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Abstract: A comprehensive set of azimuthal single-spin and double-spin asymmetries in
semi-inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from trans-
versely polarized protons is presented. These asymmetries include the previously published
HERMES results on Collins and Sivers asymmetries, the analysis of which has been ex-
tended to include protons and antiprotons and also to an extraction in a three-dimensional
kinematic binning and enlarged phase space. They are complemented by corresponding
results for the remaining four single-spin and four double-spin asymmetries allowed in the
one-photon-exchange approximation of the semi-inclusive deep-inelastic scattering process
for target-polarization orientation perpendicular to the direction of the incoming lepton
beam. Among those results, significant non-vanishing cos (φ− φS) modulations provide
evidence for a sizable worm-gear (II) distribution, g q1T

(
x,p2

T

)
. Most of the other modu-

lations are found to be consistent with zero with the notable exception of large sin (φS)

modulations for charged pions and K +.
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1 Introduction

The present knowledge of the internal structure of the nucleon has emerged from half
a century of increasingly precise experimental investigation, in particular of deep-inelastic
scattering (DIS) of leptons (see, e.g., refs. [1, 2]). This process is traditionally interpreted in
the collinear approximation of the quark-parton model, where the main variable represents
the longitudinal momentum of the quark expressed as a fraction x of that of the nucleon, in
a frame in which the latter is very large (“infinite-momentum frame”).a One reason for this
field to continue flourishing is the intrinsic richness of the subject [3]. Technological advances
in polarized beams and targets applied to the deep-inelastic scattering process make it
possible to reveal correlations between the spins of both partons and parent nucleon and the
longitudinal and transverse components of the momentum of the partons. The key aspects
are control of polarizations in the initial state without excessive penalty in luminosity, as
well as substantial acceptance permitting detection of not only the scattered leptons but also
identified hadrons in the final state. The distribution of these hadrons carries information
about the struck quark’s transverse momentum, pT , combined with transverse momentum
acquired in the fragmentation process, and the type of hadron provides information about
the struck quark’s flavor.

All parton distribution functions (PDFs) evolve with the hard scale represented in
deep-inelastic scattering by Q 2, where −Q 2 is the square of the four-momentum of the
exchanged virtual photon.b More important in the context of the work presented here is
that all PDFs can depend not only on x but also on pT . If the full dependence on these
two variables is retained, they are referred to as transverse-momentum dependent (TMD)
PDFs.

At leading twistc, there are eight TMD PDFs. Only three of them survive integra-
tion over pT and therefore have a corresponding standard collinear PDF: the polarization-
averaged or ‘unpolarized’ distribution f q1

(
x,p2

T

)
, the quark helicity distribution g q1

(
x,p2

T

)
,

and the transversity distribution h q1
(
x,p2

T

)
. While some information is available on the pT

dependence of f q1
(
x,p2

T

)
, very little is known about the pT dependence of the other two.

The five leading-twist TMD PDFs that do not survive integration over pT typically
describe a correlation between pT and the spin direction of the parent nucleon and/or
the ejected quark (and always implicitly x as well). Three of these TMD PDFs are chiral
oddd like the transversity distribution, being related to transverse polarization of the struck
quark. This property excludes them from influencing any inclusive-DIS observable, at least
neglecting mass-suppressed effects. Chiral-odd PDFs appear only in observables involving
two chiral-odd partners. Examples of such partnerships are two chiral-odd PDFs in the
Drell–Yan process, or a chiral-odd PDF with a chiral-odd fragmentation function (FF)
describing production of hadrons in semi-inclusive deep-inelastic scattering.

aMore formally, x is the fraction of the nucleon’s light-cone “+” momentum carried by the quark.
bFor brevity, this dependence will be often omitted in the notation used here.
cFollowing the “working definition” of Jaffe [4], twist t denotes the order 2 − t of power suppression in

the hard scale of the process under study, leading twist corresponding to twist 2 in this context.
dThe definition of a quark PDF contains two quark fields: chiral-odd functions change sign if the chirality

of the field operators is reversed [4].
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Figure 1. Following the Trento conventions [7], φ is defined to be the angle between the lepton
scattering plane and the plane spanned by the virtual-photon momentum q ≡ k′−k (the difference
of the momenta of the outgoing and incoming lepton) and Ph, the momentum vector of the observed
hadron, about the virtual-photon axis. Likewise, the angle φS is defined as the angle between the
lepton scattering plane and the target-polarization vector ST of the transversely polarized nucleon.

Two TMD PDFs, the Sivers distribution f ⊥,q1T
(
x,p2

T

)
and the Boer–Mulders distribu-

tion h⊥,q1

(
x,p2

T

)
(see section 2.2.2), are rather intriguing because they are odd under naive

time reversal (naive-T -odd), meaning that they describe a dependence on a triple product
of two momenta and a spin vector, which changes sign upon inverting all three-momenta
and angular momenta. As will be discussed below, the first observation of a non-zero value
for a naive-T -odd TMD PDF led to the realization that this property challenges the tra-
ditional concepts of factorization and universality of PDFs. Furthermore, the naive-T -odd
property of TMD PDFs provides a mechanism to explain the otherwise puzzling observa-
tion of single-spin asymmetries (SSAs) in either hadron-hadron collisions or deep-inelastic
scattering.

There are now indications that a substantial contribution to the helicity sum rule for
the nucleon comes from parton orbital angular momentum (cf. refs. [5, 6]). A tantalizing
aspect of TMD PDFs is that some of them are related to the orbital angular momentum of
quarks. Non-zero values of these TMD PDFs require the presence of nucleon wave function
components with different orbital angular momenta. However, no quantitative relationship
between a TMD PDF and orbital angular momentum has yet been identified.

TMD PDFs can be experimentally constrained in semi-inclusive deep-inelastic scat-
tering by measurements of azimuthal distributions of the scattered lepton and produced
hadrons about the direction of the exchanged virtual photon. The Fourier harmonics of
those distributions relate to specific structure functions. The involved angles with respect to
the lepton scattering plane are the azimuthal angle φ of the detected hadron and — when
target polarization is involved — the azimuthal angle φS of the polarization component
orthogonal to the direction of the virtual photon, as depicted in figure 1.

At small transverse momentum, factorization theorems make it possible to express the
structure functions as convolutions over quark transverse momentum of a TMD PDF and
a TMD FF [3]. TMD PDFs and TMD FFs will collectively be denoted as TMDs, when
needed. As final-state polarizations are not measured in the present work, only two leading-
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Name TMD PDF/FF Chirality Naive time reversal
Polarization-averaged f q1 even even
Helicity g q1 even even
Transversity h q1 odd even
Sivers f ⊥,q1T even odd
Boer–Mulders h⊥,q1 odd odd
Pretzelosity h⊥,q1T odd even
Worm-gear (I) h⊥,q1L odd even
Worm-gear (II) g q1T even even
Polarization-averaged D q→h

1 even even
Collins H ⊥,q→h1 odd odd

Table 1. Leading-twist TMD distribution and fragmentation functions and their key symmetry
properties. Only the first three TMD PDFs and D q→h

1 survive integration over transverse momen-
tum.

twist TMD FFs are available to couple to the leading-twist TMD PDFs in the structure
functions. The chiral-even TMD PDFs are convoluted with the polarization-averaged TMD
FF D q→h

1

(
z, z2k2

T

)
, while the chiral-odd TMD PDFs, such as the transversity distribution,

are convoluted with the chiral-odd naive-T -odd Collins TMD FF H ⊥,q→h1

(
z, z2k2

T

)
, repre-

senting a correlation between the transverse polarization of the fragmenting quark and the
transverse momentum zkT of the produced hadron carrying the fraction z of the energy of
the virtual photon in the target-rest frame. Thus, the Collins fragmentation function acts
as a ‘quark polarimeter’. Table 1 summarizes some properties of the leading-twist TMDs.

In this work, azimuthal asymmetries in the yield of pions and charged kaons are ex-
tracted from semi-inclusive deep-inelastic scattering data recorded with a transversely po-
larized hydrogen target at the HERMES experiment. They are supplemented with the
first such measurements for proton and antiproton electroproduction. Fourier amplitudes
of single-spin asymmetries are presented that arise from the transversity h q1

(
x,p2

T

)
, the

Sivers f ⊥,q1T
(
x,p2

T

)
, and the pretzelosity h⊥,q1T

(
x,p2

T

)
distributions. Also, a Fourier ampli-

tude related to the worm-gear distribution g q1T
(
x,p2

T

)
is extracted from the double-spin

asymmetry (DSA) requiring longitudinally polarized beams. Besides these leading-twist
contributions, kinematically suppressed Fourier amplitudes are also reported, e.g., those
related to the other worm-gear distribution h⊥,q1L

(
x,p2

T

)
due to a small longitudinal compo-

nent of the target-polarization vector (cf. appendix A), or those involving twist-3 TMDs. All
Fourier amplitudes for charged mesons and for protons are extracted in a three-dimensional
binning in the kinematic variables x, z, as well as the transverse hadron momentum, which
will greatly facilitate disentangling the underlying dynamics of the partonic nucleon struc-
ture and of the fragmentation process. The Fourier amplitudes are extracted also in one-
dimensional binning in those variables. Due to insufficient yields, the Fourier amplitudes
for neutral pions and for antiprotons are provided in only the one-dimensional binning.
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2 TMDs in semi-inclusive deep-inelastic scattering

2.1 Structure functions in the semi-inclusive DIS cross section

The observables of interest in this work are Fourier amplitudes of the semi-inclusive DIS
cross section, selected in all cases by the polarization direction of the target nucleon with
respect to the direction of the virtual photon, and — in some cases — also by the helicity
of the beam lepton. The azimuthal dependence of the cross section for leptoproduction of
hadrons on a nucleon N can be decomposed in the one-photon-exchange approximation in
terms of semi-inclusive DIS structure functions as [8]

dσlN→lhX

dx dy dφS dz dφ dP 2
h⊥
∝
{
FUU,T + εFUU,L

+
√

2 ε(1 + ε) cos (φ)F
cos (φ)
UU + ε cos (2φ)F

cos (2φ)
UU + λl

√
2 ε(1− ε) sin (φ)F

sin (φ)
LU

+ SL

[√
2 ε(1 + ε) sin (φ)F

sin (φ)
UL + ε sin (2φ)F

sin (2φ)
UL

]

+ SLλl

[√
1− ε2 FLL +

√
2 ε(1− ε) cos (φ)F

cos (φ)
LL

]

+ ST

[
sin (φ− φS)

(
F

sin (φ−φS)
UT,T + ε F

sin (φ−φS)
UT,L

)
(2.1)

+ ε sin (φ+ φS)F
sin (φ+φS)
UT + ε sin (3φ− φS)F

sin (3φ−φS)
UT

+
√

2 ε(1 + ε) sin (φS)F
sin (φS)
UT +

√
2 ε(1 + ε) sin (2φ− φS)F

sin (2φ−φS)
UT

]

+ STλl

[√
1− ε2 cos (φ− φS)F

cos (φ−φS)
LT

+
√

2 ε(1− ε) cos (φS)F
cos (φS)
LT +

√
2 ε(1− ε) cos (2φ− φS)F

cos (2φ−φS)
LT

]}
,

where x ≡ Q 2/(2P · q),e y ≡ (P · q)/(P · k), z ≡ (P · Ph)/(P · q), with q, P , k, k′ and Ph
representing the four-momenta of the exchanged virtual photon, initial-state target nucleon,
incident and outgoing lepton, and produced hadron h, respectively. Furthermore,

Ph⊥ ≡
∣∣∣∣Ph −

(Ph · q)q

|q|2
∣∣∣∣ (2.2)

is the magnitude of the hadron’s transverse momentum, λl = +1 (λl = −1) denotes right-
handed (left-handed) beam leptons in the lepton-nucleon center-of-mass system, and the

eWhile the right-hand side of this equation corresponds to the Bjorken variable, it coincides with the
light-cone momentum fraction introduced in section 1 in the Bjorken limit.
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“photon polarization parameter” ε ≡ 1−y− 1
4
γ2y2

1−y+ 1
4
y2(γ2+2)

is the ratio of longitudinal to transverse

photon flux, where γ ≡ 2Mx/Q with M the mass of the target nucleon.
The structure functions F depend in general on x, z, Ph⊥ and Q 2. The first subscript U

(L) on the structure functions represents unpolarized (longitudinally polarized) beam, while
the second subscript T (L) denotes transverse (longitudinal) target polarization ST (SL).
When present, the third subscript T (L) denotes transverse (longitudinal) virtual photons.
In principle, all structure functions have a dependence on the hadron type, although the
hadron label h is omitted for compactness.

As will be discussed in more detail in section 2.2, the transverse-polarization-dependent
azimuthal modulations appearing in the fifth, sixth, and eighth line of eq. (2.1) arise as
convolutions of leading-twist (twist-2) TMDs, while the remaining transverse-polarization
dependent terms involve twist-3 TMDs.

2.2 Connection between structure functions and TMDs

According to factorization theorems (see, e.g., refs. [3, 9–15] and references therein), at small
transverse momentumf the structure functions in eq. (2.1) can be written as convolutions
in transverse-momentum space of a TMD PDF and a TMD FF, possibly accompanied by
a weighting factor w(pT ,kT ), i.e.,

F
(
x, z, Ph⊥, Q

2
)

= C
[
wf qDq→h] , (2.3)

where the notation C indicates the convolution

C
[
wf qDq→h] ≡∑

q

e2qH(Q 2)

∫
d2pTd2kT δ(2)

(
pT − kT −

Ph⊥
z

)
w(pT ,kT )f q(x,p2

T ;Q 2)Dq→h(z,k2
T ;Q 2).

(2.4)

Here, eq are the quark electric charges in units of the elementary charge, H is a hard
function that can be computed perturbatively as a power expansion in the strong coupling
constant αS [15]. The TMDs included in the convolution depend on Q 2 in a way dictated
by TMD evolution equations [17–19].g At variance with collinear PDFs, TMD evolution
contains a universal, flavor- and spin-independent nonperturbative component, which has to
be fixed from data [20–22] or computed in lattice QCD [23–25]. At parton-model level, the
hard function reduces to unity, the TMDs become independent of Q 2 and the convolutions
correspond to the definition in, e.g., ref. [8].

Table 2 summarizes the correspondence between the leading-twist azimuthal modula-
tions defined in eq. (2.1) and the TMDs appearing in the structure-function expressions.
Further details are provided below.

fSee ref. [16] and appendix B for a discussion on the limits of applicability of the TMD formalism.
gTMDs depend on two scales, usually denoted as µ2 and ζ, but for simplicity we set them both to be

equal to the hard scale Q 2.
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Name TMD PDF TMD FF Structure function
Transversity h q1 H ⊥,q→h1 F

sin (φ+φS)
UT

Sivers f ⊥,q1T D q→h
1 F

sin (φ−φS)
UT

Boer–Mulders h⊥,q1 H ⊥,q→h1 F
cos (2φ)
UU

Pretzelosity h⊥,q1T H ⊥,q→h1 F
sin (3φ+φS)
UT

Worm-gear (I) h⊥,q1L H ⊥,q→h1 F
sin (2φ)
UL

Worm-gear (II) g q1T D q→h
1 F

cos (φ−φS)
LT

Table 2. Leading-twist TMD PDFs that do not survive integration over pT , together with the TMD
FFs with which they appear in their associated leading semi-inclusive DIS structure functions.

2.2.1 The transversity distribution

The transversity distribution has the probabilistic interpretation as the difference in number
densities of quarks with transverse polarization parallel and anti-parallel to the transverse
polarization of the parent nucleon [26]. Among the three leading-twist PDFs surviving
integration over pT , it is the only one that involves transverse quark polarization and is
thereby chiral-odd. Unlike the polarization-averaged and the quark-helicity distributions,
QCD evolution of the transversity in a spin-12 hadron does not mix quarks with gluons
because of helicity conservation [27].

The transversity distribution h q1 appears together with the Collins fragmentation func-
tion H ⊥,q→h1 in the structure function

F
sin (φ+φS)
UT

(
x, z, Ph⊥, Q

2
)

= C
[
− ĥ · kT

Mh
h q1 H

⊥,q→h
1

]
, (2.5)

where Mh is the mass of the produced hadron and ĥ = Ph⊥/|Ph⊥|.
Azimuthal asymmetries related to F sin (φ+φS)

UT as a function of single kinematic variables
have been published by the HERMES Collaboration for charged pions [28] and later for
pions, charged kaons, as well as the pion charge-difference [29], all from a transversely
polarized hydrogen target. In the present work, the three-dimensional dependences of
the so-called Collins asymmetries go beyond the original works of refs. [28, 29], which
concentrated on one-dimensional binning in either the kinematic variable x, z, or Ph⊥. In
addition, results for protons and antiprotons obtained here for the first time are included.

2.2.2 The Sivers distribution

The Sivers and Boer–Mulders functions are the only TMDs that are naive-T -odd. The
chiral-even Sivers function f ⊥,q1T [30] has the probabilistic interpretation as the dependence
of the number density of quarks on the orientation of pT with respect to the transverse
polarization of the parent nucleon, while the chiral-odd Boer–Mulders function h⊥,q1 [31]
relates pT to the transverse polarization of the struck quark in an unpolarized nucleon. The
Boer–Mulders function is not further discussed in this paper, but relevant measurements
and discussions are reported in refs. [32, 33] and the references therein.
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Among the TMDs that do not survive integration over pT , these naive-T -odd functions
have thus far received the most attention, both experimentally and theoretically. The possi-
ble existence of the Sivers function was proposed already three decades ago [30] in an effort
to explain the unexpected single-spin asymmetries that had appeared in the production
of pions from the collision of unpolarized with transversely polarized protons [34]. That
interpretation came under doubt when the naive-T -odd Collins fragmentation function was
proposed as an alternative mechanism, and it was demonstrated that the existence of such
naive-T -odd TMD PDFs would violate the fundamental time reversal symmetry [35].

A flurry of theoretical activity was inspired by a seminal model calculation [36] showing
how the Sivers function could legitimately arise through overlap integrals of quark wave
functions with different orbital angular momenta, together with a final-state interaction of
the ejected quark with the target remnant. This soon led to the realization [35, 37, 38] that
the aforementioned demonstration applied only to pT -integrated PDFs, in the definition of
which a gauge link in the final state could legitimately be neglected. The gauge-invariant
definition of TMD PDFs requires this gauge link, which then provides the phase necessary
for the interference associated with the naive-T -odd property. The link can be interpreted as
a final-state interaction of the ejected quark with the color field of the target remnant. This
interaction can be considered to be embodied in the TMD PDF itself, with pT representing
the transverse momentum following the interaction [39].

