

gapped Goldstones are contained in πp. The potential mode for π3, as well as the

ultrasoft and soft modes of π, which are well within our EFT, are instead never on-shell.

Indeed, they can be considered as auxiliary fields that can, in principle, be integrated

out. This is customarily done in commonly studied non-relativistic EFTs, such as

NRQCD, at the price of introducing non-local interaction vertices between the on-shell

modes [44]. However, in our case, since the nonlinear action of the internal SU(2)

group mixes the different modes of the Goldstone fields, we prefer to keep track of all

13For processes involving only the gapless mode the power counting is similar to the relativistic case.
14Note that for off-shell Goldstones there is a fourth possibility, namely (ω,k) ∼ (µv, µv2); this never

appears in scattering processes [44], but might be relevant in other contexts. For example, when an

external probe coupled to the system releases finite energy but almost vanishing spatial momentum [47].
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Figure 1. Diagrams contributing to ππ → ππ at tree-level.

the modes in the EFT, both the on-shell and the off-shell ones, and work with a local

Lagrangian.15

Our classification (3.32) thus differs from the standard NRQCD language, where

the off-shell modes for the massive field never appear. Moreover to simplify the notation

we have classified modes as soft, potential and ultrasoft purely according to the scaling

of their energy and momentum, rather then by the scaling of their propagator. The

result is that the propagators of πs3, π
p
3, π

us
3 scale respectively like 1/v2, 1/v2, 1/v4 while

those of πs, πp, πus respectively scale like 1/v, 1/v2, 1/v2.

The rules are now the following: for each process under consideration one has to

determine which field is participating in the different vertices of the diagrams, perform

the expansion of π and π3 mentioned above, and determine what are the relevant

interaction terms at the given order in velocity. As already mentioned, the propagators

of gapless and gapped Goldstones will feature different scalings in v and thus the

resulting power counting will differ.

For leading order applications, it might still be useful in practice to first extract

Feynman rules in a ∂/µ expansion and perform v counting only afterwards. In appendix

C.2 we provide a list of Feynman rules to leading order in ∂/µ.

Let us start discussing the π(pa) + π(pb)→ π(pc) + π(pd) scattering at tree-level.

In the NREFT only contact interactions and π3 exchange diagrams contribute to this

process, as in figure 1. By momentum conservation, the exchanged π3 is an off-shell

potential field. Given that, the leading O(v2) amplitude is fully determined by the

15The situation bears some similarity with the case of supersymmetry. For an action that includes

the auxiliary fields, supersymmetry is manifest and the field transformations are independent of the

Lagrangian. Upon integrating them out, supersymmetry is preserved, but the field transformations

depend on the Lagrangian itself. Similarly, integrating out the off-shell modes from the Lagrangian (3.24)

makes the SU(2) transformations of the remaining fields coupling-dependent.
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vertices of the leading Lagrangian (3.24) in the derivative expansion:

Leff ⊃ −
ics

2µ2
√
c(1)

(
πp ∗∇πp − πp∇πp ∗) ·∇πp

3

+
(2cm − 3)

24c(1)µ4

(
πp ∗∇πp − πp∇πp ∗)2 − |πp|2

12c(1)µ3

(
πp ∗π̇p − πpπ̇p ∗) , (3.33)

where we canonically normalized fields as π3 → cs
µ
√
c(1)
π3 and π →

√
2

c(1)µ3
π. To order

O(v2) the corresponding matrix element reads

M(1)
NR =

1

4c(1)µ4

[
(p 2

a − p 2
c )2

(pa − pc)2
+

(p 2
a − p 2

d )2

(pa − pd)2
+ (2cm − 3) (pa + pb)

2

+ 2(1− cm)
(
p 2
a + p 2

b

) ]
.

(3.34)

Once the coefficient cm is fixed by the dispersion relation (3.29), this only depends on

the overall coefficient c(1). Below we will match its value to the linear triplet model.

Eq. (3.34) correctly vanishes in the limit where any of the gapped Goldstones is at rest,

again in agreement with [18]. One can similarly compute the O(v4) correction. To this

end one has to consider the action up to the fourth order in covariant derivatives, which

is presented in appendix C.1. The resulting correction to the amplitude reads:

M(2)
NR =

1

µ6[c(1)]2

{(
b1 −

c(1)c2
m

16c2
s

)
(p2

a + p2
b)

2 +
c(1)

8

(
c2
m

c2
s

− c(2)
m

)(
p 2
ap

2
b + p 2

c p
2
d

)
+ b2(p 2

a + p 2
b )pa · pb + b3(pa · pb)2

+ b4 [(pa · pc)(pb · pd) + (pa · pd)(pb · pc)] (3.35)

+
(p 2

a − p 2
c )2

(pa − pc)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

c )2

(pa − pc)2
− b1(p2

a + p2
b) +

c(1)c
(2)
m

8cm

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

c )

]

+
(p 2

a − p 2
d )2

(pa − pd)2

[
c(1)c2

m

16c2
s

(p 2
a − p 2

d )2

(pa − pd)2
− b1(p2

a + p2
b) +

c(1)c
(2)
m

8cm

p 2
ap

2
b − p 2

c p
2
d

(p 2
a − p 2

d )

]}
.

Here c2
s is defined in (3.26) and c

(2)
m is defined by the gapped Goldstone dispersion

relation at subleading order (3.29)

εp = cm
p2

2µ
− c(2)

m

p4

8µ3
+O

(
p6/µ5

)
. (3.36)

We also introduced four independent coefficients, b1, b2, b3 and b4, given in terms of the

Lagrangian parameters in appendix C.3. One can show that loop corrections do not

contribute to the matrix element at this order—see appendix C.4.
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A non-trivial check of our NREFT construction is obtained by comparing the above

results to those obtained in section 2 for the benchmark model. Eqs. (2.6), (2.8) and

(2.9) should match respectively Eqs. (3.36), (3.34) and (3.35). The matching beautifully

works, fixing16

1

c(1)
=

λµ2

µ2 −m2
, cm = c(2)

m = 1 , c2
s =

µ2 −m2

3µ2 −m2
, (3.37)

b1

c(1)
=

1

4
,

b2

c(1)
=

m2 + µ2

4(m2 − µ2)
,

Re[b3]

c(1)
=

7µ2 +m2

4(µ2 −m2)
,

Re[b4]

c(1)
=

µ2

2(µ2 −m2)
.

Notice in particular that the dispersion relation fixes cm = 1 at lowest order, which

immediately gives Eq. (3.34) the same momentum dependence as (2.8).

This is however not the end of the story. As already discussed, our benchmark

model allows for the process in which two gapped Goldstones annihilate into two gapless

ones. The corresponding amplitude is outside the regime of applicability of the NREFT.

Indeed, by energy conservation, the final state consists of modes whose 3-momentum

is of the order of the mass of the gapped Goldstones µ, while, as explained, what we

have built is an EFT valid for processes in which all the external legs are characterized

by 3-momenta much smaller than the chemical potential. Nonetheless, because of

the optical theorem, the annihilation rate gives rise to an imaginary part in the 2 → 2

scattering amplitude of slow gapped Goldstones.17 That in turn can be reproduced

in the NREFT by assigning an imaginary part to the Wilson coefficients, which then

retain some information about the annihilation process. In conclusion, while our EFT

is so constructed as to properly realize the symmetry on low momentum amplitudes,

the existence of processes that involve large momenta in the final state implies that it

cannot be unitary.

We expect the above statements to be true in general, for both weakly and strongly

coupled theories. However an explicit check can only be given in the former case. Fo-

cussing on the weakly coupled model of Sec. 2, we will now show that, by perturbatively

matching the UV and IR descriptions, one does obtain the expected structure of the

Wilson coefficients, imaginary parts included.

