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Abstract

We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model

has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top

of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in

the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions

and the electroweak vacuum metastability.
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1 Introduction

Higgs inflation [1–3] stands out among many other models of inflation as it is minimal and consistent with

the cosmic microwave background (CMB) observation [4]. It introduces a non-minimal coupling to gravity,

Lξ = ξR |H |2 , (1.1)

with H the standard model (SM) Higgs doublet, R the Ricci scalar, and ξ the non-minimal coupling, so that

the Higgs potential becomes flat in the Einstein frame for |H |&MP /ξ. The CMB normalization requires ξ2 ∼
2×109λ, indicating a large non-minimal coupling, ξÀ 1, unless the Higgs quartic coupling λ is tiny. However,

such a large non-minimal coupling causes a strong coupling problem, where the model loses perturbative

unitarity at MP /ξ, well below the Planck scale [5–8]. While this problem does not necessarily ruin the model’s

validity during inflation [9], during preheating NG bosons (or equivalently longitudinal gauge bosons) with

energy exceeding MP /ξ are produced, threatening perturbative unitarity [10–12].\1 It is thus desirable to push

up the scale MP /ξ where the theory becomes strongly coupled.

Higgs-R2 inflation is a natural solution to the strong coupling problem of Higgs inflation [14, 15]. In addi-

tion to the non-minimal couplings term, it also includes the R2-term

Lα =αR2. (1.2)

The R2-term is not only required for the renormalizability of Higgs inflation [16], but is enhanced for a large

ξ because of quantum corrections [14, 17–21]. The renormalization group equation (RGE) implies a natu-

ral value of the coupling to be α ∼ ξ2, which gives rise to a scalaron degree of freedom [22–25] with mσ ∼
MP /

p
α ∼ MP /ξ right at the strong coupling scale of Higgs inflation. In the same way as the SM Higgs uni-

tarizes the Fermi theory at the electroweak (EW) scale, the scalaron unitarizes Higgs inflation at mσ ∼ MP /ξ,

as shown in Refs. [20, 21]. Remarkably, the Higgs-R2 model is unitary up to MP and its quantum corrections

never induce other operators (such as the Rn-terms with n ≥ 3) below MP [21].\2 Therefore, by computing

the beta functions, we can connect the observational input at the EW scale to the UV parameters without

ambiguities as long as the scale of our interest is below MP .

In this paper, the beta functions of the Higgs-R2 inflation up to two-loop which are applicable below the

Planck scale are presented for the first time. While the spin-2 part of the metric, i.e., the graviton, only couples

to the other fields with Planck-suppressed interactions, the large value of ξ enhances the coupling of matter

fields to the conformal mode of the metric ϕ defined by

gµν = e2ϕg̃µν, Det
[
g̃µν

]=−1. (1.3)

Hence, as long as we are interested in the beta functions below MP , we may extract the conformal mode of

the metric and neglect the contributions from the graviton. By doing so, we show that the Higgs-R2 model

below MP can be written as a linear sigma model (LSM) of the Higgs, the scalaron, and the conformal mode

\1The NG boson production itself may be affected by higher dimensional operators [13], but the conclusion that we need knowledge

of the UV completion to understand preheating is anyway unchanged.
\2This fact is related to the renormalizability of Quadratic Gravity [26–30].
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of the metric with interaction terms which are renormalizable. This observation dramatically simplifies the

calculations. Moreover, the general RGEs up to two-loop for the scalar/gauge/fermion system with renormal-

izable interactions are already known in the literature [31–34]. We provide a systematic approach to obtain

the RGEs of the Higgs-R2 model from these existing studies.

We then study phenomenological consequences of the obtained RGEs. Above the scalaron mass scale, the

presence of the scalaron gives the threshold correction to the Higgs four-point interaction [14] and induces

the Higgs mass term and the cosmological constant of the order of the scalaron mass via the RGEs. We discuss

its implications for the inflationary predictions and the stability of the EW vacuum.

The organization of this paper is as follows. Sec. 2 is the main part of this paper. In Sec. 2.1, we extract the

conformal mode from the rest of the metric. In Sec. 2.2, we discuss our gauge fixing condition, and show that

we can ignore the spin-2 part of the gravity, i.e., the graviton, below the Planck scale. The full one- and two-

loop beta functions of the Higgs-R2 theory are then shown in Secs. 2.3 and 2.4, with computational details

given in App. C and D, respectively. Phenomenological implications to the inflationary prediction and the

EW vacuum metastability are discussed in Secs. 3 and 4, respectively. Finally Sec. 5 is devoted to conclusion

and discussion. We follow the convention of Ref. [21] throughout this paper.

2 Renormalization group equation

In this section, we derive the one- and two-loop RGEs of Higgs-R2 inflation that are valid below the Planck

scale. The action in the Jordan frame is given by

S =
∫

d4x
p−g

[
M 2

P

2
R

(
1+ 2ξ |H |2

M 2
P

)
+ gµνDµH †DνH −m2 |H |2 −λ |H |4 +αR2 −Λ

]
+Sψ+A

[
gµν

]
, (2.1)

where gµν is the spacetime metric with g its determinant, R is the Ricci scalar, MP is the (reduced) Planck

mass, H is the Higgs doublet, Dµ is its covariant derivative, m is the Higgs mass, and Λ is the cosmological

constant. The action for the SM fermions and gauge bosons Sψ+A
[
gµν

]
includes the Yukawa interactions

with its dependence on the metric made explicit. We have included the Higgs mass and the cosmological

constant since they are required as counterterms to absorb divergences, as we will see below. We denote the

beta function of a given coupling g up to two-loop as

dg

dlnµ
≡βg = 1

(4π)2 β(1)
g + 1

(4π)4 β(2)
g , (2.2)

where µ is the renormalization scale, and β(1)
g and β(2)

g are the one- and two-loop contributions to the beta

function, respectively.

2.1 Scalaron and conformal mode

To see how the R2-term gives rise to the scalaron degree of freedom, we first extract the conformal mode

of the metric and rewrite the action in the Jordan frame (2.1). Without loss of generality, the metric can be

decomposed as

gµν = e2ϕg̃µν, Det
[
g̃µν

]=−1. (2.3)
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We call the scalar mode ϕ the conformal mode of the metric; it consists of the determinant part of the metric.

The Ricci scalar is decomposed as

R = e−2ϕR̃ +6e−3ϕ�̃eϕ, (2.4)

where the quantities with the tilde are constructed from g̃µν. We redefine the fields as

H → e−ϕH , ψ→ e−3ϕ/2ψ, (2.5)

and define

Φ≡p
6MP eϕ. (2.6)

We also refer to Φ as the conformal mode. Notice that the conformal mode Φ can be regarded as a measure

of dimensional quantities in units of the Planck scale. For instance, the ratio H/(
p

6MP ) is mapped to H/Φ

by the rescaling of Eq. (2.5). Therefore, when we neglect Planck-suppressed operators in the original action,

corresponding operators suppressed by Φ should be dropped after the rescaling.

By using the rescalings defined above, we may rewrite the action (2.1) as

S =
∫

d4x

{
R̃

12

(
Φ2 +12ξ |H |2)− 1

2
g̃µν∂µΦ∂νΦ+ g̃µνDµH †DνH −λ |H |4 − λm

2
Φ2 |H |2 − λΛ

4
Φ4

+ [
(6ξ+1) |H |2 +12αR̃

]�Φ
Φ

+αR̃2 +36α

(
�Φ
Φ

)2 }
+Sψ+A

[
g̃µν

]
, (2.7)

where we have defined

λm ≡ m2

3M 2
P

, λΛ ≡ Λ

9M 4
P

. (2.8)

An important feature is that the last term in the curly brackets involves higher derivatives, (�Φ)2/Φ2. Since the

conformal mode Φ has a kinetic term with the wrong sign,\3 this higher-derivative term implies the existence

of an additional physical degree of freedom which has a kinetic term with the correct sign.