Incorporation of the gauge link into factorization proofs had a profound impact. The
concept of universality of leading-twist distribution functions had to be generalized to al-
low for specific interaction dependences. In the case of the Sivers function, and in fact
for all naive-T -odd TMDs, they are predicted to appear with the opposite sign in the
expressions for deep-inelastic scattering and Drell–Yan cross sections [35], reflecting the
appearance of the embodied interaction in the final or initial state, respectively.h While
the existence of a nonzero Sivers function was finally firmly established by data for semi-
inclusive deep-inelastic scattering of leptons with transversely polarized targets [28, 40, 41],
the experimental verification of this direct prediction of QCD is eagerly awaited. Recent
measurements of transverse-spin asymmetries in weak-boson production and the Drell–Yan
process [42, 43], albeit not sufficiently precise, are consistent with the sign change predicted.

Much of the interest in the Sivers function arises from the evidence linking it to or-
bital angular momentum of quarks. Model calculations have found quark wave function
components with differing orbital angular momenta to be necessary for a non-zero Sivers
function. The same statement can be made for relativistic theories of the anomalous mag-
netic moment κ of the nucleon. In fact, the same wave function components appear in both
cases [44]. Under certain plausible assumptions, such as an attractive final-state interaction,
the sign of the Sivers function for each quark flavor is related to the sign of the contribu-
tion of this flavor to κ [45]. The predicted relationship is consistent with experiment [40].
A quantitative estimate of orbital angular momentum based on the Sivers function was
attempted [46], but it was based on restrictive assumptions [47].

hIn the context of the present work, these distributions should therefore in principle appear with the
label ‘DIS’.
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In semi-inclusive deep-inelastic scattering, the Sivers function appears convoluted with
the unpolarized fragmentation function in the structure function [31]

F
sin (φ−φS)
UT

(
x, z, Ph⊥, Q

2
)

= C
[
− ĥ · pT

M
f ⊥,q1T Dq→h

1

]
. (2.6)

It should be noted that the sin(φ− φS) modulation of the semi-inclusive DIS cross section
is the only one, besides the azimuthally uniform denominator of all the SSA and DSA am-
plitudes, that can in principle receive contributions from longitudinally polarized photons;
these contributions, however, are vanishing at leading and subleading twist in the region of
low transverse momentum.

The HERMES Collaboration presented results for closely related asymmetries for iden-
tified pions and charged kaons, as well as for the pion charge-difference asymmetry from a
transversely polarized hydrogen target [28, 40]. In the present work, the three-dimensional
dependences go again beyond those original works, which concentrated on one-dimensional
kinematic binning in either x, z, or Ph⊥. Furthermore, results for protons and antiprotons
are presented here for the first time.

2.2.3 The pretzelosity distribution

The naive-T -even chiral-odd pretzelosity TMD h⊥,q1T , introduced for the first time by Mul-
ders and Tangerman [48], has the probabilistic interpretation as the dependence of the
number density of quarks on the relative orientation of pT and the transverse polarizations
of both the quark and parent nucleon. In a helicity basis, this tensor structure corresponds
to a flip of the quark helicity and nucleon helicity in opposite directions. The struck quark
therefore has to absorb two units of orbital angular momentum Lz, requiring either the
presence of s − d interference in the nucleon wave function, or matrix elements that are
quadratic in a p wave component. Other properties of the pretzelosity distribution are
given, e.g., in ref. [49]. In various models, such as bag or spectator models, the pretzelosity
distribution appears as the difference between helicity and transversity distributions, and
hence can be interpreted as representing relativistic effects in the nucleon structure.i The
name pretzelosity is loosely connected to the fact that this TMD is related to a quadrupolar
distortion of the quark density [50, 51].

Being chiral-odd, pretzelosity appears in semi-inclusive DIS convoluted with the Collins
fragmentation function leading to a sin (3φ− φS) modulation of the cross section [48, 52]:

F
sin (3φ−φS)
UT

(
x, z, Ph⊥, Q

2
)

=

C
[

2(ĥ · pT )(pT · kT ) + p2
T (ĥ · kT )− 4(ĥ · pT )2(ĥ · kT )

2M2Mh
h⊥,q1T H ⊥,q→h1

]
. (2.7)

The only existing measurement of this asymmetry comes from the Jefferson Lab Hall
A Collaboration [53]; a transversely polarized 3He target was used, effectively a target of

iFor a non-relativistic system, where boosts and rotations commute, the transversity and helicity distri-
butions would coincide (cf. ref. [4]).
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transversely polarized neutrons. The resulting asymmetry amplitudes are consistent with
zero, both for π+ and π−. The measurements presented here for pions, charged kaons as
well as for protons and antiprotons are the first of their kind for scattering off transversely
polarized protons.

2.2.4 The worm-gear distributions

The TMD PDFs g q1T
(
x,p2

T

)
and h⊥,q1L

(
x,p2

T

)
[48, 54, 55] respectively describe the num-

ber density of longitudinally polarized quarks in a transversely polarized nucleon and of
transversely polarized quarks in a longitudinally polarized nucleon. The name “worm gear”
refers to the orthogonal orientation of the spins of quarks and nucleons. Both distributions
are naive-T -even, and g q1T

(
x,p2

T

)
is chiral-even while h⊥,q1L

(
x,p2

T

)
is chiral-odd.

A feature that distinguishes the two worm-gear distributions from all other TMDs is
that, in light-cone quark models, the corresponding generalized parton distributions (GPDs)
vanish [56]. Furthermore, model calculations [57] find that the two distributions are closely
related: g q1T

(
x,p2

T

)
= −h⊥,q1L

(
x,p2

T

)
. However, this cannot be generally true at all scales

due to the different evolution of chiral-even versus chiral-odd distributions (cf. ref. [58]).
In the Wandzura–Wilczek-type approximation (see, e.g., [59]), relations can be estab-

lished between the worm-gear distributions g q1T
(
x,p2

T

)
and h⊥,q1L

(
x,p2

T

)
and the helicity

and transversity distributions, respectivelyj

g
(1),q
1T ≡

∫
dp2

T

p2
T

2M2
g q1T

(
x,p2

T

) WW≈ x

1∫
x

dξ
ξ
g q1 (ξ)

WW≈ xg qT , (2.8)

h
⊥(1),q
1L ≡

∫
dp2

T

p2
T

2M2
h⊥,q1L

(
x,p2

T

) WW≈ −x2
1∫
x

dξ
ξ2
h q1 (ξ)

WW≈ −1

2
xh qL , (2.9)

where all approximate signs involve Wandzura–Wilczek-type approximations and the ne-
glect of mass terms. Experimental tests of the relations between the p2

T -moments of the
worm-gear and the particular moments of the collinear helicity and transversity distributions
would thus provide indications whether or not the relevant genuine twist-3 contributions to
gT and hL are significant (cf. discussion in ref. [62]).

The structure function F cos (φ−φS)
LT of the target-spin and beam-helicity dependent cross

section provides a leading-twist signal for the worm-gear (II) distribution g q1T
(
x,p2

T

)
in

conjunction with the polarization-averaged fragmentation function D q→h
1

(
z, z2k2

T

)
:

F
cos (φ−φS)
LT

(
x, z, Ph⊥, Q

2
)

= C
[
ĥ · pT
M

g q1TD
q→h
1

]
. (2.10)

The Jefferson Lab Hall A Collaboration published related results for charged pions
produced in semi-inclusive deep-inelastic scattering off transversely polarized 3He and used
these data to extract the corresponding Fourier amplitude for transversely polarized neu-
trons [63]. While the results for positive pions are consistent with zero, the ones for negative

jFor the adaptation of the original Wandzura–Wilczek approximation [60] to semi-inclusive DIS see [61]
and references therein.
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pions provide first evidence for a non-vanishing g q1T
(
x,p2

T

)
. The measurements presented

here for pions, charged kaons as well as for protons and antiprotons are the first of their
kind for transversely polarized protons.

The chiral-odd worm-gear (I) distribution h⊥,q1L
(
x,p2

T

)
couples to the chiral-odd Collins

fragmentation function. In semi-inclusive deep-inelastic scattering from longitudinally po-
larized nucleons this combination gives rise to [48, 52]

F
sin (2φ)
UL

(
x, z, Ph⊥, Q

2
)

= C
[
−2(ĥ · kT )(ĥ · pT )− kT · pT

MMh
h⊥,q1L H ⊥,q→h1

]
. (2.11)

The primary choice for studying F sin (2φ)
UL is scattering off a longitudinally polarized tar-

get (cf. ref. [64]), as such it would not normally be included in the present measurement.
However, due to the small but non-vanishing target-spin component that is longitudinal
to the virtual-photon direction in measurements on targets polarized perpendicular to the
incident-beam direction (cf. appendix A), the worm-gear (II) distribution h⊥,q1L

(
x,p2

T

)
can

in principle be constrained also by these data. This will be further discussed in the corre-
sponding section 4.6.

2.2.5 The subleading-twist amplitudes

Each structure function in both the antepenultimate and the ultimate lines of eq. (2.1)
is given by a sum of several terms, each of which contains a twist-3 TMD convoluted
with a twist-2 TMD. The twist-3 objects have no probabilistic interpretation and contain
interaction-dependent terms, i.e., they involve quark-gluon correlations in the nucleon wave
function. All these terms are suppressed by the factor (M/Q), and hence become negligible
in the Bjorken limit. Nevertheless, evidences for substantial twist-3 contributions to single-
spin asymmetries have already been found in the HERMES kinematic region [64–69]. The
sinφ Fourier amplitude of the π+ leptoproduction cross section for longitudinally polarized
protons was found to have magnitudes as large as about 5% of the polarization-averaged
cross section, which are typical of the more sizable leading-twist Fourier amplitudes among
those mentioned above. Hence, it is of interest to also extract here the non-leading single-
spin and double-spin asymmetries for transverse target polarization.

The F sin (2φ−φS)
UT structure function is given by

F
sin (2φ−φS)
UT

(
x, z, Ph⊥, Q

2
)

=

2M

Q
C
[

2(ĥ · pT )2 − p2
T

2M2

(
xf ⊥,qT D q→h

1 − Mh

zM
h⊥,q1T H̃ q→h

)
− 2(ĥ · kT )(ĥ · pT )− pT · kT

2MMh
×(

xh qTH
⊥,q→h
1 +

Mh

zM
g q1T G̃

⊥,q→h + xh⊥,qT H ⊥,q→h1 − Mh

zM
f ⊥,q1T D̃⊥,q→h

)]
.

(2.12)
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The interaction-dependent fragmentation functions are indicated by a tilde. Similarly, the
F

sin (φS)
UT structure function is given by

F
sin (φS)
UT

(
x, z, Ph⊥, Q

2
)

=
2M

Q
C
[
x f qTD

q→h
1 − Mh

zM
h q1 H̃

q→h − pT · kT
2MMh

×

(
xh qTH

⊥,q→h
1 +

Mh

zM
g q1T G̃

⊥,q→h − xh⊥,qT H ⊥,q→h1 +
Mh

zM
f ⊥,q1T D̃⊥,q→h

)]
.

(2.13)

The two structure functions involve rather similar combinations of twist-2 and twist-3
distribution and fragmentation functions. In Wandzura–Wilczek-type approximations, the
chiral-even naive-T -odd twist-3 distributions f qT and f ⊥,qT are related to the Sivers function,
while the difference (sum) of the chiral-odd naive-T -even twist-3 distributions h qT and h⊥,qT
are related to the transversity (pretzelosity) [8]. In general, the interaction-dependent frag-
mentation functions disappear in the Wandzura–Wilczek-type approximation. The expres-
sions for these two structure functions thus simplify significantly in such an approach [61].

A unique feature of the partial cross section given by eq. (2.13) is that it is the only
contribution to the cross section σ hUT that survives integration over transverse hadron mo-
mentum [8, 70]:∫

d2Ph⊥ F
sin (φS)
UT

(
x, z, Ph⊥, Q

2
)

= −x2Mh

Q

∑
q

e2q h
q
1(x)

H̃ q→h (z)

z
. (2.14)

It thus provides sensitivity to the transversity distribution without involving a convolution
over intrinsic transverse momenta. Nonetheless, due to time-reversal invariance, this mod-
ulation must vanish in the one-photon-exchange approximation in the inclusive limit [71],
i.e., summing over all final-state hadrons and integrating over z, which has indeed been
demonstrated in the kinematic regime of this measurement in ref. [72].

Interest in H̃ q→h (z) has grown significantly in the past years due to its connection
to the single-spin asymmetries observed in p↑p → πX. Using Lorentz-invariance relations
as well as QCD equations of motion, it was shown that both H̃ q→h (z) and the Collins
function arise from the same underlying dynamical correlator [73]. As a consequence, it
would be very surprising if this function vanished. Besides being a candidate for explaining
single-spin asymmetries observed in p↑p→ πX (cf. ref. [74] and references therein), it also
contributes to transverse target single-spin asymmetries in inclusive electroproduction of
hadrons [73] as measured, e.g., at HERMES [75].

Finally, the subleading structure functions contributing to the cross section σ hLT are
given by

F
cos (2φ−φS)
LT

(
x, z, Ph⊥, Q

2
)

=

2M

Q
C
[
− 2(ĥ · pT )2 − p2

T

2M2

(
xg⊥,qT D q→h

1 +
Mh

zM
h⊥,q1T Ẽ q→h

)
+

2(ĥ · kT )(ĥ · pT )− pT · kT
2MMh

×
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(
xe qTH

⊥,q→h
1 − Mh

zM
g q1T D̃

⊥,q→h − xe⊥,qT H ⊥,q→h1 − Mh

zM
f ⊥,q1T G̃⊥,q→h

)]
,

(2.15)

and

F
cos (φS)
LT

(
x, z, Ph⊥, Q

2
)

=
2M

Q
C
[
− xg qTD

q→h
1 − Mh

zM
h q1 Ẽ

q→h +
pT · kT
2MMh

×

(
xe qTH

⊥,q→h
1 − Mh

zM
g q1T D̃

⊥,q→h + xe⊥,qT H ⊥,q→h1 +
Mh

zM
f ⊥,q1T G̃⊥,q→h

)]
.

(2.16)

Also here, the two structure functions involve rather similar combinations of twist-2
and twist-3 distribution and fragmentation functions. However, the expressions simplify
even more in Wandzura–Wilczek-type approximations as in addition to the interaction-
dependent fragmentation functions also the chiral-odd naive-T -odd twist-3 distributions
e qT and e⊥,qT vanish, thus leaving only the contribution from the chiral-even naive-T -even
twist-3 distributions g qT and g⊥,qT [61].

As is the case for the F sin (φS)
UT structure function, the partial cross section given by

eq. (2.16) is the only contribution to the cross section σ hLT that survives integration over
transverse hadron momentum [8, 70, 76]:∫

d2Ph⊥ F
cos (φS)
LT

(
x, z, Ph⊥, Q

2
)

=

− x2M

Q

∑
q

e2q

(
xg qT(x)D q→h

1 (z) +
Mh

zM
h q1(x)Ẽ q→h (z)

)
. (2.17)

Already in the early 1990s it was pointed out that this modulation provides collinear access
to transversity in semi-inclusive deep-inelastic scattering [76], complementary to that using
dihadron fragmentation [77, 78]. The challenge is to disentangle the transversity contri-
bution from that of g qT, in particular as the latter appears with the dominant D q→h

1 (z)

fragmentation function.
In the inclusive limit, only the term in eq. (2.17) involving g qT can contribute. It is

related to the virtual-photon–absorption asymmetries A 2(x), used to extract information
on the inclusive-DIS structure function g 2(x):

g 1(x) + g 2(x) =
1

2

∑
q

e2q x g
q
T(x) . (2.18)

Measurements of g 2 of the proton have been published by several experiments [79–83], which
could be used together with measurements of the helicity distributions to put constraints
on the g qT contribution to eq. (2.17).

There is also special interest in g qT itself through its dependence on the interaction-
dependent function ḡ2; this function is related to the transverse color Lorentz force the
struck quark experiences from the spectator at the moment just after it is struck by the
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virtual photon [84, 85]. That is in contrast to the Sivers function, which integrates the
transverse force over the length of the struck-quark’s trajectory.

None of the four twist-3 Fourier amplitudes has so far been measured in semi-inclusive
deep-inelastic scattering.

3 Measurement and analysis

The Fourier analysis of the azimuthal transverse-target-polarization dependence of the semi-
inclusive deep-inelastic scattering cross section follows closely the approach in the earlier
HERMES publications on the Sivers and Collins effects for pions and charged kaons [29, 40].
The relevant aspects of the HERMES experiment and the general analysis framework
are described below, while the differences between this analysis and that of the previous
publications are listed in section 3.4.

3.1 The HERMES experiment

The data to be presented were collected using the HERMES spectrometer [86] at the
HERA lepton storage ring during the 2002–2005 running period. A longitudinally polarized
positron beam (electrons in 2005) with a momentum of 27.6 GeV traversed a transversely
polarized hydrogen target.

A nuclear-polarized pure-hydrogen gas target [87] internal to the HERA lepton storage
ring was used, providing highly polarized target samples without dilution from unpolarized
target material or background arising from unwanted scattering from the target-material
container. Furthermore, this technique included rapid reversals of target-spin orientations,
with the sign randomly chosen at 1-3 min time intervals. This provided a substantial re-
duction of time-dependent systematic uncertainties. For the 2002-2005 running, an average
degree of polarization, perpendicular to the lepton-beam direction, of 0.725 ± 0.053 was
achieved.

The 27.6 GeV electron or positron beam of HERA became self-polarized in the trans-
verse direction due to a tiny spin-flip asymmetry in the emission of synchrotron radiation
(Sokolov–Ternov effect) [88]. Longitudinal beam polarization was then obtained through
spin rotators installed up- and down-stream of the HERMES interaction region. Every
few months, the longitudinal beam polarization was reversed to allow balancing of data for
the two helicity states. For the data presented, the typical beam-polarization values are
between 30% and 40% in magnitude, with a negligible net polarization when averaged over
the whole data-taking period.

Scattered leptons and charged hadrons produced in the forward direction were detected
within an angular acceptance of about ±170 mrad horizontally and about ±(40–140) mrad
vertically. Charged-particle tracks were reconstructed using a set of drift chambers in front
of and behind the 1.6 Tm dipole magnet and corrected for the bending within the target
magnetic field, resulting in an average momentum and angular resolution of about 1.5%
each.