Notice first that unitarity of the theory at π = 0 implies that the coefficient c(1)

and the sound speed c2
s of the gapless Goldstone are real—see Eq. (3.25). Furthermore,

16In the matching one must consider that in the triplet model we used the relativistic normalization

of states, while in the NREFT (see (3.28)) we used the nonrelativistic one which differs by a momentum

dependent factor: |p, µ〉triplet =
√

2Ep |p, µ〉NREFT.
17The imaginary part induced by elastic scattering itself can be computed within the NREFT and it

is of higher order in the velocity.
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Figure 2. Diagrams contributing to π3π → π3π at tree-level.

the accidental Z2 symmetry, which forbids gapped Goldstone decay in the linear triplet

model, implies that the coefficients of the dispersion relation (3.36) and, more in general,

of all the operators contributing to amplitudes with only one (slow) gapped Goldstone

and an arbitrary number of (soft) gapless modes in the initial and final states must be

real.18 From inspection of Eqs. (C.6), (C.17) and (C.18), this implies that cm, c
(2)
m , b1

and b2 are real as well. Overall, we find that the scattering amplitude must be real at

leading order in velocity, while at the subleading order we can use only the imaginary

parts of the coefficients b3 and b4 to match the annihilation contribution. To check that

is enough, notice that from the annihilation cross section (2.11) of the UV theory one

finds

Im [Melastic] ' γ
(pa · pb)2

µ4
+ δ

(pa · pc)(pb · pd) + (pa · pd)(pb · pc)
µ4

. (3.38)

Non-trivially, this contribution is local and it precisely has the structure to be matched

in the NREFT via an imaginary part for b3 and b4:

Im[b3]

[c(1)]2
=
γ

4
,

Im[b4]

[c(1)]2
=
δ

4
. (3.39)

As one last example, to further clarify the procedure of power counting in velocity,

consider the scattering π(pa) + π3(k1) → π(pb) + π3(k2). The relevant diagrams are

presented in figure 2. As before, we take all external 3-momenta of order O(µv). One

can see that momentum conservation requires the intermediate π3 of the second diagram

to be a potential mode, and the intermediate π of the last two to be soft. One then

needs to isolate the relevant interaction terms in the effective Lagrangian, after which it

is straightforward to extract the Feynman rules and compute the matrix elements.

18This is because, in the linear triplet, the only possible intermediate states contributing to all

possible cuts of such amplitudes are those included in the NREFT.
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One finds that the leading order result is O(v3) and receives contribution from all

diagrams in figure 2 but the second, which starts contributing at O(v4). The matrix

element reads19

M =
1

2µ4c(1)

1

cs|k1|

{
(c2
s − 1)c2

sk
2
1(k1 + k2) · (pa + pb)

+ 2c2
s [(pa · k2)(pb · k1)− (pa · k1)(pb · k2)]

}
+O

(
v4
)
.

(3.40)

This expression vanishes when any of the momenta approaches zero.

A final comment concerns the calculation and power counting of loop diagrams.

As well-known from NRQCD, the formulation of the NREFT at the quantum level is

more subtle than in the standard relativistic case, even when using a mass independent

regulator, like dimensional regularization. A consistent treatment, first given in [45, 46]

and refined in [48], relies crucially on the splitting into soft, potential and ultrasoft

modes performed in (3.32). The prescription explained there applies straightforwardly

to our case. We review some details and provide few examples in appendix C.4.

4 Integrating out the gapped Goldstones: a less effective field

theory

As we already discussed in the Introduction, in quantum field theory with unbroken

Poincaré symmetry, the presence of Goldstone modes in the IR has very nontrivial

consequences. In particular, Goldstones associated to a coset G/H signals the existence

of a symmetry group G×G′ in the UV. G is spontaneously broken, and G′ is any other

distinct group which either is trivial or such that all the states charged under it are

heavy and absent in the G/H effective theory. This is for instance the case in QCD,

where G = SU(Nf )L × SU(Nf )R, with Nf the number of light quarks, is broken down

to the isospin group H = SU(Nf)V , and the corresponding Goldstones are the light

mesons. In this case G′ is the baryon number, U(1)B, which is unbroken and whose

lightest charged state is the proton.

One might then wonder what happens to our finite density system when the involved

energies, as measured by the unbroken Hamiltonian H̄ = H + µQ3, are much smaller

than the chemical potential µ. One could be tempted to treat the gapped Goldstones

just like protons in QCD. However, while, on the one hand, they can be integrated out

in the EFT at energies E � µ, on the other they are needed to non-linearly realize the

19Notice that to leading order in v energy conservation implies |k1| = |k2|.
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full non-Abelian symmetry. Is there any hint left of the original symmetry once we have

integrated them out? In other words, is the information about the non-Abelian nature

of the group lost at low energies, similarly like for U(1)B in QCD?

It is easy to show that in the zero-π sector (π = 0 in the action), the invariants

built out of the coset construction reduce to those of a simple Abelian U(1) group, i.e.

Dµπ = 0 and Dµχ = ∂µχ. It cannot be otherwise, since the internal SU(2) algebra

cannot be nontrivially realized on a single field. Physically, when we integrate out the

gapped Goldstone we specify boundary conditions for it to vanish at infinity. In our case

that clearly breaks the non-Abelian symmetry since, as argued in section 2.1, symmetry

transformations produce a fast oscillating mode that does not decay at infinity.

That is also evident in the linear triplet model (2.4). At low energies one can, in

fact, integrate out explicitly the heavy fields h(x) and θ(x). At tree level the resulting

effective Lagrangian is

Leff =
1

2

(
1 +

2µ2

λφ2
0

)
ψ̇2 − 1

2
(∇ψ)2 +

µ

λφ3
0

ψ̇(∂ψ)2 +O
(
∂4/µ4

)
, (4.1)

which is a Lagrangian for the Goldstone boson of an ordinary (Abelian) relativistic

superfluid, but no other symmetry is manifest.20

To clarify this situation, it is helpful to think in terms of the Hilbert space of the

low-energy EFT for the gapless Goldstone only. The latter is obtained by restricting

the Hilbert space H of the full theory to the subspace HEFT specified by the condition:

|ψ〉 ∈ HEFT ⇐⇒ 〈ψ|H̄|ψ〉 = 〈ψ|H + µQ3|ψ〉 � µ . (4.2)

Despite the theory being SU(2) invariant, the presence of Q3 in the modified Hamiltonian

that we use to specify the configurations that are part of the EFT explicitly breaks

the symmetry. As a concrete illustration, consider a free quantum mechanical particle

living on a sphere, with Lagrangian L = I
2

(
θ̇2 + sin2 θ φ̇2

)
, where I is the moment

of inertia. The states of the theory are organized in SO(3) multiplets, |`,m〉, with

energy E` = `(` + 1)/2I. The quantum number ` specifies the representation and m

is the value of the angular momentum along the z-axis: −` ≤ m ≤ `. If we take m

to be fixed, negative and large, the state with minimum energy is |`,m = −`〉 and the

chemical potential is µ = ∂E`=−m/∂m ≈ m/I [19]; any other state in the same SO(3)

multiplet has a gap of at least |µ| ≈ |m|/I as measured by H̄. Thus, for every fixed

20In fact, due to the Z2 symmetry, integrating out θ at tree level accounts to setting it to zero in the

Lagrangian (2.4), which turns it into an O(2) doublet theory.
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value of the third component of the angular momentum, the low-energy EFT is made

of the single state |`,m = −`〉, which is not invariant under the full rotation group. At

the Lagrangian level, the restriction to such states corresponds to “integrating out”

the polar angle, θ, considering an effective theory for the azimuthal angle, φ, spinning

around the z-axis. Indeed, a single excitation of θ describes a state with total angular

momentum increased by a unity, `+ 1, but with the same projection along the z-axis,

m = −`. This corresponds to a state with gap |µ| at large angular momentum [19].

This is analogous to the gapped Goldstone, providing a simple illustration of its key

role in the nonlinear realization of the full symmetry group.21

The condition in Eq. (4.2) implies that the theory without the gapped Goldstone

can only be used to compute correlators whose long-distance behaviour is determined

by intermediate states with small energy under H̄. However, since time evolution is

still controlled by the Hamiltonian H, not all correlation functions having a non-trivial

long-distance limit satisfy this property. In other words, the operators corresponding

to such correlation function cannot be matched in the low-energy EFT for the gapless

Goldstone only, and they would simply be lost. In contrast, if one employs the NREFT

we described so far, the previous correlators can be consistently reproduced within its

regime of applicability. As an illustration, consider the time component of the Noether

currents for the Q+ and Q− generators of SU(2). It is clear that, in an EFT that only

contains the gapless Goldstones, such operators cannot be matched. Indeed, in such a

theory, only the Abelian subgroup of SU(2) is realized nontrivially, and the Noether

currents associated to Q± cannot be computed. On the other hand, working in the

NREFT, in which the full non-Abelian symmetry group is realized, it is straightforward

to compute them from Noether theorem and, at leading order in fields and derivatives,

we find

J0
−(t,x) ' −ic(1)µ3π(t,x) , J0

+(t,x) ' ic(1)µ3π∗(t,x) . (4.3)

