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Abstract: We perform a lattice study of double parton distributions in the pion, using the

relationship between their Mellin moments and pion matrix elements of two local currents. A

good statistical signal is obtained for almost all relevant Wick contractions. We investigate

correlations in the spatial distribution of two partons in the pion, as well as correlations

involving the parton polarisation. The patterns we observe depend significantly on the quark

mass. We investigate the assumption that double parton distributions approximately factorise

into a convolution of single parton distributions.
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1 Introduction

Matrix elements of currents in a hadron offer a variety of ways to quantify and study hadron

structure. In particular, information about correlations inside the hadron can be obtained

from the matrix elements of two currents that are separated by a space-like distance. Such

matrix elements can be calculated in lattice QCD, and there has been considerable activity

in this area over the years [1–11]. These studies address a broad range of physics questions,

such as confinement [1, 2], the size of hadrons [3–5, 8], density correlations [6], comparison

with quark models [7], or the non-spherical shape of hadrons with spin 1 or larger [9–11].

We continued this line of investigation in a recent paper [12]. We performed a lattice

computation of the matrix elements of two scalar, pseudoscalar, vector, or axial vector cur-

rents in the pion and compared our results with predictions of chiral perturbation theory. For

the first time, we computed all Wick contractions that contribute to these matrix elements,

whilst earlier work had focused on the case in which the two currents are inserted on different

quark lines between the hadron source and sink operators (see graph C1 in figure 4). We

obtained signals with a good statistical accuracy for almost all contractions and were thus

able to study their relative importance. Our results were compared with different models

in [13, 14].

Extending our work in [12], we will in the present paper use two-current matrix el-

ements from the lattice to obtain information about double parton distributions (DPDs).

DPDs describe the correlated distribution of two partons inside a hadron and appear in the

cross sections for double parton scattering, which occurs when there are two separate hard-

scattering processes in a single hadron-hadron collision. The study of this mechanism has a

long history in collider physics, from early theoretical papers such as [15–21] to the detailed

investigation of QCD dynamics and factorisation that started about ten years ago [22–33].

After early experimental studies [34, 35], a multitude of double parton scattering processes

has been measured at the Tevatron and the LHC, see [36–40] and references therein. Some

final states produced by double parton scattering are of particular interest because they are

a background to search channels for new physics. A prominent example are like-sign gauge

boson pairs W+W+ and W−W− [40–45], the decay of which can yield like-sign lepton pairs.

A wealth of further information about double parton scattering can be found in the mono-

graph [46].

Double parton distributions remain poorly known, and their extraction from experimental

data is considerably more difficult than the extraction of single parton distributions (PDFs).

It is therefore important to have as much theoretical guidance as possible about the properties

and behaviour of DPDs. Apart from approaches that focus on fulfilling theoretical constraints

[47–50], there exists a large number of model calculations for the DPDs of the nucleon [51–58]

and a smaller number for those of the pion [59–62].

A relation between the Mellin moments of DPDs and two-current matrix elements that

can be computed on the lattice was written down in [23, 27]. This generalises the relation

between matrix elements of one current and the Mellin moments of PDFs, which has been
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extensively exploited in lattice studies, as reviewed for instance in [63–65]. Whilst knowledge

of a few Mellin moments is insufficient for reconstructing the full DPDs, it allows one to in-

vestigate crucial features of these functions, such as their dependence on the distance between

the two partons and on the parton polarisation. In the present paper, we pursue this idea

for the DPDs of the pion, focusing on their lowest Mellin moments. We use the same lattice

data as in our study [12]. Corresponding work on the DPDs of the nucleon is in progress,

and preliminary results have been presented in [66].

This paper is organised as follows. In section 2, we recapitulate some basics about DPDs

and then elaborate on the relation between their Mellin moments and the two-current matrix

elements we compute on the lattice. This will in particular lead us to introduce the concept

of skewed DPDs. In section 3, we describe the main elements of our lattice simulations (a full

account is given in [12]) and investigate several lattice artefacts that are present in our data.

Our results for zero pion momentum are presented and discussed in section 4. In section 5,

we develop a parametrisation of the data for both zero and nonzero pion momenta, which

will allow us to reconstruct the Mellin moments of pion DPDs, albeit in a model-dependent

fashion. Our main findings are summarised in section 6.

2 Theory

2.1 Double parton distributions

To begin with, we recall some basics about double parton distributions. An extended intro-

duction to the subject can be found in [67].

Factorisation for a double parton scattering process means that its cross section is given

in terms of hard-scattering cross sections at parton level and double parton distributions for

each of the colliding hadrons. For pair production of colourless particles, such as Z, W or

Higgs bosons, this factorisation can be proven rigorously. A DPD gives the joint probability

for finding in a hadron two partons with longitudinal momentum fractions x1 and x2 at a

transverse distance y from each other. The distributions for quarks and antiquarks are defined

by operator matrix elements as

Fa1a2(x1, x2,y) = 2p+

∫
dy−

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

× 〈h(p)| Oa1(y, z1)Oa2(0, z2) |h(p)〉 . (2.1)

We use light-cone coordinates v± = (v0± v3)/
√

2 and boldface letters for the transverse part

v = (v1, v2) for any four-vector vµ. The definition (2.1) refers to a reference frame in which

the transverse hadron momentum is zero, p = 0. In a frame where the hadron moves fast in

the positive z direction, x1 and x2 can be interpreted as longitudinal momentum fractions.

The vectors zµ1 and zµ2 are lightlike with only z−1 and z−2 nonzero, whereas yµ is spacelike with

y+ = 0. The hadron state is denoted by h(p), and it is understood that an average over its

polarisation is taken on the r.h.s. of (2.1) if the hadron has nonzero spin. Unless specified
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otherwise, the expressions of the present section hold both for a pion and for the nucleon (and

in fact for any unpolarised hadron or nucleus).

The matrix element in (2.1) involves the same twist-two operators that appear in the

definition of ordinary PDFs. For quarks, one has

Oa(y, z) = q̄
(
y − 1

2z
)

Γa q
(
y + 1

2z
)∣∣∣
z+=y+=0, z=0

(2.2)

with spin projections

Γq = 1
2γ

+ , Γ∆q = 1
2γ

+γ5 , Γjδq = 1
2 iσ

j+γ5 (j = 1, 2) . (2.3)

The analogous expressions for antiquarks can e.g. be found in [27, section 2.2]. The form (2.2)

holds in light-cone gauge A+ = 0, whereas in other gauges a Wilson line is to be inserted

between the fields. Since the two fields in (2.2) have light-like separation from each other,

their product requires renormalisation. This results in a scale dependence of the two operators

and of the DPD in (2.1), which we do not indicate for the sake of brevity.

Lorentz invariance implies that one can write

Fq1q2(x1, x2,y) = fq1q2(x1, x2, y
2) ,

F∆q1∆q2(x1, x2,y) = f∆q1∆q2(x1, x2, y
2) ,

F j1δq1q2(x1, x2,y) = εj1kykmfδq1q2(x1, x2, y
2) ,

F j2q1δq2(x1, x2,y) = εj2kykmfq1δq2(x1, x2, y
2) ,

F j1j2δq1δq2
(x1, x2,y) = δj1j2fδq1δq2(x1, x2, y

2) +
(
2yj1yj2 − δj1j2y2

)
m2f tδq1δq2(x1, x2, y

2) (2.4)

with y2 = yµyµ = −y2. Due to parity invariance, one has Fq1∆q2 = F∆q1q2 = 0, and time

reversal invariance implies Fδq1∆q2 = F∆q1δq2 = 0. The hadron mass m has been introduced

on the r.h.s. of (2.4) so that all scalar functions f have the dimension of an inverse area. The

operator Ojδq is a vector whose direction gives the transverse quark spin direction, and εjk is

the two-dimensional antisymmetric tensor with ε12 = +1. The density interpretation of the

different distributions in (2.4) is then as follows:

• The unpolarised distribution fq1q2 gives the probability density to find two quarks with

momentum fractions x1 and x2 at a transverse distance y, regardless of their polarisa-

tion.

• f∆q1∆q2 is the density for finding two quarks with their longitudinal polarisations aligned

minus the density for finding them with their longitudinal polarisations anti-aligned.

• fδq1δq2 is the analogue of f∆q1∆q2 for transverse quark polarisations.

• fδq1 q2 describes a correlation between the transverse polarisation of the quark q1 and

the distance y of that quark from the unpolarised quark q2. In fq1δq2 , the first quark is

unpolarised and the second quark has transverse polarisation.
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• f tδq1δq2 describes a correlation between the transverse polarisations of the two quarks

and their transverse distance y.

Decompositions of the same form as (2.4) can be given for the cases where one replaces one

or both of the quarks by an antiquark, with the same physical interpretation as given above

for two quarks.

Note that the polarisation dependence of DPDs is not only interesting from the point of

view of hadron structure, but can have measurable implications on double parton scattering,

as was for instance shown in [27, 44, 45, 68]. Lattice calculations can give information about

the strength of the different spin correlations we just discussed.

We note that cross sections for double parton scattering involve the product of two DPDs

integrated over the interparton distance,∫
d2y Fa1a2(x1, x2,y)Fb1b2(x′1, x

′
2,y) . (2.5)

The dependence of DPDs on y can hence not be directly inferred from experimental observ-

ables. If y is small, one can use perturbation theory to compute Fa1a2 in terms of PDFs and

splitting functions [27, 69]. By contrast, for large distances the y dependence is fully non-

perturbative. Lattice studies can give information about this dependence, whose knowledge

is crucial for computing double parton scattering cross sections.

Both unpolarised and polarised DPDs can exhibit correlations in their dependence on x1,

x2 and y. We cannot address this aspect in our present study, because the matrix elements

we compute are related to the lowest Mellin moments of DPDs, i.e. their integrals over both

x1 and x2. In principle, one could investigate higher Mellin moments, i.e. integrals weighted

with powers of x1 and x2. This would require extending the set of currents in (2.9) to currents

that involve covariant derivatives and is beyond the scope of the present work.

Phenomenological analyses often make the assumption that in unpolarised DPDs the two

partons are independent of each other. This gives the relation

Fa1a2(x1, x2,y)
?
=

∫
d2b fa1(x1, b + y) fa2(x2, b) , (2.6)

where fa(x, b) is an unpolarised impact parameter dependent single parton distribution. The

question mark above the equal sign in (2.6) indicates that this is a hypothesis. Our lattice

study allows us to test this indirectly in two different ways, as discussed in sections 2.4, 4.4

and 5.4.

A related but different simplifying assumption is that unpolarised DPDs can be written

as

Fa1a2(x1, x2,y)
?
= fa1(x1) fa2(x2)G(y) , (2.7)

where fa(x) denotes a standard PDF and G(y) is a factor describing the dependence on the

transverse parton distance. This assumption leads to the so-called “pocket formula”, which
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expresses double parton scattering cross sections in terms of the cross sections for each single

scattering and a universal factor σ−1
eff =

∫
d2y [G(y)]2. Whilst our study cannot address the

factorisation between the x1, x2 and y dependence assumed in (2.7), we can investigate the

assumption that the y dependence is the same for all parton combinations (a1, a2) in a given

hadron. We will do this in section 4.5.

2.2 Matrix elements of local currents

The matrix element (2.1) involves fields at light-like distances and is hence not suitable for

direct evaluation on a Euclidean lattice. What we can study in Euclidean space-time are the

matrix elements

Mµ1···µ2···
q1q2,i1i2

(p, y) = 〈h(p)| Jµ1···
q1,i1

(y) Jµ2···
q2,i2

(0) |h(p)〉 , (2.8)

where as in (2.1) a polarisation average is understood if the hadron h carries spin. The local

currents Jµ···q,i we will consider here are

Jµq,V (y) = q̄(y)γµq(y) , Jµq,A(y) = q̄(y)γµγ5 q(y) , Jµνq,T (y) = q̄(y)σµν q(y) . (2.9)

For spacelike distances y, which we assume throughout this work, the two currents in (2.8)

commute, so that one has

Mµ1···µ2···
q1q2,i1i2

(p, y) = Mµ2···µ1···
q2q1,i2i1

(p,−y) . (2.10)

Together with the fact that the currents in (2.9) are Hermitian, it follows that the matrix

elements (2.8) are real valued.