The particle-identification system consisted of a dual-radiator ring-imaging Cherenkov
(RICH) detector, a transition-radiation detector, a pre-shower scintillation counter and
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an electromagnetic calorimeter. The PID system provided a lepton identification with an
efficiency of 98% and a hadron contamination of less than 1%. In the momentum range
2 GeV < |Ph| < 15 GeV, charged pions, kaons, and protonsk are identified by using the RICH
detector [89], for which a hadron-identification algorithm is applied that takes into account
the event topology [32].

The electromagnetic calorimeter and the pre-shower scintillation counter were also em-
ployed in detecting photons with an energy above 1 GeV, which are used here in reconstruct-
ing neutral pions. Unaffected by the magnetic fields of both the target and the spectrometer
magnet, photons were accepted in the horizontal and vertical angular ranges of ±175 mrad
and ±(43–147) mrad, respectively.

Neutral pions are reconstructed using their dominant decay into two photons. The
decay length of the π 0 is negligible compared to the resolution of the spectrometer, hence
the decay vertex is assumed to coincide with the lepton-scattering vertex. The photon pairs
produced within the acceptance of the spectrometer generate electromagnetic showers in
the calorimeter, a fraction of the photons starting a shower already in the lead sheet of
the pre-shower detector, which is taken into account in the energy determination of the
photon. For each deep-inelastic scattering event with more than one photon detected in
the calorimeter, the invariant mass of all possible photon-pair combinations is calculated
under the assumption that the photon-pair originated from the lepton-scattering vertex.
The resulting two-photon invariant-mass distribution for the overall data sample is shown
in figure 2. In each kinematic bin, the signal range is determined by a ±3σ window around
the π 0 peak position of the invariant-mass distribution, where 1σ reflects the energy reso-
lution of the calorimeter. For the subtraction of the combinatorial background, events from
sidebands to the left and right of the peak were used, appropriately weighted to reflect the
amount of background in the signal region.

3.2 Data selection

Identified leptons were subject to various kinematic requirements in order to select a “deep-
inelastic scattering sample”:

(i) Final-state electrons and positrons are kept (including leptons with charge opposite
to the beam leptons) in order to apply a correction for background contributions from
pair-production processes.

(ii) The hard scattering scale of the deep-inelastic scattering process is constrained to
Q 2 > 1 GeV2.

(iii) Based on the chosen scale and the limited angular acceptance of the spectrometer,
the Bjorken scaling variable is required to be in the range 0.023 < x < 0.6.

(iv) Scattering events originating from the excitation of nucleon resonances and their sub-
sequent strong decays are excluded by the requirement W 2 > 10 GeV2 on the squared
invariant mass of the photon-nucleon system W 2 ≡ (q + P )2.

k The momentum range for (anti)protons is later restricted to 4 GeV < |Ph| < 15 GeV in order to avoid
the low-momentum region of large meson contamination due to inefficiencies of the RICH.
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Figure 2. The two-photon invariant-mass distribution in the region of the π 0 mass for the overall
data sample. The sum (blue line) of a Gaussian for the π 0 signal (green line) and a third-order
Chebyshev polynomial for the combinatorial background (red dashed curve) are fit to data. The
signal range used in the analysis, indicated as “SR”, spans a ±3σ region around the π 0 peak
position. Events for the background subtraction are selected from the sidebands denoted by “SB”.
The signal-region and sideband boundaries are indicated by vertical dotted lines.
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Figure 3. Event distribution in the kinematic space in (x, Q 2), including the various boundaries
arising from constraints on x, y, Q 2, W 2, and the upper reach in the lepton scattering angle θ.

(v) The upper limit on y is implied only by the calorimeter threshold of 1.4 GeV (y < 0.95).
The lower limit on y is dictated by the W 2 constraint, resulting in a minimum y of
0.18, which increases with x. No further restrictions are applied as they would have
enhanced the strong correlation between the scaling variables x and Q 2.

The resulting kinematic phase-space in the x–Q 2 plane is shown in figure 3, where also
the constraints on x, y, Q 2, W 2, and the upper reach in the lepton scattering angle are
indicated. The strong correlation between x and Q 2 is apparent.

The “semi-inclusive deep-inelastic scattering” sample fulfills in addition the following
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Figure 4. The simulated fraction of pions originating from diffractive vector-meson production and
decay is shown as a function of z. (The open squares indicating π− are slightly shifted horizontally).
The contributions are simulated by a version of Pythia6.2 [90, 91] tuned for HERMES kinematics.
By limiting z to z < 0.7, a kinematic region is probed where the vector-meson contribution to the
electroproduction of pions is suppressed, in particular for charged pions. For charged kaons, the
contribution from φ decay is at maximum 10% [92].

criteria:

(i) All identified hadrons are selected (and not only the leading hadron, i.e., the one with
the highest momentum in the event).

(ii) A lower limit z > 0.2 is applied to suppress contributions from the target fragmenta-
tion region.

(iii) An upper limit z < 0.7 is generally applied to suppress contributions from hadrons
originating from the decay of diffractively produced vector-mesons. As shown in
figure 4, contributions due to exclusive channels (in particular for charged pions)
become sizable at large z. However, when looking at only the one-dimensional z
dependence of the azimuthal asymmetries, this requirement is lifted and instead an
upper limit of 1.2 (driven by the detector resolution) is imposed, in order to probe this
“semi-exclusive” transition region. The resulting yield distributions for the positively
charged hadrons are shown in figure 5 (left). The shift towards higher z in the
distribution of protons mainly results from the larger hadron mass and the 4 GeV
minimum-momentum requirement (compared to 2 GeV for charged mesons).

(iv) The formalism of TMD factorization involves one hard scale, Q 2, and transverse
momenta that are small in comparison. While no lower limit on Ph⊥ is imposed,
an upper limit of Ph⊥ < 2 GeV is applied in this analysis (cf. figure 5, right). On
average, the constraint P 2

h⊥ � Q 2 is fulfilled for most deep-inelastic scattering events
(cf. figure 6), while the stricter constraint P 2

h⊥ � z2Q 2 is often violated at large Ph⊥
in the kinematic region of low x (which corresponds to low Q 2) and low z.l

lA more detailed discussion is presented in appendix B, including further distributions, e.g., for the more
critical region of low z and Q 2.
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Figure 5. Shape comparison of arbitrarily normalized π+ (red dotted line), K + (blue line), and
proton (green dashed line) yield distributions in the hadron variables z (left) and Ph⊥ (right). The
region between the two vertical dashed lines indicates the range in z used for semi-inclusive DIS
sample, while events in the extended range 0.7 < z < 1.2 are analyzed only in the one-dimensional
z binning.
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Figure 6. Distribution in Q 2 versus P 2
h⊥ of the semi-inclusive π+ yield.

Recently, separation of current and target fragmentation has been revisited for semi-
inclusive deep-inelastic scattering involving transverse momentum [93]. In particular, low-z
hadrons with large transverse momentum might originate from the remnants of the target
and not from the fragmentation of the struck quark [94, 95], the region that is described
here in terms of TMD distribution and fragmentation functions. While no general recipe,
e.g., a quantitative limit on kinematic variables, is available, it appears appropriate to
provide additional information about the kinematic distributions in this measurement. For
this it is useful to introduce both Feynman-x, xF , the ratio of the longitudinal hadron
momentum PCM

h‖ along the virtual-photon direction to its maximum possible value in the
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Figure 7. Rapidity distributions for π+ (left) and protons (right) in the kinematic region indicated.
(Distributions are normalized to unity.)

Scattered lepton: Q 2 > 1 GeV2

W 2 > 10 GeV2

0.023 < x < 0.6

0.1 < y < 0.95

Detected hadrons: 2 GeV < |Ph| < 15 GeV charged mesons
4 GeV < |Ph| < 15 GeV (anti)protons

|Ph| > 2 GeV neutral pions
Ph⊥ < 2 GeV

0.2 < z < 0.7 (1.2 for the “semi-exclusive” region)

Table 3. Restrictions on selected kinematics variables. The upper limit on z of 1.2 applies only to
the analysis of the z dependence.

virtual-photon–nucleon center-of-mass system (CM), and rapidity,

yh ≡
1

2
ln
P+
h

P−h
, (3.1)

where P±h are the ± light-cone momenta, i.e., ECM
h ± PCM

h‖ , of the hadron in the virtual-
photon–nucleon center-of-mass system. Both are measures of the “forwardness” of the
hadron in that system. Positive values of xF and yh are more likely associated with hadrons
produced from the struck quark, while negative values point at target fragmentation. As an
example, the rapidity distributions for π+ and protons are shown in figure 7 for a specific
kinematic bin of small z and large Ph⊥. Even though proton production is more suscep-
tible to contributions from target fragmentation, the proton’s rapidity remains, like that
of pions, mainly positive. Further discussion including more distributions can be found in
appendix B.

The criteria for the selection of scattered leptons and of hadrons detected in coincidence
are summarized in table 3. They have been chosen to ensure a good semi-inclusive deep-
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π+ π 0 π− K + K − p p̄

0.2 < z < 0.7 755k 158k 543k 136k 57k 94k 14k
0.7 < z < 1.2 68k 10k 40k 14k 1k 6k <1k

Table 4. Hadron yields for the semi-inclusive DIS range and the high-z region.

x bins z bins Ph⊥ bins
]0.023; 0.072] ]0.20; 0.28] ]0.00 GeV; 0.23 GeV]

]0.072; 0.098] ]0.28; 0.37] ]0.23 GeV; 0.36 GeV]

]0.098; 0.138] ]0.37; 0.49] ]0.36 GeV; 0.54 GeV]

]0.138; 0.600] ]0.49; 0.70] ]0.54 GeV; 2.00 GeV]

Table 5. Definition of the three-dimensional binning for charged mesons: the first, second, and
third columns list the limits in the kinematic variables x, z, and Ph⊥, respectively.

x bins z bins Ph⊥ bins
]0.023; 0.073] ]0.20; 0.34] ]0.00 GeV; 0.24 GeV]

]0.073; 0.107] ]0.34; 0.43] ]0.24 GeV; 0.40 GeV]

]0.107; 0.157] ]0.43; 0.52] ]0.40 GeV; 0.57 GeV]

]0.157; 0.600] ]0.52; 0.70] ]0.57 GeV; 2.00 GeV]

Table 6. Definition of the three-dimensional binning for protons: the first, second, and third
columns list the limits in the kinematic variables x, z, and Ph⊥, respectively.

inelastic scattering measurement, e.g., adequate detector resolutions and minimal back-
grounds, but have not be tuned to the requirements of current TMD factorization only.
The data are thus sensitive to kinematic regions in semi-inclusive deep-inelastic scattering,
including various transition regions that are under theoretical investigation. The final num-
ber of hadrons after the application of all selection criteria is provided in table 4 for both
the semi-inclusive range of 0.2 < z < 0.7 and the extended range of 0.7 < z < 1.2.

3.3 The extraction of the asymmetry amplitudes

Signals for TMDs are extracted using an unbinned maximum-likelihood fit to their distinc-
tive signatures in the azimuthal angles φ and φS . The extracted Fourier components are
studied as a function of the kinematic variables x, z, and Ph⊥. As the three-dimensional
dependence of the asymmetry amplitudes does not factorize a priori, the primary results
of this analysis are provided in a three-dimensional binning in those kinematic variables.
Binning the data also in Q 2 (or alternatively y) is not applicable by lack of statistical pre-
cision. The bin sizes and boundaries are optimized for the various hadrons in order to have
results in all bins. This results in two sets of 4× 4× 4 grids with a total of 64 bins each for
charged mesons and for protons (see tables 5 and 6, respectively). The yields for neutral
pions and for antiprotons are insufficient for using such three-dimensional binning.

In addition to the full information given in the three-dimensional representations, re-
sults for one-dimensional projections are provided, for which the data are subdivided into
seven bins in either x, z, or Ph⊥. This allows presenting results also for neutral pions
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Bin x dependence z dependence Ph⊥ dependence
1 ]0.023; 0.046] ]0.20; 0.26] ]0.00 GeV; 0.17 GeV]

2 ]0.046; 0.067] ]0.26; 0.32] ]0.17 GeV; 0.25 GeV]

3 ]0.067; 0.082] ]0.32; 0.38] ]0.25 GeV; 0.31 GeV]

4 ]0.082; 0.105] ]0.38; 0.45] ]0.31 GeV; 0.38 GeV]

5 ]0.105; 0.134] ]0.45; 0.52] ]0.38 GeV; 0.52 GeV]

6 ]0.134; 0.186] ]0.52; 0.60] ]0.52 GeV; 0.69 GeV]

7 ]0.186; 0.600] ]0.60; 0.70] ]0.69 GeV; 2.00 GeV]

8 ]0.70; 0.76]

9 ]0.76; 0.84]

10 ]0.84; 1.20]

Table 7. Definition of the one-dimensional binning for mesons: the first column lists the bin
number; the second, third, and fourth columns give the corresponding limits in the kinematic
variables x, z, and Ph⊥, respectively.

Bin x dependence z dependence Ph⊥ dependence
1 ]0.023; 0.040] ]0.20; 0.27] ]0.00 GeV; 0.23 GeV]

2 ]0.040; 0.057] ]0.27; 0.34] ]0.23 GeV; 0.34 GeV]

3 ]0.057; 0.075] ]0.34; 0.41] ]0.34 GeV; 0.43 GeV]

4 ]0.075; 0.098] ]0.41; 0.47] ]0.43 GeV; 0.52 GeV]

5 ]0.098; 0.136] ]0.47; 0.53] ]0.52 GeV; 0.62 GeV]

6 ]0.136; 0.185] ]0.53; 0.61] ]0.62 GeV; 0.74 GeV]

7 ]0.185; 0.600] ]0.61; 0.70] ]0.74 GeV; 2.00 GeV]

8 ]0.70; 0.78]

9 ]0.78; 0.88]

10 ]0.88; 1.20]

Table 8. Definition of the one-dimensional binning for (anti)protons: the first column lists the
bin number; the second, third, and fourth columns give the corresponding limits in the kinematic
variables x, z, and Ph⊥, respectively.

and antiprotons, but also a much faster evaluation of key characteristics of the results.
Furthermore, the range in z is extended by further three bins to include also the high-z
“semi-exclusive” region. As before, the binning differs slightly for mesons and (anti)protons
due to the different kinematic requirements and underlying distributions. The resulting bin
boundaries are given for mesons in table 7 and for (anti)protons in table 8.

3.3.1 The choice of the probability-density function

Ideally, the various structure functions of the semi-inclusive cross section (2.1) are extracted
directly. However, experimentally such an extraction would require precision knowledge of
the luminosity and all the instrumental effects, e.g., efficiencies and geometrical accep-
tance. Instead, in the measurement reported here the rapid spin reversal of the target
protons is exploited to effectively extract spin asymmetries. While avoiding many of the
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experimental uncertainties, theoretical uncertainties arise in the interpretation of the results
as they constitute relative quantities by normalizing the polarization-dependent structure
functions to the polarization-averaged and φ-integrated cross section, which is proportional
to F h

UU,T + εF h
UU,L. The detailed knowledge of the latter is still limited, in particular the

transverse-momentum dependence, but also the contribution from longitudinal photons. In
the case of inclusive deep-inelastic scattering at HERMES kinematics, the contribution
from longitudinal photons can reach values of up to 30% compared to the one from trans-
verse photons (used to interpret the structure functions in the parton model at leading
order in αS).

An experimental limitation is the inability to polarize the target on an event-by-event
basis with respect to the virtual-photon direction. The latter is used in eq. (2.1) as a
reference axis because it is a more convenient and natural choice for the decomposition. In
contrast, in an actual experiment, target-polarization states are chosen with respect to the
incident-lepton direction. The coordinate transformation from the lepton-beam system to
the virtual-photon system and its effects are worked out in ref. [96]. It involves the usually
small polar angle θγ∗ between the incident-lepton and virtual-photon three-momenta. As
discussed in more detail in appendix A, the observable azimuthal modulations, labeled
henceforth by ⊥ (‖) instead of T (L) for the transverse (longitudinal) target-polarization
component, are in general a mixture of contributions from the target-polarization terms
labeled with T and L in eq. (2.1). Moreover, the Fourier decomposition of the azimuthal
distribution for the ⊥ (‖) configuration includes additional terms not present in eq. (2.1).
In particular, for ⊥ target polarization an additional sin(2φ+φS) [cos(φ+φS)] modulation
is possible when the lepton beam is unpolarized [longitudinally polarized]. The number
of azimuthal modulations for hadron leptoproduction on a target polarized perpendicular
to the direction of the incident lepton are thus ten: six single-spin and four double-spin
asymmetries. Of those, three [sinφS , sin(3φ− φS), and cos(2φ− φS)] arise genuinely from
transverse target polarization, five [sin(φ + φS), sin(φ − φS), sin(2φ − φS), cosφS , and
cos(φ − φS)] are dominantly transverse-polarization effects with a small admixture from
longitudinal target polarization, and the remaining two are genuine contributions from the
small but non-vanishing longitudinal target-polarization component.

In this measurement, a maximum-likelihood fit is employed that incorporates the rever-
sal of both the beam and target polarization in the probability density function. The prob-
ability density for the combined Fourier analysis of single-spin and double-spin azimuthal
asymmetries is modeled according to the cross-section contributions σ hU⊥ and σ hL⊥. As such
it includes a total of ten modulations: the six sine modulations of the cross section σ hU⊥
and, when including the longitudinal lepton-beam polarization, four cosine modulations.

Another choice has to be made concerning which kinematic terms of the cross section
to include as part of the parameters to be fit. Two possibilities are presented here: The
cross-section asymmetries (CSA), which involve — up to prefactors common to all cross-
section terms — the entire Fourier amplitude of each cross-section modulation, e.g., also the
ε-dependent kinematic prefactors. In contrast, the structure-function asymmetries (SFA)
are to first approximation ratios of only the structure functions discussed in more detail
in section 2.2, obtained by including explicitly the ε-dependent kinematic prefactors in the
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likelihood function separated from the fit parameters. A compelling advantage of the latter
asymmetries is their simple interpretation. The strongly experiment-dependent kinematic
prefactors contain little additional information and cloud direct comparisons to results
from different experiments. The advantages of the former include the possibility to correct
in a straightforward way for the contributions from the longitudinal target-polarization
component (cf. appendix A),m and the independence of the analysis from the particular
assumptions made in the expansion of the modulations in terms of structure functions.
The primary results presented here will be the structure-function asymmetries.