To extract this physical degree of freedom as a fundamental field, we introduce an auxiliary field σ as

S =
∫

d4x

{
R̃

12

(
Φ2 +12ξ |H |2)− 1

2
g̃µν∂µΦ∂νΦ+ g̃µνDµH †DνH −λ |H |4 − λm

2
Φ2 |H |2 − λΛ

4
Φ4

+ [
(6ξ+1) |H |2 +12αR̃

]�Φ
Φ

+αR̃2 +36α

[(
�Φ
Φ

)2

−
(
Φσ

72α
+�Φ

Φ

)2]}
+Sψ+A

[
g̃µν

]
. (2.9)

By substituting the solution of the constraint equation δS/δσ= 0, namely σ=−72α�Φ/Φ2, one recovers the

original action (2.7). Now we can remove all the terms involving�Φ/Φ by shifting the auxiliary field σ as

σ→σ+ (6ξ+1)
|H |2
Φ

+12α
R̃

Φ
. (2.10)

\3Note that the wrong-sign kinetic term of Φ is harmless because of a residual gauge symmetry [21], which is analogous to the

Coulomb potential in U(1) gauge theory.
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We then remove the kinetic mixing between Φ and σ by the shift

Φ→Φ+σ, (2.11)

and we arrive at

S =
∫

d4x

{
R̃

12

(
Φ2 −2 |H |2 −σ2)− 1

2
g̃µν∂µΦ∂νΦ+ g̃µνDµH †DνH + 1

2
g̃µν∂µσ∂νσ

−λ |H |4 − λm

2
(Φ+σ)2 |H |2 − λΛ

4
(Φ+σ)4 − λα

4

[
σ (Φ+σ)+2ξ̄ |H |2]2

}
+Sψ+A

[
g̃µν

]
, (2.12)

where we define

λα ≡ 1

36α
, ξ̄≡ 6ξ+1

2
. (2.13)

This action is the starting point of our computation. Note that the kinetic terms of the scalar fields and the

scalaron σ are canonical and the potential contains only renormalizable terms. This feature is related to

the fact that this theory is unitary up to infinite energy if we ignore the spin-2 part, or more generally the

renormalizability of the quadratic gravity [26–30], as emphasized in Ref. [21]. In the next subsection 2.2, we

discuss the interactions of the graviton, the gauge fixing condition and the resultant Faddeev-Popov ghost.

There we confirm that the contributions from the graviton can be safely neglected below the Planck scale

even after introducing the Faddeev-Popov ghost by properly choosing the gauge fixing condition.

Before closing this section, let us illustrate how one may write down Eq. (2.12) in a more familiar form. By

using the redefinitions

H → eϕC H , ψ→ e3ϕC /2ψ, σ→ eϕC σ, Φ→p
6MP eϕC , g̃µν → e−ϕC gµν, (2.14)

one finds

S =
∫

d4x
p−g

{
M 2

P

2
R

(
1− 2 |H |2 +σ2

6M 2
P

)
+ gµνDµH †DνH + 1

2
gµν∂µσ∂νσ−m2

(
1+ σp

6MP

)2

|H |2 −λ |H |4

−Λ

(
1+ σp

6MP

)4

− 1

144α

[
3M 2

P

2
−

(
σ+

p
6MP

2

)2

− (6ξ+1) |H |2
]2}

+Sψ+A
[
gµν

]
. (2.15)

This is nothing but the action of the Higgs-R2 theory in the conformal frame, where the Higgs and the scalaron

have the conformal coupling to gravity. Note that the rescaling factor ϕC is different from ϕ in Eq. (2.3).

2.2 Graviton, gauge fixing and decoupling of Faddeev-Popov ghost

In this section, we discuss the gauge fixing condition used in this paper. We expand the fields around the flat

spacetime metric ηµν as

g̃µν = [eh]µν = ηµρ

(
δ
ρ
ν +hρ

ν+ 1

2
hρ

αhα
ν+·· ·

)
, (2.16)

hµ
µ = 0, (2.17)
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where the contractions are taken with respect to ηµν.\4 The second equation follows from Det
[
g̃µν

]=−1.

Under the general coordinate transformation xµ → xµ − ξµ at the first order in ξµ, the fields ϕ and hµν

transform as follows (see App. A for the derivation):\5

ϕ→ϕ+ξα∂αϕ+ 1

4
∂αξ

α, (2.18)

hµν → hµν+
[(

adh

eadh −1

)
∂ξ

]
µν

+
[(

adh

eadh −1

)
∂ξ

]
νµ

− 1

2

(
∂αξ

α
)
ηµν+ξα∂αhµν, (2.19)

where [∂ξ]µν ≡ ∂µξν and [(
adh

eadh −1

)
X

]
µν

≡ Xµν− 1

2
[h, X ]µν+

1

12
[h, [h, X ]]µν+·· · , (2.20)

with the indices raised/lowered/contracted by ηµν. Here the “ad” is an abbreviation of the adjoint action, and

higher order terms in the right-hand-side of Eq. (2.20) should be derived from the Taylor expansion. Note that

we have not performed any expansion with respect to ϕ nor hµν here.

We fix this gauge degree of freedom as

∂µhµν = 0, (2.21)

in this paper. According to the Faddeev-Popov procedure, we have to introduce ghost fields associated with

this gauge fixing condition. Here, a crucial property of Eq. (2.19) is that it does not depend on ϕ. It follows

that the Faddeev-Popov ghost associated with the gauge fixing condition (2.21) does not directly couple to the

conformal mode ϕ. Thus, if we can neglect contributions of the graviton hµν, we can also neglect contribu-

tions of the Fadeev-Popov ghost.

Now we discuss the condition under which we can neglect contributions of hµν to the RGEs. One may

already infer from Eq. (2.15) that hµν couples to the matter fields only via Planck-suppressed operators and

hence can be ignored below MP , in particular if H and σ do not develop any vacuum expectation values

(VEVs), which we assume to be the case in our computation. On the contrary, the conformal mode of the

metric and the scalaron couple to the matter fields via, e.g., λα and ξ̄ that are not suppressed by MP , and thus

cannot be ignored especially for ξÀ 1. In the following, we show explicitly that this expectation is indeed the

case by clarifying the meaning of physical scales in Eq. (2.12). We also allow both H and σ to have finite VEVs,

as they do during inflation.

By expanding the metric g̃µν as in Eq. (2.16) and applying the gauge fixing condition of Eq. (2.21), we

obtain the kinetic term of the graviton:∫
d4x

R̃

12

(
Φ2 −2 |H |2 −σ2)=∫

d4x
1

48

(
Φ2 −2 |H |2 −σ2)∂ρhµν∂

ρhµν+O (h3). (2.22)

The graviton couples to other fields through their kinetic terms as

g̃µν

(
−1

2
∂µΦ∂νΦ+ 1

2
∂µσ∂νσ+DµH †DνH

)
⊃−hµν

(
−1

2
∂µΦ∂νΦ+ 1

2
∂µσ∂νσ+DµH †DνH

)
+O (h2). (2.23)

\4Remember that the beta functions do not depend on the choice of the background around which one expands the fields, since

they are related to the UV properties of the theory.
\5This ξµ should not be confused with the non-minimal coupling ξ.
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After canonically normalizing the graviton, one may see that the coupling of the graviton to the matter fields

and the conformal mode is suppressed by
√

Φ2 −2 |H |2 −σ2. Hence, at a given energy scale µ, we can safely

neglect the coupling to hµν as long as

µ√
Φ2 −2 |H |2 −σ2

¿ 1, (2.24)

which we require throughout this paper. The physical meaning of this condition is as follows. If the scalaron

σ and the Higgs field H do not develop VEVs comparable to Φ, one can simplify this condition as µ/Φ¿ 1.

This implies that a typical scale in the conformal frame (2.15), µC ≡ e−ϕC µ,\6 should be below the Planck scale

µC/MP ¿ 1. However, during inflation, σ and H develop their VEVs, and in particular the VEV of σ becomes

comparable to Φ, which enhances the coupling to the graviton. To understand the physical meaning of the

condition in this case, let us recall how the action in Eq. (2.12) is related to that in the Einstein frame. The

action in the Einstein frame is obtained by the following redefinitions

Φ2
E =Φ2 −2 |H |2 −σ2, ΦE =p

6MP eϕE , gµν = e2ϕE g̃µν, (2.25)

and an appropriate rescaling of the fields (see App. B for details). Now the condition (2.24) can be written as

µE

MP
¿ 1, (2.26)

with µE ≡ eϕE µ being a typical scale in the Einstein frame.

From these observations, we can simplify our computation of the RGEs as follows.

1. We can ignore hµν as long as the condition (2.24) is met for a given scale µ. This condition implies that

a typical energy scale in the Einstein frame should be below the Planck scale, i.e., µE /MP ¿ 1.