As it could have been expected from the conservation of the global charges, these are

written purely in terms of the slow field π of the Right parametrization (3.3). We

can now compute their correlators at large time separation and spatial distance. For

instance, the spatial Fourier transform of the two-point function of these currents can

21In field theory (at infinite volume) the action of the spontaneously broken charges on the Hilbert

space of the theory is not well-defined and we cannot classify state according to representation of the

broken group; this however does not invalidate our main point, that the restriction (4.2) explicitly

breaks the symmetry.
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be computed from the gapped Goldstone propagator and reads∫
d3x e−ip·x 〈µ|T

{
J0
−(t,x)J0

+(0,0)
}
|µ〉 = 2c(1)µ3θ(t)e−iεpt , (4.4)

where T is the time-ordered product and εp is the (possibly complex) kinetic energy

of the gapped Goldstone, given by Eq. (3.29) at leading order in 3-momentum. For

long wavelengths, |p| � µ, the correlator (4.4) oscillates slowly in time—i.e. it has

nontrivial long time tails. Nonetheless, it cannot be computed from the low-energy EFT

without the gapped Goldstone, as already anticipated.22 This is clear when the gapped

Goldstone is stable and εp is real, in which case the result in Eq. (4.4) is interpreted as

the free evolution in time of a single π mode. Such a simple interpretation does not

exist in more general cases, but this does not affect the main picture presented above.23

In summary, in the low-energy EFT specified by Eq. (4.2) no signature of the non-

Abelian nature of the symmetry is present. To obtain a fully SU(2) covariant description

one should work within the NREFT presented in this work, which reduces to the

Abelian superfluid in the zero gapped Goldstone sector. In particular, our construction

shows that the non-Abelian structure of the group constrains the dynamics at small

spatial momenta, similarly to the relativistic case, but around non-zero frequencies

which are multiples of the chemical potential. The NREFT further provides access to

certain non-trivial correlation functions at large spacetime separations, which cannot be

matched without the gapped Goldstone due to the difference between the fundamental

Hamiltonian H and H̄. We illustrated that point by discussing the two-point function

of the SU(2) Noether current; we leave a systematic analysis of operator matching in

the NREFT for future work. These considerations, we believe, clarify previous works

[19, 31, 32], which, at large chemical potential, restricted their attention to the Abelian

component of the spontaneously broken internal symmetry. We conclude this section

marking the differences between the present case and the relativistic case, i.e. a broken

internal symmetry with unbroken Poincarè invariance.

In the relativistic case symmetry constrains all the Goldstone bosons to have 4-

momentum on the lightcone. Then, given a coset G/H, the gapless Goldstone bosons

22That this result cannot be obtained by somehow matching the currents in the low-energy theory is

also manifest from the fact that the correlator oscillates with frequency εp ∼ p2/µ, while no state with

such dispersion relation is present in the EFT for the gapless Goldstone only.
23Equivalently, one could look at the operator J̄0

±(t,x) ≡ eiH̄tJ0
±(0,x)e−iH̄t, which instead evolves

with H̄. It is simple to show that the two-point correlator for this (non-conserved) current oscillates

with frequency µ. Consequently, it can never be obtained from the EFT for the gapless Goldstones

only, which has support only on frequencies � µ, as measured by H̄.
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carry all the information about the symmetry breaking and, as made evident by the

CCWZ construction, all degrees of freedom falling into gapped H-multiplets can be

integrated out preserving the full G symmetry. As concerns instead the role of an

additional unbroken G′ factor in the fundamental symmetry, if all the states charged

over G′ are gapped, then the corresponding Noether currents do not have low frequency

components. In view of that in no way the low energy modes can match them, and

the information about G′ is lost in the EFT. A similar situation arises for gapped

Goldstones, which cannot be integrated out while still preserving the full G symmetry.

However, in this case the currents that interpolate for the gapped Goldstones do have

low frequency components—see Eq. (4.4)—and there must therefore exist a way to

recover that information via an EFT construction, ours indeed.

5 Conclusions and future directions

The breaking of internal symmetries has qualitatively different implications on low-

energy physics, depending on whether or not it is accompanied by the breaking of

spacetime symmetries. One crucial difference arises for the spectrum of excitations. With

unbroken Poincarè invariance, Goldstone theorem dictates the presence of one stable

particle with light-like dispersion relation, E(k) = |k|, for each spontaneously broken

symmetry generator. With the spontaneous breaking of the Poincarè group, Goldstone

theorem leaves instead space for a greater variety of options, as concerns the counting

of modes, their dispersion relations and their stability. A particularly interesting case

is offered by non-Abelian superfluids, which are characterized by chemical potentials

µI for the Cartan charges QI . Here Goldstone theorem implies the presence of a set

of modes, labeled by a = 1, . . . , N , whose energy satisfies Ea(k = 0) = caIµI , with caI
real coefficients that are fully dictated by group theory [12]. Generically one then has

both gapless modes, Ea(0) = 0 and gapped ones Ea(0) 6= 0. Moreover one has variety in

the functional dependence of Ea(k) on k, including the possibility for imaginary parts,

associated, when allowed, with the decay of the modes at k 6= 0.

Symmetry controls not only the spectrum, but also the interaction of the Goldstone

bosons. In the Poincaré invariant case, this results in a low-energy EFT whose main

features are universal and rather independent of the details of the microphysics. In finite

density systems constraints on the structure of the interactions are expected, and, to

some extent, have been studied. However, with gapped Goldstones, the EFT construction

also raises issues of technical and conceptual nature. One concerns universality, and

stems from the generic possibility of other, non-Goldstone degrees of freedom in the
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range of energies and momenta O(µ). Those are, for instance, expected in systems like

CFTs, where µ is the main dimensionful parameter. In that situation creation and

destruction of gapped Goldstones, even slow moving ones, entails momenta ∼ µ evading

a universal EFT description. Another issue concerns the possibility of reconstructing

the pattern of symmetry breaking by pure consideration of the dynamics at the lowest

possible energies. That is possible in the relativistic case, but seems impossible at finite

density, as the gapped Goldstones are integrated out at E � µ.24

In this paper we have clarified the above questions. We have shown that the EFT

that universally implements the information on the symmetry breaking pattern has

degrees of freedom given by the Goldstone modes, all of them, at low 3-momentum, k.

In particular the gapped Goldstones are limited to small velocity, which also manifestly

controls the strength of their interactions, in agreement with [18]. Such EFT cannot

produce amplitudes that violate gapped Goldstone number (GGN), as these necessarily

involve external legs with large 3-momentum ∼ µ. Consequently GGN is an “emergent”

symmetry of the EFT where time evolution proceeds without transitions between

Hilbert spaces with different GGN. This bars the calculability of physical processes

where the GGN is not conserved. The latter are nonetheless consistently described in an

inclusive form through the optical theorem, by allowing for imaginary parts in the local

coefficients of operators in the EFT. The price to pay is that the unitarity of the original

theory is not manifest in the EFT. The fact that GGN non-conservation involves short

wavelength modes however allows to describe it via local operators in the EFT. The

resulting picture is fully analogous to that of non-relativistic EFTs (NREFTs), like for

instance non-relativistic QCD [42, 48] or the EFT for nucleon-nucleon scattering [49, 50],

which have indeed almost completely guided our construction. We have illustrated our

ideas by focussing on an SU(2) superfluid, where we also checked that the results of

the EFT construction match those of an explicit renormalizable model. We expect our

results to be easily generalizable to arbitrary symmetry breaking patterns, as well as to

allow the inclusion of other possible relevant matter fields in the action via standard

techniques [5].

With the above picture in place it is evident that the complete information about

symmetry breaking in the microscopic theory is encoded in the full set of NREFTs Hilbert

spaces with all possible GGN. The subspace with zero GGN, which purely involves

the soft gapless modes, is only part of the picture and does not encode the complete

information about symmetry breaking. In particular it does not contain information

24An interesting question regards whether gapped Goldstones can be excited by some light external

probe charged under the internal symmetry. We leave this investigation for future work.
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about the spectrum of gapped modes. This subspace also happens to correspond to

the EFT describing the lowest lying modes of the unbroken time translation generator

H̄ = H + µIQI of the superfluid. This Hamiltonian is only invariant under a subgroup

of the original internal symmetry, which makes it clear why such lowest energy EFT

cannot describe the full pattern of symmetry breaking. A more detailed discussion of

this is given in section 4.