In the case of perfect acceptance in the azimuthal angles, each Fourier amplitude could
be extracted separately due to orthogonality of the azimuthal modulations. However, under
realistic experimental conditions cross-contamination may occur. Hence, both the single-
spin and double-spin Fourier amplitudes are extracted simultaneously. The corresponding
probability-density function for the Fourier decomposition of the cross section (CSA de-
composition) is then defined as

P
(
x, z, Ph⊥,φ, φS , Pl , S⊥ : 2 〈sin (φ− φS)〉hU⊥ , . . . 2 〈cos (φ+ φS)〉hL⊥

)
=
[
1 + S⊥

(
2 〈sin (φ− φS)〉hU⊥ sin (φ− φS) + 2 〈sin (φ+ φS)〉hU⊥ sin (φ+ φS) +

2 〈sin (3φ− φS)〉hU⊥ sin (3φ− φS) + 2 〈sin (φS)〉hU⊥ sin (φS) +

2 〈sin (2φ− φS)〉hU⊥ sin (2φ− φS) + 2 〈sin (2φ+ φS)〉hU⊥ sin (2φ+ φS)
)

+Pl S⊥

(
2 〈cos (φ− φS)〉hL⊥ cos (φ− φS) + 2 〈cos (φS)〉hL⊥ cos (φS) +

2 〈cos (2φ− φS)〉hL⊥ cos (2φ− φS) + 2 〈cos (φ+ φS)〉hL⊥ cos (φ+ φS)
)]w

, (3.2)

where Pl and S⊥ represent the degree of longitudinal beam polarization and target polar-
ization perpendicular to the lepton beam, respectively, and w is an event weight further
detailed below. The Fourier amplitudes 2 〈sin (φ− φS)〉hU⊥ , . . . 2 〈cos (φ+ φS)〉hL⊥ appear-
ing as parameters in eq. (3.2) are the cross-section asymmetry amplitudes to be fit to the
data. Likewise, the probability-density function for the SFA amplitudes reads

P
(
x, z, ε, Ph⊥,φ, φS , Pl , S⊥ : 2〈sin (φ− φS) 〉hU⊥, . . . 2〈cos (φ+ φS)/

√
2ε(1− ε) 〉hL⊥

)
=
[
1 + S⊥

(
2〈sin (φ− φS) 〉hU⊥ sin (φ− φS) + ε 2〈sin (φ+ φS)/ε 〉hU⊥ sin (φ+ φS) +

ε 2〈sin (3φ− φS)/ε 〉hU⊥ sin (3φ− φS) +√
2ε(1 + ε) 2〈sin (φS)/

√
2ε(1 + ε) 〉hU⊥ sin (φS) +√

2ε(1 + ε) 2〈sin (2φ− φS)/
√

2ε(1 + ε) 〉hU⊥ sin (2φ− φS) +

ε 2〈sin (2φ+ φS)/ε 〉hU⊥ sin (2φ+ φS)
)

+Pl S⊥

(√
1− ε2 2〈cos (φ− φS)/

√
1− ε2 〉hL⊥ cos (φ− φS) +

mFor example, the contributions from the transverse and longitudinal components of the target polar-
ization may have different kinematic prefactors, which cannot be taken into account in the fit of structure-
function asymmetries.
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√
2ε(1− ε) 2〈cos (φS)/

√
2ε(1− ε) 〉hL⊥ cos (φS) +√

2ε(1− ε) 2〈cos (2φ− φS)/
√

2ε(1− ε) 〉hL⊥ cos (2φ− φS) +√
2ε(1− ε) 2〈cos (φ+ φS)/

√
2ε(1− ε) 〉hL⊥ cos (φ+ φS)

)]w
. (3.3)

Charged-hadron [pion, kaon, and (anti-)proton] weights are assigned to each hadron
track selected to account for the efficiency of the RICH detector and the contamination of
the pion, kaon, and proton identification. When the charge of the scattered lepton does
not correspond to the charge of the incoming beam leptons, the weights are multiplied by
−1 in order to subtract the background arising from the pair-production process. In a
similar way, combinatorial background in the π 0 signal region of the two-photon invariant-
mass spectrum is subtracted using events from the sidebands (cf. figure 2) and assigning a
negative weight equal to −R, where the ratio R is the relative population of combinatorial
background in the signal region and the sidebands, as given by the invariant-mass fit.

As the sum over all weights does not coincide with the number of hadrons detected,
i.e.,

Nh∑
i=1

wi 6= Nh, (3.4)

the statistical uncertainties of the asymmetry amplitudes extracted have to be corrected for
the event weighting. The covariance matrix C, obtained in the maximum-likelihood fit, is
corrected by the covariance matrix K that is obtained in a maximum-likelihood fit to the
same data but weighting the events with w2

i instead of wi. The statistical uncertainties are
then evaluated from the corrected covariance matrix [97]

C ′ = CK−1C . (3.5)

In the likelihood formalism, not only the target polarization but also the beam polar-
ization is applied on event level, i.e., for each identified hadron of a given semi-inclusive
deep-inelastic scattering event, the actual beam and target polarization values of that event
are used in the likelihood function.

The normalization of the probability density function is not required as in the data
set selected the net target polarization is found to be negligible. Thus, the normalization
integral is independent of the asymmetry amplitudes extracted and cannot influence the
shape of the likelihood dependence on the azimuthal amplitudes.

The CSA amplitudes are then extracted from the semi-inclusive deep-inelastic scatter-
ing events by minimizing

− lnL = −
Nh∑
i=1

wi lnP
(
xi, zi, Ph⊥,i, φi, φS,i, Pl,i, S⊥,i : 2 〈sin (φ− φS)〉hU⊥ , . . .

)
(3.6)

using eq. (3.2) for P(. . .). In a similar fashion, eq. (3.3) is used to extract the SFA ampli-
tudes, including now also the event-wise value of the photon-polarization parameter ε.

Comparing eqs. (3.2) and (3.3) with eq. (2.1), it becomes clear that in the probability
density the azimuthally uniform contribution to the cross section, F h

UU,T + εF h
UU,L, has

– 24 –



been factored out, which corresponds to normalizing all the Fourier amplitudes to F h
UU,T +

εF h
UU,L. Setting F h

UU,L equal to zero, as valid up to subleading twist and leading order in
αS , results in Fourier amplitudes normalized to

F h
UU,T = C

[
f q1D

q→h
1

]
, (3.7)

e.g., to SFA amplitudes of the form F
sin (φ−φS),h
UT /F h

UU,T.

3.3.2 Systematic uncertainties

Systematic uncertainties in the asymmetry amplitudes arise from

(i) the accuracy of the beam and target polarization measurements,

(ii) the choice of the probability-density function,

(iii) acceptance effects caused by limitations in the geometric acceptance and kinematic
requirements in the event selection,

(iv) higher-order QED processes and kinematic smearing effects due to finite spectrometer
resolution,

(v) the hadron identification using the RICH detector,

(vi) the stability of the detector over the course of data taking.

In addition, further sources of systematic effects are studied for neutral pions:

(i) variation of the parameterization for the background shape of the two-photon invariant-
mass spectrum: third-order Chebyshev polynomial versus Weibull distribution [98],

(ii) variation of the sideband positions with respect to the signal range,

(iii) variation of both sidebands and signal ranges.

The accuracy of the polarization measurements is taken into account as a scale uncer-
tainty on the amplitudes extracted. They amount to 7.3% and 8.0% for the single- and
double-spin asymmetries, respectively. As they affect both the central values and all other
uncertainties as a multiplicative factor, they are provided separately.

Inclusion of additional cosine modulations related to the polarization-averaged cross
section, e.g., arising from the Boer–Mulders or Cahn [99] effects, has negligible effects on the
single- and double-spin Fourier amplitudes extracted. For that study, an empirical model of
those cosine modulations, fit to HERMES data [32], was added to the probability density
functions. Furthermore, the results for the single-spin asymmetries extracted using either
the full probability density function, e.g., eq. (3.2), or one containing only the single-spin
asymmetry terms (as done, e.g., in the previous publications [29, 40]) are fully consistent.

Systematic uncertainties due to experimental acceptance, kinematic smearing, and the
hadron identification are estimated simultaneously. Results presented here involve integra-
tion over finite bin sizes and partially larger ranges in kinematic variables not explicitly
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binned in, e.g., in the one-dimensional projections. They are cross-section asymmetries
folded with the experimental acceptance, which in general depends on the same set of kine-
matic variables. They thus represent averages of not only the kinematic dependences of
the underlying physics modulations but also include often unaccounted instrumental ef-
fects [100]. In particular, these average asymmetries, in general, do not coincide with the
cross-section asymmetries at the average kinematics provided with each data point. The
size of such deviations is estimated using a full Monte Carlo simulation of the experiment
based on a version of Pythia6.2 [90, 91] tuned for HERMES kinematics and extended
with RadGen [101] to account for QED radiative effects. The simulation also uses a
Geant3 [102, 103] description of the HERMES apparatus, including the beam trajectory
and particle deflection in the holding field of the target magnet as well as the efficiency and
the cross contamination of the hadron identification using the RICH detector.

The Pythia6.2 event generator does not simulate polarization effects such as those
studied here. For this reason, empirical parameterizations (based on a Taylor expansion) of
the single- and double-spin asymmetries as a function of x, Q 2, z, and Ph⊥ are used to assign
a beam-helicity and target-spin state to each semi-inclusive DIS event of the simulation,
as detailed in appendix C, to effectively “polarize” the Pythia6.2 simulation. The set of
parametric models is obtained from fits to the experimental data, separately for each hadron
type, using the method described above (section 3.3.1) but now unbinned in all kinematic
variables. These models, representing the four-dimensional kinematic dependence (x, Q 2,
z, Ph⊥) of the ten asymmetry amplitudes of interest, are virtually unaffected by acceptance
and instrumental effects, though somewhat biased by the finite number of terms included
in the fit (compared to the a priori infinite Taylor expansion).

The systematic uncertainties for the combined effect of limited acceptance, higher-order
QED effects, and the hadron identification using the RICH detector are then estimated
from the difference of the asymmetry amplitudes extracted from the simulated data and
their model evaluated at their average kinematic values (further details are provided in
appendix C). These systematic uncertainties thus correspond to the case of interpreting
the data as asymmetry values for the given average kinematics in each bin, in contrast to
ratio of cross sections integrated over all the kinematics in the ranges applicable to each
particular bin.

The stability of the results was tested in various ways: comparing the results extracted
for positron and electron beam separately, and comparing double-spin asymmetries for
periods of different beam-helicity states. The studies found in general full consistency of
the data for different beam charges as well as of the data for different beam helicities. The
only notable exception are the π 0 results. Various statistical tests result in a statistical
incompatibility at 90% confidence leveln for the one-dimensional extraction of the Sivers
case, with hints of statistical incompatibility for some of the other modulations. As a
consequence, conservatively, half the difference between constant fits to the π 0 results from
electron and positron data are assigned as additional systematic uncertainties. They are
added in quadrature to those related to other instrumental effects and kinematic smearing.

nThe results of these tests are, however, limited by the small number of data points.
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The remaining sources of systematic uncertainties considered are found to have a neg-
ligible effect on the results.

3.4 Differences with previous analyses

Though the general framework has much in common with that in the prior HERMES
publications on the Sivers and Collins effects [29, 40], there are several obvious differences
and some minor improvements in the data analysis:

(i) The analysis is based on a later data production, which among others included up-
dated tracking and alignment information, as well as corrections for minimal beam-
energy variations.

(ii) The first such measurement of asymmetries for protons and antiprotons is presented.

(iii) The extraction of asymmetries for neutral pions is improved in various aspects, among
others a different treatment of photons that start showering already in the pre-shower
detector and adjusted ranges in the two-photon invariant mass used for the signal and
the background subtraction. Also, only photon pairs that are detected in the same
detector half are kept in the analysis.

(iv) The analysis is performed in a three-dimensional kinematic binning; the x range is
extended to an upper limit of 0.6.

(v) The one-dimensional binning has been adapted to permit extraction of asymmetry
amplitudes for also the low-statistic hadrons; in addition, the binning in z is extended
to include the high-z region of 0.7 < z < 1.2.

(vi) The extraction of all the various SSA and DSA is performed in one combined fit to
minimize potential cross talk between moments.

(vii) The standard set of results comprises the structure-function asymmetries and thus
includes corrections for the ε-dependent kinematic prefactors.

4 Results and interpretation

The SSA and DSA amplitudes are extracted in a three-dimensional kinematic binning
in x, z, and Ph⊥ to allow the exploration of correlated dependences. In comparison to
earlier measurements, e.g., in refs. [29, 40], this provides measurements in kinematic corners
that are suppressed when integrating over all but one variable. Three further principal
advancements are worth mentioning: (i) the total number of data points per particle species
increases to 64, (ii) none of those 64 data points is statistically correlated with any of
the other,o and (iii) the multi-dimensional binning avoids integration over large regions of
the kinematic space and results in a much reduced systematic uncertainty. In particular

oWhile data points for one particular azimuthal moment are uncorrelated, results for the different az-
imuthal moments in one kinematic bin may still be correlated. That degree of correlation is provided in
the Supplemental Material [104].
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Azimuthal modulation Significant non-vanishing Fourier amplitude
π+ π− K + K − p π 0 p̄

sin (φ+ φS) [Collins] X X X X
sin (φ− φS) [Sivers] X X X X (X) X
sin (3φ− φS) [Pretzelosity]

sin (φS) (X) X X
sin (2φ− φS) (X)
sin (2φ+ φS) X
cos (φ− φS) [Worm-gear] X (X) (X)
cos (φ+ φS)

cos (φS) X
cos (2φ− φS)

Table 9. The various azimuthal modulations of the semi-inclusive cross section and those hadron
species whose corresponding Fourier amplitudes are incompatible with the NULL hypothesis at
95% (90%) confidence. Antiprotons and π 0 are given separated in the last two columns to indicate
that the statistical test of those is based on the one-dimensional projections and hence restricted
to using only seven data points.

the latter two should significantly increase the reliability of uncertainties resulting from
phenomenological fits to combined data of one-dimensional projections as the latter have
an unspecified degree of statistical and systematic correlation.

Due to the more limited precision of the antiproton and neutral-pion data, such three-
dimensional kinematic binning was not feasible. They were thus analyzed as functions of x,
z, and Ph⊥ individually (cf. tables 7 and 8), integrating over the corresponding remaining
kinematic variables.

Asymmetries in one overall kinematic bin are not presented as their extraction suffers
from the largest acceptance effects. They are also of limited value for phenomenology.
Instead, the results for all asymmetries were tested against the NULL hypothesis using the
two-sided Student’s t-test. The asymmetry results binned in three dimensions were used,
where available, to increase the robustness of the Student’s t-test by using 64 data points
and avoiding cancelation effects from integrating over kinematic dependences. In the case of
π 0 and antiprotons, where results in only the one-dimensional binning are available, they
are considered to be inconsistent with zero if the Student’s t-test established this for at
least one of the three projections (versus x, z, or Ph⊥).p It is found that most asymmetry
amplitudes are consistent with zero in the semi-inclusive region 0.2 < z < 0.7 used here.
Those asymmetry amplitudes that are found to be inconsistent with zero at 95% (90%)
confidence level are listed in table 9. Significantly non-zero results were neither found
for the pretzelosity 2 〈sin (3φ− φS)〉hU⊥ Fourier amplitudes nor for the M/Q-suppressed
2 〈cos (φ+ φS)〉hL⊥ and 2 〈cos (2φ− φS)〉hL⊥ Fourier amplitudes. For the 2 〈sin (2φ− φS)〉hU⊥
Fourier amplitude, only antiprotons were found to be inconsistent with the NULL hypothesis

pIt has to be kept in mind that the Student’s t-test becomes less reliable when using a small number of
data points as, e.g., the case for the one-dimensional binning.

– 28 –



Hadron Mean values of kinematic variables〈
Q 2
〉

〈x〉 〈y〉 〈z〉 〈Ph⊥〉
π+ 2.445 GeV2 0.095 0.544 0.362 0.394 GeV
π 0 2.506 GeV2 0.089 0.588 0.357 0.396 GeV
π− 2.366 GeV2 0.092 0.548 0.354 0.393 GeV
K + 2.524 GeV2 0.097 0.548 0.391 0.417 GeV
K − 2.381 GeV2 0.089 0.569 0.356 0.412 GeV
p 2.595 GeV2 0.095 0.574 0.421 0.452 GeV
p̄ 2.393 GeV2 0.076 0.655 0.364 0.477 GeV

Table 10. Mean kinematic values for pions, charged kaons, as well as for protons and antiprotons
in the standard semi-inclusive range 0.2 < z < 0.7.

and this only at the 90% but not at the 95% confidence level.
In the following, the most important observations and features of the data are dis-

cussed.q The corresponding mean kinematics for the kinematic region covered within the
standard semi-inclusive selection are listed in table 10.

The error bars in the following figures indicate the statistical uncertainties of the SSA
and DSA Fourier amplitudes. The uncertainty bands represent the systematic uncertainties
of the results arising from acceptance, finite detector resolution, higher-order QED effects,
possible misidentification of hadrons, and detector instabilities (the latter only for π 0,
while negligible for all other hadrons). In addition, the uncertainties arising from the
measurement precision of beam and target polarization are provided separately as an overall
scale uncertainty: 7.3% in the case of SSA amplitudes and 8.0% for the DSA amplitudes.

4.1 Signals for transversity and the Collins fragmentation function

Non-vanishing sin (φ+ φS) modulations (“Collins asymmetries”) are evidence for two chiral-
odd TMDs: the transversity distribution and the naive-T -odd Collins fragmentation func-
tion. Both have been subject to intense experimental and theoretical studies, also at HER-
MES, which first reported evidence for those [28]. Results for pions, charged kaons, and
the pion charge-difference CSA were reported in ref. [29] for one-dimensional projections
in x, z, and Ph⊥. The most striking feature of those results is a large negative asymme-
try for negative pions, opposite in sign and even larger in magnitude in comparison to
the asymmetry for positive pions. These results were explained [28] by a large disfavored
Collins function, describing, e.g., the fragmentation of up quarks into negative pions, that
is opposite in sign to the favored Collins function. This explanation was later confirmed by
phenomenological fits [105–111] to various data sets on semi-inclusive deep-inelastic scat-
tering [28, 29, 41, 112–117] and on e+e− annihilation into hadrons [118–121], as well as on
hadron collisions in the case of ref. [111]. While earlier work employed simplified approaches
for the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution in the fits to data at various

qThe complete set of figures are provided as Supplemental Material [104], including tables of all the
asymmetry results.
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Figure 8. Collins SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

scales, the focus has moved to employ TMD evolution in more recent works, especially in
view of the B-factory data at Q 2 ∼ 100 GeV2.