2. We do not have to take into account any Faddeev-Popov ghosts, with the assumption that our gauge

fixing condition is Eq. (2.21), once we can ignore hµν.

Thus, we take the metric as g̃µν = ηµν to compute the RGEs below MP in the following. The action then

reduces to

S =
∫

d4x

[
−1

2
ηµν∂µΦ∂νΦ+ηµνDµH †DνH + 1

2
ηµν∂µσ∂νσ−λ |H |4

−λm

2
(Φ+σ)2 |H |2 − λΛ

4
(Φ+σ)4 − λα

4

(
σ (Φ+σ)+2ξ̄ |H |2)2

]
+Sψ+A

[
ηµν

]
. (2.27)

It can be viewed as a LSM composed of Φ, σ and H coupled to the SM fermions and gauge bosons, as studied

in detail in Ref. [21].\7 This LSM contains only two additional scalar modes, the conformal mode Φ and the

scalaron, on top of the SM particles, which greatly simplifies our computation of the RGEs. An important

feature is that the kinetic term of the conformal mode Φ has a wrong sign and hence this field is ghost-like.

It is still harmless thanks to a residual gauge symmetry (see Ref. [21] for more details), playing a role that is

\6For a given metric gµν, its typical scale µ is defined as µ= (gµν∆xµ∆xν)−1/2 with ∆xµ being a typical length scale. Let the typical

scale in g̃µν be µ. Then, the typical scale µ• in a metric of gµν = eϕ• g̃µν can be expressed as µ• = e−ϕ•µ.
\7The inclusion of Φ makes this definition of the LSM invariant under a frame transformation, i.e., the Weyl transformation.
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similar to the Coulomb potential of U(1) gauge theory. In the following, we derive the one- and two-loop RGEs

of the Higgs-R2 model from this action in Secs. 2.3 and 2.4, respectively. Of the SM parameters we include only

the top Yukawa yt and the gauge couplings g3, g2 and g1 in the RGEs, since the other couplings are all much

smaller than unity. See Apps. C and D for details of the derivation.

2.3 One-loop RGE

In this subsection, we give the one-loop RGEs of the Higgs-R2 theory that are valid up to MP . At the one-loop

level, the RGEs are given by

β(1)
g1

= 41

10
g 3

1 , β(1)
g2

=−19

6
g 3

2 , β(1)
g3

=−7g 3
3 , (2.28)

β(1)
yt

= yt

[
9y2

t

2
− 17

20
g 2

1 −
9

4
g 2

2 −8g 2
3

]
, (2.29)

β(1)
λ

= (
8ξ̄2 −8ξ̄+2

)
ξ̄2λ2

α+24ξ̄2λλα+24λ2 −6y4
t +

27g 4
1

200
+ 9g 4

2

8
+ 9

20
g 2

1 g 2
2 +

[
12y2

t −
9g 2

1

5
−9g 2

2

]
λ, (2.30)

β(1)
λm

= 2ξ̄
(
2ξ̄−1

)
λ2

α−8ξ̄λ2
m +λm

[
4ξ̄2λα+8ξ̄λα−3λα+12λ+6y2

t −
9g 2

1

10
− 9g 2

2

2

]
, (2.31)

β(1)
ξ̄

= ξ̄

[(
4ξ̄2 +4ξ̄−3

)
λα+12λ+6y2

t −
9

10
g 2

1 −
9

2
g 2

2

]
, (2.32)

β(1)
λα

= (
8ξ̄2 +5

)
λ2

α, (2.33)

β(1)
λΛ

= λ2
α

2
−2λαλΛ−16ξ̄λΛλm +2λ2

m . (2.34)

In App. C, we have derived these RGEs by computing scalar four-point functions. In the course of the deriva-

tion, we have explicitly checked that all the divergences that appear at the one-loop level are indeed renor-

malized by the operators within the action (2.27). It is a non-trivial verification of our formulation based on

the decomposition (2.3) and the gauge fixing condition (2.21). We have also checked that these RGEs agree

with the results obtained with the help of SARAH [35] outlined in App. D. Moreover, these RGEs coincide with

Refs. [30, 36, 37] if we ignore the contributions from the spin-2 particles in the latter.\8

Several comments are in order. First, it can be seen that the Higgs mass and the cosmological constant

emerge due to the RG running even if they are highly suppressed at a lower energy scale. This is simply an

example of the infamous fine tuning problem; the scalaron introduces an additional scale, the scalaron mass

scale. The Higgs mass and the cosmological constant are sensitive to this additional scale since they are not

protected by any symmetry. Indeed, in order to realize the current universe with the electroweak (EW) scale

and the almost vanishing cosmological constant, we have to tune the UV boundary conditions such that

λm(µ= mσ) ∼ v2
EW

m2
σ

λα ¿λα, (2.35)

\8Some pieces of the RGEs shown here have also been derived, e.g., in Refs. [38–44]. However, Refs. [39–42] obtained the opposite

sign for βα.
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and a similar condition for the cosmological constant,\9 where m2
σ = M 2

P /12α is the scalaron mass scale and

vEW = 246GeV. It is indeed a tuning since the natural size of λm inferred from the RGEs is λm ∼ λα for ξÀ 1.

These massive parameters were not included in the previous studies on the inflationary prediction of this

model. Thus, we study their effects on the inflationary prediction in Sec. 3.

Second, our method allows us to compute the beta functions of only the ratios of the massive parameters,

not the massive parameters themselves. This is, however, not a limitation of our method, since only the ratios

are important for physics.\10 This point is also emphasized in Refs. [36, 37].

Finally, it may be interesting to observe that a parameter with a higher mass dimension does not con-

tribute to the beta functions of those with a lower mass dimension. For instance, λΛ does not contribute to

βλα
, βξ̄, βλ and βλm , while λm does not contribute to βλα

, βξ̄ and βλ. This is trivial in the original Jordan frame

language, but it is non-trivial once we map the theory to the LSM with the renormalizable potential (2.27).

From this point of view, all the couplings λα, λΛ, ξ̄, λm and λ are equally dimensionless, and hence it is not

entirely obvious (at least to the present authors) that the above hierarchy indeed holds.

2.4 Two-loop RGE

In this subsection, we show the two-loop RGEs of the Higgs-R2 theory valid below the Planck scale obtained

with the help of SARAH [35]. It is non-trivial to translate the outputs of SARAH (or public codes in general) to the

RGEs of the Higgs-R2 theory since we have to take into account the ghost-like property of Φ. We only show the

final results in this subsection, and explain how this translation can be done in App. D. We note that, during

the course of deriving the results, we have performed several non-trivial checks, which strongly supports the

validity of our formalism. We again refer to App. D on this point.

The RGEs of the gauge couplings are not affected by Φ nor σ up to two-loop, and are given by

β(2)
g1

= g 3
1

[
199

50
g 2

1 +
27

10
g 2

2 +
44

5
g 2

3 −
17

10
y2

t

]
, (2.36)

β(2)
g2

= g 3
2

[
9

10
g 2

1 +
35

6
g 2

2 +12g 2
3 −

3

2
y2

t

]
, (2.37)

β(2)
g3

= g 3
3

[
11

10
g 2

1 +
9

2
g 2

2 −26g 2
3 −2y2

t

]
. (2.38)

The RGE of the top Yukawa coupling is affected by Φ and σ and becomes

β(2)
yt

=−12y5
t + y3

t

[
−12ξ̄2λα+ 393g 2

1

80
+ 225g 2

2

16
+36g 2

3 −12λ

]

+ yt

[
6ξ̄4λ2

α+ 1

2
ξ̄2λ2

α+12ξ̄2λλα+ 1187g 4
1

600
− 23g 4

2

4
−108g 4

3 −
9

20
g 2

1 g 2
2 +

19

15
g 2

1 g 2
3 +9g 2

2 g 2
3 +6λ2

]
. (2.39)

The RGE of the Higgs quartic coupling is given by

\9The cosmological constant may be affected by the EW scale below the scalaron mass scale, and hence the condition to realize the

current tiny cosmological constant may need to take this into account.
\10One can see this fact, e.g., by remembering that one can compute the spectral index and the tensor-to-scalar ratio without any

problem even in Planck units MP = 1.
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β(2)
λ