The currents transform under charge conjugation (C) and under the combination of parity

and time reversal (PT ) as

Jµ···q,i (y)→
C
ηiC J

µ···
q,i (y) , Jµ···q,i (y) →

PT
ηiPT J

µ···
q,i (−y) (2.11)

with sign factors

ηiC = +1 for i = A , ηiC = −1 for i = V, T (2.12)

and

ηiPT = +1 for i = V , ηiPT = −1 for i = A, T . (2.13)

The combination of a parity and time reversal transformation gives

Mµ1···µ2···
q1q2,i1i2

(p, y) = ηi1PT η
i2
PTM

µ1···µ2···
q1q2,i1i2

(p,−y) (2.14)

and thus relates the matrix elements for y and −y.
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Symmetry relations for pion matrix elements. For pion matrix elements, one has

additional relations due to charge conjugation and isospin invariance. For ηi1C ηi2C = 1, which

is the case for all current combinations considered in our work, one has

Mq1q2(y, p)
∣∣
π+ = Mq1q2(y, p)

∣∣
π− , (2.15)

where we indicated for which hadron the matrix element is taken but for brevity omitted the

Lorentz indices and the labels i1, i2 specifying the currents. Still for ηi1C ηi2C = 1, one finds

Muu(y, p)
∣∣
πc

= Mdd(y, p)
∣∣
πc
, Mud(y, p)

∣∣
πc

= Mdu(y, p)
∣∣
πc

(2.16)

for c = +,−, 0, as well as

Mud(y, p)
∣∣
π+ +Muu(y, p)

∣∣
π+ = Mud(y, p)

∣∣
π0 +Muu(y, p)

∣∣
π0 . (2.17)

A derivation of these relations can be found in [12, section 2.1].

Tensor decomposition and extraction of twist-two functions. The matrix elements

in (2.8) are related to the lowest Mellin moments of DPDs as∫ ∞
−∞

dy−M++
q1q2,V V

(p, y)
∣∣∣
y+=0,p=0

= 2p+Iq1q2(y2) ,∫ ∞
−∞

dy−M++
q1q2,AA

(p, y)
∣∣∣
y+=0,p=0

= 2p+I∆q1∆q2(y2) ,∫ ∞
−∞

dy−Mk1++
q1q2,TV

(p, y)
∣∣∣
y+=0,p=0

= 2p+yk1mIδq1q2(y2) ,∫ ∞
−∞

dy−M+k2+
q1q2,V T

(p, y)
∣∣∣
y+=0,p=0

= 2p+yk2mIq1δq2(y2) ,∫ ∞
−∞

dy−Mk1+k2+
q1q2,TT

(p, y)
∣∣∣
y+=0,p=0

= 2p+
[
δk1k2 Iδq1δq2(y2)

−
(
2yk1yk2 − δk1k2y2

)
m2Itδq1δq2(y2)

]
(2.18)

with the Mellin moments given by

Ia1a2(y2) =

∫ 1

−1
dx1

∫ 1

−1
dx2 fa1a2(x1, x2, y

2)

=

∫ 1

0
dx1

∫ 1

0
dx2

[
fa1a2(x1, x2, y

2) + ηi1C fā1a2(x1, x2, y
2)

+ ηi2C fa1ā2(x1, x2, y
2) + ηi1C ηi2C fā1ā2(x1, x2, y

2)
]
. (2.19)

Here i1 and i2 refer to the currents in the matrix elements on the l.h.s. of (2.18). An analogous

relation holds between It and the lowest moment of f t. The relations (2.18) extend the well-

known connection between the Mellin moments of PDFs and the matrix elements of a single

local current to the case of two partons.
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In analogy to the case of PDFs, the matrix element (2.1) defining a DPD has support

for both positive and negative x1 and x2, with positive xi corresponding to a parton ai and

negative xi to its antiparton āi. On the r.h.s. of (2.19), we have limited the integration region

to positive momentum fractions. Note that if a1 and a2 are quarks and if i = V or T (but

not A), then the quark-antiquark distributions on the r.h.s. enter with a minus sign. This is

of special importance for distributions in a pion, whose valence Fock state consists of a quark

and an antiquark. Relations analogous to (2.18) exist for higher Mellin moments in x1 and

x2 and involve local currents with covariant derivatives [27], as is the case for PDFs.

Contrary to Γjδq in (2.3), the tensor current Jµνq,T in (2.9) is defined without γ5. As a

consequence, the vector indices k1 and k2 in (2.18) do not give the transverse quark spin

direction but the transverse quark spin direction rotated by +90◦ in the x − y plane. This

follows from the relation iσj+γ5 = εjkσk+.

The relations (2.18) still refer to Minkowski space, because they involve plus-components.

To make contact with matrix elements evaluated in Euclidean space, we decompose the matrix

elements (2.8) in terms of basis tensors and of Lorentz invariant functions A, B, C, D, E

that depend on y2 = yµyµ and py = pµyµ. We write

1
2

[
Mµν
q1q2,V V

(p, y) +Mνµ
q1q2,V V

(p, y)
]

= tµνV V,AAq1q2 + tµνV V,Bm
2Bq1q2 + tµνV V,C m

4Cq1q2

+ tµνV V,Dm
2Dq1q2 ,

TMµνρ
q1q2,TV

(p, y) = uµνρTV,AmAδq1q2 + uµνρTV,Bm
3Bδq1q2 ,

1
2

[
Mµνρσ
q1q2,TT

(p, y) +Mρσµν
q1q2,TT

(p, y)
]

= uµνρσTT,AAδq1δq2 + uµνρσTT,Bm
2Bδq1δq2 + uµνρσTT,C m

2Cδq1δq2

+ uµνρσTT,Dm
4Dδq1δq2 + uµνρσTT,Em

2Eδq1δq2 . (2.20)

For the operator combination TV , we subtract trace terms according to

Tuµνρ = uµνρ + 1
3

(
gµρuναα − gνρuµαα

)
, (2.21)

where it is understood that uµνρ is antisymmetric in µ and ν. The decomposition for Mq1q2,AA

has the same form as the one for Mq1q2,V V , involving the same basis tensors but different

invariant functions A∆q1∆q2 , . . . , D∆q1∆q2 . The decomposition for Mq1q2,V T is like the one for

Mq1q2,TV with an appropriate change in the role of the Lorentz indices. In the following, we

will not discuss the combination V T any further, because it can be traded for TV using the

relation (2.10). The basis tensors are chosen as

tµνV V,A = 2pµpν − 1
2 g

µνp2 ,

tµνV V,B = pµyν + pνyµ − 1
2 g

µνpy ,

tµνV V,C = 2yµyν − 1
2 g

µνy2 ,

tµνV V,D = gµν ,

uµνρTV,A = 2(yµpν − pµyν)pρ + 2
3 (gµρyν − gνρyµ)p2 − 2

3 (gµρpν − gνρpµ)py ,
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uµνρTV,B = 2(yµpν − pµyν)yρ + 2
3 (gµρyν − gνρyµ)py − 2

3 (gµρpν − gνρpµ)y2 ,

uµνρσTT,A = −2
(
gµρpνpσ − gµσpνpρ) + 1

2 (gµρgνσ − gµσgνρ)p2 − {µ↔ ν} ,
uµνρσTT,B = −y2 uµνρσTT,A − 4(yµpν − pµyν)(yρpσ − pρyσ) + 2

3 (gµρgνσ − gµσgνρ)
[
p2y2 − (py)2

]
,

uµνρσTT,C = −(gµρpνyσ − gµσpνyρ + gµρyνpσ − gµσyνpρ) + 1
2 (gµρgνσ − gµσgνρ)py − {µ↔ ν} ,

uµνρσTT,D = −2
(
gµρyνyσ − gµσyνyρ) + 1

2 (gµρgνσ − gµσgνρ)y2 − {µ↔ ν} ,
uµνρσTT,E = gµρgνσ − gµσgνρ . (2.22)

The tensor components related to twist-two matrix elements can be identified from the l.h.s.

of (2.18), taking into account that y+ = 0 and p = 0 in that equation. For the basis tensors,

a nonzero plus-component requires the vector p on the r.h.s. of (2.22), whilst a nonzero

transverse component requires the vector y or the metric tensor. One thus finds that the

invariant functions corresponding to operators of twist two are Aq1q2 , A∆q1∆q2 , Aδq1q2 , Aδq1δq2
and Bδq1δq2 . We will call them “twist-two functions” in the remainder of this work. All of

them are even functions of py due to the symmetry relation (2.14).

One can project out the invariant functions by multiplying the matrix elements with suit-

able linear combinations of basis tensors. For the twist-two functions, the relevant projections

read

Aq1q2 =
1

8N2

{
3(y2)2 tµνV V,A − 6y2py tµνV V,B +

[
p2y2 + 2(py)2

]
tµνV V,C

}[
Mq1q2,V V

]
µν
,

mAδq1q2 =
3

16N2

{
y2 uµνρTV,A − py u

µνρ
TV,B

}
T
[
Mq1q2,TV

]
µνρ

,

Aδq1δq2 =
1

64N2

{
3(y2)2 uµνρσTT,A − 6y2py uµνρσTT,C +

[
p2y2 + 2(py)2

]
uµνρσTT,D

} [
Mq1q2,TT

]
µνρσ

,

m2Bδq1δq2 =
1

64N2

{
3uµνρσTT,B + 6py uµνρσTT,C − 3p2 uµνρσTT,D

} [
Mq1q2,TT

]
µνρσ

(2.23)

with a normalisation factor

N = p2y2 − (py)2 . (2.24)

For spacelike yµ, which we are interested in, one has N < 0, so that the projections are always

well defined.

Using (2.18) and (2.20), one can derive the relation between Mellin moments of DPDs

and integrals of twist-two functions over py:

Ia1a2(y2) =

∫ ∞
−∞

d(py)Aa1a2(py, y2) ,

Itδq1δq2(y2) =

∫ ∞
−∞

d(py)Bδq1δq2(py, y2) , (2.25)

where in the first line we have all combinations of (a1, a2) that appear on the r.h.s. of (2.18).
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The matrix elements (2.8) can be evaluated in Euclidean space-time at y0, i.e. with the

two current operators taken at equal Euclidean time. This entails the important restriction

(py)2 = (~p~y )2 ≤ ~p2 ~y 2 , (2.26)

where ~v = (v1, v2, v3) denotes the spatial components of a four-vector vµ. Since the range of

accessible hadron momenta ~p in a lattice calculation is finite, the range of the variable py is

limited, and one cannot directly evaluate the integrals in (2.25). In addition, one needs data

for nonzero hadron momentum ~p to access even a finite range in py.

We note that the restriction (2.26) also applies if one computes the Mellin moments of

transverse-momentum dependent single parton distributions (TMDs) on the lattice [70–72].

In that case, yµ is the distance between the quark and the antiquark field in the matrix

elements that define the distributions. The same holds for lattice studies of single parton

distributions in x space. There has been an enormous amount of activity in this area in

recent years; we can only cite a few papers here [73–81] and refer to the recent reviews

[82, 83] for an extended bibliography.

2.3 Skewed double parton distributions

Together with the restriction (2.26), the necessity to perform an integral over all py in (2.25)

presents a significant complication for relating matrix elements calculated on a Euclidean lat-

tice with the Mellin moments of DPDs. This prompts us to extend the theoretical framework

in such a way that we can discuss the physical meaning of the twist-two functions Aa1a2 and

Bδq1δq2 at a given value of py.

To this end, we introduce skewed double parton distributions1

Fa1a2(x1, x2, ζ,y) = 2p+

∫
dy−e−iζy

−p+

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

× 〈h(p)| Oa1(y, z1)Oa2(0, z2) |h(p)〉 . (2.27)

Compared with the definition (2.1) of ordinary DPDs, we have an additional exponential

e−iζp
+y− here. As a consequence, the partons created or annihilated by the fields q̄ and q in

Oa1 and Oa2 have different longitudinal momentum fractions. A sketch is given in figure 1

for (a1, a2) = (u, d) and the case where x1− 1
2ζ, x1 + 1

2ζ, x2− 1
2ζ and x2 + 1

2ζ are all positive.