The results for the transversity distributions from global fits are of the same signr as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [122–124], e+e− annihilation [125], and more recently in p↑p collision [126], con-
firm this general behavior [127–130]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of the
transversity distribution present some discrepancies with respect to lattice predictions, es-
pecially for what concerns the u-quark contribution to the nucleon tensor charge (see, e.g.,
refs. [131–133]).

The Collins asymmetries extracted here for mesons in one-dimensional projections re-
semble to a high degree those published previously [29]. This is expected as based on the
same data set, though involving a number of analysis improvements (cf. section 3.4). The
most significant advancement in the measurement of the SFA shown in figure 8 is the in-
clusion of the ε-dependent kinematic prefactors in the probability density function (3.3) of
the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity and
thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The

rNote that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
transversity and the Collins fragmentation function.
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dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π−. As expected, the asymmetries increase with
Ph⊥ at low values of Ph⊥. This rise continues in the case of π− up to the highest Ph⊥ values
probed here. In contrast, for π+ there is a hint of a plateau after the initial rise with Ph⊥.

In the case of strange mesons, positive kaons exhibit larger though in shape similar
Collins asymmetries when compared to those for positive pions. In contrast, the Collins
asymmetries for negative kaons are found to be consistent with zero. Assuming that the
nucleon’s sea-quark transversity distributions are vanishing (or small), only disfavored frag-
mentation of up and down quarks can contribute to theK − moments. Being disfavored frag-
mentation, the contribution is expected to be suppressed. Furthermore, being of opposite
sign, the up and down contributions cancel to a large extend. Recently, data from e+e− an-
nihilation into kaons and pions [134] were analyzed and the Collins fragmentations functions
extracted were then used for the estimate of the Collins asymmetries in semi-inclusive deep-
inelastic scattering. Indeed, a largely vanishing K − Collins asymmetry, as observed here,
was found considering only valence transversity as non-vanishing [135]. The data for kaons
are interesting in the context of chiral symmetry breaking in QCD, where pions and kaons
are considered to be the Goldstone bosons. In the chiral limit, fragmentation into pions and
kaons should be the same, in particular, H ⊥,q→π1 (z) = H ⊥,q→K1 (z) [136]. In reality, this is
already violated in the case of unpolarized fragmentation, e.g., D u→π+

1 (z) > D u→K +

1 (z).
Extractions of the Collins fragmentation function for both pions and kaons will shed light
on the (better) validity of the chiral limit for the case of the Collins fragmentation function.

The one-dimensional dependences of the Collins asymmetries measured by the COM-
PASS Collaboration [116] are consistent with the ones reported here, apart from the K −

asymmetries, which are non-vanishing and negatives at COMPASS. The kaon Collins asym-
metries from Jefferson Lab for transversely polarized 3He, effectively a target of transversely
polarized neutrons, are consistent with zero within large uncertainties, with a hint of a siz-
able negative asymmetry for K − [137].

Two examples for the three-dimensionally binned data are presented in figures 9 and 10.
The π− Collins asymmetries are plotted either versus x (figure 9) or versus z (figure 10),
revealing a merely weak dependence on z but an x dependence that is pronounced, mainly
at large Ph⊥ (and z).

As discussed above, the Collins fragmentation functions extracted in phenomenological
fits are opposite in sign and similar in magnitude for π+ and π−. The π 0 Collins frag-
mentation function can be related through isospin symmetry to the ones of charged pions.
In particular, it is the average of the latter two and thus approximately vanishes. The π 0

Collins asymmetries, available only as one-dimensional projections, are shown in figure 11.
They are indeed consistent with zero as expected.

The proton and antiproton Collins asymmetries, measured here for the first time, are
depicted in figure 11 as one-dimensional projections. They are mostly negative in case
of protons, while the antiproton results are consistent with zero. The Collins effect is a
fragmentation effect, it might be suppressed for spin-12 hadron production as compared to

sNote that COMPASS uses a different sign convention for the transversity-induced asymmetries.
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Figure 9. Collins SFA for π− extracted simultaneously in bins of x, z, and Ph⊥, presented as
a function of x. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.

meson production. Models provide little guidance, and were already severely challenged by
the large disfavored Collins fragmentation function for pions. In the Artru approach [138],
the transverse momentum of pions arises through an interplay of the meson and quark spins,
as well as the vacuum structure: qq̄ pairs produced in the string-fragmentation model [139]
are produced with vacuum quantum numbers, i.e., their spins are aligned and possess
one unit of angular momentum opposite to their spin orientation. This orbital angular
momentum is partially transformed into transverse momentum of the produced pion when
pairing one of those quarks with the fragmenting quark, with the quark spins anti-aligned
to form a spin-zero pion. If a favored pion forms in the first string break, a disfavored pion
from the next break will inherit transverse momentum from the first break in the direction
opposite to that acquired by the first pion, leading to a disfavored Collins function that
is opposite in sign to that of the favored Collins function, consistent with the data. The
Collins function for baryons, however, is more difficult to predict in this approach as, e.g.,
the role of diquark production in the fragmentation process or diquark fragmentation is far
less understood. The more complex production might thus easily wash out any transverse-
polarization dependence of the fragmentation process. More recently, a calculation in a
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Figure 11. Collins SFA for π 0 (left), protons, and antiprotons (right) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included in
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diquark spectator model resulted in sizable Collins functions for up and down quarks into
Λ hyperons [140]. While no such calculation is presented for the case of protons, it is not
unplausible that it would result in a non-vanishing Collins effect, as hinted at by the data.

Lastly, looking at the “semi-exclusive” large-z region (figures 8 and 11), the asymmetries
for positive mesons follow the trend of increasing with z all the way to the highest z,
while such behavior is not visible for the other hadrons.t With increasing z disfavored
fragmentation decreases in importance. As a result the sensitivity to the struck quark
— mainly up quarks — increases, leading to a further enhancement of the π+ and K +

asymmetries.

4.2 Evidence for the Sivers function

The naive-T-odd Sivers effect, first observed in semi-inclusive deep-inelastic scattering by
HERMES for positive pions [28], has been discussed already in detail in ref. [40], where
one-dimensional projections versus x, z, and Ph⊥ of the sin(φ−φS) Fourier amplitudes were
presented for pions, charged kaons, and the pion charge difference. Significantly positive
asymmetries were observed for positive pions and kaons, again larger for kaons than for
pions. Significant positive values were also seen for π 0 as well as the pion charge-difference
asymmetry, while results for negative pions and kaons were found to be consistent with
zero. These findings were interpreted as originating from up and down valence-quark Sivers
distributions that are opposite in sign, in accordance with the prediction [45] based on
the quark contributions to the proton’s anomalous magnetic moment. Phenomenological
fits [46, 111, 141–152] to the HERMES and other semi-inclusive deep-inelastic scattering
data [41, 113, 115–117, 153, 154] (as well as to hadron-collision data in the case of ref. [111])
mainly result in Sivers distributions that are indeed significant only for valence quarks.u

Those fit results suggest that valence quarks are sufficient to saturate the Burkardt sum
rule [155, 156], which states that the net transverse momentum carried by partons inside
a transversely polarized nucleon (which is related to the Sivers function) vanishes when
summing over all partons (quarks and gluons).

The Sivers asymmetries extracted here for charged pions and kaons in one-dimensional
projections are presented in figure 12. The Sivers modulation is the only one analyzed
here that does not involve an ε-dependent kinematic prefactor, i.e., SFA and CSA should
coincide. This is indeed found up to negligible variations introduced through correlations
with other modulations in the fit. Hence, even though the previously published results [40]
were obtained from a fit of the CSA to the data, while the ones shown in this section are
the outcome of the SFA fit, the slight differences between them — though consistent —
stem solely from the updated analysis (changes in binning, newer calibrations of the data,
etc.).

As in the previous publication [40], significantly positive Sivers amplitudes are observed
for positive pions. The asymmetries rise slightly with x, though remain significantly non-

tDue to insufficient yields, results for only two high-z bins are available for K − and none for antiprotons.
uIn ref. [152] only the u-quark Sivers function is unambiguously found non-zero and the experimental

data can be described with assigning the still required contributions either to d quarks or to the other
remaining parton flavors, with further data needed for a more conclusive evaluation of the situation.
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Figure 12. Sivers SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

zero even at the lowest x values probed in this experiment. The rise with z and Ph⊥ is
much more pronounced. However, while the rise continues throughout the semi-inclusive z
range, it is leveling off at larger values of Ph⊥.

The π− Sivers asymmetry in the one-dimensional x projection is consistent with zero.
While π+ electroproduction off protons is dominated by up-quark scattering, π− receives
large contributions from down quarks. The vanishing Sivers asymmetry for negative pions
can thus be understood as a cancelation of a Sivers effect that is opposite in sign for up and
down quarks. This may also explain the peculiar behavior of the z dependence: at low values
of z disfavored fragmentation plays a significant role and thus contributions from up quarks
can push the asymmetry towards positive values. At large values of z, however, disfavored
fragmentation dies out and the favored production off down quarks prevails leading to a
negative asymmetry. Some caution with this argumentation is deserved as at large values of
z, the contribution from the decay of exclusive ρ0 electroproduction to both the π+ and π−

samples becomes sizable, as can be concluded from a Pythia6.2 Monte Carlo simulation
(cf. figure 4), even more so for π− than for π+. Charge-conjugation dictates that the decay
pions from the ρ0 exhibit the same asymmetry regardless of their charge.v Examining
the large-z behavior of the charged-pion asymmetries, indeed a clear change of trend can
be observed for positive pions. Still, the significant difference between the charged-pion
asymmetries over most of the kinematic range suggests that the non-vanishing asymmetries
observed are not driven merely by exclusive ρ0 electroproduction.

The K + Sivers asymmetry follows a similar kinematic behavior as the one for π+,
but is larger in magnitude, as can be seen in figure 13. While u-quark scattering should
dominate production off protons of both positive pions and kaons, various differences be-

vThis is also one motivation for looking at the charge-difference asymmetry in ref. [40] in which such
contributions cancel.
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Figure 13. Comparison of Sivers SFA for positive pions (squares) and kaons (circles) presented
either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are
not included in the other projections. Systematic uncertainties are given as bands, not including the
additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.

tween pion and kaon production might point to the origin for the larger K + asymmetry:
(i) differences in the relative strengths of the disfavored d-quark fragmentation compared
to the favored u-quark fragmentation for positive pions and kaons might lead to a reduced
canceling contribution from the d-quark Sivers function; (ii) in general, differences in the
role of sea quarks; (iii) differences — as hinted in a phenomenological analysis [157] of
HERMES multiplicity data [92] — in the transverse-momentum dependence of hadroniza-
tion for different quark flavors that enters the convolution over transverse momentum in
eq. (2.6); (iv) and also higher-twist effects as it was observed in ref. [40] that the π+–K +

difference was more pronounced at lower values of Q 2. Notwithstanding those differences,
acknowledging u-quark dominance in both π+ and K + production and relating their pos-
itive Sivers asymmetries to eq. (2.6) leads immediately to the conclusion that the u-quark
Sivers function, f ⊥,u1T , must be negative. Adding the π− data, as argued before, results in
a positive f ⊥,d1T .

Looking at the newly explored large-z region, the similarity of π+ and K + Sivers
asymmetries disappears: in contrast to the drop at large z of the asymmetry values in the
case of positive pions, the K + Sivers asymmetry continues its trend to increase with z,
which is indeed the expected behavior. This divergence of behavior for positive pions and
kaons can also be seen in the corresponding data of the COMPASS Collaboration [116],
in particular in the x region overlapping with HERMES. As decay products from exclu-
sively produced vector-mesons contribute significantly less to K + production, this might
be another indication of a non-negligible role of those in the case of the pion data.

While the data on negative kaons is more limited in precision, also here a positive
asymmetry is clearly visible in the right plot of figure 12. Negative kaons and the target
proton have no valence quarks in common. While sensitive to the nucleon’s sea-quark,
u-quark scattering will still be a dominant contribution, as can be concluded from the K −

purity in ref. [158]. However, in contrast to K +, the u-quark contribution is suppressed
and diluted w in the case of the K − asymmetry.

w“Diluted” in the literal sense or through competing/canceling contributions from other quark flavors,
e.g., d-quarks.
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Figure 14. Sivers SFA for π 0 presented either in bins of x, z, or Ph⊥. Data at large values of z,
marked by open points in the z projection, are not included in the other projections. Systematic
uncertainties are given as bands, not including the additional scale uncertainty of 7.3% due to the
precision of the target-polarization determination.

As is the case for K −, the π 0 results, presented in figure 14, have poor statistical
precision but still indicate a positive asymmetry. This can be expected from the results for
charged pions due to isospin symmetry in semi-inclusive deep-inelastic scattering. In the
high-z range, the π 0 asymmetries remain positive around 5–10%, thus not following the
strongly falling trend of the π+ asymmetries. Also here the contribution from exclusive
vector-meson production is much smaller than for π+ (cf. figure 4); thus, an interpretation
in terms of ordinary fragmentation is likely much more applicable, leading to a positive
asymmetry due to u-quark dominance.

Figure 15 shows, as an illustrative example, the Sivers asymmetry for π+ mesons in
the three-dimensional binning, compared to a phenomenological fit [147]. The latter, being
based on previous versions of these data (as well as data from COMPASS), describes the
overall behavior well. The multi-dimensional binning as well as the much reduced system-
atics of the data presented here should help to better constrain future phenomenological
analyses.

In figure 16, the first measurement of Sivers asymmetries for proton and antiprotons is
presented. A clearly positive Sivers asymmetry is observed for protons. Also the less precise
antiproton data favor a positive Sivers asymmetry. Baryon production is a less understood
process at lower center-of-mass energies. Therefore, care must be taken when interpreting
those in the usual factorized way. Leaving this warning aside and assuming quark fragmen-
tation as the dominant process here, u-quark fragmentation prevails proton production,
and — having no valence quark in common with the target proton — antiprotons as well
are likely to originate from u-quarks, in particular at these values of x, where sea quarks
are still scarce in the target proton. Dominance of u-quarks in proton and antiproton lep-
toproduction is supported by results from global fits of fragmentation functions [159]. The
Sivers effect is sometimes referred to as a “quark-jet effect”, e.g., already before forming
the final hadron, the transverse-momentum distribution of the fragmenting quark exhibits
the Sivers signature of a left-right asymmetry with respect to the direction of the target
polarization. It is thus natural to expect similar asymmetries for “current-fragmentation”
protons and antiprotons as those for the other hadrons whose electroproduction off the
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Figure 15. Sivers SFA for π+ extracted simultaneously in bins of x, z, and Ph⊥, presented as
a function of x. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination. Overlaid is a
phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.

proton is dominated by u-quark scattering [160]. Figure 17 compares the Sivers asymme-
tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and π+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z
range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark
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Figure 16. Sivers SFA for protons (upper row) and antiprotons (lower row) presented either in
bins of x, z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 17. Comparison of Sivers SFA for positive pions and protons (upper plot) or antiprotons
(lower plot) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open
points in the z projection, are not included in the other projections (no such high-z points are
available for antiprotons due to a lack of precision). Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.
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Figure 18. Ratio of raw proton to antiproton yields at HERMES as a function of z. The bin
boundaries for the semi-inclusive DIS range are marked by dashed lines. The ratio exhibits a
clear rise towards very low z, which might indicate the onset of significant target-fragmentation
contributions, excluded in the data sample used by the minimum-z requirement of 0.2.

scattering, which exhibits a positive Sivers asymmetry. The recoiling target fragments
are thus expected to exhibit a Sivers asymmetry of opposite sign. As the proton Sivers
asymmetry is positive, it appears less likely that those protons came from the fragmenting
target. All these features are, however, also not sufficient to establish that the protons and
antiprotons are dominantly produced in the hadronization of the current-quark jet, which
needs to be kept in mind when interpreting the results in such framework.

4.3 The vanishing signals for the pretzelosity function

The chiral-odd pretzelosity distribution, h⊥,q1T
(
x,p2

T

)
, provides information about the non-

spherical shape of transversely polarized protons in momentum space caused by significant
contributions from orbital angular momentum to a quadrupole modulation of the parton
distributions [50]. It can be accessed coupled to the chiral-odd Collins fragmentation func-
tion in semi-inclusive deep-inelastic scattering through the sin (3φ− φS) modulation of the
cross section. So far, only the measurement of this amplitude using a transversely polar-
ized 3He target by the Jefferson Lab Hall A Collaboration has been published [53]. In a
combination with preliminary data from both the COMPASS and HERMES collabora-
tions as well as the Collins fragmentation function from a phenomenological analysis [106],
h⊥,q1T

(
x,p2

T

)
was extracted both for up and down quarks and found to be consistent with

zero albeit within large uncertainties [161].
The underlying transverse-momentum convolution in eq. (2.7) involves a weight that

is expected to scale with P 3
h⊥. As relatively low transverse momenta are observed, 〈Ph⊥〉 <

1 GeV, the amplitude of the sin (3φ− φS) modulation is suppressed with respect to, e.g.,
the Collins amplitude, which also involves a convolution of a chiral-odd parton distribution
with the Collins fragmentation function, but which scales with Ph⊥.

In this analysis, the 2〈sin (3φ− φS)/ε 〉hU⊥ amplitudes, shown in figure 19 for charged
mesons and in figure 20 for neutral pions as well as for (anti)protons, are found to be
consistent with zero. There is a hint of a small negative amplitude for negative pions that
is, however, statistically not sufficiently significant to claim a non-vanishing pretzelosity.

As noted before, the pretzelosity amplitudes are expected to be suppressed. Cance-
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Figure 19. Pretzelosity SFA for charged mesons (left: pions; right: kaons) presented either in
bins of x, z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not
included in the other projections. Systematic uncertainties are given as bands, not including the
additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 20. Pretzelosity SFA for π 0 (left), protons, and antiprotons (right) presented either in
bins of x, z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.

lations, e.g., from the Collins function that changes sign for favored and disfavored frag-
mentation, might also contribute to the vanishing signal. Model calculations thus predict
in general small asymmetries below 0.01 (see, e.g., ref. [57]), beyond the precision of this
measurement.
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Figure 21. The 2〈cos (φ− φS)/
√

1− ε2 〉hL⊥ amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections. Systematic uncertainties are given as
bands, not including the additional scale uncertainty of 8.0% due to the precision in the determi-
nation of the target and beam polarizations.