=−312λ3 +λ2

[
−816ξ̄2λα+ 108g 2

1

5
+108g 2

2 −144y2
t

]
+λy2

t

[
−144ξ̄2λα+ 17g 2

1

2
+ 45g 2

2

2
+80g 2

3

]

+λ

[
−696ξ̄4λ2

α+144ξ̄3λ2
α−10ξ̄2λ2

α+ 72

5
g 2

1 ξ̄
2λα+72g 2

2 ξ̄
2λα+ 1887g 4

1

200
− 73g 4

2

8
+ 117

20
g 2

1 g 2
2

]

+ y4
t

[
24ξ̄2λα− 8g 2

1

5
−32g 2

3

]
+ y2

t

[
−48ξ̄4λ2

α+24ξ̄3λ2
α− 171g 4

1

100
− 9g 4

2

4
+ 63

10
g 2

1 g 2
2

]

−192ξ̄6λ3
α+112ξ̄5λ3

α−8ξ̄4λ3
α+20ξ̄3λ3

α−10ξ̄2λ3
α+ 12

5
g 2

1 ξ̄
4λ2

α+12g 2
2 ξ̄

4λ2
α− 6

5
g 2

1 ξ̄
3λ2

α−6g 2
2 ξ̄

3λ2
α

+ 27

25
g 4

1 ξ̄
2λα+9g 4

2 ξ̄
2λα+ 18

5
g 2

1 g 2
2 ξ̄

2λα− 3411g 6
1

2000
+ 305g 6

2

16
− 289

80
g 2

1 g 4
2 −

1677

400
g 4

1 g 2
2 . (2.40)

The RGEs of the Higgs mass term and the non-minimal coupling are given by

β(2)
λm

=λ2
m

[
48ξ̄2λα+20ξ̄λα− 48

5
g 2

1 ξ̄−48g 2
2 ξ̄+48ξ̄y2

t

]
+λmλ2

α

[−60ξ̄4 −80ξ̄3 +9ξ̄2 −16ξ̄+23
]

+λmλα

[
24

5
g 2

1 ξ̄
2 +24g 2

2 ξ̄
2 + 6

5
g 2

1 ξ̄+6g 2
2 ξ̄−120λξ̄2 −144λξ̄−24ξ̄2 y2

t −24ξ̄y2
t

]
+λm

[
72g 2

1λ

5
+72g 2

2λ+ 17

4
g 2

1 y2
t +

45

4
g 2

2 y2
t +40g 2

3 y2
t +

1671g 4
1

400
+ 9

8
g 2

2 g 2
1 −

145g 4
2

16
−60λ2 −72λy2

t −
27y4

t

2

]

+λ3
α

[−56ξ̄4 −22ξ̄2 +18ξ̄
]+λ2

α

[
3

5
g 2

1 ξ̄
2 +3g 2

2 ξ̄
2 −72λξ̄2 −12ξ̄2 y2

t

]
, (2.41)

and

β(2)
ξ̄

=−60λ2
αξ̄

5 −40λ2
αξ̄

4 + ξ̄3
[

9λ2
α−120λλα+ 24

5
g 2

1λα+24g 2
2λα−24λαy2

t

]
+ ξ̄2

[
−12λ2

α−72λλα+ 3

5
g 2

1λα+3g 2
2λα−12λαy2

t

]
+ ξ̄

[
25λ2

α

2
+ 72g 2

1λ

5
+72g 2

2λ+ 17

4
g 2

1 y2
t +

45

4
g 2

2 y2
t +40g 2

3 y2
t +

1671g 4
1

400
+ 9

8
g 2

2 g 2
1 −

145g 4
2

16
−60λ2 −72λy2

t −
27y4

t

2

]
.

(2.42)

Finally, the RGEs of λα and λΛ are given by

β(2)
λα

= 1

5
λ2

α

[
48ξ̄2 (

g 2
1 +5g 2

2 −5y2
t

)−5
(
32ξ̄3 +20ξ̄2 +15

)
λα

]
, (2.43)

and

β(2)
λΛ

=λ3
α

[−4ξ̄2 −7
]+λ2

α

[
32ξ̄3λΛ+20ξ̄2λΛ−8ξ̄2λm −8ξ̄λm +26λΛ

]
+λα

[
96ξ̄2λΛλm +40ξ̄λΛλm −16ξ̄λ2

m −4λ2
m

]
− 96

5
g 2

1 ξ̄λΛλm −96g 2
2 ξ̄λΛλm +96ξ̄λΛλm y2

t +
12

5
g 2

1λ
2
m +12g 2

2λ
2
m −12λ2

m y2
t . (2.44)

These are the full two-loop RGEs of the Higgs-R2 theory that are valid below the Planck scale. To our knowl-

edge, it is this paper that has derived them for the first time.
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3 Inflation with massive parameters

In Sec. 2, we have seen that the Higgs mass and the cosmological constant arise due to the RG running above

the scalaron mass scale even if they are tiny at low energies. In this section, we study whether these massive

parameters change the inflationary prediction of the Higgs-R2 model or not. We assume here that the Higgs

quartic coupling λ is positive due to either an uncertainty in the value of the top quark mass or some new

physics. In Sec. 4, we study effects of the scalaron on the sign of λ at high energy in detail. We assume that the

values of α, m and Λ are consistent with the values naturally inferred from the RGE’s, i.e.

α∼ ξ2 ,
m

MP
∼ 1

ξ
,

Λ

M 4
P

∼ 1

ξ4 . (3.1)

We also assume that ξÀ 1 in our analysis, as in the typical case of Higgs-R2 inflation.

3.1 Background evolution

The inflationary trajectory is most easily studied in the Einstein frame. Starting with the action of Eq. (2.1),

we introduce an auxiliary field χ to rewrite it as

S =
∫

d4x
p−g

[
M 2

P

2
R

(
1+ 2ξ |H |2 +4χ

M 2
P

)
+ gµνDµH †DνH −m2 |H |2 −λ |H |4 − χ2

α
−Λ

]
, (3.2)

where we neglected the interactions with the SM fermions and gauge fields, as they do not affect the infla-

tionary trajectory. We make the following Weyl transformation

gµν →Ω−2
E gµν , Ω2

E = 1+ 2ξ|H |2 +4χ

M 2
P

. (3.3)

Note that we only rescale the metric, but the other fields are unaffected. Upon defining the field

σE

MP
=

√
3

2
logΩ2

E , (3.4)

the action in the Einstein frame is given by

SE =
∫

d4x
p−g

[
M 2

P

2
R + 1

2
gµν∂µσE∂νσE + 1

2
e
−

√
2
3

σE
MP gµν∂µφ∂νφ

−e
−2

√
2
3

σE
MP

(
m2

2
φ2 + λ

4
φ4 + M 4

P

16α

(
e

√
2
3

σE
MP −1− ξφ2

M 2
P

)2

+Λ

)]
. (3.5)

We are using unitary gauge, in which the radial direction of the Higgs field φ is defined as

H = 1p
2

(
0

φ

)
. (3.6)

The inflationary trajectory of this theory in the limit m,Λ = 0 was studied in Refs. [14, 45–48]. We will now

study the effect of the mass term and cosmological constant on the background evolution. Our analysis is
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similar to the one in Ref. [47]. In the following we omit the subscript E from σE for notational simplicity, but

it should be noticed that it is not exactly the σ-meson of the LSM (2.27) contrary to σ in the previous section.

We will use ΦI as shorthand notation for the fields

ΦI =
(
σ

φ

)
. (3.7)

It should not be confused with the conformal mode Φ since the former always carries an index I . In our

analysis in the Einstein frame, the φ-field has a non-canonical kinetic term, requiring a covariant treatment of

the field space [49–52]. Here let us emphasize that there are two different definitions of the “target space" (or

“field space") in the literature. In Sec. 2, we have identified the Higgs-R2 theory as a LSM. In this identification,

we have defined the target space by including not only the scalar fields but also the conformal mode of the

metric Φ, following Ref. [21]. The inclusion of Φ makes this definition of the target space frame independent,

and hence this definition is useful to discuss the unitarity structure and the cut-off scale of the theory, which

are of course frame independent. On the other hand, the target space is often defined just by the kinetic

terms of the scalar fields, without including Φ, in the context of inflationary perturbations as in Refs. [49–

52]. This definition of the target space is frame dependent, nevertheless it is useful to compute inflationary

perturbations. The frame dependence does not cause any problem as long as one works only in the Einstein

frame and never moves to other frames. In order to distinguish between the two definitions of the target

space, and in order to emphasize that the second target space is understood to be defined only in the Einstein

frame, we refer to the latter as the “Einstein frame target space" in the following.