Before closing let us discuss a few possible applications of the gapped Goldstone

NREFT. As remarked in the introduction, gapped Goldstones appear in different

physical systems [14]. An interesting example is given by QCD at finite density, as it is

for instance found in the interior of neutron stars [26–29]. Depending on the parameters,

in particular baryon density, it is conceivable that the system relaxes to a superfluid

phase for the non-abelian isospin symmetry. One concrete possibility is represented by

Kaon condensation [26]. The resulting scenario, given the approximate nature of the

isospin symmetry, broken by the small quark masses, would be approximated by the

physical situation described in this paper: there would be pseudo-Goldstone bosons,

whose gap and interactions are controlled by symmetry breaking, spontaneous and

explicit, very much like in the QCD chiral Lagrangian around the vacuum. In particular

in the regime where the chemical potential is of the order of the strong interaction scale,

our NREFT would capture, amid a hardly calculable strong dynamics, the universal

features of the gapped pseudo-Goldstones dynamics.

The underlying Lorentz invariance of the theory, if conceptually useful in under-

standing the origin of the modified Hamiltonian H̄, is not necessary for the existence

of both gapless and gapped Goldstone bosons [14]. Indeed, our construction may be

straightforwardly applied to systems where either only the Galilean limit of Lorentz

transformations is considered, or boost invariance is not present from the beginning.25

Possibly relevant examples of this kind include ferromagnets, anti-ferromagnets [24],

electron gases [23] and vortex lattices [51] where spin or angular momentum play the

role of the non-Abelian charges, while the role of the chemical potential is played by

either a uniform magnetic field [14] or by an externally induced angular velocity. In

these examples the role of the gapped Goldstones is played respectively by the magnons

for spin systems and by the Kohn mode for electron gases and vortex lattices. It would

be interesting to investigate the possibility to apply our NREFT methodology to such

25Physically, this means that boost invariance is broken by some more microscopic dynamics, typically

due to the presence of a lattice or some other fluid, whose associated hydrodynamics modes can be

neglected in first approximation.

– 32 –



systems, searching in particular for situations where the Goldstone gap is comparable to

or larger than the energy of other potentially strongly coupled modes. Our methodology

would allow to zoom on the universal properties of otherwise hardly tractable strongly

coupled systems.

Recently, effective field theory techniques have been applied in the study of large

charge operators in conformal field theories [19, 30–32]. By the state/operator corre-

spondence, these are associated with condensed matter phases [16, 52, 53], with the

generalized superfluid described in this paper representing the simplest possibility. The

NREFT discussed here, when specialized to the cylinder, is then expected to apply in

the large charge sector of CFTs invariant under non-Abelian symmetry groups.

Interestingly, we can learn something about the spectrum of the strongly interacting

conformal O(3) model, using some inputs from the study of the linear triplet model

in section 2. Indeed, since the triplet describes the O(3) Wilson-Fisher fixed point in

4− ε dimension, we expect the large charge sector of the related 3d CFT to undergo the

same symmetry breaking pattern:26 O(3)→ Z2. The Z2 crucially implies that single

gapped Goldstone states, being charged under the latter, are exact eigenstates of the

Hamiltonian. They are thus stable in the infinite volume limit. By the state-operator

correspondence, they are associated with Z2 odd operators of angular momentum J

transforming in the (2Q+ 1)-representation of the internal SO(3) in the corresponding

three-dimensional CFT; the NREFT then allows to compute their scaling dimension as

∆
(J)
mNGB(Q) = ∆0(Q) + µ(Q) + cm

J(J + 1)

2µ(Q)
+O

(
J4

µ3(Q)

)
, (5.1)

where ∆0(Q) is the scaling dimension of the lightest scalar operator in the SO(3) (2Q+1)

representation, given in a large Q expansion by

∆0(Q) = αQ3/2 + βQ1/2 − 0.0937256 + γQ−1/2 +O
(
Q−1

)
, (5.2)

while µ = ∂∆0(Q)/∂Q ∼ Q1/2 is the chemical potential in units of the cylinder radius

and α, β, γ and cm are Wilson coefficients. As in the Abelian case, also massless phonon

states correspond to CFT operators [19, 30].

Notice that in a general SU(2) invariant CFT, there is no conserved Z2 and things

are made more involved by the mixing of the gapped Goldstone with states made out of

lighter particles, outside the validity of the NREFT. Such mixing however corresponds

to the decay of the gapped Goldstone state in the infinite volume limit. Therefore

26Where symmetry breaking is intended in the sense explained in [19].
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the NREFT approach should allow the description of the resulting inclusive features,

presumably encoded in the spectral distribution. Relatedly, the NREFT should allow

to match all the components of the non-Abelian Noether current in terms of Goldstone

fields, in a certain kinematic regime. We plan to investigate the detailed predictions of

the NREFT for CFTs with non-Abelian symmetry in a future work.
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A Triplet model details

A.1 Coefficients of the gapped Goldstone annihilation

The coefficients in (2.10) are given by

α =

2

(
5µ2 − 3m2 −

√
4µ4 + (µ2 −m2)2

)
2µ2 +

√
4µ4 + (µ2 −m2)2

,

β =
−8µ2 (µ2 −m2)

2

29µ6 −m2µ4 + 3m4µ2 −m6 + (13µ4 + 2m2µ2 +m4)
√

4µ4 + (µ2 −m2)2
.
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Those in (2.11) are

γ =

λ2µ3

[√
5µ4+m4−2m2µ2+m2

5µ4+m4−2m2µ2

]1/2

15π (µ2 −m2)6 ×

×
[
2085µ10 − 49m10 + 441m8µ2 − 1762m6µ4 + 3842m4µ6 − 4429m2µ8+

−
(
935µ8 + 55m8 − 432m6µ2 + 1314m4µ4 − 1808µ6m2

)√
5µ4 +m4 − 2m2µ2

]
,

δ =

−2λ2µ2 (µ2 −m2)
2

(
2µ+ 4µ3√

5µ4+m4−2m2µ2

)(√
5µ4 +m4 − 2m2µ2 +m2

)5/2

15π
[
29µ6 +m6 + 3µ2m4 −m2µ4 + (13µ4 +m4 + 2m2µ2)

√
5µ4 +m4 − 2µ2m2

]2 .

A.2 Gapped Goldstone decay

In the linear triplet model discussed in the main text, the accidental discrete Z2

symmetry forbids the decay of the gapped Goldstone. However, in more general theories

the gapped Goldstone can decay into arbitrary lighter states. Here we provide a simple

example of such a modification of the Lagrangian (2.1). The resulting decay rate

vanishes with the 3-momentum of the gapped Goldstone, in agreement with the general

discussion of section 2.1.

To induce a decay channel for θ, we need to break explicitly the Z2 symmetry of the

Lagrangian (2.1). In order to do that, we couple the O(3) triplet Φ to a complex U(2)

doublet Ψ. We hence add the following term to the linear triplet model Lagrangian:

δL = |∂Ψ|2 −m2
Ψ |Ψ|

2 − λΨ

4
|Ψ|4 − g

(
Ψ†
σ

2
Ψ
)
·Φ− γ

4
|Ψ|2 Φ2 . (A.1)

Here σ = (σ1, σ2, σ3) are the Pauli matrices. Adding this term to (2.1), the resulting

Lagrangian is the most general renormalizable theory of a doublet and a triplet preserving

a global SU(2) × U(1) symmetry. Crucially, the coupling g breaks the discrete Z2

symmetry which prevented θ from decaying. All parameters are positive. When not

specified otherwise, all parameters with the same coupling and mass dimensions are

assumed to be of the same order [54].

We expand around the VEV (2.2) for the triplet with Ψ = 0, which is a minimum

for

γ ≥ 2
g

φ0

+
µ2 − 4m2

Ψ

φ2
0

. (A.2)
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This leaves the U(1) acting as Ψ 7→ eiαΨ unbroken. In this case the fluctuations for Φ

are parametrized as before (see Eq. (2.3)) while Ψ can be written as

Ψ = e−i(µt+ψ(x)/φ0)
σ3
2

(
Ψ1(x)

Ψ2(x)

)
, Ψ1, Ψ2 ∈ C. (A.3)

Notice that we explicitly factored out a time dependent rotation, which makes explicit

that unbroken time translations correspond to H +µQ3. To find the spectrum, consider

the quadratic contribution from δL:

δL(2) = |∂Ψ1|2 + |∂Ψ2|2 +
1

2
iµ
(

Ψ∗1Ψ̇1 −Ψ∗2Ψ̇2 − c.c.
)
− g

2
φ0 (Ψ∗1Ψ2 + c.c.)