4.4 Signals for the worm-gear (II) distribution g q1T
(
x,p2

T

)
The naive-T -even and chiral-even worm-gear (II) distribution g q1T

(
x,p2

T

)
is unique in the

sense that it is the only TMD that vanishes when integrating over pT but neither entails
nor is affected by final-state interactions. At leading twist, this TMD cannot contribute to
naive-T -odd effects that cause single-spin asymmetries. Its spin-orbit correlation, λSiT p

i
T ,

involves a common product of the helicity of the struck quark and the transverse spin
direction of the nucleon. In combination with the selection of quarks with a certain helicity
by a longitudinally polarized lepton beam, the worm-gear (II) distribution g q1T

(
x,p2

T

)
can

be related to the cos (φ− φS) modulation of the double-spin asymmetry in the scattering
of longitudinally polarized leptons by transversely polarized nucleons.

This cos (φ− φS) modulation provides a leading-twist signal for the worm-gear (II)
distribution g q1T

(
x,p2

T

)
in combination with the spin-independent fragmentation function

D q→h
1

(
z, z2k2

T

)
[c.f. eq. (2.10)]. As such it is not additionally suppressed in the asymmetry

amplitude by the relative magnitude of H ⊥,q→h1

(
z, z2k2

T

)
compared to D q→h

1

(
z, z2k2

T

)
.

In figures 21 and 22, the 2〈cos (φ− φS)/
√

1− ε2 〉hL⊥ Fourier amplitudes of the double-
spin asymmetry AhL⊥ are presented for pions, charged kaons, as well as for (anti)protons.
As a consequence of the relatively small degree of polarization of the HERA lepton beam
during the years 2002–2005, the statistical uncertainties are generally larger than those for
the Fourier amplitudes of the transverse single-spin asymmetry AhU⊥.

For positively charged pions, non-vanishing 2〈cos (φ− φS)/
√

1− ε2 〉hL⊥ Fourier ampli-
tudes are extracted, providing an indication for a non-vanishing worm-gear (II) distribution
g q1T

(
x,p2

T

)
. Results for π− and K + are inconsistent with zero at 90% but not at 95% con-

fidence level.
When comparing the meson results to the Sivers asymmetries, which also involve only

– 42 –



-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.1 0.2

π0

x

2
〈c
os
(φ
-φ
S)
/(
1-
ε2
)1
/2
〉 L
⊥

0.5 1 0 0.5 1
z Ph⊥ [GeV]

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

p

2
 〈

c
o

s
(φ

-φ
S
) 

/ 
(1

-ε
2
)1

/2
〉 L

⊥

-1

-0.5

0

0.5

1

0.1 0.2

p
–

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

Figure 22. The 2〈cos (φ− φS)/
√

1− ε2 〉hL⊥ amplitudes for π 0 (left), protons, and antiprotons
(right) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 8.0% due to the precision in the determination of the target and
beam polarizations.

the ordinary D q
1

(
z, z2k2

T

)
fragmentation function and are thus easier to interpret in terms

of separate quark-flavor contributions, a similar picture becomes apparent: mainly the
positively charged mesons exhibits a (positive) 2〈cos (φ− φS)/

√
1− ε2 〉L⊥ amplitude. In

analogy to the Sivers discussion, taking into account the additional minus sign in the Sivers
convolution (2.6) compared to (2.10), the data suggest that g u1T

(
x,p2

T

)
is positive.

However, all of the above discussion is merely qualitative in view of the large uncertain-
ties of this measurement. In that respect, it should be emphasized that tremendous progress
has been made predicting g q1T

(
x,p2

T

)
based on models and by now also lattice-QCD calcu-

lations [162, 163]. A common thread among the calculations is a positive g u1T
(
x,p2

T

)
and

a negative g d1T
(
x,p2

T

)
, not at variance with the above discussion. For example, the calcu-

lation in ref. [57] — based on the light-cone constituent quark model — predicts positive
2 〈cos (φ− φS)〉LT Fourier amplitudes for charged pions of the order of 2–3%, larger for π+

than for π−, which qualitatively agrees with the results presented here. The results by the
Jefferson Lab Hall A Collaboration [63] using a transversely polarized 3He target, which
essentially can be regarded as a neutron target, show a large positive asymmetry for π−

while the π+ asymmetry is consistent with zero, also consistent with the model predictions.

4.5 The subleading-twist SSA and DSA amplitudes

Four modulations contributing to the cross sections (2.1) involving transverse target polar-
ization (two of which require in addition longitudinal beam polarization) vanish at twist-2
level and thus involve either twist-3 distribution or fragmentation functions, as detailed in
section 2.2.5. As such they offer a way to constrain multi-parton correlations, while on the
other hand being expected to be small as formally suppressed by M/Q. Interpretation of
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Figure 23. The 2〈sin (2φ− φS)/
√

2ε(1 + ε) 〉hU⊥ amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points
in the z projection, are not included in the other projections. Systematic uncertainties are given
as bands, not including the additional scale uncertainty of 7.3% due to the precision of the target-
polarization determination.

those modulations is hampered by the multitude of twist-3 functions contributing, often
lacking clear guidance from phenomenology. Wandzura–Wilczek-type approximations [61]
help to reduce the number of terms, but have their own limitations. For example, the
clearly non-vanishing beam-helicity asymmetry in, e.g., ref. [69] challenges the Wandzura–
Wilczek-type approximation, the latter predicting asymmetries identical to zero.

The results presented below constitute the first measurement of those subleading-twist
Fourier amplitudes in semi-inclusive deep-inelastic scattering by transversely polarized pro-
tons.

The 2〈sin (2φ− φS)/
√

2ε(1 + ε) 〉hU⊥ Fourier amplitudes are found to be mostly consis-
tent with zero as shown in figures 23 and 24. Within the semi-inclusive DIS kinematic range
of the measurement, they are consistent with zero at 95% confidence level for all hadrons
and only at 90% confidence level inconsistent with zero for antiprotons (cf. table 9).

Besides the suppression from being a twist-3 observable, the Fourier amplitude of the
sin (2φ− φS) modulation is subject to a Ph⊥ suppression arising through the transverse-
momentum convolution. This is similar to what was discussed for pretzelosity in section 4.3.
However, in comparison to, e.g., the Collins and Sivers modulations, it is only one additional
power of Ph⊥ and not two. Looking at the K + results, which hint a slightly negative
modulation at low x, non-vanishing asymmetries are indeed only visible at large Ph⊥, where
such Ph⊥ suppression should die out.

Small asymmetries on the sub-percent level consistent with these data are predicted for
pions in Wandzura–Wilczek-type approximations [61], in which only the terms involving
the twist-3 TMDs f ⊥,qT , h qT, and h

⊥,q
T give contributions. Similarly, a calculation based on

a spectator-diquark model for those three TMDs results again in only a small sin (2φ− φS)

modulation consistent with the measurement presented here [164].
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Figure 24. The 2〈sin (2φ− φS)/
√

2ε(1 + ε) 〉hU⊥ amplitudes for π 0 (left), protons, and antiprotons
(right) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.

In the semi-exclusive region of z > 0.7, a positive 2〈sin (2φ− φS)/
√

2ε(1 + ε) 〉U⊥
Fourier amplitude on the order of 0.02 is extracted for positive pions. In general, the
interpretation of asymmetries in this region in terms of TMDs is to be taken with cau-
tion; still, an attempt is provided below. From the various terms contributing to the
related structure function in eq. (2.12), three are increasingly suppressed with increasing
z. The very first term reduces in the Wandzura–Wilczek-type approximation [61] to the
Sivers effect, albeit with the opposite sign compared to the leading-twist Sivers asym-
metry. The measured Sivers asymmetries are indeed large at high z. However, as they
exhibit the same sign as the 2〈sin (2φ− φS)/

√
2ε(1 + ε) 〉U⊥ Fourier amplitudes, either the

Wandzura–Wilczek-type approximation predicts the wrong sign (and thus appears to fail)
or the positive 2〈sin (2φ− φS)/

√
2ε(1 + ε) 〉U⊥ Fourier amplitudes in the high-z region need

to be attributed to other contributions. A possibility could be the second contribution in
eq. (2.12) that is not formally suppressed for large values of z: the combined contribution
of h qT +h⊥,qT coupled to the Collins fragmentation function. In the Wandzura–Wilczek-type
approximation it is related to pretzelosity, but generally found to be very small [61, 164].
There is some similarity of the large-z behavior of the 2〈sin (2φ− φS)/

√
2ε(1 + ε) 〉π+

U⊥ to
that of the 2〈sin (2φ+ φS)/ε 〉π+

U⊥ Fourier amplitude discussed further below (cf. section
4.6). As both modulations receive the same cross-section contribution from the longitudi-
nal target-polarization component, the source for the non-vanishing asymmetries at large
z might indeed stem from a 2 〈sin (2φ)〉π+

UL Fourier amplitude of the longitudinal SSA.
Unfortunately, not much is known about the latter amplitude in the kinematic regime of
this measurement. HERMES data for the related 2 〈sin (2φ)〉hU‖ Fourier amplitude for
charged pions [64] are consistent with zero when integrated over the semi-inclusive z range
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Figure 25. The 2〈sin (φS)/
√

2ε(1 + ε) 〉hU⊥ amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points
in the z projection, are not included in the other projections. Systematic uncertainties are given
as bands, not including the additional scale uncertainty of 7.3% due to the precision of the target-
polarization determination.

of 0.2 < z < 0.7, without presenting data binned in z or for z > 0.7. Likewise, pre-
liminary COMPASS data, both for the semi-inclusive z region and for large z, do not
exhibit a sizable 2 〈sin (2φ)〉hU‖ asymmetry [165]. Only the CLAS collaboration reported
non-vanishing 2 〈sin (2φ)〉hU‖ asymmetry amplitudes for charged pions [166], however, not
for the z > 0.7 range considered here. In contrast to the earlier HERMES measure-
ment of 2 〈sin (2φ)〉hU‖, the CLAS data are on average at larger z since they are integrated
over the range 0.4 < z < 0.7. Thus, the non-zero CLAS data might be a hint of an in-
crease in magnitude of these asymmetry amplitudes with increasing z. On the other hand,
the negative values of these asymmetry amplitudes are not compatible with the positive
2〈sin (2φ− φS)/

√
2ε(1 + ε) 〉π+

U⊥ amplitudes presented here. Last but not least, positive
sin (2φ− φS) modulations have been observed in exclusive π+ electroproduction off trans-
versely polarized protons [167], which suggests a smooth transition from the semi-exclusive
high-z region studied here to exclusive π+ production.

One of the more striking results of this analysis is the observation of large subleading-
twist 2〈sin (φS)/

√
2ε(1 + ε) 〉hU⊥ Fourier amplitudes. In particular, they provide the largest

twist-3 signal in this measurement. They surprise also with a large kinematic dependence
as visible in figure 25, where they are shown for charged mesons. In the semi-inclusive
deep-inelastic scattering region, mainly the Fourier amplitudes for negative mesons are sig-
nificantly different from zero, being of order -0.02. The three-dimensional binning, depicted
in figure 26 for the π−, reveals that those non-vanishing asymmetries stem predominantly
from the large-x and large-z region, where they reach even larger magnitudes. The ampli-
tudes clearly rise with z for charged pions and positive kaons. The precision for K − and
neutral pions in that region is insufficient for drawing a strong conclusion, though also here
an increase in magnitude with z is hinted. A noteworthy characteristic of the results is the
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Figure 26. The 2〈sin (φS)/
√

2ε(1 + ε) 〉U⊥ Fourier amplitudes for π− extracted simultaneously in
bins of x, z, and Ph⊥, presented as a function of Ph⊥. Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.

clearly opposite sign for the π− results compared to both π+ and K +, reminiscent of what
is observed for the Collins asymmetries.

The Fourier amplitudes of the sin (φS) modulations are related to subleading-twist
cross-section contributions (cf. eq. (2.13)). As such it is interesting to explore the Q 2

dependence of this azimuthal asymmetry. Because x and Q 2 are highly correlated, a one-
dimensional binning in Q 2 mixes effects from the twist-3 suppression with the inherent x
dependence of the asymmetry. Therefore, an approach employed already in the previous
HERMES Collins and Sivers publications [29, 40] has been adopted here that splits each
x bin into the two regions of Q 2: below and above the average Q 2 of each x bin. The
resulting π− CSA amplitudes are shown in figure 27. A hint of a suppression is visible for
the regions of larger Q 2, though not very pronounced, which might be a consequence of the
relatively small lever arm in Q 2 as apparent from the difference in average Q 2 for the two
regions, plotted in the bottom panel of the figure.

The structure function F sin (φS)
UT is of particular interest as it is the only contribution
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error bars represent statistical uncertainties only.

to the cross section σ hUT that survives integration over transverse hadron momentum:

F
sin (φS)
UT

(
x,Q 2, z

)
=

∫
d2Ph⊥ F

sin (φS)
UT

(
x,Q 2, z, Ph⊥

)
= −x2Mh

Q

∑
q

e2q h
q
1

H̃ q (z)

z
. (4.1)

It thus provides, in principle, sensitivity to the transversity distribution without involving
a convolution over intrinsic transverse momenta [70]. In addition, the modulation does not
necessarily have to vanish in the limit of Ph⊥ going to zero. Another rather interesting
aspect of the sin (φS) modulation — as pointed out already in section 2.2.5 — is the fact
that the inclusive analogue, i.e., summing over all final-state hadrons and integrating over
their four-momenta, must vanish in the one-photon-exchange approximation, which was
tested at HERMES to the 10−3 level [72].

A serious experimental drawback in using the relation (4.1) to extract transversity
could be the systematic effect arising from the usually incomplete integration over Ph⊥
due to limitations in the geometric acceptance or kinematic requirements in experiments.
Furthermore, a current drawback of such measurement is the lack of knowledge about the
interaction-dependent fragmentation function H̃ q (z). However, it has been shown that the
latter, the Collins fragmentation function, as well as the collinear twist-3 fragmentation
function that is suspected to cause the transverse-spin asymmetries in inclusive pion pro-
duction in single-polarized proton-proton collisions are related [73]. This may explain the
similar qualitative behavior of the Collins asymmetries and of the 2 〈sin (φS)〉πU⊥ Fourier
amplitudes.
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Figure 28. The 2〈sin (φS)/
√

2ε(1 + ε) 〉hU⊥ amplitudes for π 0 (left), protons, and antiprotons
(right) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The relation to the Collins effect might also explain why the results for protons and
antiprotons are consistent with zero, as shown in figure 28 (where also the vanishing signal
for π 0 is presented). As novel spin-dependent fragmentation is involved, it is reasonable to
expect a fundamental difference for production of spin-0 versus spin-12 hadrons.

The vanishing effect for protons and the negative asymmetry for π− also disfavor a
sizable contribution of f qTD

q→h
1 in eq. (2.13) — which can be related to the Sivers ef-

fect in the Wandzura–Wilczek-type approximation — being in conflict with the behavior
of the Sivers asymmetry for those hadrons. Furthermore, f qT has to fulfill the sum rule∫
d2pT f

q
T(x,p2

T ) = 0, which poses a problem when using currently available parameteriza-
tion for the Sivers function in the Wandzura–Wilczek-type approximation for f qT because
they are violating the sum rule. For that reason, it is not further considered here.

Staying within the Wandzura–Wilczek-type approximation, from the remaining terms
in eq. (2.13) contributing to the 2 〈sin (φS)〉πUT Fourier amplitude only the ones involving
the Collins fragmentation function survive. The combined contribution involves −x(h qT −
h⊥,qT )

WW
= h q1 and thus the product of transversity and the Collins fragmentation function.

As in the above discussion of the H̃ q (z) contribution, this might explain the qualitative
similarity of the charged-pion Collins and 2 〈sin (φS)〉πU⊥ Fourier amplitudes.

In contrast to the 2 〈sin (2φ− φS)〉hU⊥ Fourier amplitude, there is no additional term
contributing through the longitudinal target-polarization component. As a consequence, the
2 〈sin (φS)〉hUT and 2 〈sin (φS)〉hU⊥ Fourier amplitudes differ only by the factor cos θγ∗ ' 1 in
the kinematic region of this measurement (cf. appendix A).

While disentangling all the different contributions to the sin (φS) modulation will clearly
require further detailed studies, the marked increase in magnitude of those modulations for
charged pions and K + with z in the semi-inclusive region is especially intriguing. In that
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Figure 29. The 2〈cos (2φ− φS)/
√

2ε(1− ε) 〉hL⊥ amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points
in the z projection, are not included in the other projections. Systematic uncertainties are given
as bands, not including the additional scale uncertainty of 8.0% due to the precision of the target-
polarization determination.

respect, it appears worthwhile to point out that very sizable sin (φS) modulations were
observed in exclusive π+ electroproduction off transversely polarized protons [167].

The remaining two twist-3 Fourier amplitudes, the cos (2φ− φS) and cos (φS) modula-
tions, require longitudinally polarized leptons in addition to transverse target polarization.
As such, their statistical precision suffers from the relatively small lepton-beam polariza-
tion in these data. Again, several (and partially similar) terms contribute to those Fourier
amplitudes as can be seen from eqs. (2.15) and (2.16), making a priori the interpretation in
terms of specific TMDs difficult. Also in this case, Wandzura–Wilczek-type approximations
might help to focus on only a few of the terms.

The 2〈cos (2φ− φS)/
√

2ε(1− ε) 〉hL⊥ Fourier amplitudes for pions, charged kaons, and
(anti)protons are presented in figures 29 and 30. None of those are found to be significantly
different from zero. This is consistent with expectations [61] using Wandzura–Wilczek-type
approximations of sub-percent level asymmetries. In such an approximation, only a term
proportional to the worm-gear (II) g q1T and the ordinary D q→h

1 fragmentation function
survives.

As in the case of the 2 〈sin (φS)〉hU⊥ Fourier amplitude, there is no contribution to the
2 〈cos (2φ− φS)〉hL⊥ Fourier amplitude from the longitudinal target-polarization component.
Therefore, the 2 〈cos (2φ− φS)〉hL⊥ and 2 〈cos (2φ− φS)〉hLT Fourier amplitudes differ only by
the factor cos θγ∗ ' 1 in the kinematic region of this measurement (cf. appendix A).