The Einstein frame target space metric is given by

G I J =
1 0

0 e
−

√
2
3

σ
MP

 . (3.8)

It induces a covariant derivative DI , which operates on a vector in the field space V J as

DI V J = ∂V J

∂ΦI
+ΓJ

I K V K , (3.9)

with ΓJ
I K the Christoffel symbols of the Einstein frame target space. The background equation of motion of

the fields ΦI becomes

Dt Φ̇
I =−3H Φ̇I −G I J V,J , (3.10)

where V is the potential and Dt = Φ̇I DI . The Hubble parameter H and its evolution are given by

H 2 = 1

3M 2
P

(
1

2
G I J Φ̇

I Φ̇J +V (Φ)

)
, Ḣ = 1

2M 2
P

G I J Φ̇
I Φ̇J . (3.11)

For our Einstein frame target space of Eq. (3.8) the nonzero Christoffel symbols are

Γσ
φφ = e

−
√

2
3

σ
MPp

6MP
, Γφ

σφ = Γφ
φσ =− 1p

6MP
, (3.12)
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and the background equations of motion are

σ̈=−3H σ̇− e
−

√
2
3

σ
MPp

6MP
φ̇2 −V,σ , (3.13)

φ̈=−3H φ̇+
√

2

3

1

MP
φ̇σ̇−e

√
2
3

σ
MP V,φ . (3.14)

We will study the inflationary prediction of this model in the following.

3.2 Inflationary prediction

The potential V has two valleys that are symmetrically aligned with respect to the φ-axis. For our parameter

choice we expect inflation to take place along this valley [14, 47]. Setting V,φ = 0 gives the σ-dependence of

the φ-field in the valley

φ2
v (σ) =

ξM 2
P

(
e

√
2
3

σ
MP −1

)
−4αm2

ξ2 +4αλ
. (3.15)

We assume that during inflation e

√
2
3

σ
MP À 1 (and we will see that this indeed gives us a consistent solution

with at least 60 e-folds of inflation). During inflation, the contribution from the mass term to φv (σ) is thus

negligible for ξÀ 1.

Inserting Eq. (3.15) into the kinetic term for φ we can express it in terms of σ

1

2
e
−

√
2
3

σ
MP gµν∂µφ∂νφ∼ ξ

12(4αλ+ξ2)
gµν∂µσ∂νσ, (3.16)

where we used e

√
2
3

σE
MP À 1 to obtain the RHS. The kinetic term of φ is thus suppressed by O (1/ξ) with re-

spect to the kinetic term of σ and we will neglect it in our analytical approximation. Inserting (3.15) into the

potential gives:

V (σ) = e
−2

√
2
3

σ
MP

4(4αλ+ξ2)

[
−4m4α+M 4

Pλ

(
e

√
2
3

σ
MP −1

)2

+2m2M 2
Pξ

(
e

√
2
3

σ
MP −1

)
+4Λ

(
4αλ+ξ2)] . (3.17)

From this potential we can compute the inflationary observables in the slow-roll approximation. Note that

in the regime e

√
2
3

σ
MP À 1 and for the parameter values of Eq. (3.1) the expression between square brackets is

dominated by the term M 4
Pλe

2
√

2
3

σ
MP .

We first determine the value of σ at the moment when the observable modes left the horizon, σ∗, using:

N∗−Nend ∼ 1

M 2
P

∫σ∗

σend

dσ
V

V,σ
∼ 1

M 2
P

∫σ∗

σend

dσ

√
3
2 M 3

Pλe

√
2
3

σ
MP

2M 2
Pλ−2m2ξ

, (3.18)

and we set Nend = 0. We neglect the contribution from the lower bound of the integral in (3.18) and find

N∗ =
3
4 M 2

Pλe

√
2
3

σ∗
MP

M 2
Pλ−m2ξ

→ σ∗ = 3

2
MP log

[
4

3

(
1− m2ξ

M 2
Pλ

)
N∗

]
, (3.19)
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where we have assumed ξm2 < λM 2
P , which is the case for the typical value of m as long as λξÀ 1. Plugging

this value into the slow-roll parameters εV and ηV gives:

εV = M 2
P

2

(
V,σ

V

)2

' 3

4N 2∗
, (3.20)

ηV = M 2
P

V,σσ

V
'− 1

N∗
, (3.21)

in the limit of large N∗. The scalar spectral index n∗
R

and the tensor to scalar ratio r∗ have the usual values of

the R2-like inflationary models

n∗
R = 1− 2

N∗
, r∗ = 12

N 2∗
. (3.22)

The scalar amplitude is

A∗
R = V ∗

24π2M 4
Pε∗V

= λN 2∗
72π2(4αλ+ξ2)

. (3.23)

Choosing N∗ ∼ 50−60, measurement of the power spectrum fixes the relation

ξ2

λ
+4α∼ 2×109. (3.24)

Our analytical analysis above shows that none of the inflationary observables is affected by the presence of the

nonzero Higgs mass term and cosmological constant. In other words, these massive parameters, inevitably

induced due to the RGEs, do not spoil the consistency of Higgs-R2 inflation with the CMB observation.

As a consistency check we will compute the turn rate in the valley, which ought to remain small for the

single-field approximation to be valid. We introduce unit vectors T̂ and N̂ that are covariant with respect to

coordinate transformations in the Einstein frame target space [49–52]. The basis vector T̂ I is tangent to the

inflationary trajectory, and N̂ I is orthogonal to it:

T̂ I = Φ̇I√
G I J Φ̇I Φ̇J

, N̂ I = ωI

ω
, ωI = D t T̂ I , (3.25)

where ω is the norm of the turn rate vector with

ω=− V,N√
G I J Φ̇I Φ̇J

, V,N = N̂ I ∂V

∂ΦI
. (3.26)

Unit length and orthogonality imply

G I J T̂ I T̂ J = 1, G I J N̂ I N̂ J = 1, G I J N̂ I T̂ J = 0. (3.27)

The components of T̂ and N̂ along the inflationary trajectory are given by

T̂ '
 1√

ξ
6(4λα+ξ2) e

σp
6MP

 , N̂ '±

−
√

ξ
6(4λα+ξ2)

e
σp

6MP

 . (3.28)

14



At first sight, it might look as if the second component of T̂ is large, but it is actually subdominant for ξÀ 1

since it is always contracted with Gσσ. The turn rate inside the valley is then given by

|ω|
H

'
√

3ξ

2
(
4λα+ξ2

) ∼O
(
ξ−1/2)¿ 1, (3.29)

for ξ À 1, confirming that the single-field approximation was reasonable. The smallness of the turn rate

guarantees that isocurvature modes would not modify the curvature power spectrum [52].

We can also show that the mass of the isocurvature mode is large, again consistent with the valley approx-

imation (3.15). The isocurvature mass is found by projecting the mass matrix

MI J =∇I∇J V +RI K JLΦ̇
K Φ̇L , (3.30)

onto the N̂ -direction:

m2
N = N̂ I N̂ J (∇I∇J V +RI K JLΦ̇

K Φ̇L)
, (3.31)

all evaluated at φ=φv . A straightforward computation shows that the ratio of the isocurvature mass over the

Hubble parameter is

m2
N

3H 2 '−εT

9
−

√
εT

3
+ 2ξ

(
4αλ+ξ2

)
αλ

, (3.32)

where εT is the slow roll parameter defined along the direction T̂

εT = M 2
P

2

(
V,T

V

)2

, (3.33)

and in our case εT ∼ εV with εV defined in Eq. (3.20). The only significant contribution to the isocurvature

mass is the third term, implying that the isocurvature mass is positive and large compared to the Hubble pa-

rameter for ξÀ 1. Thus the isocurvature power spectrum is suppressed, in agreement with observations [4].

4 Electroweak vacuum metastability

In Sec. 3, we have assumed that the Higgs quartic coupling λ is positive at the inflationary scale. It is well-

known, however, that λ becomes negative at the renormalization scale µ= 109-1010 GeV for the current cen-

tral value of the top quark mass within the SM [53, 54]. This feature strongly depends on the top quark mass,

and the absolute stability of the EW vacuum is still allowed given an uncertainty in the determination of the

top quark mass. In this section, we study how the scalaron affects this picture.