−
[
m2

Ψ +
γ

4λ
m2 + (γ/λ− 1)µ2/4

] (
|Ψ1|2 + |Ψ2|2

)
.

(A.4)

The fields Ψ1 and Ψ2 interpolate four quasi-particles: {|Ψ+(k)〉 , |Ψ−(k)〉 , |Ψ̄+(k)〉,
|Ψ̄−(k)〉}. Under the unbroken U(1), |Ψ±(k)〉 have positive charge while |Ψ̄±(k)〉
have negative charge. As a consequence of the symmetry Ψ1 ↔ Ψ∗2 of the quadratic

Lagrangian, oppositely charged modes have dispersion relations equal in pair, given by:

ω2
±(k) = ω̄2

±(k) =
µ2

4
+m2

Ψ +
γ

4
φ2

0 + k2 ±
√
γµ2

4
φ2

0 +
g2

4
φ2

0 + µ2m2
Ψ + k2µ2 . (A.5)

Here ω+(k) = ω̄+(k) is the dispersion relation of |Ψ+(k)〉 and |Ψ̄+(k)〉, while ω−(k) =

ω̄−(k) is the dispersion relation of |Ψ−(k)〉 and |Ψ̄−(k)〉. Notice further that, because

of the aforementioned symmetry of the quadratic Lagrangian, the wavefunctions of the

fields on the states {|Ψ−(k)〉 , |Ψ̄−(k)〉} satisfy

〈0|Ψ1/2(0)|Ψ−(k)〉 = eiα 〈0|Ψ∗2/1(0)|Ψ̄−(k)〉 , α ∈ R (A.6)

where eiα is an unphysical phase factor which depends upon the precise definition of

the states |Ψ−(k)〉 and |Ψ̄−(k)〉. We will use this relation in the following.

The gapped Goldstone couples linearly to the complex U(2) doublet through the

Z2 breaking coupling g:

−g
(

Ψ†
σ

2
Ψ
)
·Φ ⊃ g

2
θ
(
|Ψ2|2 − |Ψ1|2

)
, (A.7)

To induce a decay for θ, we need the gap of the modes {|Ψ−(k)〉 , |Ψ̄−(k)〉} to be less

than half of the gapped Goldstone mass: ω−(0) = ω̄−(0) ≤ µ/2. This happens for27

m2
Ψ +

γ

4
φ2

0 −
√
γµ2

4
φ2

0 +
g2

4
φ2

0 + µ2m2
Ψ ≤ 0 . (A.8)

27The conditions (A.2) and (A.8) are compatible, as it can be seen in the limit where µ is much

bigger than all other mass parameters where they reduce to λ ≤ γ ≤ 4λ.
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Under this condition, the following decay channel exists for θ

θ(p)→ Ψ−(k1) + Ψ̄−(k2) . (A.9)

It is easy to compute the associated matrix element induced by the vertex (A.7); we

do not report the details of the calculation. Notice however that the relation (A.6)

implies that the decay amplitude vanishes when the final states have the same momenta.

Consequently, a gapped Goldstone at rest cannot decay, as expected. Noticing that |k1|
is generically of order O(µ), to linear order in the velocity the matrix element reads

iM = iC
p · k1

|k1|
+O

(
p2/µ, (p · k1)2/µ3

)
, (A.10)

where C is

C =
g2µφ0/2

2µ2
(√

g2φ2
0 + µ4 + µ2

)
+ g2φ2

0

×

√√√√√√
(

2
√
g2φ2

0 + µ4 + 2µ2 − γφ2
0 − 4m2

Ψ

)
3µ2 + 2

√
g2φ2

0 + µ4 − 2

√
2µ2

(√
g2φ2

0 + µ4 + µ2
)

+ g2φ2
0

. (A.11)

In the limit where µ is much bigger than all other mass parameters this expression

simplifies to

C =
g2
√

4λ− γ
8λµ2

+O
(
µ−4
)
. (A.12)

The total decay rate finally takes the following simple form

Γ = c
p2

µ
=

[
g4(4λ− γ)3/2

1536πλ5/2µ4
+O

(
µ−6
)] p2

µ
, (A.13)

where c is a dimensionless constant which we wrote in the µ→∞ limit for illustration

in the right hand side.

B The spacetime coset construction

In this section we review the standard coset construction in presence of broken spacetime

symmetries. Our goal is to show how to recover the Lagrangian in Eq. (3.7) from this

approach. Furthermore, this construction provides a useful bookkeeping tool to build

higher derivative terms in our action, which we do in appendix C.1.
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Consider a relativistic system with an internal SU(2) symmetry, whose charge Q3

is at finite density. The ground state |µ〉 of such a system minimizes the modified

Hamiltonian H̄ = H + µQ3 [15], and it can be chosen to satisfy28

H̄ |µ〉 = (H + µQ3) |µ〉 = 0 . (B.1)

If Q3 is spontaneously broken so is H, the generator of time translations. The generators

of boosts, J0i, and the other internal generators, Q1 and Q2, are broken too. The

symmetry breaking pattern is then

unbroken =


H̄ = H + µQ3 time translations ,

P̄i = Pi space translations ,

Jij rotations ,

broken =

J0i boosts ,

Q3, Q1, Q2 internal symmetries .

(B.2)

Therefore we have a theory with a symmetry group, G, given by the product of Poincaré

and the internal SU(2), which is spontaneously broken down to the semidirect product

of the modified translations, generated by P̄µ = {H̄, P̄ }, and rotations. We denote the

unbroken group with G′. Following the standard CCWZ procedure, the coset G/G′ can

be parametrized as

Ω = eiP̄µx
µ

eiη
iJ0ieiπ3Q3eiα

Q+
2

+iα∗Q−
2 . (B.3)

The way to construct an action which is invariant under the full symmetry group is to

consider the Maurer-Cartan form, Ω−1dΩ, and expand it in the basis of broken and

unbroken generators. Its general expression reads

Ω−1∂µΩ = ie a
µ

(
P̄a +∇aη

iJ0i +∇aπ3Q3 +∇aα
Q+

2
+∇aα

∗Q−
2

+
1

2
ωija Jij

)
. (B.4)

Here e a
µ transforms as a spacetime vielbein [38, 55], and we introduced Latin indices

a, b = 0, 1, 2, 3 and i, j = 1, 2, 3 to distinguish within the vielbein indices, as in the

familiar geometrical case. The coefficients of the broken generators, ∇aη
i, ∇aπ3 and

∇aα, are the covariant derivatives of the Goldstones. They have the property that, under

28In general, the ground state will satisfy H̄|µ〉 = λ|µ〉, with minimum λ. In the absence of gravity,

one can always add a cosmological constant term to the Hamiltonian to set λ = 0, with no physical

consequences [15].
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the action of any element of the full group, they transform as a linear representation of

the unbroken subgroup. Finally, ωija transforms as a spin connection [37], which can be

used to build higher covariant derivatives of the Goldstone fields:

∇H
a = e µ

a ∂µ +
i

2
ωija Jij . (B.5)

The previous derivative can also act on additional matter fields that transform in some

linear representation of the unbroken group G′. The most general Lagrangian for the

Goldstones, which is invariant under nonlinearly realized symmetry G is then given by

Leff = F (∇aΨ,∇H
a ∇bΨ, . . . ) , (B.6)

where we have collectively represented the Goldstone fields as Ψ. Here F is any function

that depends on combinations of its arguments that are manifestly invariant under the

unbroken group.29

For the case at hand, let us define (e−iη
iJ0i)aµ = (Λ−1)aµ = Λ a

µ and χ = µt + π3

[19]. The quantities defined in (B.4) then read

e a
µ = Λ a

µ , ∇aη
i = −Λµ

a(Λ
−1∂µΛ)0i , ωija = −Λµ

a(Λ
−1∂µΛ)ij ,

∇aπ3 = Λµ
aDµχ− µδ0

a , ∇aα = Λµ
aDµα ,

(B.7)

where Dµα and Dµχ are the covariant derivatives for a Lorentz invariant EFT of

completely broken SU(2) symmetry in (3.4).