Finally, the subleading-twist 2〈cos (φS)/
√

2ε(1− ε) 〉hL⊥ Fourier amplitudes are depicted
in figures 31 and 32. They are mostly consistent with zero, except for K −, whose Fourier
amplitudes are found to be incompatible with the NULL hypothesis at 95% confidence level.

In the Wandzura–Wilczek-type approximation, only the term proportional to g qT times
D q→h

1 survives. The former quantifies the quark-flavor contribution to the inclusive-DIS
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Figure 30. The 2〈cos (2φ− φS)/
√

2ε(1− ε) 〉hL⊥ amplitudes for π 0 (left), protons, and antiprotons
(right) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 8.0% due to the precision of the target-polarization determination.

structure function g 2 via eq. (2.18). In this approximation, a small negative 2 〈cos (φS)〉hLT
Fourier amplitude of the order of 1–2% is predicted. While not necessarily favored by the
data, such small negative asymmetries are not excluded in view of the overall precision of
the data.

Without resorting to a Wandzura–Wilczek-type approximation, one can still reduce
the number of contributing terms to 2 〈cos (φS)〉hLT by looking at the cos (φS) modulation
integrated over transverse momentum because — like in the case of the sin (φS) modulation
— the 2 〈cos (φS)〉hLT Fourier amplitude is not required to vanish upon integration over
transverse hadron momentum. But in contrast to the 2 〈sin (φS)〉hUT Fourier amplitude,
two terms survive: the one discussed above involving g qT and the product of transversity
and the twist-3 collinear Ẽ q→h (z) [76], as can be seen from eq. (2.17). This allows for a
collinear extraction of transversity, at least in principle as the contribution of the g qT term
needs to be subtracted. Furthermore, there exist similar considerations as for the sin (φS)

modulation, namely the usually incomplete integration over Ph⊥ due to limitations in the
geometric acceptance or kinematic requirements in experiments and the presently rather
limited knowledge of the twist-3 fragmentation function Ẽ q→h (z).

Unlike the case of 2 〈sin (φS)〉hU⊥ and 2 〈cos (2φ− φS)〉hL⊥, in the experimental mea-
surement of 2 〈cos (φS)〉L⊥ amplitudes, relatively large contributions from the longitudinal
target-polarization component can be expected due to the mixing discussed in appendix A.
The double-spin asymmetry associated with the longitudinal polarization component is the
typically sizable Ah‖ related to the Ah1 helicity asymmetry. It reaches values of 0.5 and
higher [158, 168], and thus values that are in general much larger than those measured for
azimuthal asymmetries. While suppressed because of the small value of θγ∗ , this contri-
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Figure 31. The 2〈cos (φS)/
√

2ε(1− ε) 〉hL⊥ amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points
in the z projection, are not included in the other projections. Systematic uncertainties are given
as bands, not including the additional scale uncertainty of 8.0% due to the precision of the target-
polarization determination.
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Figure 32. The 2〈cos (φS)/
√

2ε(1− ε) 〉hL⊥ amplitudes for π 0 (left), protons, and antiprotons
(right) presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 8.0% due to the precision of the target-polarization determination.
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Figure 33. The 2〈sin (2φ+ φS)/ε 〉hU⊥ amplitudes for charged mesons (left: pions; right: kaons)
presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in the z
projection, are not included in the other projections. Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.

bution could still be substantial in comparison to the subleading-twist contributions from
eq. (2.16) (cf. discussion in appendix A).

4.6 Fourier moments arising solely from the longitudinal component of the
target polarization

In total ten Fourier components dependent on the transverse target polarization are ex-
tracted here. Of those, two arise solely because of a small longitudinal component of
the proton polarization along the virtual-photon direction (cf. appendix A). They are the
2 〈sin (2φ+ φS)〉hU⊥ Fourier amplitude of the transverse SSA and the 2 〈cos (φ− φS)〉hL⊥
Fourier amplitude of the DSA, which are related to the 2 〈sin (2φ)〉hUL Fourier amplitude
of the longitudinal SSA and the 2 〈cos (φ)〉hLL Fourier amplitude of the longitudinal DSA,
respectively. While 2 〈sin (2φ)〉hUL receives contributions at leading twist, 2 〈cos (φ)〉hLL is of
subleading twist.

The 2 〈sin (2φ)〉hUL Fourier amplitude provides access to the chiral-odd worm-gear (I)
distribution h⊥,q1L

(
x,p2

T

)
, which describes the distribution of transversely polarized quarks

in a longitudinally polarized nucleon. As the final state involves unpolarized hadrons only,
this chiral-odd TMD must couple to the chiral-odd Collins fragmentation function.

Vanishing 2 〈sin (2φ)〉hUL amplitudes for pions have been reported by the HERMES
Collaboration in an analysis of single-spin asymmetries using longitudinally polarized hy-
drogen [64, 65] and deuterium [66] targets. The latter included also a measurement for K +

mesons, which was found to be consistent with zero as well. The only non-vanishing signal
so far has been reported by the CLAS Collaboration using a longitudinally polarized am-
monia (15NH3) target (providing longitudinally polarized protons) [166]. The 2 〈sin (2φ)〉πUL
Fourier amplitudes for charged pions are negative and of the order of 5% in magnitude.

– 53 –



-0.2
-0.15
-0.1
-0.05
-0

0.05
0.1
0.15
0.2

0.1 0.2

π0

x

2
〈s
in
(2
φ+
φ S
)/
ε〉
U
⊥

0.5 1 0 0.5 1
z Ph⊥ [GeV]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

p

2
 〈

s
in

(2
φ
+

φ
S
) 

/ 
ε〉

U
⊥

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

0.1 0.2

p
–

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

Figure 34. The 2〈sin (2φ+ φS)/ε 〉hU⊥ amplitudes for π 0 (left), protons, and antiprotons (right)
presented either in bins of x, z, or Ph⊥. Data at large values of z, marked by open points in
the z projection, are not included in the other projections (no such high-z points are available for
antiprotons due to a lack of precision). Systematic uncertainties are given as bands, not including
the additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The 2 〈sin (2φ+ φS)〉hU⊥ amplitudes in the Fourier decomposition of the experimen-
tally measured cross section, which are not sensitive to a structure function of the trans-
verse target spin-dependent cross-section contribution σ hUT in eq. (2.1), are related to the
2 〈sin (2φ)〉hUL amplitudes through

2 〈sin (2φ+ φS)〉hU⊥ '
1

2
sin θγ∗ 2 〈sin (2φ)〉hUL (4.2)

(cf. appendix A).x Therefore, a potential signal for h⊥,q1L
(
x,p2

T

)
is additionally suppressed

by at least an order of magnitude compared to corresponding measurements using longitu-
dinally polarized targets.

The 2〈sin (2φ+ φS)/ε 〉hU⊥ Fourier amplitudes for pions, charged kaons, as well as for
(anti)protons extracted in the presented analysis are shown in figures. 33 and 34. They are
primarily consistent with zero and thus in agreement with the previous 2 〈sin (2φ)〉hUL related
measurements, where data are available. There is a tendency for a non-vanishing signal for
positive pions at very large z, e.g., when approaching the exclusive region, similar to what
has been discussed for the 2 〈sin (2φ− φS)〉hU⊥ Fourier amplitude in section 4.5. An analo-
gous Fourier decomposition of the transverse SSA in exclusive π+ electroproduction [167]
does result in sin (2φ+ φS) modulations not dissimilar to the behavior observed here in
the large-z region, hinting at a non-vanishing 2 〈sin (2φ)〉π+

UL Fourier amplitude in the exclu-
sive regime and possibly in the semi-exclusive region probed here. On the other hand, the
direct measurement of the 2 〈sin (2φ)〉π+

U‖ Fourier amplitude in exclusive π+ electroproduc-

xThrough the same longitudinal target-polarization component, h⊥,q1L

(
x,p2

T

)
contributes with equal

magnitude also to 2 〈sin (2φ− φS)〉hU⊥ as discussed before. However, in that case it has to compete with
the genuine transverse-polarization effects introduced in section 2.2.5.
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tion gives only 0.05 ± 0.05 [169], likely too small to produce a sizable 2 〈sin (2φ+ φS)〉π+

U⊥
Fourier amplitude through the mixing of longitudinal and transverse target-polarization
components.y

The K + 2〈sin (2φ+ φS)/ε 〉U⊥ Fourier amplitude presented here might be the notable
exception as — somewhat unexpectedly — it is positive over essentially the entire z range.
It is incompatible with the NULL hypothesis at 95% confidence as already presented in
table 9. This points to a possibly sizable 2 〈sin (2φ)〉K +

UL asymmetry and thus indirectly to
a sizable worm-gear (I) h⊥,q1L

(
x,p2

T

)
. In particular, taking into account the factor 1

2 sin θγ∗

that relates the two Fourier amplitudes and that amounts on average to 0.04 (cf. eq. (4.2)
and appendix A), 2 〈sin (2φ)〉K +

UL Fourier amplitudes of the order 30% can be expected. No
measurement of 2 〈sin (2φ)〉K +

UL for a proton target is presently available. A direct compari-
son of 2 〈sin (2φ)〉K +

UL to the 2 〈sin (2φ+ φS)〉K +

U⊥ presented here is thus not possible. Results
for the 2 〈sin (2φ)〉K +

U‖ Fourier amplitude for a deuteron target are consistent with zero and
within the achieved precision incompatible with magnitudes of tens of percent. On the
other hand, there have been various instances where the K + result exceeds significantly
the magnitudes for pions, prominent cases being the Sivers as well as the Collins asym-
metries presented here. Recalling that h⊥,q1L

(
x,p2

T

)
couples to the Collins fragmentation

function in 2 〈sin (2φ)〉hUL and that for π+ there are significant cancelation effects due to
the opposite signs for the favored and disfavored Collins fragmentation functions of pions,
larger K + modulations can be expected if, for example, only H ⊥,u→K

+

1 is sizable as found
in ref. [135].

The 2〈cos (φ+ φS)/
√

2ε(1− ε) 〉hL⊥ Fourier amplitudes for pions, for charged kaons, as
well as for (anti-)protons extracted in this analysis are shown in figures 35 and 36. They
arise through the small longitudinal target-polarization component from the subleading-
twist cos(φ) azimuthal modulation of the longitudinal DSA. The latter may arise through
the “polarized Cahn effect” [99, 170, 171], which combines transverse momenta of longitudi-
nally polarized quarks in a longitudinally polarized nucleon with the transverse momentum
acquired in the fragmentation process and as such is sensitive to the transverse-momentum
dependence of the helicity distribution, g 1

(
x,p2

T

)
. No significant signal for such mod-

ulation has been reported so far, neither for unidentified hadrons from a longitudinally
polarized 6LiD (effectively a deuteron) target at the COMPASS experiment [172] nor for
identified pions (and kaons) from a longitudinally polarized hydrogen (deuterium) target
by the HERMES Collaboration [168]. This is consistent with the vanishing signal for
2 〈cos (φ+ φS)〉hL⊥ reported here.

yA conclusive evaluation is hampered by the precision of the data and the possibility that
the 2 〈sin (2φ)〉π

+

U‖ result for exclusive π+ electo-production received in turn contributions from a

2 〈sin (2φ− φS)〉π
+

UT term in exclusive π+ electroproduction, requiring a combined analysis of all three
modulations, 2 〈sin (2φ)〉π

+

U‖ , 2 〈sin (2φ− φS)〉
π+

U⊥ , and 2 〈sin (2φ+ φS)〉π
+

U⊥ , along the lines of what was done
in ref. [67].
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5 Conclusion

A comprehensive discussion of azimuthal single- and double-spin asymmetries in semi-
inclusive leptoproduction of pions, charged kaons, protons, and antiprotons from trans-
versely polarized protons at HERMES has been presented. These asymmetries include the
previously published HERMES results on Collins and Sivers asymmetries [29, 40], which
have been extended to include protons and antiprotons and also to an extraction in a three-
dimensional binning in x, z, and Ph⊥. In addition, the large-z region of z > 0.7 is explored
to study the transition from the semi-inclusive to the exclusive regime.

Furthermore, the set of azimuthal asymmetries measured include those arising from the
leading-twist pretzelosity and worm-gear (II) distributions, four subleading-twist modula-
tions, and two modulations that contribute to the e±p cross-section through the small but
non-vanishing longitudinal target-polarization component in experiments where the target
is polarized perpendicular to the beam direction. No sign of a non-zero pretzelosity is
found, while the non-vanishing cos (φ− φS) modulations for pions provide evidence for a
sizable worm-gear (II) distribution, g q1T

(
x,p2

T

)
. The subleading-twist contributions and

the ones from the longitudinal target-spin component are mostly consistent with zero. A
rather notable exception are the large sin (φS) modulations for charged pions and K +.

All modulations were studied as functions of x, z, and Ph⊥ individually as well as
simultaneously binned in all the three kinematic variables, except for π 0 and antiprotons,
in which case the corresponding yields were not sufficient to allow such three-dimensional
binning. Fourier amplitudes were extracted including or excluding the kinematic prefac-
tor arising from the photon spin-density matrix accompanying each specific cross-section
contribution. This allows for a simpler comparison with other experiments or theoretical
calculations as experiment-specific integration over kinematic variables is minimized. The
results for the azimuthal modulations are supplemented by information on the unpolarized
cross section, in particular, distributions in rapidity as well as of transverse momentum
vs. the hard scale Q 2. Those are expected to facilitate the interpretation of the modulation
in global analyses within the TMD framework.
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A Contribution from longitudinal target polarization

The interest in leptoproduction data on transversely polarized protons lies in the various
semi-inclusive structure functions discussed in section 2.2. As the target-polarization di-
rection in an actual experiment refers to the lepton-beam direction for the reference axis
and not to the virtual-photon direction used in theory, most of the azimuthal modulations
measured here receive contributions from the resulting non-vanishing longitudinal compo-
nent of the target polarization with respect to the virtual-photon direction (see figure 37).
This leads to additional moments as compared to, e.g., eq. (2.1), resulting in [96]

σh(φ, φS) = σ hUU

{
1 + 2 〈cos (φ)〉hUU cos (φ) + 2 〈cos (2φ)〉hUU cos (2φ)

+ SL

[
2 〈sin (φ)〉hU‖ sin (φ) + 2 〈sin (2φ)〉hU‖ sin (2φ) + 2 〈sin (3φ)〉hU‖ sin (3φ)

+λl

(
2 〈cos (0φ)〉hL‖ cos (0φ) + 2 〈cos (φ)〉hL‖ cos (φ) + 2 〈cos (2φ)〉hL‖ cos (2φ)

)]
+ ST

[
2 〈sin (φ− φS)〉hU⊥ sin (φ− φS) + 2 〈sin (φ+ φS)〉hU⊥ sin (φ+ φS)
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+ 2 〈sin (3φ− φS)〉hU⊥ sin (3φ− φS) + 2 〈sin (φS)〉hU⊥ sin (φS)

+ 2 〈sin (2φ− φS)〉hU⊥ sin (2φ− φS) + 2 〈sin (2φ+ φS)〉hU⊥ sin (2φ+ φS)

+ λl

(
2 〈cos (φ− φS)〉hL⊥ cos (φ− φS) + 2 〈cos (φ+ φS)〉hL⊥ cos (φ+ φS)

+2 〈cos (φS)〉hL⊥ cos (φS) + 2 〈cos (2φ− φS)〉hL⊥ cos (2φ− φS)
)]}

, (A.1)

where the cross section averaged over the polarization states and integrated over φ and φS
is represented by σ hUU and has been factored out.

The size of the component of the nucleon-spin vector that is longitudinal to the virtual-
photon direction depends on θγ∗ , the polar angle between the incoming-beam and the
virtual-photon directions. Hence it strongly depends on the event kinematics. At HERMES
kinematics, sin θγ∗ is of the order of 0.1 but can be as large as 0.2 for events at very large
x. Here, sin θγ∗ is evaluated from the lepton kinematics as

sin θγ∗ =
2xM

Q

√
1− y − y2x2M2/Q 2

1 + 4x2M2/Q 2
. (A.2)

Its average values are presented in figure 38 for π+ (similar for the other hadrons) in
the same three-dimensional kinematic binning used also for the asymmetry measurement.
Likewise, they are presented in figure 39 for the one-dimensional binning of mesons. The
longitudinal polarization components are also provided as tabulated values for all particle
types [104].

The contributions from the transverse and longitudinal components can only be dis-
entangled using data from targets with both polarization orientations. Such analysis was
presented in ref. [67] by the HERMES Collaboration, using both data for the Sivers and
Collins type modulations for transverse target polarization [28] and the sinφ modulation
for longitudinal polarization [64]. It is based on the inversion of the mixing matrix

2 〈sin (φ)〉U‖
2 〈sin (φ− φS)〉U⊥
2 〈sin (φ+ φS)〉U⊥

 =


cos θγ∗ − sin θγ∗ − sin θγ∗

1
2 sin θγ∗ cos θγ∗ 0

1
2 sin θγ∗ 0 cos θγ∗




2 〈sin (φ)〉UL

2 〈sin (φ− φS)〉UT

2 〈sin (φ+ φS)〉UT

 , (A.3)

which is valid up to corrections of order sin2 θγ∗ [96]. Similar expressions are obtained for
the other modulations studied here by interchanging in eq. (A.3)

(i) sin(φ± φS)↔ sin(nφ± φS) and sin(φ)↔ sin(nφ) for n > 0,

(ii) sin↔ cos in case of longitudinal beam polarization.

Note that some of the elements of the moments vectors might then be identical to zero
(cf. eqs. (2.1) and (A.1)), e.g., 〈sin(3φ)〉LL, at least in the one-photon-exchange approxima-
tion.

The φ-independent SSA relates to its theory counterpart via

2 〈sin (φS)〉U⊥ = cos θγ∗ 2 〈sin (φS)〉UT , (A.4)
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while the mixing of the φ-independent double-spin asymmetries can be expressed as(
〈cos 0〉L‖

2 〈cos (φS)〉L⊥

)
=

(
cos θγ∗ − sin θγ∗

sin θγ∗ cos θγ∗

)(
〈cos 0〉LL

2 〈cos (φS)〉LT

)
. (A.5)

The experimental challenge consists in combining measurements using transversely and
longitudinally polarized targets under similar conditions, which among others requires iden-
tical kinematic binning for the two data sets. For the analysis presented here, such a match-
ing data set is missing. In particular, the use of a threshold Cherenkov counter during data
taking with a longitudinally polarized hydrogen target prohibits the measurement of the
relevant kaon and also (anti)proton asymmetries. Therefore, no attempt has been made to
disentangle the structure functions related to transversely and longitudinally polarized pro-
tons. Future data and/or parameterization of the relevant longitudinal-spin asymmetries
might be used instead to extract the purely transverse structure functions.