First of all, the scalaron cannot make λ positive for all the energy scales if we assume that inflation occurs

within the Higgs-R2 sector. As we have seen in Sec. 3, assuming that λ> 0, the CMB normalization requires

ξ2

λ
+4α' 2×109. (4.1)
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It implies that the scalaron mass is bounded from below as\11

mσ = MP

2
p

3α
& 3×1013 GeV. (4.2)

The scalaron does not affect the RG flow of λ below this scale. Since λ already turns negative below this scale

for the central value of the top quark mass, the scalaron cannot make λ> 0 for all energy scales. Nevertheless,

the scalaron may affect the positivity of λ above the scalaron mass scale, which is the main topic of this

section.

We separate our discussion into two parts. The first part focuses on the threshold corrections that arise

by matching parameters between low and high energy theories. The second part is on the RG evolution of the

parameters. We note that the same topic is analyzed in Ref. [15]. A difference is that we have included the full

RGEs up to two-loop, while (it seems that) they have included only the one-loop correction from ξ and α to

the running of λ. Thus, our analysis here is more precise.

4.1 Threshold correction

In this subsection, we discuss the tree-level threshold correction. Our conclusion is that there is no tree-level

threshold correction that makes λ positive.

First, it is important to notice that, although we refer to λ as the Higgs quartic coupling, it is not the

coefficient of the Higgs quartic term above the scalaron mass scale, the UV theory. We refer to this tree-level

quartic Higgs coupling as λUV. It can be obtained from the potential in Eq. (2.12)

λUV =λ+ (ξ+1/6)2

α
. (4.3)

The tree-level matching at the scalaron mass scale is demonstrated in App. B of Ref. [14].\12 There, λm and λΛ

were not included, but this is consistent with the very small values of Eq. (2.35), so we will also take λm(µ =
mσ) =λΛ(µ= mσ) = 0. The threshold correction is then obtained by comparing the 4-point interaction in the

IR (which only includes the four-point vertex) and the UV (which includes a four-point vertex and diagrams

with scalaron exchange). One finds that the parameter λ does not receive a threshold correction at tree level.

This can also be seen from the fact that the λα-term vanishes by minimizing the scalar potential with respect

to σ for λm = λΛ = 0, thus only the λ-term is left. The EW vacuum stability is therefore not affected by the

threshold correction, at least in the case ξ2 ∼ αÀ 1. Note that it is the positivity of λ, not λUV, that is crucial

for the Higgs to play (a part of) the inflaton in Higgs-R2 inflation.

4.2 RG evolution

Although the threshold correction does not affect λ, the scalaron can make λ positive through the RG evo-

lution, as pointed out in Ref. [15]. The reason is that scalar fields in general give positive contributions to

\11Strictly speaking, we here assume that the Higgs mass term and the cosmological constant are negligible at the scalaron mass

scale, which should be true to be consistent with the current universe.
\12Ref. [14] ignores kinetic mixings among the scalar fields in the Einstein frame and hence the sub-leading terms suppressed by ξ,

or the “1/6" in Eq. (4.3).
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Fi g ur e 1: T h e  R G r u n ni n g of λ f or  diff er e nt v al u e s of t h e r ati o ξ 2 / α wit h ξ (µ = m σ ) = 1 0 4 .  T h e a d diti o n al c o ntri b uti o n

fr o m t h e s c al ar o n  m a k e s λ p o siti v e if ξ 2 / α i s l ar g e e n o u g h.  A t o o l ar g e v al u e of ξ 2 / α h o w e v er r e s ult s i n a L a n d a u  p ol e

b el o w t h e  Pl a n c k s c al e.  T h e  Hi g g s  m a s s i s  fi x e d a s m h = 1 2 5. 1 5  G e V, a n d t h e ot h er S M  p ar a m et er s ar e  fi x e d a c c or di n g t o

R ef. [ 5 4 ].  W e  h a v e  u s e d t h e t w o -l o o p S M  b et a f u n cti o n s f or m t < µ < m σ , a n d t h e  b et a f u n cti o n s of S e c s. 2. 3 a n d 2. 4 f or

m σ < µ < M P .

t h e  b et a f u n cti o n of λ . I n Fi g. 1 ,  w e s h o w t h e  R G r u n ni n g of λ f or s e v er al  p ar a m et er s et s.  W e  h a v e  u s e d t h e

t w o -l o o p S M  R G E s  b el o w t h e s c al ar o n  m a s s s c al e m σ = M P / 1 2 α , a n d t h e f ull  R G E s  u p t o t w o -l o o p gi v e n i n

S e c s. 2. 3 a n d 2. 4 a b o v e m σ .  W e  h a v e  u s e d,  h o w e v er, o nl y t h e tr e e -l e v el  m at c hi n g c o n diti o n s at m σ , a n d  h e n c e

Fi g. 1 s h o ul d  b e  u n d er st o o d a s a  d e m o n str ati o n,  n ot  h a vi n g t h e f ull t w o -l o o p  pr e ci si o n. It i s  b e y o n d t h e s c o p e

of t hi s  p a p er t o c o m p ut e t h e o n e -l o o p  m at c hi n g c o n diti o n s, a n d  w e l e a v e it f or f ut ur e  w or k.  T h e  b o u n d ar y

c o n diti o n s f or t h e  Hi g g s  m a s s a n d t h e c o s m ol o gi c al c o n st a nt ar e λ m (µ = m σ ) = λ Λ (µ = m σ ) = 0.  W e  h a v e

fi x e d ξ = 1 0 4 a n d v ari e d t h e r ati o ξ 2 / α a s ξ 2 / α = 1 / 2, 1, 2, 3 at µ = m σ si n c e t h e a d diti o n al c o ntri b uti o n t o β λ

i s c o ntr oll e d  b y t hi s r ati o.  O n e c a n s e e t h at λ t ur n s  p o siti v e at  hi g h e n er g y if t h e r ati o ξ 2 / α i s l ar g e e n o u g h.  A

t o o l ar g e ξ 2 / α h o w e v er  m a k e s λ t o o l ar g e s o t h at t h e t h e or y  hit s a L a n d a u  p ol e a n d l o s e s  p ert ur b ati vit y  b el o w

t h e  Pl a n c k s c al e.

A s  w e  h a v e s e e n, t h e s c al ar o n c a n n ot  m a k e λ p o siti v e f or all e n er g y s c al e s, y et it c a n  p u s h λ t o  b e  p o siti v e
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at high energy for a relatively large value of ξ2/α. As a result, the scalar potential may develop a local minimum

around mσ. It would be interesting to discuss the cosmological implication of this local minimum, especially

during and after inflation. Cosmological implications of EW vacuum metastability have been studied in detail

in the literature. For instance, if the inflationary scale is too high, it triggers EW vacuum decay during inflation,

resulting in an upper bound on the inflationary scale [55–67]. In addition, the inflaton-Higgs couplings or the

non-minimal coupling between the Higgs and the Ricci scalar can produce a large amount of Higgs quanta

during the preheating epoch, causing EW vacuum decay after inflation and hence putting upper bounds on

these couplings [68–77]. These works usually assume that the Higgs potential is negative (at least) up to the

Planck scale, and hence it is difficult to recover the EW vacuum once the Higgs field rolls down to the negative

region. In the current case, the situation can be different, as the Higgs potential may be again positive at high

energy. Hence, even if the Higgs is trapped at the local minimum at some epoch in the early universe, it may

be easier to restore the EW vacuum by, e.g., thermal effects. We leave a detailed study for future work.

5 Conclusion and discussion

Higgs-R2 inflation is an interesting model, as it gives inflationary predictions consistent with the Planck

data [4]. It includes a new scalaron degree of freedom at the inflationary scale on top of Higgs inflation, which

makes the theory unitary and renormalizable up to the Planck scale (in contrast with Higgs inflation without

a scalaron). In the present work, we have presented the one- and two-loop Renormalization Group Equations

for this system and studied their phenomenological consequences. The RGEs are valid up to the Planck scale

in the large ξ regime that we studied (which is the most relevant for inflation). Below we summarize each

section of this paper and list possible future directions.