If x1− 1
2ζ becomes negative, the u quark in the wave function of |h〉 becomes an antiquark ū

with momentum fraction −x1 + 1
2ζ in the wave function of 〈h|. Corresponding statements

hold for x1 + 1
2ζ, x2 − 1

2ζ and x2 + 1
2ζ.

For nonzero ζ, the distributions (2.27) do not appear in cross sections for double parton

scattering, but they may be regarded as a rather straightforward extension of the DPD

1The term “skewed” refers to the parton momenta here, whilst the hadron momentum is the same in the

bra and ket vector of (2.27). This is different from “skewed parton distributions”, now commonly called

“generalised parton distributions”, which involve two instead of four parton fields, such that there is an

asymmetry both in the parton and in the hadron momenta.
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x1 − 1
2ζ x2 +

1
2ζ x2 − 1

2ζ x1 +
1
2ζ

Fud(x1, x2, ζ,y)

u d ud

|h〉 〈h|

Figure 1. Graphical representation of a skewed DPD for quark flavours u and d in the hadron h.

The configuration shown is for the case where all momentum fractions given at the top of the graph

are positive.

concept. Let us take a closer look at some of their properties. The support region of the

matrix element (2.27) in the momentum fraction arguments is the same as if all four parton

fields were at the same transverse position. In that case, we would have a collinear twist-

four distribution. The support properties of these distributions were derived in [84], and the

argument given there does not depend on the transverse position arguments of the parton

fields. The result given in [84] is equivalent to the interpretation of x1− 1
2ζ, x1+ 1

2ζ, x2− 1
2ζ and

x2 + 1
2ζ as positive or negative momentum fractions, as described in the previous paragraph.

For nonzero ζ there are hence different regions, in which one has either 1, 2 or 3 partons in the

wave function of |h〉. With the constraints that the partons in the wave function of |h〉 must

carry the same total longitudinal momentum as those in the wave function of 〈h|, and that

this cannot be larger than the longitudinal hadron momentum, one obtains the constraint

− 1 ≤ ζ ≤ 1 (2.28)

and the support region for (x1, x2) shown in figure 2. For ζ = 0 this region becomes a

square with corners (0,±1) and (±1, 0), whereas for ζ = ±1 it becomes a square with corners

(±1
2 ,±1

2).

Using PT symmetry, one finds that

Fa1a2(x1, x2, ζ,y) = ηi1PT η
i2
PT Fa1a2(x1, x2,−ζ,−y) , (2.29)

where ηiPT = +1 for an unpolarised parton and ηiPT = −1 for a polarised one. The skewed

DPDs can be decomposed in terms of scalar distributions as in (2.4), with the distributions

on both sides depending additionally on ζ. The symmetry property (2.29) then implies

fa1a2(x1, x2, ζ, y
2) = fa1a2(x1, x2,−ζ, y2) (2.30)

and an analogous relation for f t.

Mellin moments. We define the lowest Mellin moments of skewed DPDs as

Ia1a2(y2, ζ) =

∫ 1

−1
dx1

∫ 1

−1
dx2 fa1a2(x1, x2, ζ, y

2) (2.31)
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(1
2
ζ, 1− 1

2
ζ)

(1− 1
2ζ,

1
2ζ)

dd̄|uū

d|duū

d̄|d̄uū

udd̄|uūdd̄|ū

ud|du

ud̄|d̄uūd̄|d̄ū

ūd|dū

x
1 +

x
2 =

1

0 ≤ ζ ≤ 1

(−1
2
ζ, 1 + 1

2
ζ)

(1 + 1
2ζ,−1

2ζ)

ūu|d̄d

ūud|d

ūud̄|d̄

u|d̄duū|d̄dū

ud|du

ud̄|d̄uūd̄|d̄ū

ūd|dū

x
1 +

x
2 =

1

−1 ≤ ζ ≤ 0x2 x2

x1 x1

Figure 2. Support region of the distribution Fud(x1, x2, ζ,y) in the momentum fraction arguments.

The notation d |duū means that one has one d quark in the wave function of |h〉 and duū in the

wave function of 〈h|. In both panels, the triangle for the region ud|du has the corners
(

1
2 |ζ|, 1

2 |ζ|
)
,(

1
2 |ζ|, 1− 1

2 |ζ|
)

and
(
1− 1

2 |ζ|, 1
2 |ζ|

)
. Notice that the parton configuration in each of the four triangles

is the same for positive and negative ζ, whereas the configuration in each of the squares is different.

and likewise for f t, where the integration region in x1, x2 follows from figure 2. The moments

are nonzero for ζ in the interval [−1, 1]. The generalisation of (2.25) to nonzero ζ reads

Ia1a2(y2, ζ) =

∫ ∞
−∞

d(py) e−iζpy Aa1a2(y2, py) , (2.32)

which can readily be inverted for the function Aa1a2(y2, py). In particular, one finds

Aa1a2(y2, py = 0) =
1

π

∫ 1

0
dζ Ia1a2(y2, ζ) , (2.33)

where we have used the symmetry relation (2.30) to reduce the integration region to positive

ζ. Rather than the Mellin moment of a DPD, a twist-two function at py = 0 is thus the

average of the Mellin moment of a skewed DPD over the skewness parameter ζ.

Quantities that characterise the ζ dependence of Ia1a2(y2, ζ) are the even moments in ζ,

〈ζ2m〉a1a2
(y2) =

∫ 1
−1 dζ ζ

2m Ia1a2(y2, ζ)∫ 1
−1 dζ Ia1a2(y2, ζ)

=

[
(−1)m

Aa1a2(y2, py)

∂2mAa1a2(y2, py)

(∂py)2m

]
py=0

. (2.34)

Odd moments 〈ζ2m+1〉 are zero because of the symmetry (2.30). To compute the moments

〈ζ2m〉, one needs Aa1a2(y2, py) in the vicinity of py = 0. According to (2.26), this can be

evaluated from Euclidean data with nonzero hadron momentum ~p .

Relations analogous to (2.32) to (2.34) can be written down for Itδq1δq2 and Bδq1δq2 in the

place of Ia1a2 and Aa1a2 .
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2.4 Factorisation hypotheses

We now discuss how the factorisation hypothesis (2.6) for DPDs can be formulated at the

level of Mellin moments and twist-two functions. At this point, we specialise to the case

where the hadron h is a π+. This avoids complications due to the proton spin, which are

discussed in [27, section 4.3.1].

Let us take the lowest Mellin moment in x1 and x2 of (2.6). The Mellin moment of an

unpolarised impact parameter dependent parton distribution is∫ 1

−1
dx fq(x, b) =

∫
d2∆

(2π)2
e−ib∆ Fq,V (−∆2) , (2.35)

where Fq,V (t) is the form factor of the vector current

〈π+(p′)| Jµq,V (0) |π+(p)〉 = (p+ p′)µ Fq,V (t) with t = (p− p′)2 . (2.36)

We then obtain from (2.6)

Iud(−y2)
?
=

∫
d2∆

(2π)2
e−iy∆ Fu,V (−∆2)Fd,V (−∆2) . (2.37)

We note that thanks to isospin invariance, one has Fu,V = −Fd,V . As this is not essential in

the present context, we will not use it here.

Since one cannot directly determine Iud(−y2) from Euclidean correlation functions, one

cannot directly test (2.37) with lattice data. We therefore derive an analogous relation for

the twist-two function Aud(y
2, py) at py = 0.

We recall from [27] that (2.6) can be obtained by inserting a complete set of intermediate

states between the operators Oa1(y, z1) and Oa2(0, z2) in the DPD definition (2.1) and then

assuming that the dominant term in this sum is the ground state. Following exactly the same

steps for the skewed DPD (2.27), one obtains

Fud(x1, x2, ζ,y)
?
=

∫
d2∆

(2π)2
e−iy∆ 1

1− ζ Hu

[
2x1

2− ζ ,
ζ

2− ζ , t(∆
2, ζ)

]
×Hd

[
2x2

2− ζ ,
ζ

2− ζ , t(∆
2, ζ)

]
(2.38)

with

t(∆2, ζ) = −ζ
2m2 + ∆2

1− ζ . (2.39)

Here Hq(x, ξ, t) is the generalised parton distribution (GPD) for unpolarised quarks in a pion;

its definition can be found e.g. in [85, section 3.2]. The momentum fraction arguments x and ξ

of Hq are defined in a symmetric way between the incoming and outgoing hadron and parton

momenta, with x referring to the sum of parton momenta and ξ to their difference, and with

momentum fractions normalised to the sum of hadron momenta in the bra and the ket state.
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d d u u

1− ζ

x2 +
1
2
ζ x2 − 1

2
ζ x1 − 1

2
ζ x1 +

1
2
ζ

1 1

(a)

1 + ζ

x1 − 1
2
ζ x1 +

1
2
ζ x2 +

1
2
ζ x2 − 1

2
ζ

d du u

1 1

(b)

Figure 3. (a): Pictorial representation of the r.h.s. of the factorisation hypothesis (2.38). This is

obtained by inserting a full set of intermediate states between the operators in the matrix element

〈h| OuOd |h〉 and then retaining only the ground state. (b): The representation obtained when insert-

ing the full set of states after reordering the operators to 〈h| OdOu |h〉. All momentum fractions refer

to the hadron h in the matrix element. We use form (a) for ζ ≥ 0 and form (b) for ζ < 0.

Both x and ξ are limited to the interval [−1, 1]. A pictorial representation of the GPDs that

appear on the r.h.s. of (2.38) is given in figure 3(a).

At this point, we must critically examine the support properties of the two sides of (2.38)

in x1 and x2. The support of the l.h.s. is shown in figure 2, whereas the one of the r.h.s. is

the square delineated by −1 + 1
2ζ ≤ x1,2 ≤ 1− 1

2ζ in the (x1, x2) plane. For ζ ≥ 0, this misses

the kinematic constraint |x1|+ |x2| ≤ 1 in Fud, whereas for ζ < 0 it is even larger.

In the matrix element (2.27), the order of the two operators can be interchanged, because

the respective fields are separate by spacelike distances. In a schematic notation, we thus

have 〈h| OuOd |h〉 = 〈h| OdOu |h〉. If we insert a set of intermediate states in the latter

matrix element, we obtain (2.38) with ζ replaced by −ζ on the r.h.s. This is represented

in figure 3(b). In that case, the mismatch between the support regions of the two sides is

less bad for ζ ≤ 0 than for ζ > 0. We therefore retain (2.38) for ζ ≥ 0 and its analogue

with ζ → −ζ on the r.h.s. for ζ < 0. This also satisfies the symmetry in ζ required by PT

invariance and stated in (2.29), which is violated if one uses (2.38) for positive and negative ζ.

The mismatch of support properties just discussed also affects the case ζ = 0 and is hence

not special to the skewed kinematics we are considering here. In fact, it is well known that

the factorisation hypothesis (2.6) for DPDs violates the momentum conservation constraint

x1+x2 ≤ 1. From a theoretical point of view, inserting a full set of intermediate states between

the operators in the DPD definition (2.1) or its skewed analogue (2.27) is of course a legitimate

manipulation, but we see that the restriction of this set to the ground state leads to theoretical

inconsistencies such as an incorrect support region or the loss of a symmetry required by PT

invariance. How the sum over all states manages to restore the correct properties is difficult

to understand in an intuitive manner. We note that a similar observation was made in [84]

when discussing the support properties of PDFs and of higher-twist distributions.

Integrating both sides of (2.38) over their respective support regions in x1 and x2 and
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using the sum rule
∫
dxHq(x, ξ, t) = Fq,V (t), one obtains

Iud(−y2, ζ)
?
=

(1− 1
2ζ)2

1− ζ

∫
d2∆

(2π)2
e−iy∆ Fu,V

(
t(∆2, ζ)

)
Fd,V

(
t(∆2, ζ)

)
. (2.40)

Using this for ζ ≥ 0 and inserting it into (2.33), we obtain

Aud(−y2, py = 0)
?
=

1

π

∫ 1

0
dζ

(1− 1
2ζ)2

1− ζ

∫
d2∆

(2π)2
e−iy∆ Fu,V

(
t(∆2, ζ)

)
Fd,V

(
t(∆2, ζ)

)
.