It often happens that, in presence of broken spacetime symmetries, some of the

Goldstones can be algebraically eliminated in favor of the others. This is done imposing

the so-called inverse Higgs constraints [40]. In this case, we can eliminate the Goldstones

associated to the boost generators by imposing30

∇iπ3 = 0 =⇒ ηi

η
tanh η = −Diχ

D0χ
= −∂iπ3

µ
+ . . . . (B.8)

Crucially, thanks to the transformation properties of the covariant derivative, this

constraint is compatible with all the symmetries. Consequently it is always possible to

29In this case, this just means that space indices i, j, . . . should be contracted in a rotationally

invariant way.
30We use that, in our convention, the boost matrix can be written as [38]

Λ0
0 = γ Λ0

i = γβi Λi 0 = γβi Λi j = δi j + (γ − 1)
βiβj
β2

,

with the velocity related to the Goldstone by βi = ηi
η tanh η and γ2 = 1

1−β2 .
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impose it. The physical reason is that, when the system breaks spacetime symmetries,

the same physical fluctuation may be described as the action of different generators. In

this case, a small fluctuation generated by a boost could be obtained from the action of

Q3 as well [13, 39], making the field ηi redundant.

Once the condition (B.8) has been imposed, all the remaining invariants are ex-

pressed in terms of Dµχ and Dµα only—i.e. the covariant derivatives of the simpler

completely broken SU(2) theory. Without making further calculations, we know that

the most general SU(2) and Lorentz invariant Lagrangian written in terms of these

objects is given by Eq. (3.7).

We can also see this explicitly by writing the invariants obtained combining (B.7)

and (B.5). To this aim, it is convenient to notice that Eq. (B.8) implies

Λ 0
µ =

Dµχ√
DµχDµχ

≡ nµ , Λ i
µΛ i

ν = −ηµν + nµnν ≡ Pµν . (B.9)

Here we have conveniently defined a unit four-vector nµ ' δ0
µ + . . . in the direction of

the superfluid velocity and a projector Pµν orthogonal to it. Using these quantities, the

leading order invariants take the form:

∇0π3 = nµDµχ− µ ,
∇iα∇iα

∗ = DµαP
µνDνα

∗ ,

∇0α = nµDµα ,

∇iα∇iα = DµαP
µνDνα .

(B.10)

The first three expressions here agree with Eq. (3.23) when written in terms of the

fields in (3.3) using (3.18). Higher order invariants are similarly obtained, for instance:

∇iη
i = ∂µn

µ ,

∇H
0 ∇0π3 = nµ∂µ(nρDρχ) ,

∇iα
∗∇H

0 ∇iα = −Dµα
∗P µσnρ∂ρ(PσνD

να) ,

∇jη
i∇jη

i = −P µν∂µn
ρ∂νnρ ,

∇0η
i∇0η

i = −(nµ∂µn
ρ)ηρσ(nν∂νn

σ) ,

(∇j∇iα
∗)(∇j∇iα) = −P ρσ∂σ (P µνDνα

∗) ∂ρ
(
PµλD

λα
)
. (B.11)

We checked up to fourth order in derivatives that all invariants obtained combining

(B.7) and (B.5) can be written contracting in a Lorentz invariant way ∂µ, Dµχ and

Dµα, as in Eq. (3.7).
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B.1 The inverse Higgs constraint in the NREFT

Within the spacetime coset construction presented in the previous section, there exists

also the possibility of imposing an extra Inverse-Higgs constraint of the form31 ∇0α1 =

Re[∇0α] ' α̇1+µα2 = 0, which eliminates one of the two real components of α = α1+iα2.

Here we discuss the interpretation of this constraint within the NREFT.

In section 3.3 we showed that the NREFT describes two modes, corresponding

to the gapless and the gapped Goldstones. In particular, the complex field π = eiχα

interpolates a single degree of freedom, as typical of a nonrelativistic field. However,

there exists an analogous description in terms of a real field. To see this, let us rewrite

the quadratic action (3.25) to leading order in derivatives in terms of the real fields α1

and α2, with all time derivatives acting on the first and discarding total derivatives.

One gets

L ⊃ −c(1)µ3

[
α2α̇1 + µ

α2
1 + α2

2

2

]
− c(2)

3 µ2
[
(∇α1)2 + (∇α2)2

]
. (B.12)

Since there is no time derivative acting on it, α2 is an auxiliary field, which can be

integrated out on its equation of motion. This gives

0 = α̇1 + µα2 +O
(
∇2/µ

)
' ∇0α1 +O

(
∇2/µ

)
. (B.13)

We hence recovered the inverse Higgs constraint32 ∇0α1 = 0. Since we integrated out

an auxiliary field, the number of degrees of freedom and all the other properties of the

action are unaffected. Indeed, plugging back the solution of (B.13) in the Lagrangian

we find that α1 becomes a real field with gap µ. In practice, in a nonrelativistic setting

it is easier to work with a complex field, which makes particle number conservation

manifest. We did not explore the possibility of building the action using only two real

fields from start, e.g. working with an SU(2)/U(1) coset Ω = eiχQ3eiα1Q1 around the

background χ = µt, α1 = 0.

This inverse Higgs constraint was also discussed in [13]. However, the authors there

focused on a different setup, where the derivative expansion is controlled by a scale

Λ� µ. In that case, imposing or not the inverse Higgs constraint leads to physically

31Of course, one could alternatively consider ∇0α2 = Im[∇0α] ' α̇2 − µα1 = 0.
32With the current parametrization the inverse Higgs constraint corresponds to the equations of

motion of α2 only to linear order in the fields. However, the equality is true at all nonlinear orders in

the Euler parametrization of the Goldstones: Ω = eiχQ3eiα1Q1eiα2Q2 . In other words, there is a field

redefinition for which to impose the inverse Higgs constraint corresponds to integrate out α2 to leading

orders in derivatives but to all orders in the field expansion.
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distinct theories, providing a different interpretation for it. Let us briefly review these

previous findings, in order to compare them with our construction.

When the inverse Higgs constraint is imposed, the construction of [13] leads to an

EFT describing the gapless and the gapped Goldstone, with cutoff Λ� µ. In this setup,

the symmetry is partially restored in the limit µ→ 0, if this limit exists.33 As discussed

in the introduction of section 3, this EFT applies for instance in the linear sigma model

for m2 < 0 when the radial mode is much heavier than the gapped Goldstone, i.e. when

|m2| � µ2.

The situation is different when the inverse Higgs constraint is not imposed. Indeed,

when Λ� µ, the leading order quadratic Lagrangian for the complex field α is second

order in time derivatives, implying that α interpolates two modes rather than one as in

our nonrelativistic construction. One mode is the gapped Goldstone, while the mass of

the other depends on the coefficients of the Lagrangian and it is formally proportional

to µ. This mode is usually referred to as a gapped Goldstone with unfixed gap [13]. In

this case, if the limit µ→ 0 is smooth, the theory breaks the internal SU(2) symmetry

completely also at zero chemical potential; the extra mode then provides the third

Goldstone required by the relativistic Goldstone theorem.

In general, the presence of the unfixed gap mode and its properties are not fixed by

the symmetry breaking pattern only and depend on the structure of the theory at scales

Λ � µ. Thus, for the purposes of our construction in which the chemical potential

itself provides the cutoff, this mode, if present in the UV theory, behaves rather like

any other matter field and is thus integrated out in our setup. The nonrelativistic

EFT, similarly to the standard relativistic CCWZ construction, provides the minimal

structure required to realize nonlinearly all the symmetries; in practice, this means that

the NREFT describes only the gapless and the gapped Goldstones. Of course, while we

expect this simple setup to correspond to the most generic situation, specific theories

may contain additional light degrees of freedom, e.g. gauge fields, which can be added

to the EFT in the standard way.

C NREFT details

C.1 NREFT action to O(∂4)

In this section, we write the Lagrangian for the non-relativistic effective theory to fourth

order in derivatives. To this aim, we find a convenient bookkeeping tool to use the

33This is not obvious even for Λ� µ, since the cutoff itself might depend on the chemical potential,

e.g. as Λ2 ∼ fµ with f � µ; see [13] for details.
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invariants written using the spacetime coset construction presented in appendix B. We

assume parity invariance for simplicity.

The effective nonrelativistic Lagrangian is written using the prescription presented in

section 3.1, namely imposing the U(1) invariance π → eiξπ and using the nonrelativistic

derivative (3.20). In the notation of the previous section, the latter amounts at building

higher derivative terms using, rather than the one given in Eq. (B.5), the following

covariant derivative:

e µ
a ∂̂µ +

i

2
ωija Jij = ∇H

a + i (µ+∇0π3) δ0
a[Q3, ·] . (C.1)

In practice, we performed calculations using the following

∇̂H
a ≡ ∇H

a + i µδ0
a[Q3, ·] . (C.2)

This definition corresponds to a slightly different form of the nonrelativistic derivative,

obtained multiplying Dµχ in Eq. (3.20) by µ/
√
DµχDµχ. As commented below that

equation, this redefinition does not affect the key property (3.21), which is needed in

order to have a well-structured derivative expansion.