One- and two-loop RGEs

In Sec. 2.1, to derive the RGEs, we decomposed the metric into the determinant part, which we call the con-

formal mode, and a spin-2 part. We show in Sec. 2.2 that the spin-2 part couples to the matter fields only

via Planck-suppressed operators and we can thus neglect hµν below the Planck scale. Furthermore, for our

gauge fixing condition, Eq. (2.21), we can also ignore the Faddeev-Poppov ghost field. These properties greatly

simplify our computations.

We thus derived the RGEs from Eq. (2.27), which contains only the conformal mode, the scalaron, the

Higgs field and the other SM fields. The one-loop RGEs are presented in Sec. 2.3. These were obtained by

computing four-point functions explicitly. We cross-checked the RGEs with the help of SARAH and confirmed

that the RGEs match the results of Refs. [30, 36, 37] if we ignore the spin-2 contribution. The details of the

computation are given in App. C. Using SARAH, we also obtained the two-loop RGEs in Sec. 2.4. App. D con-

tains the computational details. To our knowledge, the two-loop RGEs of the Higgs-R2 theory are presented

for the first time in this present work.
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Consequences for inflation and reheating

The interactions corresponding to the couplings λm , which generates a Higgs mass, and λΛ, the cosmological

constant, have to be included to renormalize the theory. These terms were not taken into account in pre-

vious studies of the Higgs-R2-model. Therefore, in Sec. 3, we analytically study the inflationary prediction

with a nonzero λm and λΛ. The predictions for the single-field inflationary trajectory along the valley are

not affected by the nonzero values of m and Λ, and are thus consistent with the Planck data. Although the

inflationary predictions are unaffected, the presence of the mass term and the cosmological constant might

affect the particle production stage at the end of inflation. Reheating in the Higgs-R2 system was studied

in Refs. [78–81], but these studies did not include nonzero m and Λ. In Ref. [82] reheating was studied in a

similar model, with a nonzero mass term for the field that resembles our Higgs field. The study suggests that

the nonzero mass term leads to a smaller variance of the Higgs-like fields in the rescattering regime and also

affects the evolution of the equation of state.

Electroweak stability

In Sec. 4 we studied another phenomenological consequence of the RGEs: the running of λ, which is relevant

for the stability of the Higgs potential. The inclusion of the scalaron can not make λ positive for all energy

scales, since the scalaron mass scale is above the scale where λ typically runs negative (this scale depends on

the value of the top quark mass), assuming that inflation happens in the Higgs-R2 sector. Nevertheless, the

Higgs potential can be stabilized at larger energy scales. This stabilization mechanism depends on the ratio

ξ2/α. If the ratio is too small, the stabilizing effect is also small. However, if the ratio is too large, λ encounters

a Landau pole below the Planck scale. Let us point out that we used only tree-level matching at the scalaron

mass scale in this paper. In this case λ receives no stabilizing threshold correction. We leave the computation

of the threshold correction in a one-loop matching procedure for future work.

Residual gauge symmetry

The fact that there are only six independent parameters in Eq. (2.27) and the theory can thus be renormalized

by only six counterterms, instead of possibly nine, suggests that the shape of the potential is restricted by

some symmetry. In App. E we show that the requirement that the action is invariant under (the scalar part of)

the residual gauge symmetry xµ → xµ−∂µξ, restricts the allowed interactions. The residual gauge symmetry

can explain the shape of the potential, but only if we do not include the scalaron from the beginning, but

obtain it from the (�Φ/Φ)2-term. To us, this approach seems somewhat ad hoc and a better understanding

is lacking. The physical reason for including the operators (�Φ/Φ)2 and |H |2�Φ/Φ, but neglecting all other

higher derivative operators is also not clear. We leave a better understanding of these points for future work.

Generalization to other theories/asymptotic safety

In this paper we have focused on the Higgs-R2 theory, i.e., the theory with the R2-term and the SM. Our

method can be, however, applied to more general theories which contain an R2-term and arbitrary numbers
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of fields with generic Yukawa, gauge and scalar quartic interactions. Indeed, it is expected to be straight-

forward to obtain the RGEs of such a general theory with the help of, e.g., Refs. [31–34] and the procedure

outlined in App. D. These RGEs may be useful beyond the context of inflation, e.g., for the asymptotic safety

program [83, 84] (see Ref. [85] for a recent review).

An ultimate goal of asymptotic safety is to understand the UV structure of quantum gravity. Our method

cannot be directly connected to this ultimate goal since we ignore the spin-2 particles. Our method also

assumes that the theory is perturbative, and is useless in a strong coupling regime. Nevertheless it correctly

captures the effect of the scalar sector of the gravity, and hence may serve as a small step toward the ultimate

goal of the asymptotic safety program. For instance, a UV fixed point is guaranteed to exist in a general

renormalizable theory without gravity in a perturbative regime in the Veneziano limit [86]. We can see how

this conclusion is affected by an inclusion of the R2-term and hence the conformal mode of the metric and

the scalaron. It might also be interesting to study the LSM (2.27) by the functional RG approach [87–90]

since it allows us to go beyond the perturbative regime.\13 \14 Finally, it might be interesting by itself that

the LSM (2.27) without any matter fields has a fixed point λα = 0 for an arbitrary value of λΛ, which is also

discussed in Ref. [92].
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A General coordinate transformation

In this appendix, we derive Eqs. (2.18) and (2.19). Under the general coordinate transformation, xµ → xµ−ξµ,

the spacetime metric transforms as

gµν → g ′
µν = gµν+

(
∂µξ

α
)

gαν+ gµα

(
∂νξ

α
)+ξα∂αgµν, (A.1)

up to the first order in ξµ. By substituting the decomposition (2.3), it reads

e2ϕ′
[eh′

]µν = e2ϕ
{

[eh]µν+
(
∂µξ

α
)

[eh]αν+ [eh]µα

(
∂νξ

α
)+2ξα

(
∂αϕ

)
[eh]µν+ξα∂α[eh]µν,

}
(A.2)

where the indices are raised and lowered by the flat spacetime metric ηµν here and hereafter. It can be rewrit-

ten as

e2(ϕ′−ϕ)[eh′
]µν = [eh/2]µ

ρ
{(

1+2ξα∂αϕ
)
δσ
ρ + [e−h/2]ρ

β (
∂βξ

α
)

[eh/2]α
σ

+[eh/2]ρα

(
∂βξ

α
)

[e−h/2]βσ+ [e−h/2]ρ
β
(
ξα∂α[eh]βγ

)
[e−h/2]γσ

}
[eh/2]σν. (A.3)

\13The functional RG approach is also applied to Higgs inflation [91] and R2 inflation [92].
\14We believe that our method is similar in spirit as Refs. [93–97] since they only focus on the Rn -terms that affect the scalar sector

of the theory.
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By taking the determinant of both sides, we obtain

e8(ϕ′−ϕ) = 1+8ξα∂αϕ+2∂αξ
α+ξαtr

[
e−h∂αeh

]
+O (ξ2), (A.4)

where we have used the relation

Det[δ+εA] = 1+εTrA+O (ε2), (A.5)

with δν
µ being the identity matrix. We can use Jacobi’s formula to show that

Tr
[

e−h∂αeh
]
= ∂α lnDet

[
eh

]
= 0, (A.6)

where we have used the definition of the decomposition (2.3) in the second equality. Thus, we obtain the

transformation law of the conformal mode of the metric as

ϕ′ =ϕ+ξα∂αϕ+ 1

4
∂αξ

α, (A.7)

up to first order in ξµ. By substituting into Eq. (A.3), we obtain[
e−h/2eh′

e−h/2
]
µν

=
(
1− 1

2

(
∂αξ

α
))

ηµν+
[

e−h/2 (∂ξ)eh/2
]
µν

+
[

e−h/2 (∂ξ)eh/2
]
νµ

+
[

e−h/2
(
ξα∂αeh

)
e−h/2

]
µν

,

(A.8)

where we have relied on the matrix notation, and [∂ξ]µν ≡ ∂µξν. We now simplify this equation further. For

this purpose, it is useful to define the adjoint action as

adX Y ≡ [X ,Y ] = X Y −Y X , (A.9)

for arbitrary matrices X and Y . Then the following relation holds:

e X Y e−X = eadX Y , (A.10)

where the right-hand-side should be understood by the Taylor expansion as

eadX Y = Y + [X ,Y ]+ 1

2!
[X , [X ,Y ]]+ 1

3!
[X , [X , [X ,Y ]]]+·· · . (A.11)