(2.41)

We note that (2.41) is expressed in terms of a two-dimensional vector y. This is different

from the factorisation hypothesis we derived in [12, section 5.3], which involved the zero-

components of currents and a three-dimensional vector ~y .

Note that the two hypotheses (2.41) and (2.37) are based on the same assumption but

are not equivalent to each other. Both are special cases of (2.40), obtained by either setting

ζ = 0 or by integrating over ζ from 0 to 1. The assumption that the ground state dominates

the sum over intermediate states could be a better approximation in one or the other case.

Using our lattice results, we will investigate (2.41) in section 4.4 and (2.37) in section 5.4.

3 Lattice computation and lattice artefacts

We performed lattice simulations for the matrix elements (2.8) in a pion with the currents

given in (2.9). We set y0 = 0, so that on the lattice the two currents are inserted at the

same Euclidean time, but with a spatial separation ~y . We generated data both for zero and

nonzero pion momentum ~p . The lattice techniques we employed are explained in detail in

[12, section 3]. In the following, we recall only the basic steps described in that work and

then proceed to the specifics of our present analysis.

3.1 Lattice graphs

To evaluate the two-current matrix elements (2.8), we compute the four-point correlation

function of a pion source operator at Euclidean time 0, a pion sink operator at Euclidean

time t, and the two currents Ji and Jj at Euclidean time τ . The correlation function receives

contributions from a large number of Wick contractions, which are shown in figure 4. We will

also refer to these contractions as “lattice graphs” or simply as “graphs”.

The relation between pion matrix elements and lattice graphs depends on the product

of C parities of the currents. Omitting Lorentz indices and the dependence on the pion

momentum p, and using the shorthand notation

C1 = Cij1 (y) , C2 = 1
2

[
Cij2 (y) + Cji2 (−y)

]
, A = 1

2

[
Aij(y) +Aji(−y)

]
,

S1 = 1
2

[
Sij1 (y) + Sji1 (−y)

]
, S2 = Sij2 (y) , D = Dij(y) (3.1)
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Ji(y)

Ji(y)

Jj(0)

C ij
1 (y) =

= ηiC η j
C ×C ij

2 (y) =

Aij(y) =

Ji(y)

Jj(0)

Jj(0)

Jj(0)

Ji(y)

Sij
1 (y) = = ηiC η j

C×

Sij
2 (y) =

Ji(y)

Dij(y) =

Ji(y)

Jj(0)

Ji(y)

Jj(0)

Jj(0)

Ji(y)

Jj(0)

Figure 4. Lattice graphs for the correlation functions used to extract the matrix elements (2.8) in

a pion. The dependence on the pion momentum ~p is not indicated for brevity. ηiC denotes the charge

conjugation parity of the current Ji and is defined in (2.12).
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for the graphs or their symmetrised combinations, we have

Mud,ij(y)
∣∣
π+ = C1 +

[
2S1 +D

]
,

Muu,ij(y)
∣∣
π+ =

[
2C2 + S2

]
+
[
2S1 +D

]
,

Mud,ij(y)
∣∣
π0 =

[
2S1 +D

]
−A ,

Muu,ij(y)
∣∣
π0 = C1 +

[
2S1 +D

]
+
[
2C2 + S2

]
+A (3.2)

for ηiC η
j
C = +1, which is satisfied for all combinations of currents considered in the present

study. We note that this is no longer the case if one includes operators with covariant

derivatives (corresponding to higher Mellin moments). One readily checks that (3.2) satisfies

the general symmetry relation (2.17), as it must.

To compute the different graphs on the lattice, we use a variety of techniques as detailed

in [12, section 3.3]. We make extensive use of stochastic sources, and for graph C2 we use a

hopping parameter expansion to reduce statistical noise for the propagation between the two

currents.

For the disconnected graphs S2 and D we need to subtract vacuum contributions, namely

the product of a two-point correlation function of the pion source and sink with a two-point

correlation function of the two currents. The latter corresponds to the vacuum expecta-

tion value 〈0| Ji(y)Jj(0) |0〉. The vacuum subtraction for the disconnected graph S1 involves

〈0| Ji(y) |0〉 or 〈0| Jj(0) |0〉, which is zero because our currents carry Lorentz indices.

We anticipate that the doubly disconnected graph D in general gives a good signal for

the four-point correlation function, but that there is a near-perfect cancellation between this

correlator and its vacuum subtraction term. The result after subtraction is consistent with

zero and has huge statistical uncertainties compared with those of any other graph. We will

hence not be able to report useful results for graph D. Fortunately, we encounter no such

problem for graph S2.

3.2 Lattice simulation and extraction of twist-two functions

We perform our simulations using the Wilson gauge action and nF = 2 mass degenerate

flavours of non-perturbatively improved Sheikholeslami-Wohlert (NPI Wilson-clover) fermions.

The gauge configurations were generated by the RQCD and QCDSF collaborations. We use

two gauge ensembles, whose parameters are given in table 1. They have different spatial sizes,

L = 32 and L = 40, which allows us to study finite volume effects in section 3.5. Despite

having data for only a single lattice spacing, a = 0.071 fm, we are also able to investigate

discretisation effects, as discussed in section 3.3.

For the ensemble with L = 40, we performed simulations with different κ values in the

quark propagator:

light quarks: κ = 0.13632 , mπ = 293 MeV ,

strange: κ = 0.135616 , mπ = 691 MeV ,

charm: κ = 0.125638 , mπ = 3018 MeV . (3.3)
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Here “light quarks” refers to the κ value used for simulating the sea quarks, whereas the

other two values correspond to the physical strange and charm quark masses, as determined

in [88] and [89] by tuning the pseudoscalar ground state mass to 685.8 MeV in the first case

and the spin-averaged S-wave charmonium mass to 3068.5 MeV in the second case. Since our

simulations are performed with an nF = 2 fermion action, the strange and charm quarks are

partially quenched.

The values of mπ in (3.3) are obtained from exponential fits of the pion two-point function.

We quote them only for orientation and do not attempt to quantify their errors. These masses

are in reasonable agreement with the value in table 1 for light quarks, and with the mass of

the pseudoscalar ground state quoted below (3.3) for strange quarks.

Pion matrix elements. For all lattice graphs, we compute the correlation functions with

zero three-momentum ~p of the pion. For the connected graphs C1 and C2, we additionally

have data with finite pion momenta. These data are restricted to the L = 40 lattice and to

light quarks. The pion momenta that can be realised on the lattice are given by

~p =
2π

La
~P , (3.4)

where the components of ~P are integers and 2π/(La) ≈ 437 MeV in our case. For simplicity

we write P = |~P |. Graph C1 is computed for all 18 nonzero momenta with P 2 ≤ 2, for 6

momenta with P 2 = 3, and for one momentum with P 2 = 4. For C2, we have results for all

6 momenta with P = 1.

The distance between the pion source and sink in the correlation functions is fixed to

t = 15a ≈ 1.07 fm as a default. To investigate the influence of excited states, we also calculate

graphs C1, C2 and S1 with t = 32a. The matrix element (2.8) is extracted from the ratio

between the four-point correlation function around τ = t/2 and the pion two-point function.

For graphs C1 and A, we measure the τ dependence of the four-point function and fit to a

plateau in the τ ranges specified in [12, equation (4.1)]. The quality of the corresponding

plateaus is good for matrix elements that have a nonzero value within statistical uncertainties.

For the remaining graphs, we extract the matrix element from data at τ/a = 7 and 8 if

t/a = 15. For the C2 and S1 data with t/a = 32, we use τ/a = 16. A comparison of data

with t = 15a and t = 32a is shown in section 3.4.

ensemble β a [fm] κ L3 × T mπ [MeV] Lmπ Nfull Nused

IV 5.29 0.071 0.13632 323 × 64 294.6± 1.4 3.42 2023 960

V 5.29 0.071 0.13632 403 × 64 288.8± 1.1 4.19 2025 984

Table 1. Details of the gauge ensembles used in this analysis. Nfull is the total number of available

gauge configurations, and Nused is the number of configurations used in our simulations. More detail

can be found in [86, 87].
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All lattice currents are converted to the MS scheme at the renormalisation scale

µ = 2 GeV . (3.5)

As described in [12, section 3.4], this is done using a combination of non-perturbative and

perturbative renormalisation and includes an estimate of the quark mass dependent order a

improvement term.

Invariant functions. From the matrix elements (2.8), we determine the invariant functions

for each individual value of ~y and ~p . This is done using a minimum χ2 fit of the data for all

tensor components to the decomposition (2.20). For invariant functions of twist two, we also

use the projector method (2.23). In both cases, the statistical error of an invariant function

at given ~y and ~p is computed using the jackknife method. To eliminate autocorrelations, we

take the number of jackknife samples as 1/8 times the number Nused of gauge configurations

given in table 1.

For P = 0, the twist-two functions extracted with one or the other method show excellent

agreement with each other and have statistical uncertainties of almost the same size. For

P > 0, the values obtained with the projection method have much larger statistical errors

than those obtained with a fit and provide only a very weak cross check. All data shown in

the following are obtained by the fit method, both for P = 0 and P > 0.

In the remainder of this section, we investigate the extent to which our data are affected

by lattice artefacts, largely following the corresponding studies in [12, section 4]. We only

consider data with py = 0 here, because they have much smaller statistical errors than the

data for py 6= 0. We will return to the case of nonzero py in section 5.

When discussing twist-two functions extracted from the correlation functions for par-

ticular lattice graphs, we will generically write Aqq, A∆q∆q, . . . , Bδqδq, without reference to

specific quark flavors q1 and q2. This is because the distinction between u and d quarks in a

pion only appears when lattice graphs are combined as specified in (3.2).

3.3 Isotropy and boost invariance

The decomposition (2.20) of matrix elements in terms of basis tensors and functions of y2

and py assumes Lorentz invariance and thus requires both the continuum and the infinite-

volume limit. If our lattice simulations are sufficiently close to these limits, then the values

of twist-two functions extracted for individual points ~y and ~p with ~p~y = 0 must not depend

on the directions of ~y or ~p or on the size of ~p .

Let us test whether this is the case in our simulations for light quarks on the lattice with

L = 40. We restrict our attention to graphs C1 and C2, for which statistical errors are small

enough to reveal the effects of interest. For the sake of legibility, we henceforth write y = |~y |
for the length of the spatial distance ~y between the two currents. We continue to use y2 and

py to denote the products yµyµ and pµyµ of four-vectors in Minkowski space. Since yµ is

always spacelike in our context, this implies that y2 < 0.
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Figure 5. Examples for the anisotropy in graph C1 at large y = |~y |. The data shown are for L = 40,

zero pion momentum, and light quarks. The results in this and all the following figures are given in

the MS scheme at the scale µ = 2 GeV. The error bars shown in the plots are statistical and obtained

with the jackknife method.

At large y of order La/2, we see a clear anisotropy with a saw-tooth pattern in all twist-

two functions that have sufficiently small errors. Examples are shown in figure 5. This pattern

is expected on a lattice with periodic boundary conditions and can be understood in terms

of “mirror images”. The same effect has been seen and discussed in previous lattice studies

of two-current correlators [8, 11], including our study in [12] that employed the same lattice

data as the present work. As shown in [8], the effect of mirror charges at a given distance y is

smallest for points ~y close to one of the space diagonals, i.e. the lines given by ~z = (z1, z2, z3)

with |z1| = |z2| = |z3|. To quantify this, we define θ(~y ) as the angle between ~y and the space

diagonal in the same octant as ~y . In [12, section 4.2], we found that a cut

cos θ(~y ) ≥ 0.9 (3.6)

on the data efficiently removes the effect of mirror charges at large y, whilst keeping sufficient

statistics.

A different type of anisotropy in the C1 data is observed at small y and shown in figure 6.

For A∆q∆q, Aδqq and Bδqδq, the data with zero pion momentum exhibit a clear discrepancy

between points ~y on a coordinate axis (i.e. with two components being zero) and all other

points. This discrepancy is very strong for y below 5a and ceases to be visible above 7a. The

data for Aδqδq (not shown in the figure) have larger errors and show only a weak anisotropy

for y < 4a. Only the function Aqq is not affected by this phenomenon, for which we have no

explanation.