We can now proceed to formally write the Lagrangian in a ∇/µ expansion as

L = L(1)
∇ + L(2)

∇ + L(3)
∇ + L(4)

∇ + . . . , (C.3)

where L(i)
∇ contains all terms which are of order i in terms of ∇’s covariant derivatives.

We have:

L(1)
∇ /µ

3 = c(1)∇0π3 , (C.4)

L(2)
∇ /µ

2 = c
(2)
1 (∇0π3)2 + c

(2)
2 |∇0α|2 − c(2)

3 |∇iα|2 , (C.5)

L(3)
∇ /µ = c

(3)
1 (∇0π3)3 + c

(3)
2 ∇0π3|∇0α|2 + c

(3)
3 ∇0π3|∇iα|2

+ c
(3)
4

[
i∇0α

∗∇̂H
0 (∇0α) + c.c.

]
+ c

(3)
5

[
i∇iα

∗∇̂H
0 (∇iα) + c.c.

]
+ c

(3)
6

[
∇iα

∗∇̂H
i (∇0α) + c.c.

]
+ c

(3)
7

[
i∇iα

∗∇̂H
i (∇0α) + c.c.

]
+ c

(3)
8 ∇0π3(µ∇iη

i) . (C.6)

We can expand these in terms of the SU(2) covariant derivatives in Eq. (3.4) and their

derivatives. Doing so and defining Dµπ3 ≡ Dµχ− µδ0
µ, we can rewrite the Lagrangian
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in a standard derivative expansion:

L(1)/µ3 = c(1)D0π3 , (C.7)

L(2)/µ2 = c
(2)
1 (D0π3)2 − c(1)

2
(Diπ3)2 + c

(2)
2 |D0α|2 − c(2)

3 |Diα|2 , (C.8)

L(3)/µ =

[
c(1)

2
− c(2)

1

]
D0π3(Diπ3)2 +

[
c

(2)
2 − c

(2)
3 − c

(3)
7

]
(D0α

∗DiαDiπ3 + c.c.)

+ c
(3)
6 (iDiα

∗Diπ3D0α + c.c.) + c
(3)
1 (D0π3)3 + c

(3)
2 D0π3|D0α|2 + c

(3)
3 D0π3|Diα|2

+ c
(3)
4 [iD0α

∗(∂0 + iµ) (D0α) + c.c.] + c
(3)
5 [iDiα

∗(∂0 + iµ) (Diα) + c.c.] (C.9)

+ c
(3)
6 [Diα

∗∂i (D0α) + c.c.] + c
(3)
7 [iDiα

∗∂i (D0α) + c.c.]− c(3)
8 D0π3(∂iDiπ3) .

Notice that terms with Diπ3 always appear from the expansion of the ∇ covariant

derivatives in connection with lower derivative ones.

The fourth order in derivatives can be constructed similarly. Here we just report the

fourth order term in (C.3)

L(4)
∇ = c

(4)
1 (∇0π3)4 + c

(4)
2 (∇0π3)2|∇0α|2 + c

(4)
3 (∇0π3)2|∇iα|2

+ c
(4)
4 |∇0α|4 + c

(4)
5 |∇0α|2|∇iα|2 + c

(4)
6

[
(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
7

[
i(∇iα)2(∇0α

∗)2 + c.c.
]

+ c
(4)
8 |∇iα|2|∇jα|2

+ c
(4)
9 (∇iα)2(∇jα

∗)2 + c
(4)
10 (∇̂H

0 ∇0π3)|∇0α|2 + c
(4)
11 (∇0π3)

[
i∇0α

∗∇̂H
0 ∇0α + c.c.

]
+ c

(4)
12 (∇̂H

0 ∇0π3)|∇iα|2 + c
(4)
13 (∇0π3)

[
i∇iα

∗∇̂H
0 ∇iα + c.c.

]
+ c

(4)
14 (∇̂H

i ∇0π3) [∇iα
∗∇0α + c.c.] + c

(4)
15 (∇̂H

i ∇0π3) [i∇iα
∗∇0α + c.c.]

+ c
(4)
16∇0π3

[
∇̂H
i (∇0α)∇iα

∗ + c.c.
]

+ c
(4)
17∇0π3

[
i∇̂H

i (∇0α)∇iα
∗ + c.c.

]
+ c

(4)
18 (∇̂H

0 ∇0π3)2 + c
(4)
19 (∇̂H

i ∇0π3)2 + c
(4)
20 |∇̂H

0 ∇0α|2

+ c
(4)
21 |∇̂H

i ∇0α|2 + c
(4)
22

[
∇̂H
i ∇iα

∗∇̂H
0 ∇0α + c.c.

]
+ c

(4)
23

[
i∇̂H

i ∇iα
∗∇̂H

0 ∇0α + c.c.
]

+ c
(4)
24 |∇̂H

0 ∇iα|2 + c
(4)
25 |∇̂H

i ∇iα|2 + c
(4)
26 |∇̂H

j ∇iα|2 + c
(4)
27 µ

2∇0η
i∇0η

i + c
(4)
28 µ

2(∇iη
i)2

+ c
(4)
29 µ

2∇iη
j∇iη

j + c
(4)
30 µ∇iη

i∇̂H
0 ∇0π3 + c

(4)
31 µ(∇0π3)2∇iη

i + c
(4)
32 µ|∇0α|2∇iη

i

+ c
(4)
33 µ|∇iα|2∇jη

j + c
(4)
34 µ∇iη

j [∇iα∇jα
∗ + c.c.] + c

(4)
35 µ∇iη

j [i∇iα∇jα
∗ + c.c.]

+ c
(4)
36 µ∇0η

i [∇iα∇0α
∗ + c.c.] + c

(4)
37 µ∇0η

i [i∇iα∇0α
∗ + c.c.] . (C.10)

We did not write terms which effectively contribute at fifth order in derivatives after

expanding the ∇’s as before.
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C.2 Feynman rules to leading order in ∂/µ

Before introducing a process dependent velocity power counting, it might be useful to

consider a power counting in ∂/µ. Here we list the Feynman rules to leading order within

this counting. We use the field parametrization (3.3). Black solid lines correspond to

gapped Goldstones with four-momentum p = (µ+ ε,p), while dashes stand for gapless

Goldstones, whose four-momentum is denoted as k = (ω,k).

• |π|2π3 vertex:

(C.11)

• π3
3 vertex:

(C.12)

• |π|4 vertex:

(C.13)
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• |π|2π2
3 vertex:

(C.14)

• π4
3 vertex:

(C.15)

C.3 Coefficients of ππ scattering to order O(v4)

The coefficients of the π dispersion relation (3.36) to subleading order is given by

c(2)
m = 16

c(1)
[
c(1)
(
c

(4)
25 + c

(4)
26

)
+ 4c

(2)
3

(
c

(3)
5 + c

(3)
7

)]
+ 4c

(2)
2

(
c

(2)
3

)2

(c(1))3
. (C.16)

The bi’s in (3.35) are

b1 = −
c(1)c2

m(cs − 1)− 4cs

[
cm(c

(2)
2 + c

(3)
3 ) + 2c

(3)
5 (cm − 1)− 2c

(3)
7

]
8cs

, (C.17)

b2 =
1

4

(
cm

[
4c

(3)
3 − 3c(1)cm + 4c

(2)
2 (2cm + 3)

]
− 2c(1)c(2)

m

)
+ 6c

(3)
5 (cm − 1) + c

(3)
7 (4cm − 6) , (C.18)

b3 = −4
(

2c
(3)
5 − 4c

(4)
9 + 2c

(4)
26 + c

(4)
29 + 2c

(4)
35

)
, (C.19)

b4 = 2
(

2c
(3)
5 + 4c

(4)
8 + 2c

(4)
26 + c

(4)
29 + 2c

(4)
35

)
. (C.20)
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C.4 Loops in dimensional regularization

We can regulate the NREFT at quantum level with a hard space cutoff Λ . µ. However

powers of the cutoff spoil power counting [50] and complicate computations. It is hence

preferable to use a mass independent regulator, such as dimensional regularization. In a

nonrelativistic EFT, if this is done näıvely retaining the standard form of propagators,

loops involving both massive and massless particle become dominated by hard momenta

|k| ∼ µ, which should not enter in the NREFT computations (c.f [43] within the context

of NRQCD). This is due to the fact that the gapped dispersion relation k0 ∼ k2/µ and

the gapless one k0 ∼ |k| can be simultaneously satisfied only for |k| ∼ µ. A consistent

formulation of NREFTs with both heavy and light fields was devised by Griesshammer

[45, 46], as a development of the method of regions [56], and then further refined with

the formulation of vNRQCD [48, 57]. In this appendix we review the key points and

their application to our EFT, focusing on the power counting of diagrams. We refer to

the original works for details.