Nevertheless, while a precise quantitative evaluation of the effect for all the SSAs and
DSAs of this measurement is currently out of reach, a few qualitative comments might be in
order. In general, most azimuthal moments presented here and elsewhere for longitudinal
target polarization are of similar order of magnitude, e.g., below 0.1 in magnitude. The cor-
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rections are thus small as already noted for the Sivers and Collins asymmetries in ref. [67].
This is not quite the case though for the φ-independent DSA, 2 〈cos (φS)〉L⊥, which receives
rather large contributions from the azimuthally uniform structure function arising from the
quark-helicity distribution. Those are up to an order of magnitude larger [168] than the
typical azimuthal moments and increase with x as does the longitudinal target-polarization
component, which needs to be considered when interpreting the 2 〈cos (φS)〉L⊥ results. As
an example, the contribution from A‖ has been evaluated using the HERMES measure-
ment [168] scaled by the corresponding average longitudinal target-spin component of each
x bin, shown in figure 40.

There are notable exceptions to this general discussion. Three azimuthal asymmetries,
namely the 2 〈sin (φS)〉U⊥, the 2 〈sin (3φ− φS)〉U⊥, and the 2 〈cos (2φ− φS)〉L⊥ Fourier am-
plitudes, do not receive contributions from the longitudinal component of the target polar-
ization. The experimentally measured azimuthal asymmetries are thus only diluted. The
correction factor 1/ cos θγ∗ , however, can be taken as unity under the kinematic conditions
here. The second class of exception concerns the 2 〈sin (2φ− φS)〉U⊥ and 2 〈cos (φ− φS)〉L⊥
Fourier amplitudes. The contributions from the longitudinal component to those are equal
to the contributions to 2 〈sin (2φ+ φS)〉U⊥ and 2 〈cos (φ+ φS)〉L⊥. In contrast to the
2 〈sin (2φ− φS)〉U⊥ and 2 〈cos (φ− φS)〉L⊥ Fourier amplitudes, the 2 〈sin (2φ+ φS)〉U⊥ and
2 〈cos (φ+ φS)〉L⊥ Fourier amplitudes arise solely because of the contribution from the lon-
gitudinal component of the target polarization and are thus a measure for that contribution
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to also 2 〈sin (2φ− φS)〉U⊥ and 2 〈cos (φ− φS)〉L⊥.
The mixing of target-spin components occurs on the level of the lepton-proton cross sec-

tions. Disentangling the contributions thus works in a straightforward way for the CSA by
solving the set of linear equations (A.3) as well as (A.5). By contrast, the extraction of SFA
already includes a compensation for the ε-dependent prefactors, which are in general not
the same for the longitudinal and transverse target-spin contributions. As a consequence, a
similar separation of the terms from longitudinal and transverse target polarization requires
the inclusion of these prefactors in the matrices of eqs (A.3) and (A.5).

B Transverse-momentum factorization and the separation of current and
target fragmentation

This measurement has been performed in the approach presented by Mulders and Tanger-
man [70] and subsequent works, assuming that the hard scale given by Q 2 is sufficiently
large compared to the transverse momenta involved, and that hadrons are produced in the
commonly denoted current or quark fragmentation region [94], i.e., during the hadroniza-
tion of the quark struck by the virtual photon. In the kinematic region of typical fixed-
target deep-inelastic scattering experiments, the clear separation of the current from the
target fragmentation — where the hadron originates from the target remnants (see, e.g.,
refs. [173, 174]) — is not always granted [95]. As outlined already in section 3.2, the sit-
uation is even more vague when looking at transverse-momentum-dependent observables
as in this work, because in that case, a hadron produced with large enough transverse
momentum in the target fragmentation may mimic a hadron with large transverse momen-
tum from current fragmentation. This complication has attracted increased attention, e.g.,
through the works of refs. [16, 93]. There is no unique recipe to ensure complete separation
of current and target fragmentation and the applicability of QCD factorization theorems
may be questioned in the more extreme kinematic regions of growing overlap of the two,
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e.g., at very low z and large transverse momentum and especially at low values of Q 2. But
where exactly to draw the boundary remains an open issue.

Rather than explicitly applying stringent constraints on the kinematic variables, in this
work a large part of the available kinematic phase space is explored within reasonable limits
and the azimuthal modulations of interest studied in that kinematic region. In addition, in
order to facilitate interpretation of the results, kinematic distributions are provided for the
various choices of kinematic binning and hadron species. In this way, the door is open for
phenomenology to explore in more detail whether and where the factorized picture might
break down for these spin asymmetries.

The particular choice of kinematic distributions provided here are driven by the two
aspects considered in the beginning of this section, namely (i) the separation of current and
target fragmentation as studied through rapidity distributions, and (ii) the small transverse-
momentum requirement as explored by looking at both Q 2 versus P 2

h⊥ and Q 2 versus
P 2
h⊥/z

2.
A presentation in this paper of the distributions for all kinematic bins and hadron

species is not practical, they will hence be made available elsewhere [104]. Instead, a
selection of those are presented for the more extreme cases.

B.1 Separation of target and current fragmentation

In this measurement, hadrons were selected that have a high probability to stem from the
current fragmentation. For that a minimum z of 0.2 is required, which predominantly
selects forward-going hadrons in the virtual-photon–proton center-of-mass system, forward
being the direction of the virtual photon. This is visible in figure 41, where the correlation
between z and xF is plotted for both K + and protons. For kaons (and likewise pions),
z > 0.2 corresponds to positive xF . The situation is slightly less favorable for protons,
where still a notable fraction of the yield in the lowest z bin falls in the category of negative
xF . This can be seen also in the rapidity distributions. They are depicted in figure 42 for
the last x bin, while those for pions are shown for the first and last x bin in figure 43. From
those distributions it is evident that the majority of events is at forward rapidity. Only
a small fraction of events, mainly in the case of protons, populates the region of negative
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Figure 42. Rapidity distributions for protons in the various (z, Ph⊥) bins of the last x bin. The
dashed lines indicate zero rapidity.

rapidity and do so only for large Ph⊥ and small z. Furthermore, clearly visible in the π+

figure is a general increase of rapidity with increasing z as well as when decreasing Ph⊥ and
x.

B.2 Transverse-momentum versus hard scale

The interpretation of transverse-momentum-dependent azimuthal distributions in terms of
TMD PDFs and FFs as discussed in section 2 requires the presence of one hard scale (Q 2)
— which is much larger than a typical nonperturbative-QCD scale like the proton mass
or ΛQCD ∼= 0.3 GeV, the QCD-scale parameter — and transverse momentum that is small
in comparison to Q 2. Under these conditions, the transverse momentum of the hadron
observed can be interpreted as originating from non-pertubative sources in the initial proton
structure and in the fragmentation process (including their calculable variations with the
hard scale). By contrast, in the region of large transverse momentum, perturbative-QCD
radiation is the primary source of the observed transverse momentum of the final-state
hadron. This is typically accompanied by a 1/Ph⊥ suppression of the observable, which
usually can be interpreted in terms of collinear PDFs and FFs. In the intermediate region
of relatively large transverse momentum but still larger Q 2, these two descriptions are
expected to match their behaviors for a number of azimuthal modulations studied here [175].

In this measurement, Ph⊥ is of the order of the QCD scale. However, Q 2 is neither
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always very large compared to the proton mass nor compared to the transverse momentum.
Under such conditions, subtleties in the definition of the transverse momentum can also
become relevant. One way of testing the requirement of small transverse momentum is
comparing directly Ph⊥ and Q 2. A different choice of transverse momentum, one that is in
particular convenient in factorization proofs of transverse-momentum-dependent processes,
is that of the virtual boson in the frame where the two hadrons involved (initial and final
in case of semi-inclusive deep-inelastic scattering) are collinear; this choice is commonly
denoted as qT . For large enough Q 2, q2

T ' P 2
h⊥/z

2, from which follows the requirement of
P 2
h⊥/z

2 � Q 2.
In figure 44, the two different transverse momentum scales, P 2

h⊥ and q2
T , are compared

to Q 2 for π+ in the 16 (z, Ph⊥) bins of the lowest x bin. Because x and Q 2 are highly
correlated in this measurement, the lowest x bin corresponds to the region of lowest Q 2

and hence the region for which the TMD-factorization requirement of small transverse
momentum relative to a single hard scale is the more difficult one to fulfill. As visible in
the top plot of the figure, for Ph⊥ < 0.54 GeV all events are above the Q 2 = P 2

h⊥ diagonal,
i.e., the “safe” region. Only in the highest Ph⊥ bin, a small fraction of events are below
that diagonal. For larger values of x, the situation is even more favorable with a completely
negligible fraction of events in the region of Q 2 < P 2

h⊥. Even though only presented here
for the π+ sample, these observations equally hold for the other hadrons considered in this
measurement.

The behavior changes significantly when instead the Q 2 is plotted against P 2
h⊥/z

2,
shown in the bottom plot of figure 44. The requirement of much larger Q 2 becomes more
stringent due the rescaling of the transverse momentum by 1/z2, which becomes a large
factor for the low-z region. As a consequence, only in the lowest Ph⊥ bin of the lowest z bin
the majority of π+ events fall in the region above the Q 2 = P 2

h⊥/z
2 diagonal. Already in

the second Ph⊥ bin the opposite is the case: most of the events populate the region below
that diagonal. Going to bins of larger Ph⊥ aggravates this situation, up to a point where
the majority of events falls in the “unsafe” region for all z bins of the semi-inclusive region.
As before, the π+ case is exemplary for all the hadrons considered in this measurement.

The situation improves, as expected from the existing x–Q 2 correlation, when consid-
ering larger values of x. This is demonstrated in figures 45 and 46, where the Q 2 vs. P 2

h⊥/z
2

distributions for π+ are shown for successively increased x.
Figure 47 illustrates both the effect of the upper z constraint of 0.7 and of a minimum

requirement of xF > 0 (not applied in this measurement) on the proton-yield distributions
as functions of x, z, and Ph⊥. In particular, apart from extending the z spectrum to larger
values, there is no visible qualitative change of the various distributions when including the
high-z range. On the other hand, data for negative xF are populated in the region of large
Ph⊥ as is expected. This feature of the data is observed for all hadrons, albeit even further
suppressed in case of mesons.
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C “Polarizing” Pythia6.2 for the estimate of systematic uncertainties

One of the major challenges of such semi-inclusive measurements as presented here is the
evaluation of detector effects, in particular the influence of a finite kinematic acceptance on
the Fourier amplitudes extracted. A rigorous analysis procedure involves a fully differential
unfolding as done, e.g., for the HERMES measurement of the cosine modulations in the
polarization-averaged semi-inclusive deep-inelastic scattering cross section [32]. Here, the
limited number of events precludes an unfolding in six dimensions. However, being effec-
tively an asymmetry measurement results in various approximate cancelations of detector
effects. Nevertheless, even though the angular Fourier decomposition uses a maximum-
likelihood fit unbinned in the azimuthal angles, the limited instrumental acceptance in the
remaining kinematic variables can still influence the measurement [100], especially if not
performed differential in all the remaining kinematic variables.

Monte Carlo simulations of both the underlying physics as well as of the detector
response have become a vital tool for evaluating such systematic effects. The basis for
those is a reliable modeling of the experimental setup but also realistic simulations of
the physics processes. The measurements presented here enter a territory for which the
latter are scarce, mainly due to a lack of knowledge about the various TMDs. Several
dedicated physics generators have become available, but none that covers all the TMDs
and modulations examined here.

The approach chosen in this analysis makes use of an already very good description
of the spin-independent semi-inclusive deep-inelastic scattering cross section provided by
Pythia6.2 [90, 91]. Pythia6.2 events come with event weights equal to unity and are
hence easy to reshuffle. This is exploited to introduce spin dependence into the otherwise
spin-independent event generator [100, 176, 177]. A polarization state P is assigned to each
event i based on a model of the spin asymmetry of interest, e.g.,

ρ <
1

2

[
1 +Asin(φ−φS)

U⊥ (Ωi) sin(φi − φiS)
]
⇒ P = +1 (C.1)

ρ >
1

2

[
1 +Asin(φ−φS)

U⊥ (Ωi) sin(φi − φiS)
]
⇒ P = −1 (C.2)

in case of the Sivers Fourier amplitude, by throwing a random variable 0 < ρ < 1. Here,
(Ωi, φi, φiS) are the fully differential true kinematics for that particular event and Asin(φ−φS)

U⊥
is a suitable parameterization for the Sivers modulation. In the specific analysis, eqs. (C.1)
and (C.2) are to include all ten azimuthal modulations including the double-spin asymme-
tries. Virtually any parameterization of the spin dependence can be implemented (as long
as fulfilling positivity constraints) without limiting oneself to, e.g., the Gaussian Ansatz
for the transverse-momentum dependence. In addition, the full event will remain avail-
able, which allows a more thorough study of systematics due to event-topology–dependent
detector responses.

Given the scant availability of parameterizations for all modulations studied here, a
data-driven approach is employed. An approximate model of reality is obtained by expand-
ing the various Fourier amplitudes measured in a Taylor series in all kinematic variables.
A maximum-likelihood fit is employed to extract the coefficients of the fully differential

– 70 –



(though truncated) Taylor series for every single azimuthal amplitude appearing in the
cross section and for every hadron type. These parameterizations are then used to assign
spin states to the Pythia6.2 Monte Carlo simulation — augmented with RadGen [101]
to account for QED radiative effects and passed through a Geant3 [102] description of the
HERMES apparatus (including the RICH particle-identification inefficiencies) — accord-
ing to eqs. (C.1) and (C.2), with the proper inclusion of all the modulations. The resulting
asymmetry amplitudes, reconstructed in the same way as those of the actual HERMES
data, are compared to the latter to further tune the truncation of the Taylor series. As
an example, in figure 48 (left) a comparison of the fully differential model extracted with
the HERMES data is provided for the Collins SFA amplitudes of charged pions. Limi-
tations stemming from the truncation of the Taylor series might be present. While it is
not a principle problem to include additional terms, it turns into a more practical problem,
especially when attempting to parameterize all spin-dependent terms in the semi-inclusive
deep-inelastic scattering cross section, and as a result approaching the usual limit of, e.g.,
standard Minuit [178], on how many parameters can be determined simultaneously.

In this work most Fourier amplitudes are found to be consistent with zero. In or-
der to keep a finite number of parameters, the following choice was made concerning the
parameterization of the fully differential model:

(i) For the three Fourier components that exhibit larger asymmetries and non-linear
kinematic dependences (Sivers, Collins, and the sin (φS) modulation), all the constant
and terms linear in x, z, Ph⊥, and Q 2 as well as the 2nd-order terms in x, z, Ph⊥, i.e.,
eleven parameters in total for each modulation, are fit to data.

(ii) For all remaining Fourier components, only the constant and terms linear in x, z,
Ph⊥, and Q 2, i.e., five parameters for each modulation, are included.

The model was expanded around the mean kinematics and fit to data either in the default
semi-inclusive range of 0.2 < z < 0.7 or in the extended z range. The same model was
used for the systematics of both the CSA and SFA and was extracted employing the SFA
probability density (3.3) in the maximum-likelihood fit. Variations of the parameterization
of the fully differential model were considered and found to give consistent results for these
systematic uncertainty.

Antiprotons and neutral pions were treated slightly different due to a lack of statistical
precision. More specifically, for the antiproton model, only the standard 0.2 < z < 0.7 range
is used as there is not a sufficient number of events at larger values of z. Furthermore, only
the constant and terms linear in x, z, Ph⊥, and Q 2 are kept in the Taylor expansions of
all ten Fourier amplitudes. The neutral-pion model is constructed using the much better
constrained charged-pion models under the assumption of isospin symmetry, i.e.,

Aπ 0 ≡ Aisospin =
Aπ+

+ C · Aπ−

(1 + C)
(C.3)

where Aπ+ and Aπ− are the fully differential models for π+ and π−, respectively, and
the coefficient C represents the ratio of the polarization-averaged semi-inclusive DIS cross-
sections for negative and positive pion production. In the present analysis the value of C
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Figure 48. Left: Comparison of the HERMES data for charged-pion Collins SFA amplitudes with
the fully differential model of those evaluated at the average kinematics of each bin. The dashed
curve (red) uses the model based on data in the standard 0.2 < z < 0.7 range, while the solid line
(blue) includes also the high-z data. Right: Comparison of the fully differential models evaluated at
the average kinematics of each bin with the fully reconstructed “polarized Pythia6.2” simulation (in
HERMES acceptance) based on those models. The difference is assigned as systematic uncertainty
and shown as uncertainty bands at the bottom of each panel.

was approximated by

C ≡ σ π
−

UU

σ π
+

UU
≈ 〈M

π−〉
〈Mπ+〉 ≈ 0.374 (C.4)

using the average, 〈Mπ±〉, of the π± multiplicities [92].
Figures 48 (right) and 49 illustrate the subsequent extraction of systematic uncertain-

ties. The “polarized Pythia6.2” events were tracked through a realistic simulation of the
experiment and analyzed in the same way as normal experimental data. The reconstructed
asymmetry amplitudes are compared to the parameterizations evaluated at the mean re-
constructed kinematics of each data point, i.e., in each experimental bin. (This is the same
as how the data are usually used in phenomenological fits, e.g., interpreted as the true value
of the observable for the average kinematics given alongside.) In each kinematic bin, the
difference of the reconstructed Monte Carlo asymmetries and the parameterization, e.g.,

δsys (2 〈sin (φ− φS)〉U⊥) ≡ | 2 〈sin (φ− φS)〉MC
U⊥ −A

sin(φ−φS)
U⊥ (〈Ω〉bin) | (C.5)

stems from detector effects including smearing, but more importantly from the integration
over kinematic variables, and is assigned as the corresponding systematic uncertainty.

It is worthwhile to highlight that the difference of an average asymmetry in a bin
and the asymmetry value at the average kinematics of that bin strongly depends on the
non-linearity of the asymmetry and the kinematic region integrated over. That makes the
one-dimensional projections much more susceptible to acceptance effects than the three-
dimensional data presented as the main results in this analysis.
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