By contrast, we find that the C1 data with nonzero pion momentum and py = 0 are

isotropic in ~y . For nonzero momenta, we can hence average all data with the same values
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Figure 6. Twist-two functions at small y for graph C1, with scaled pion momenta P = 0 and P = 1

as defined below (3.4). All points have py = 0 and are for L = 40 and light quarks. The data for

P =
√

2, P =
√

3 and P = 2 agree with those for P = 1 within errors but are not shown for the sake

of clarity. Data with cos θ =
√

1/3 correspond to ~y on a coordinate axis.

of y and P , which greatly decreases statistical errors. We find good agreement between the

P > 0 data and the P = 0 data with ~y on a coordinate axis for all twist-two functions except

A∆q∆q, where the agreement is only approximate.

We now turn our attention to graph C2 at small y. Here, we find a very strong anisotropy

in the P = 0 data. This is shown in figure 7, where we distinguish points ~y on the coordinate

axes, which have cos θ =
√

1/3, points with
√

1/3 < cos θ ≤
√

2/3, and points with
√

2/3 <

cos θ. We note that points in a coordinate plane, i.e. with at least one component of ~y equal

to zero, have
√

1/3 ≤ cos θ ≤
√

2/3. In all channels, we see a clear discrepancy between the

points ~y on a coordinate axis and all other points. In addition, there is a significant mismatch
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Figure 7. Twist-two functions at small y for graph C2. All points are for L = 40, zero pion

momentum, and light quarks. For Aδqδq (not shown), one finds a clear anisotropy at y < 4a, whilst

at larger y the statistical errors are too large for drawing firm conclusions.

between points with cos θ above or below
√

2/3 in several channels, most strongly so in Aδqq.

We recall that a strong anisotropy for C2 at small y was also seen for the correlation functions

in our study [12]. In section 4.2 of that work, we argued that this reflects an anisotropy in the

lattice propagator between the two currents, and that points selected by the cut (3.6) should

give the most reliable results according to the analysis in [90].

We also have P = 1 data for C2, which we can compare with those for P = 0. As seen in

figure 8, for Aqq and Aδqq the data at P = 1 are inconsistent with those at P = 0, regardless

of the value of cos θ in the latter. Since for P = 1 the condition py = 0 requires ~y to lie

in a coordinate plane, we can in fact not select points satisfying the cut (3.6) in this case.

We therefore discard our data with nonzero P for C2. Testing boost invariance of twist-two
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Figure 8. Twist-two functions at intermediate y for graph C2. All points are for py = 0, L = 40

and light quarks.

functions at py = 0 in the presence of the cut (3.6) would require data with at least P =
√

2,

which we do not have for C2.

At P = 0 and small y, we are now in a difficult situation. Points with large cos θ are

preferred for C2, while for C1 the points with the smallest possible value cos θ =
√

1/3 seem to

be more reliable, given that they agree with the P > 0 data. Applying different cuts in cos θ

to the data for C1 and C2 would prevent us from taking linear combinations of those graphs

at a given ~y . However, we regard combining data point by point in ~y as highly desirable for

a transparent and consistent treatment of statistical correlations in the jackknife analysis.

To avoid this problem, we choose to discard points with y < 5a in our further analysis,

and to apply the cut in (3.6) to the P = 0 data for all lattice graphs. After this cut, data

points with equal values of y are averaged also for P = 0. We thus avoid the regions where the

anisotropy for C1 and C2 seen at P = 0 is most severe. For C1, a small discrepancy between

the data with P = 0 and P > 0 is still visible up to about y ∼ 8a, but we consider this to

be at an acceptable level. The result of this procedure is shown for graph C1 in figure 9.

The agreement between the data for different pion momenta is quite good, except for the

function A∆q∆q.

As an exception to the selection just described, we will in section 4.4 use the C1 data

for Aqq down to y = 3a, given that in this particular channel there are no indications of

anisotropy or a pion momentum dependence, as can be seen in figure 6(a).

3.4 Excited state contributions

As specified in section 3.2, we have a limited set of data with a separation of t = 32a between

pion source and sink. Comparing this with our results for t = 15a allows us to assess the

relevance of excited state contributions in our extraction of the pion matrix elements (2.8).
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Figure 9. Comparison of twist-two functions for graph C1 at different values of the scaled pion

momentum P . All points are for py = 0, L = 40 and light quarks. For Bδqδq (not shown), one finds

good agreement between all points, with a similar quality as for Aqq.

On our lattice with size L = 32, we have t = 32a data for graphs S1 and C2. Unfortu-

nately, these graphs give a statistical signal consistent with zero for all twist-two functions

and for both source-sink separations. We hence limit the following discussion to graph C1 on

our L = 40 lattice.

In general, we find that the results for the two source-sink separation agree reasonably

well for light quarks, as illustrated in the upper panels of figure 10. For strange quarks, the

data have smaller statistical errors and we can clearly see discrepancies between t = 15a

and 32a, as shown in the lower panels of the figure. Except for the case of A∆q∆q, these

discrepancies are, however, small when compared with the size of the twist-two functions.

In our data for charm quarks, the statistical signal and the agreement between the two
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source-sink separations is excellent for all twist-two functions, and even better than the one

in figure 10(a). With the exception mentioned above, we thus find no indication for a sizeable

contamination from excited states in our results.
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Figure 10. Comparison of twist-two functions extracted for graph C1 with source-sink separations

t/a = 15 or 32. All data are for L = 40, zero pion momentum, and subject to the cut (3.6).

3.5 Volume dependence

Let us finally compare our simulations for light quarks on the lattices with L = 40 and L = 32.

In general, the data for the smaller lattice have larger jackknife errors. This is to be expected

from the parameters that determine the statistical averaging in our simulations. Details for

these are given in table 2 of [12].

For twist-two functions with a small relative error, we typically find a weak volume

dependence compared with the size of the functions themselves, as shown in panels (a) to (c)
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Figure 11. Comparison of data for the two different lattice sizes in our study. All points are for

zero pion momentum, light quarks, and subject to the cut (3.6).
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of figure 11. In the case of panel (b), this dependence is, however, statistically significant.

For functions that have large relative errors, the volume dependence appears to be more

pronounced in some cases, especially at low y. An example is figure 11(e). One may take this

as a general warning against over-interpreting statistically weak signals in our simulations.

4 Results for zero pion momentum

In this section, we present our results for the twist-two functions at py = 0. All data shown

in the following are for zero pion momentum and have been extracted from the lattice with

L = 40 with our standard source-sink separation t = 15a. The data selection described at

the end of section 3.3 removes regions in which we see strong lattice artefacts in the form of

broken rotational or boost symmetry.

As we explained in section 2.3, twist-two functions at py = 0 are not directly related to

the Mellin moments of DPDs. Instead, they are Mellin moments of skewed DPDs, integrated

over the skewness parameter ζ. As seen in figure 2, these moments receive contributions from

parton configurations that are different from those in a DPD at ζ = 0. When interpreting

the results of the present section, we will assume that these configurations are not dominant,

and that the qualitative features of invariant functions at py = 0 are the same as for Mellin

moments of DPDs at ζ = 0. The results presented in section 5.3 will lend support to this

assumption.

Notice that each of the lattice graphs in figure 4 can contribute to each of the partonic

regimes shown in figure 2. Examples for different regimes of the connected graphs C1 and C2

are shown in figures 12 and 13.

4.1 Comparison of graphs

In figures 14 and 15, we compare the contributions from different lattice graphs to the twist-

two functions for light quarks. The contributions from graphs S1 and C2 are multiplied with

a factor 2 in the figures, since they always appear with this weight in physical matrix elements

according to (3.2).

For all twist-two functions except A∆q∆q, graph C1 gives a very clear signal, which is

positive for Aδqδq and negative for the other functions. By comparison, the signal for the

u

d̄
ud̄ |d̄u

u

d̄
uūd̄|d̄

u

d̄
ūd̄ |d̄ū

Figure 12. Examples for the partonic regimes of graph C1 in a π+. The notation uūd̄ |d̄ is the same

as in figure 2, i.e. the partons to the left of the vertical bar belong to the pion on the left of the graph.
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u
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uūu |u

u

d̄
ūū |ūū

Figure 13. As figure 12, but for graph C2.

annihilation graph A is smaller than the one for C1 by an order of magnitude or more, except

for y > 20a, where the statistical errors prevent us from making a clear statement. The

function A∆q∆q shows a different behaviour, with C1 and A being of similar size and much

smaller than C1 for all other twist-two functions. We recall from section 3.3 that A∆q∆q

is more strongly affected by lattice artefacts than the other channels, see figure 9(b). We

nevertheless discuss this function here and in the following, because even with the large

systematic uncertainties we have seen, its qualitative behaviour and overall size compared

with the other polarisation channels are significant results of our simulations.

A clear signal for the connected graph C2 is only seen for Aqq and Aδqq, with a sign

opposite to the one for graph C1. This signal is most important at small y. For the graphs S1

and S2 with one disconnected fermion loop, the signal we obtain is rather noisy in all channels.

For graph D with two disconnected fermion loops, the signal after vacuum subtraction is even

more noisy and not shown.

From our simulations with the strange quark mass, we have only data for graphs C1 and A.

In all channels, we obtain an excellent signal for C1, whereas for A the statistical significance

is typically not much larger than one standard deviation. In the region 5a ≤ y ≤ 15a, we find

that A is smaller than C1 by one to two orders of magnitude, except for A∆q∆q. For Aqq and

Aδqδq, we see in figure 16 that the behaviour of A is quite flat, unlike the one of C1, so that

at large y the two graphs become more comparable in size. As in the case of light quarks, the

function A∆q∆q behaves differently, with graph A being smaller than C1 at y ∼ 5a and the

data for both graphs having a zero crossing a bit below y = 9a. Recall, however, that also

for strange quarks we see stronger lattice artefacts in A∆q∆q than in other channels, as seen

in figure 10(c).

From our simulations with the charm quark mass, we have data for all graphs except S2.

A clear nonzero signal is seen for C1 and C2 up to y ∼ 10a to 15a, with 2C2 being smaller
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Figure 14. Contributions of the different lattice graphs to twist-two functions for light quarks.
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Figure 15. Continuation of figure 14.

than C1 by at least one order of magnitude. The signal for A and S1 is in general consistent

with zero. The only exception to this is Aδqq. For this function, we see a clear signal for 2S1

at y around 5a, which is about 50 times smaller than the one for C1. We also see a weak 1σ

signal for A, which we do not wish to over-interpret.

By and large, we find that for all quark masses the only graphs that give signals of

appreciable size are C1 and, in several cases, C2. We therefore take a closer look at these

graphs in the next subsection. The annihilation graph is negligible, except in the case of A∆q∆q

for light or strange quarks, where the signal from graph C1 is small by itself. Disconnected

graphs either have a negligibly small signal or large statistical errors.
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Figure 16. Comparison of graphs A and C1 for strange quarks. Here and in subsequent figures with

a logarithmic scale, we stop showing data for individual quark masses at a value of y beyond which

the error bars become so large that they would obscure the plot.

4.2 Results for connected graphs

The contribution of graph C1 to the twist-two function Aqq for unpolarised partons is negative

for all three quark masses in our study. We recall from (2.19) that the regime with a quark

and an antiquark in the pion contributes with a negative sign to the lowest Mellin moment

of a DPD. The same holds for the Mellin moment of a skewed DPD, and hence for Aqq at

py = 0. A negative sign of Aqq is easily understood by the dominance of the valence qq̄ Fock

state, which is probed by graph C1 as shown in the first panel of figure 12.

The situation is different for graph C2, whose partonic representation always involves a

higher Fock state of the pion. The Z-graphs in figure 13 probe the qq, q̄q̄ and qq̄ regimes in a

similar manner. We find that for all quark masses, the contribution of C2 to Aqq is positive,

which means that for a given distance y this graph gives a larger probability for finding a qq

or q̄q̄ rather than a qq̄ pair.