The first step is to identify a consistent set of modes, according to their scaling

with velocity v. According to standard NRQCD results [43, 44], these are given by soft,

potential and ultrasoft modes listed in (3.32). Fields are split accordingly as explained

in section 3.5. To enforce power counting, one should retain in the denominators of

propagators only momenta with the same scaling in v, expanding the subleading ones

in an infinite series. In particular, they will be given by 34

Gs
π3

(ω,k) = Gus
π3

(ω,k) =
i

ω2 − c2
sk

2
, Gp

π3
(ω,k) =

−i
c2
sk

2

∞∑
n=0

(
ω2

c2
sk

2

)n
,

Gs
π(ε,p) = Gus

π (ε,p) =
i

ε

∞∑
n=0

(
cmp

2

2µε

)n
, Gp

π(ε,p) =
i

ε− cmp2

2µ

,

(C.21)

where we omitted the +i0 prescription. For instance, the soft Gs
π(ε,p) propagator and

the potential Gp
π(ε,p) propagators are not equivalent beyond tree-level, since infinite

sums and integration do not commute in dimensional regularization [56]. After the

splitting into different modes is performed, and hence all propagators are properly

expanded, all loops in dimensional regularization are made only of light scales. This

also makes it straightforward to power count diagrams in v.

34Naively performing these expansions inside loops sometimes leads to unphysical pinch singularities,

e.g. in box integrals. However, a careful analysis shows that these arise from an over-counting of the

contribution of a certain region and that loops are indeed regular after the proper zero-bin subtractions

have been performed [57]. These subtleties do not affect the simple power counting rules that we

discuss here, hence we will neglect them in what follows.
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As a simple illustration, consider the one-loop correction to the Gp
π(ε,p) propagator35

(C.22)

where in a hard cutoff approach we would write the loop integral as

Iππ = −i
∫

d4k

(2π)4

[(2ε− k0)k0 − c2
s(2p− k) · k]

2[
(ε− k0)− cm (p−k)2

2µ
+ i0

]
(k2

0 − c2
sk

2 + i0)
. (C.23)

To perform this computation in d = 4− ε dimensions, we need to take into account four

different integrals, depending on the specific modes running in the loop:

1. πs3 : (k0,k) ∼ (µv, µv) and πs : (ε− k0,p− k) ∼ (µv, µv);

2. πp3 : (k0,k) ∼ (µv2, µv) and πp : (ε− k0,p− k) ∼ (µv2, µv);

3. πp3 : (k0,k) ∼ (µv2, µv) and πus : (ε− k0,p− k) ∼ (µv2, µv2);

4. πus3 : (k0,k) ∼ (µv2, µv2) and πp : (ε− k0,p− k) ∼ (µv2, µv).

Consider for illustration the πs− πs
3 loop. We have k0 � ε, (p− k)2/µ, hence we should

enforce this expanding the gapped Goldstone propagator in an infinite series

i

(ε− k0)− cm (p−k)2

2µ
+ i0

−→ i

−k0 + i0

[
1 +

ε− cm (p−k)2

2µ

k0 − i0
+ . . .

]
(C.24)

The integral here is:

I(1)
ππ = −iM ε

∫
ddk

(2π)d
[. . .]2

(−k0 + i0) (k2
0 − c2

sk
2 + i0)

[
1 +

ε− cm (p−k)2

2µ

k0 − i0
+ . . .

]
= 0,

(C.25)

where M is the sliding scale. The loop vanishes since, after performing the k0 integration

with the residue’s theorem, the integral can be divided in a sum of contributions

proportional to
∫
dd−1k/|k|n = 0. Similarly one can check that the πp

3 − πp and πp
3 − πs

35We neglected a scaleless tadpole vanishing in dimensional regularization.
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loops vanish36 to all orders in v.

The only nontrivial contribution comes from the ultrasoft πus
3 − πp loop. We have

k2 � p2, implying that the πp propagator should be expanded as

i

(ε− k0)− cm (p−k)2

2µ
+ i0

−→ i

(ε− k0)− cm p2

2µ
+ i0

(
1−

cm
p·k
µ

ε− k0 − cm p2

2µ

+ . . .

)
.

(C.26)

We can power count the measure according to the momentum of the softest propagator,

which sets the size of the integration box. In this case thus d4k ∼ µ4v8. The leading

contribution is

I(4)
ππ = M ε

∫
ddk

(2π)d
−ic4

s(p · k)2[
(ε− k0)− cm p2

2µ
+ i0

]
(k2

0 − c2
sk

2 + i0)
∼ O

(
v8
)
. (C.27)

The integral is simple to perform, giving an O(v8) contribution:

I(4)
ππ =

p2
(
ε− cm p2

2µ

)3

3π2cs

{
1

ε
− log

(
ε− cm p2

2µ
+ i0

−csM

)
− γ

2
+

4

3
+

log π

2

}
. (C.28)

The divergence renormalizes the Lagrangian term 1
µ5
∇iπ

∗
(
i∇̂H

0 − cm
2µ
∇̂H
i ∇̂H

i

)3

∇iπ =

1
µ5
Dλπ∗Pλµ

{[
inρ∂̂ρ − cm

2µ
∂̂ρ

(
P ρσ∂̂σ

)]3

P µνDνπ

}
, in the notation of appendix B. In

practice many tree-level higher derivative terms have to be taken into account at the

lower orders.

In (C.28) we found a ∼ log (µv2/M) contribution. Indeed in general ultrasoft loops

give rise to logarithms of the ultrasoft scale µv2. Instead soft and potential loops lead

to logarithms of the soft scale µv [48]. For instance, the leading loop contribution to

πp
3π

p
3 potential propagator comes from a soft loop and takes the form

(C.29)

36Within this approach this is a common fact, for instance one can prove that πus never contributes

inside loops [45].
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Figure 3. Leading loop topologies which correct the contact interaction in ππ scattering.

The scaling of vertices and the modes in the loop are displayed.

Finally, one can now consistently power count loop contributions to the ππ elastic

scattering, computed to O(v4) at tree-level in Sec. 3.5. Using the Feynman rules in C.2,

one easily concludes that the first corrections arise only at O(v5). Specifically, three

kinds of loop corrections exist. First, corrections to the Gp
π3

propagator in exchange

diagrams of fig. 2, which however start at O(v8) as Eq. (C.29) shows. Then corrections

to the πp
3 |πp|2 vertex appearing in the same kind of diagrams. For instance, the leading

correction in this class is given by a loop of πp and πp
3 :

(C.30)

Here we showed explicitly the scaling of the vertices with v and we power counted the

result as measure×propagators×vertices. Finally we have those that we can interpret

as corrections to the contact vertex in fig. 1. The leading corrections in this class are

also O(v5) and are displayed in figure 3.

We remark that this formulation of the NREFT differs in some points from the
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modern vNRQCD [48]. First, we did not separate explicitly the fields momenta in soft,

potential and ultra-soft components in the Lagrangian, as it is customarily done in

NRQCD [44]. Of course, this is possible and it might be useful in performing more

refined computations, especially to account for the proper zero-bin subtractions [57].

Furthermore, here off-shell modes are not integrated out explicitly and the pull-up

mechanism is not explicitly implemented [48], i.e. we do not renormalize soft and

ultrasoft fields separately. These differences stem from the fact that we want to preserve

the nonlinearly realized SU(2) invariance in the Lagrangian, which relates the different

modes of π3 and π. In particular, this implies that all modes of a given operator have

the same anomalous dimensions [46], differently than in vNRQCD. There, renormalizing

them separately allows to efficiently resum logarithms of both the soft and ultrasoft scale,

via the velocity Renormalization Group.37 This is not possible within our approach, but

it is only a minor drawback. Indeed, as typical for Goldstone bosons, all interactions

are irrelevant, so that logarithms are always multiplied by powers of the velocity.
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