Let us now take a closer look at the mass dependence of our results for graph C1. We

multiply Aδqq and Bδqδq with the power of the meson mass m with which they appear in the

decomposition (2.20) of two-current matrix elements. We see in figure 17 that for all twist-two

functions except A∆q∆q, the decrease with y becomes stronger with increasing quark mass,

which simply reflects the decreasing size of the meson. At y ∼ 5a, the functions Aqq, mAδqq
and m2Bδqδq are of comparable size for all quark masses, whereas Aδqδq increases with the

mass. The behaviour of A∆q∆q for light and strange quarks is qualitatively different from

the one of the other functions, as is evident from figure 18. For charm quarks, A∆q∆q is

approximately exponential in y, with a logarithmic slope similar to the one of Aqq. A fit of

the y dependence of the twist-two functions for light quarks is presented in section 5.2.
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Figure 17. Mass dependence of twist-two functions for graph C1.
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Figure 18. As figure 17, for A∆q∆q and with a linear instead of a logarithmic scale.
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Figure 19. Mass dependence of twist-two functions for graph C2.

We now discuss graph C2, for which we have data with light quarks and with charm.

For the functions A∆q∆q, Aδqδq and Bδqδq, the light quark data is too noisy for a meaningful

comparison with charm results, so that we focus on Aqq and Aδqq. As is seen in figure 19,

the size of both functions is significantly smaller for charm quarks. This is plausible: as

discussed in the previous subsection, the partonic interpretation of graph C2 always involves

a Fock state with at least two quarks and two antiquarks in the meson, whereas for C1 we

have the regime shown in the first panel in figure 12, which involves only the quark-antiquark

Fock state. The y dependence of Aqq and Aδqq is also qualitatively different for the two

masses: for charm we observe a clear and steep exponential falloff, whereas for light quarks,

the logarithmic slope of both functions decreases around y ∼ 0.5 fm.

4.3 Polarisation effects

A major aim of our study is to investigate the strength and pattern of spin correlations

between two partons in a pion. We spelled out the physical interpretation of polarised DPDs

in section 2.1. This interpretation extends to the corresponding twist-two functions at py = 0,

provided that these are dominated by partonic regimes associated with DPDs at ζ = 0. Under

this assumption, comparing A∆q∆q and Aδqδq with Aqq indicates whether two partons prefer

to have their spins aligned or anti-aligned, with A∆q∆q referring to longitudinal and Aδqδq
to transverse polarisation. We will refer to these as “spin-spin correlations”. Note that,

according to (2.19), a qq̄ pair with aligned spins contributes with a negative sign to Aqq and

Aδqδq and with a positive sign to A∆q∆q, whereas a qq pair with aligned spins contributes with

a positive sign to all three functions. The comparison of myAδqq and m2|y2|Bδqδq with Aqq
tells us about the strength of correlations between the transverse spin of one or both observed

partons and the distance y between these partons in the transverse plane. We refer to this
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as “spin-orbit correlations” in the following. The pre-factors my and m2|y2| in myAδqq and

m2|y2|Bδqδq follow from the decompositions (2.4) and (2.18).

We note that the probability interpretation of polarised DPDs implies positivity con-

straints [91] that extend the well-known Soffer bound for single parton distributions [92].

These bounds imply that |f∆q∆q̄|, |fδqδq̄|, |myfδq q̄| and |m2y2f tδqδq̄| are bounded by fqq̄. Cor-

responding bounds do not hold for the lowest Mellin moments of DPDs because of the relative

minus sign between quark and antiquark contributions in (2.19). They hold even less for the

moments of skewed DPDs, which do not represent probabilities to start with. Nevertheless, in

a loose sense, the size of Aqq sets a natural scale for the other twist-two functions (multiplied

with my or m2|y2| as appropriate).

In the following, we consider polarisation effects separately for the connected graphs C1

and C2. Their physical interpretation is rather different, as becomes clear from figures 12

and 13 and our discussion in the previous subsection. For graph C1, polarisation effects

reflect rather directly correlations between the quark and antiquark in the pion valence state,

whereas for graph C2 they are deeply connected with sea quark degrees of freedom.

Starting our discussion with graph C1, we see in the top panels of figure 20 that by far

the strongest polarisation effect seen for light quarks is the spin-orbit correlation for a single

parton, followed by the spin-orbit correlation involving both partons. Both the transverse

and the longitudinal spin-spin correlations are very small. This is completely different from

the simple picture of a pion as a qq̄ pair in an S-wave, for which one would obtain 100%

anti-alignment of both transverse and longitudinal spins.

All spin correlations increase considerably with the quark mass. For charm quarks,

myAδqq is almost as large as Aqq. Spin-spin correlations are also important for charm: the

spins of the quark and antiquark are anti-aligned by about 75% for transverse and by about

50% for longitudinal polarisation. We note that this is still quite far away from the non-

relativistic limit, in which transverse and longitudinal spin correlations become equal.

We note that the pion mass for our simulations with light quarks, mπ ≈ 295 MeV, is

quite a bit larger than the physical value. A naive extrapolation of the polarisation patterns

just described suggests that at the physical point the spin-orbit correlation for one polarised

parton may be substantial, whilst correlations involving two quark spins might be even smaller

than the ones we see for light quarks in the present study.

We now turn to our results for graph C2, which are shown in figure 21. For light quarks,

we see a substantial spin-orbit correlation of order 50% for a single parton. The spin-spin

correlation for longitudinal polarisation is also of order 50% for y ∼ 0.35 fm, but quickly de-

creases and is negligible already around y ∼ 0.5 fm. For all other spin dependent correlations,

the data for light quarks are too noisy to extract any physics.

With charm quarks, we have an excellent statistical signal for all twist-two functions. We

find that all spin correlations for graph C2 are appreciable, apart from the one described by

m2|y2|Bδqδq. Notice that A∆q∆q has the same sign for C1 and C2, unlike all other twist-two

functions. If (as suggested by the sign of Aqq) the dominant parton configuration probed
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Figure 20. Effects of transverse (left) and longitudinal (right) polarisation for graph C1.
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(a) graph C2, light quarks
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(b) graph C2, charm quarks

Figure 21. As figure 20, but for graph C2. We have no strange quark results for this case. The light

quark data for Aδqδq and m2|y2|Bδqδq is very noisy and not shown for the sake of clarity.

by the twist-two operators is a cc̄ pair for graph C1 and a cc pair for graph C2, then the

longitudinal parton spins tend to be anti-aligned in both cases.

4.4 Test of the factorisation hypothesis

We now test the factorisation hypothesis for Aud(y
2, py = 0) that we derived in section 2.4.

We restrict ourselves to the contribution from the connected graph C1. Taking the full

combination of graphs in the first line of (3.2) is not an option because of the huge errors in

our results for the doubly disconnected graph D. By contrast, we see in figure 14(a) that S1

is consistent with zero for Aqq (although within errors much larger than those on C1). We

find it plausible to expect that the contribution from D is even smaller than the one of S1,

since D has two disconnected fermion loops with one operator insertion.
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(a) (b)

Figure 22. Test of the factorisation hypothesis (2.41) for the invariant function Aud. (a): data for

Aud (restricted to the contribution from graph C1) compared with the integral over form factors on

the r.h.s. of (2.41). The form factors are determined by a monopole or a p-pole fit. (b): ratio of the

form factor integral on the r.h.s. of (2.41) to the data for Aud.

The factorisation hypothesis (2.41) involves the vector form factor of the pion. We have

extracted this form factor from our lattice simulations, using the full number of 2025 gauge

configurations available for our lattice with L = 40. As we consider only the connected

contribution to the two-current correlation function, we restrict ourselves to the connected

graph for the form factor as well. We fit the form factor data to a power law

Fu,V (t) = −Fd,V (t) =
(
1− t/M2

)−p
. (4.1)

We use two fit variants, which gives us a handle on the bias of the extrapolation to −t >

1.15GeV2, where we have no data. Such an extrapolation bias is inevitable when we Fourier

transform from momentum to position space, as is required in (2.41). In a monopole fit, we

fix p = 1 and obtain M = 777(12)MeV. Leaving the power free, we obtain p = 1.173(69)

and M = 872(16)MeV. Both fits give a very good description of our lattice data, as shown

in figure 14a of [12].

With the ansatz (4.1), the two-dimensional Fourier transform on the r.h.s. of (2.41) can

be carried out analytically. We compute the remaining integral over ζ numerically. The

results obtained with the two form factor fits agree very well for y > 0.2 fm. In panel (a) of

figure 22 we compare the two sides of the factorisation hypothesis (2.41), and in panel (b)

we show the ratio of the r.h.s. to the l.h.s. of the equation. We see a clear deviation from

the factorised ansatz, which does however not exceed 30% in the considered y range. One

may thus say that the factorised ansatz provides a rough approximation of the two-current

correlator.
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Figure 23. Twist-two functions at py = 0 for the flavour combinations ud or uu in a π+ or a π0.

Lattice graphs are combined according to (3.2), except for of graph D, which is affected by huge errors

and hence omitted. All results are for light quarks.

– 38 –



−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.4 0.6 0.8 1 1.2 1.4 1.6

5 10 15 20 25
𝐴

Δ
𝑞Δ

𝑞
[fm

−
2 ]

𝑦[fm]

𝑢𝑢(𝜋+), 𝐴Δ𝑞Δ𝑞, 𝑝2 = 0 (𝐿 = 40)

𝑦[𝑎]

(a) A∆u∆u |π+

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.4 0.6 0.8 1 1.2 1.4 1.6

5 10 15 20 25

𝐴
Δ

𝑞Δ
𝑞

[fm
−

2 ]

𝑦[fm]

𝑢𝑢(𝜋0), 𝐴Δ𝑞Δ𝑞, 𝑝2 = 0 (𝐿 = 40)

𝑦[𝑎]

(b) A∆u∆u |π0

Figure 24. Continuation of figure 23.

4.5 Physical matrix elements

We now investigate the combinations (3.2) of lattice graphs that appear in the matrix elements

of currents between charged or neutral pions. We omit the doubly disconnected graph D

throughout, because its statistical errors are much larger than the signal for any other graph.

Since data for the full set of remaining graphs is only available for light quarks, we restrict our

attention to this case. The results are shown in figures 23 and 24 for the flavour combinations

ud and uu. The combinations dd and du can be obtained from the symmetry relations (2.16).

As can be expected from figures 14 and 15, the statistical errors of the physical combina-

tions are significantly larger than those for the connected graphs alone. Nevertheless, we see

a clear negative signal for Aud in a π+. As discussed in section 4.2, this can be understood

as a dominance of the valence Fock state ud̄ over Fock states that contain ud, ūd̄ or ūd.

The function Auu in a π+ has a clear positive signal at small distances y. This reflects the

behaviour of graph C2 and corresponds to a larger probability for finding two u quarks rather

than a uū pair at small separation y. Remarkably, the signal at small y is of comparable size

for Auu and Aud, which implies that Fock states containing sea quarks do play an important

role in this region. As for polarisation effects, a clear signal for ud or uu in a π+ is only seen

for myAδqq and shown in the right panels of figure 23. Comparing this with Aqq, we see that

spin-orbit correlations are appreciable for both flavour combinations.

The flavour combination uu in a π0 involves the sum C1 + 2C2. We observe a very

strong compensation between the two connected graphs, which results in a marginal signal

for Auu and myAδuu. The twist-two functions for ud in a π0 receive no contribution from

connected graphs at all. Within errors, the corresponding results are zero for all combinations

of currents, and we do not show them here.

Among all polarised twist-two functions other than myAδqq, a marginally nonzero signal
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Figure 25. Comparison of the twist-two functions −Aud and Auu in a π+. The data are the same

as shown in figures 23(a) and 23(c). Points with very large errors have been omitted for the sake of

clarity.

is only seen for the longitudinal spin correlation A∆u∆u in a π+ or a π0. This is dominated

by the contribution from C2 in both cases and shown in figure 24.

We recall that the assumption (2.7) going into the “pocket formula” for double parton

scattering implies that the unpolarised DPDs in a given hadron have the same y dependence

for all parton combinations. If this were to hold also for skewed DPDs, the functions Aud and

Auu in a π+ should have the same y dependence as well. A comparison between these two

functions is shown in figure 25. Although there is a hint for a different behaviour, especially

at low y, the large errors in Auu prevent us from making a definitive statement.

5 Results for nonzero pion momentum

In this section, we use our data for nonzero pion momentum to study the py dependence of

the twist-two functions. We restrict our study to graph C1 for light quarks on the L = 40

lattice: only in this case do we have simulations for a sufficient number of pion momenta.

Since graph C1 dominates the twist-two matrix elements for ud in a π+, we will write Aud,

Aδud, . . . for twist-two functions and Iud, Iδud, . . . for Mellin moments in what follows.

5.1 Fit ansatz for the py dependence

We start by proposing a functional ansatz for the twist-two functions, which is based on their

relation (2.33) with the Mellin moments of skewed DPDs. We use this ansatz to fit the py

dependence of our lattice data. This will allow for a model dependent extension of the twist-

two functions to all values of py, beyond the region (2.26) available on a Euclidean lattice.

This will in turn allow for a model dependent extraction of the Mellin moments of DPDs
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at zero skewness. For ease of notation, we write A(y2, py) to denote any of the twist-two

functions Aud, . . . , Aδuδd, Bδuδd. Likewise, we write I(y2, py) for the Mellin moments Iud,

. . . , Iδuδd, I
t
δuδd.

The basis of our ansatz is the assumption that, in its support region −1 ≤ ζ ≤ 1, the

skewed moment I(y2, ζ) can be approximated by a polynomial in ζ,

I(y2, ζ) = π
N∑
n=0

an(y2) ζ2n (5.1)

with some integer N , where we used the symmetry relation (2.30) to restrict terms to even

powers of ζ. We write = instead of ≈ in the spirit of a fit ansatz, i.e. we do not claim that

(5.1) is exact. We currently have no guidance from theory regarding the ζ dependence of

I(y2, ζ), and (5.1) should be taken as a simple ansatz that is to be validated by data. As

there are no known constraints on the behaviour of skewed DPDs at the edge ζ = 1 of their

support region, we allow I(y2, ζ) to be finite at that point.

Inverting the Fourier transform in (2.32), we obtain

A(y2, py) =

N∑
n=0

an(y2)hn(py) , (5.2)

where we introduced the functions

hn(x) =
1

2

∫ 1

−1
dζ eiζx ζ2n . (5.3)

A crucial property of the ansatz (5.2) is that its Fourier transformation (2.32) has the correct

support in ζ.

Let us collect a few properties of the functions hn(x). From their definition, one easily

derives

hn(0) =
1

1 + 2n
,

d2hn(x)

dx2
= −hn+1(x) (5.4)

and thus obtains the Taylor series

hn(x) =
∞∑
m=0

(−1)m

1 + 2n+ 2m

x2m

(2m)!
. (5.5)

An explicit representation is given by

hn(x) = sn(x) sinx+ cn(x) cosx (5.6)

with rational functions

sn(x) =

n∑
m=0

(2n)!

(2n− 2m)!

(−1)m

x1+2m
, cn(x) =

n−1∑
m=0

(2n)!

(2n− 2m− 1)!

(−1)m

x2+2m
. (5.7)
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For n = 0 and n = 1, these functions read

s0(x) = 1/x , c0(x) = 0 , s1(x) = (x2 − 2)/x3 , c1(x) = 2/x2 . (5.8)

In terms of the normalised quantities

Â(y2, py) =
A(y2, py)

A(y2, py = 0)
, ân(y2) =

an(y2)

A(y2, py = 0)
(5.9)

our ansatz (5.2) reads

Â(y2, py) =

N∑
n=0

ân(y2)hn(py) . (5.10)

Using (2.34) and (5.5), we then obtain

〈ζ2m〉(y2) =

[
(−1)m

∂2mÂ(y2, py)

(∂py)2m

]
py=0

=
N∑
n=0

1

1 + 2n+ 2m
ân(y2) . (5.11)

Let us now describe our general fitting procedure. In order to achieve stable fits, we first

determine the y2 dependence of A(y2, py = 0). This includes the information from data with

zero pion momentum and has typically much smaller errors than the data for nonzero py.

In a second step, we fit the y dependent coefficients ân(y2) in the ansatz (5.10). To make

the degrees of freedom of this fit explicit, we consider the moments 〈ζ2m〉(y2) form = 0, . . . , N .

Inverting the relation (5.11), we obtain

ân(y2) =
N∑
m=0

(T−1)nm 〈ζ2m〉(y2) , (5.12)

where T is the (N + 1)× (N + 1) matrix with elements

Tmn = (1 + 2n+ 2m)−1 . (5.13)

Since by definition 〈ζ0〉(y2) = 1, we can thus fit the py dependence of the twist-two functions

to (5.10) and (5.12) with N fit parameters 〈ζ2〉, . . . , 〈ζ2N 〉 at each value of y2. We call this

“local fits” in the following, where “local” means “local in y2”.

To obtain a parametrisation of both the py and the y2 dependence, we assume an expan-

sion

〈ζ2m〉(y2) =
K∑
k=0

cmk
√
−y2

k
. (5.14)

This is referred to as our “global fit”. By virtue of (5.10) and (5.12), this corresponds to an

expansion of Â(y2, py) in powers of
√
−y2. The condition 〈ζ0〉(y2) = 1 implies c0k = δ0k.
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5.2 Fitting the data

We recall that we have data for p = 0, 1,
√

2,
√

3 and 2 in units of 2π/(La) ≈ 437 MeV. For

a given value of y, this allows for a maximum value 4πy/(La) ≈ 6.28 y/(20a) for |py|. We

apply the cut (3.6) on the angle θ to the p = 0 data, but not to the data with p > 0. We

then average all data points with the same values of py and y2.

We find that the twist-two functions at py = 0 can be well described by a superposition

of two exponentials,

A(y2, py = 0) = A1 e
−a1 (y−ymin) +A2 e

−a2 (y−ymin) for ymin ≤ y ≤ ymax , (5.15)

with ymin = 5a = 0.355 fm and ymax = 20a = 1.42 fm. We do not include data with y > ymax,

because they have large errors and are increasingly affected by finite size effects. The resulting

fit parameters are given in table 2. Let us emphasise that these fits are not suitable for

extrapolating the twist-two functions to values significantly below y = ymin.

We notice a relatively high value of χ2/dof in the fit for Aδud. This is due to some scatter

in the data at high y, which comes from points with large p. Repeating the fit with an upper

limit y ≤ 15a, we find that χ2/dof decreases from 1.76 to 0.9 for Aδud. By comparison, the

value of χ2/dof in the fit for Aud decreases from 0.95 to 0.6 with the same reduction of the

fitting range.

We then proceed and fit the py dependence to (5.10) and (5.12) locally in y2. To have

enough data in these fits, we introduce bins in y and combine all points with (n − 1/2)a <

y < (n + 1/2)a for integer n between 5 and 20. In addition, we fit the combined y2 and

py dependence of Â to (5.10), (5.12) and (5.14). We explored fits with different maximum

values N and K in the sums and find that, given the fit range and the statistical quality of

our data, an adequate choice is N = 1 for local fits and N = 1, K = 1 for the global fit. The

parameters of the global fit are given in table 3. If we take N = 2 instead, the error bands of

the fit results for Â increase significantly, whilst the decrease of χ2/dof is minor. We hence

conclude that we would over-fit the data by choosing N = 2 or even higher values.

We compare our data and fits in figure 26 for different functions at y = 15a and in

figure 27 for Âud at y = 5a and 10a. We find good agreement between the local and global

function A1 [fm−2] a1 [fm−1] A2 [fm−2] a2 [fm−1] χ2/dof

Aud −0.1163(39) 2.150(68) 0.0141(34) 11.5± 2.2 0.95

A∆u∆d −0.0414(77) 6.71(36) 0.0326(74) 4.21(52) 0.94

Aδud −0.1157(62) 3.786(89) 0.0222(68) 6.38(30) 1.76

Aδuδd 0.0133(24) 2.11(28) −0.0018(23) 7.8± 7.4 0.34

Bδuδd −0.0491(59) 4.50(20) −0.0084(64) 9.4± 2.0 0.95

Table 2. Parameters for the fit (5.15) of twist-two functions at py = 0 in the region 5a ≤ y ≤ 20a.

Throughout this section, we consider the data for graph C1 and light quarks on our lattice with L = 40.
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function c10 c11 [fm−1] χ2/dof

Âud 0.096(40) 0.247(39) 1.19

Â∆u∆d −0.43(73) 0.17(75) 0.68

Âδud 0.102(50) 0.111(47) 1.37

Âδuδd −0.05(14) 0.31(12) 0.80

B̂δuδd −0.023(90) 0.242(92) 0.99

Table 3. Parameters of the fit of the combined y2 and py dependence of the normalised twist-two

functions Â(y2, py) to (5.10), (5.12) and (5.14) with N = K = 1.

fits. Note that the twist-two functions are symmetric in py due to PT invariance, which

is realised on the lattice. A departure from this symmetry in the data must therefore be

due to statistical fluctuations. Many data points have admittedly large errors, which is a

consequence of at least one of y or p being large. Nevertheless, the fitted parameters for all

functions except Â∆u∆d are in general well determined, and the corresponding error bands

of the fit results are reasonably small. As is seen in figure 26(b), the data for Â∆u∆d are

much too noisy for fitting the py dependence, and we exclude this function from our further

discussion.

In the data for y = 15a, we see an indication for zero crossings around |py| = 4 in several

twist-two functions. That this can be reproduced with a superposition of the two functions

h0(py) and h1(py) gives us some confidence in our fit ansatz.

Using our fits, we can compute the moment 〈ζ2〉(y2) associated with I(y2, ζ), which

according to (5.11) follows from the curvature of Â(y2, py) at py = 0. The results are shown

in figure 28. We find again good agreement between the local and global fits. A clear y

dependence of 〈ζ2〉 is observed, except for Iδud. The values of 〈ζ2〉 are not too large, especially

for small y. Their size does, however, imply that nonzero values of the skewness ζ must play

some role in the integral representation πA(y2, py = 0) =
∫ 1

0 dζ I(y2, ζ).

5.3 Mellin moments of DPDs

We now use the global fit described in the last section to reconstruct the lowest Mellin

moments of skewed DPDs. Let us re-emphasise that such a reconstruction is necessarily

dependent on the functional ansatz we have made, given the impossibility to constrain the

full py dependence of twist-two functions with lattice simulations. We recall that the results

for the spin correlation ∆u∆d are too noisy and hence omitted in the following.

We can easily derive the analytic form of the Mellin moments for our fits by inverting

the 2× 2 matrix Tmn in (5.13). This gives

I(y2, ζ) =
3π

4

{
3− 5〈ζ2〉(y2)− 5ζ2

[
1− 3〈ζ2〉(y2)

]}
A(y2, py = 0) . (5.16)
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(a) Âud at y = 15a (b) Â∆u∆d at y = 15a

(c) Âδud at y = 15a (d) B̂δuδd at y = 15a

Figure 26. Data and fits of the py dependence of normalised invariant functions. Dark points show

data at y = 15a. Light points show data in a y range of a/2 around 15a, which are included in the

local fits. The plot for Âδuδd (not shown) is qualitatively similar to the one for B̂δuδd.

The values of 〈ζ2〉(y2) for y ≤ 20a are in the range between 0 and 0.5 for all twist-two

functions. The combination 3−5〈ζ2〉 in (5.16) is therefore always positive and varies between

3 and 0.5. We can hence anticipate that the dependence of the Mellin moments I(y2, ζ = 0)

on y and on the polarisation indices should roughly follow the corresponding dependence of

A(y2, py = 0). By contrast, the coefficient of ζ2 in (5.16) has a larger variation and can

change sign as a function of y. Our results for the y and ζ dependence of the Mellin moments

are visualised in figures 29 and 30. Compared with the data entering our fit, we have slightly

extended the y range from 5a down to 4a.

In the left panel of figure 31, we show the Mellin moments at ζ = 0 for the different po-

larisation combinations. Comparison with the data of the corresponding twist-two functions

– 45 –



(a) Âud at y = 5a (b) Âud at y = 10a

Figure 27. Data and fits of the py dependence of Âud for different y. The meaning of dark and light

points is as in figure 26.

at py = 0 shows the close similarity between the two quantities. This corroborates the basic

assumption of our discussion in section 4, namely that the qualitative features of twist-two

functions at py = 0 are representative of the Mellin moments of ordinary DPDs.

With the caveats of choosing a functional ansatz and restricting ourselves to the connected

graph C1, we can in particular extend our discussion for light quarks in section 4.3 to the

Mellin moments of DPDs for the flavour combination ud in a π+: there is a substantial

spin-orbit correlation for one transversely polarised quark or antiquark, whereas correlations

involving transverse polarisation of both partons are rather small. This is one of the main

results of our work.

DPDs at ζ = 0 satisfy sum rules, which have been proposed in [47] and can be proven rig-

orously in QCD [93, 94]. These sum rules express momentum and quark number conservation.

The quark number sum rule for the flavour combination ud in a π+ implies that

2π

∞∫

ycut

dy yIud(y
2;µ) = −1 +O(Λ2y2cut) +O

(
α2
s(µ)

)
, (5.17)

where Λ denotes a hadronic scale. The necessity of a lower cutoff on the y integral and

the presence of an O(α2
s) term on the r.h.s. result from the singular behaviour of DPDs at

perturbatively small distances y, as explained in [50]. To avoid large logarithms in the O(α2
s)

term, one should take ycut ∼ 1/µ, and a standard choice is ycut = b0/µ, where b0 = 2e−γ ≈
1.12 and γ is the Euler-Mascheroni constant. With the renormalisation scale µ = 2GeV of

our analysis, this gives ycut ≈ 0.11 fm ≈ 1.56a. Extrapolating our global fit down to this

– 46 –



(a) Iud (b) Iδud

(c) Iδuδd (d) Itδuδd

Figure 28. Values of the moment 〈ζ2〉(y2) associated with I(y2, ζ), extracted by local fits (data

points) and the global fit (bands).

value and evaluating the integral over y, we obtain

2π

∞∫

b0/µ

dy yIud(y
2;µ) = −0.915(78) . (5.18)

This result is not too sensitive to the extrapolation in y: taking an upper integration boundary

of 20a, we obtain −0.908(63), whilst raising the lower integration boundary by a factor 2, we

obtain −0.885(72). Note that with a larger ycut, one expects a larger O(Λ2y2cut) term on the

r.h.s. of (5.17). Given the presence of this power correction in the theory prediction, we find

its agreement with our result (5.18) quite satisfactory. We regard this as a strong cross check

of our analysis, and in particular of the fit ansatz we have made in (5.1), (5.14) and (5.15).
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(a) Iud(y
2, ζ) (b) myIδud(y

2, ζ)

(c) Iδuδd(y
2, ζ) (d) m2|y2|Itδuδd(y2, ζ)

Figure 29. Mellin moments of skewed DPDs as a function of y, reconstructed from our global fit.

5.4 Factorisation hypothesis for Mellin moments

With the Mellin moments reconstructed from our global fit, we can also test the factorisation

hypothesis (2.37), which directly follows from the corresponding hypothesis (2.6) for DPDs.

To evaluate the r.h.s. of (2.37), we use the same two fits for the vector form factor of the

pion as we did in section 4.4. The comparison of the left and right-hand sides of (2.37), as

well as their ratio is shown in figure 32. We see the same trend as we did in figure 22 for

Aud at py = 0. At small y, the result of the factorised ansatz is too large in absolute size,

and at large y it is too small. The discrepancy at large y is even somewhat stronger for the

Mellin moment Iud than it is for Aud. We draw the same conclusion as we did in section 4.4:

the factorised ansatz for the unpolarised ud flavor combination in a π+ can provide a rough

approximation at the level of several 10%. In the sense that the factorised ansatz represents
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(a) Iud(y
2, ζ)/Iud(y

2, 0) (b) Iδud(y
2, ζ)/Iδud(y

2, 0)

Figure 30. Mellin moments of skewed DPDs as a function of ζ, reconstructed from our global fit

and normalised to their value at ζ = 0.

(a) Mellin moments I(y2, ζ = 0)
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(b) twist-two functions A(y2, py = 0)

Figure 31. (a): Mellin moments of DPDs for the flavour combination ud in a π+, reconstructed from

our global fit. (b): Lattice data for the corresponding twist-two functions at py = 0. This shows the

same data as figure 20(a), but is limited to y ≤ 17a for ease of comparison. Notice that the minimum

y in panels (a) and (b) is slightly different.
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the assumption that the u and the d̄ in a π+ have independent spatial distributions, our result

for Iud indicates that the two partons prefer to be farther apart than if they were uncorrelated.

(a) (b)

Figure 32. Test of the factorisation hypothesis (2.37) for the lowest Mellin moment Iud of the

unpolarised DPD Fud at ζ = 0 in a π+. (a): Comparison of Iud determined by the global fit of

section 5.2 with the integral over form factors on the r.h.s. of (2.37). The form factors are determined

by a monopole or a p-pole fit as described in section 4.4. (b): Ratio of the integral over form factors

and the Mellin moment. The factorisation hypothesis predicts this ratio to be 1.

5.5 Comparison with quark model results

As we mentioned in the introduction, there are a few calculations of pion DPDs within quark

models [59–62]. Most of the results presented in these papers are for distributions differential

in x1 and x2, which are not accessible in our lattice calculation. However, reference [60] also

gives the lowest Mellin moment of polarised and unpolarised DPDs as a function of y, as we

did in the present work. Predictions for the lowest Mellin moment of the unpolarised DPD

are also shown in [61, 62]. They are quite similar to the ones in [60].

The results presented in [60] are for the physical value of the pion mass. The authors of

that work have provided us with the numbers they obtain when taking mπ = 300MeV instead

[95]. This parameter setting was also used in [14], where two-current matrix elements in the

pion computed in the same model were compared with the results of our lattice study [12].

In figure 33, we show the quark model results along with the Mellin moments recon-

structed from our global fit.2 Compared with our figure 31(a), the moments are multiplied

with an additional factor −y so as to correspond to the curves in figure 3 of [14]. Notice

that [14] gives results for two different regulators of ultraviolet divergences. We only show

the ones obtained with Pauli-Villars regularisation here and note that the difference between

2The notation for DPDs involving transverse polarisation in [60] is related to our notation in (2.4) as

F v
uδd = myfuδd, F

s
δuδd = fδuδd, and F t

δuδd = m2|y2|f t
δuδd, where all functions depend on x1, x2, and y.
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(a) −yIud (b) −m|y2|Iuδ

(c) −yIδuδd (d) −m2|y|3Itδuδd

Figure 33. Comparison of our results for Mellin moments I(y, ζ = 0) of DPDs in a π+ with those

obtained with the Nambu Jona-Lasinio model in [60]. The lattice results correspond to the ones in

our figure 31(a) but are multiplied by an additional factor −y. The model curves for mphys
π are the

same as the ones labelled “PV” in figure 3 of [60]. The lattice and model results refer to different

factorisation scales, as specified in the text.

the two regulators in figure 3 of [14] is quite noticeable for Iuδd at y < 0.4 fm and for Itδuδd at

y > 0.2 fm.

The difference between the model results for mπ = 300MeV and mπ = 140MeV is quite

small for the moments shown in figure 33. A larger mass dependence is found for I∆u∆d, which

we do not show because our lattice data in this channel is too noisy for a stable reconstruction

of the Mellin moment.

The quark model curves in figure 33 refer to the typical renormalisation scale of the

model, which in [96] was estimated to be µ = 290MeV for evolution at LO and µ = 430MeV
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for evolution at NLO in the strong coupling. The Mellin moment Iud for unpolarised quarks

involves only the vector current and is therefore scale independent, so that the model curves

can be directly compared with our lattice values at µ = 2 GeV. We find that the results of

the two approaches are remarkably close to each other, despite a visible difference around

y ∼ 0.3 fm. Let us note that the agreement between our result and the one shown for the

Spectral Quark Model in figure 6b of [61] is even better.

Evolution from the quark model scale to µ = 2 GeV will reduce the moment Iuδd by a

factor r and the moments Iδuδd and Itδuδd by a factor r2. We refrain from estimating this

factor here, because it involves evolution in a region where perturbation theory becomes

quite unstable. Despite this uncertainty, we can state that for all Mellin moments involving

transverse quark polarisation, the two approaches agree in the sign and qualitative shape for

y > 0.3 fm. However, it is also clear that no value of the evolution factor r can bring the

lattice and model results for all three moments into quantitative agreement.

6 Summary

This paper presents the first lattice calculation that provides information about double parton

distributions in a pion. Our simulations are for a pion mass of mπ ≈ 300 MeV, a lattice

spacing of a ≈ 0.07 fm, and two lattice volumes with L = 32 and L = 40 points in the spatial

lattice directions, respectively. We also have results for the pseudoscalar ground state made

of strange or of charm quarks at their physical masses, in a partially quenched setup.

We compute the pion matrix elements of the product of two local currents that are

separated by a space-like distance. From these tensor-valued matrix elements, we extract

Lorentz invariant functions associated with the twist-two operators in the definition of DPDs.

In the continuum and infinite volume limits, these functions depend on the pion momentum

pµ and the distance yµ between the currents only via the invariant products py and y2. This

allows us to detect discretisation and finite size effects in our data, and to devise cuts that

minimise these artefacts. In particular, most results reported here are limited to distances

y above 5a ≈ 0.35 fm. Comparing the data from our two lattice volumes, we find only mild

differences in channels that have a good statistical signal. Comparing results obtained with

different source-sink separation, we find little evidence for contributions from excited states

in our analysis. The invariant twist-two function in the axial vector channel appears to be

most strongly affected by several of the lattice artefacts.

Comparing the importance of different Wick contractions in the twist-two functions, we

find that the connected graphs C1 and C2 in figure 4 are the most important ones in almost

all cases. For light quarks, graph C2 is as important as C1 at small distances y between the

two partons, which indicates that Fock states containing sea quarks are important in that

region. As one would expect, this importance is strongly reduced for charm quarks, but it is

still visible at a level below 10%.

We compute matrix elements for different combinations of the vector, axial vector and

tensor currents, which respectively correspond to unpolarised partons and partons with lon-
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gitudinal or transverse polarisation. For light quarks, we find surprisingly small correlations

between the longitudinal or transverse spins of the two partons. By contrast, a large spin-orbit

correlation is seen between the transverse component of y and the transverse polarisation of

one of the partons. All spin correlations increase considerably with the quark mass, and for

charm quarks we observe large spin-spin correlations for both longitudinal and transverse

polarisation.

The invariant twist-two functions that we can determine on the lattice are not directly

related to the Mellin moments of DPDs, but rather to the moments of what can be called

“skewed” DPDs. To compute the Mellin moments of ordinary DPDs from two-current matrix

elements, one needs the dependence of the invariant functions on the variable py on the full

real axis. This is inaccessible on a Euclidean lattice. Fitting an ansatz for the py dependence

to our lattice data, we can however reconstruct the lowest Mellin moments by extrapolating

this ansatz to the full py range. We find that the moments obtained in this way have a

behaviour very similar to the one of the twist-two functions at py = 0. A valuable cross

check of our procedure is the fact that the result for the unpolarised Mellin moment is in

good agreement with the number sum rule that must be obeyed by the DPD for the flavour

combination ud in a π+. Comparing our results for the Mellin moments with those obtained in

quark models, we find rather close agreement for unpolarised quarks. For moments involving

transverse quark polarisation, we observe qualitative agreement but quantitative differences.

We have not reconstructed the lowest Mellin moment for longitudinal quark polarisation,

because we consider our lattice data in this channel to be too noisy for this purpose.

A starting point of many phenomenological studies is the assumption that unpolarised

DPDs can be “factorised” into the single-particle distributions of each parton, which would

mean that the two partons are independent of each other. We have formalised this assumption

and tested it, both for the twist-two functions directly extracted from the lattice data and

for the Mellin moments reconstructed by extrapolating a fit to these data. In both cases, we

find that the two-parton correlator deviates from the factorisation ansatz by a few 10%, and

that the sign of the deviation depends on the transverse distance y. More specifically, the

two partons tend to be farther apart from each other than if they were independent of each

other.

We see several directions into which the studies reported here should be extended. First

and foremost comes the extension from a pion to a nucleon, which is of direct relevance for

double parton scattering in proton-proton collisions. Work in this direction is underway. On

a longer time scale, one will want to have simulations with finer lattice spacing and smaller

quark masses. Data of sufficient quality for higher hadron momenta will extend the range in

py that can be probed and thus allow for a better controlled extrapolation in this variable.

Given the results obtained in the present work, we think that the efforts required for such

studies will be rewarded with valuable physics insights.
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