One can easily see that the adjoint action is linear, i.e.,

adc X = c adX , adX+Y = adX +adY , (A.12)

for an arbitrary complex number c. The variation of an exponentiated matrix is expressed with the help of the

adjoint action as

e X+∆X −e X = e X 1−e−adX

adX
∆X . (A.13)
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Equipped with these expressions, Eq. (A.8) is simplified as[(
eadh /2 −e−adh /2

adh

)(
h′−h

)]
µν

=− 1

2

(
∂αξ

α
)
ηµν+

[
e−adh /2∂ξ

]
µν

+
[

e−adh /2∂ξ
]
νµ

+
[(

eadh /2 −e−adh /2

adh

)(
ξα∂αh

)]
µν

,

(A.14)

to first order in ξµ. The adjoint action for a symmetric tensor X (i.e. X T = X ) satisfies

adX Y T =− [adX Y ]T , (A.15)

where the superscript T indicates the transpose. Therefore, by acting with the inverse operator from the left

on Eq. (A.14), we finally obtain the transformation law of hµν as

h′
µν = hµν+

[(
adh

eadh −1

)
∂ξ

]
µν

+
[(

adh

eadh −1

)
∂ξ

]
νµ

− 1

2

(
∂αξ

α
)
ηµν+ξα∂αhµν, (A.16)

up to first order in ξµ. It completes our derivation of Eqs. (2.18) and (2.19). Note that the traceless property of

hµν is indeed preserved since

Tr

[(
adh

eadh −1

)
∂ξ

]
= ∂αξ

α. (A.17)

B Einstein and conformal frame

In this appendix, we clarify the relation between the action given in Eq. (2.12) and that in the Einstein frame

(3.5). Let us start from Eq. (3.5). The metric in the Einstein frame can be decomposed in the same way

gµν = e2ϕE g̃µν, Det
[
g̃µν

]=−1. (B.1)

The conformal mode in the Einstein frame is defined as

ΦE =p
6MP eϕE . (B.2)

Here we use the subscript E to clarify that ΦE is different from Φ. We also rescale the fields as

σE → e−ϕE σE , H → eσE /ΦE−ϕE H , ψ→ e−3ϕE /2ψ. (B.3)

The scalaron field σ given in Eq. (2.12) is different from σE . The relation between them is given by

σE

ΦE
=− ln

(√
Φ2

E +2 |H |2 +σ2 +σ

)
+ lnΦE . (B.4)

Inserting these equations into Eq. (3.5), we obtain

S =
∫

d4x

[
R̃

12
Φ2

E + g̃µνDµH †DνH + 1

2
g̃µν∂µσ∂νσ

− 1

2
g̃µν∂µ

√
Φ2

E +2 |H |2 +σ2∂ν

√
Φ2

E +2 |H |2 +σ2 −V

(√
Φ2

E +2 |H |2 +σ2, H ,σ

)]
+Sψ+A

[
g̃µν

]
,

(B.5)
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where

V (Φ, H ,σ) =λ |H |4 + λm

2
(Φ+σ)2 |H |2 + λΛ

4
(Φ+σ)4 + λα

4

[
σ (Φ+σ)+2ξ̄ |H |2]2

. (B.6)

Therefore we reproduce Eq. (2.12) by the following relation between ΦE and Φ:

Φ2
E =Φ2 −2 |H |2 −σ2. (B.7)

C Computational details of one-loop RGEs

In this appendix, we provide some intermediate steps to derive the one-loop RGEs. It is shown in the main

text that the SM fermions and gauge bosons do not couple to the conformal mode Φ nor the scalaron σ

thanks to the Weyl invariance. Therefore, their effects on the RGEs except for the Higgs quartic coupling λ are

only through the Higgs anomalous dimension, which is easy to reproduce. For this reason, we ignore the SM

fermions and gauge bosons and focus on the scalar sector of the Higgs-R2 theory in this appendix.

C.1 Feynman rules

As we have explained the main text, we can simply take g̃µν = ηµν without worrying about any complications

associated with the ghost fields below MP . Thus, the action from which we compute the RGEs is

S =
∫

d4x

[
−1

2
ηµν∂µΦ∂νΦ+ 1

2
ηµν∂µφi∂νφi + 1

2
ηµν∂µσ∂νσ− λ

4
φ4

i

−λm

4
(Φ+σ)2 φ2

i −
λΛ

4
(Φ+σ)4 − λα

4

(
σ (Φ+σ)+ ξ̄φ2

i

)2
]

, (C.1)

where we have slightly generalized the action by allowing the index i to run from i = 1 to i = N , where N is the

number of the real scalar fields (N = 4 for the SM Higgs). Note that we do not even have to expand Φ aroundp
6MP to compute the RGEs. The Feynman rules are readily derived from this action. The propagators are

given by

Φ : =− i

q2 , (C.2)

σ : = i

q2 , (C.3)

φi : i j = i

q2 δi j . (C.4)

where we have used the wavy line for Φ and the solid line for σ since we do not consider the fermions and

gauge bosons in this appendix. They should not be confused with the SM fermions and gauge bosons. Here

it is important to notice the additional minus sign in the propagator of the conformal mode Φ. It originates

from the ghost-like property of Φ. Although ghost-like, it does not spoil the theory thanks to a residual gauge

23



symmetry, as discussed in detail in Ref. [21]. The Feynman rules for the interactions are given by

=−6i (λα+λΛ) , =−3i (λα+2λΛ) , (C.5)

=−i (λα+6λΛ) , =−6iλΛ, =−6iλΛ, (C.6)

i

j

=−i
(
2ξ̄λα+λm

)
δi j ,

i

j

=−i
(
ξ̄λα+λm

)
δi j , (C.7)

i

j

=−iλmδi j ,

i

j

k

l

=−2i
(
ξ̄2λα+λ

)(
δi j δkl +δi kδ j l +δi lδ j k

)
, (C.8)

where the combinatory factors from the external states are taken into account.

C.2 Divergent part of four-point functions

We compute the scalar four-point functions at one-loop level. Below we list the divergent parts of the four-

point functions before renormalization, where we have performed dimensional regularization with d = 4−2ε.

The divergent parts are

i Aσ4

∣∣
div. =

3i

32π2

1

ε

[
λα (19λα+12λΛ)+N

(
2ξ̄λα+λm

)2
]

, (C.9)

i Aσ3Φ

∣∣
div. =

3i

32π2

1

ε

[
12λα (λα+λΛ)+N

(
2ξ̄λα+λm

)(
ξ̄λα+λm

)]
, (C.10)

i Aσ2Φ2

∣∣
div. =

i

32π2

1

ε

[
4λα (5λα+9λΛ)+N

(
2
(
ξ̄λα+λm

)2 +λm
(
2ξ̄λα+λm

))]
, (C.11)

i AσΦ3

∣∣
div. =

3i

32π2

1

ε

[
3λα (λα+4λΛ)+N

(
ξ̄λα+λm

)
λm

]
, (C.12)

i AΦ4

∣∣
div. =

3i

32π2

1

ε

[
λα (λα+12λΛ)+Nλ2

m

]
, (C.13)

for the four-point functions involving only the conformal mode and the scalaron, and

i Aσ2φi φ j

∣∣∣
div.

= i

32π2

δi j

ε

[
6ξ̄

(
2ξ̄+1

)
λ2

α+λαλm
(
1+8ξ̄

)+2(N +2)
(
2ξ̄λα+λm

)(
ξ̄2λα+λ

)]
, (C.14)

i AσΦφi φ j

∣∣
div.

= i

32π2

δi j

ε

[
4ξ̄λ2

α

(
2ξ̄+1

)+ (
1+8ξ̄

)
λαλm +2(N +2)

(
ξ̄λα+λm

)(
ξ̄2λα+λ

)]
, (C.15)

i AΦ2φi φ j

∣∣∣
div.

= i

32π2

δi j

ε

[
2ξ̄

(
2ξ̄+1

)
λ2

α+ (
1+8ξ̄

)
λαλm +2(N +2)λm

(
ξ̄2λα+λ

)]
, (C.16)

i Aφi φ j φkφl

∣∣
div.

= i

16π2

1

ε

(
δi j δkl +δi kδ j l +δi lδ j k

)[
ξ̄2λ2

α+2(N +8)
(
ξ̄2λα+λ

)2
]

, (C.17)

for the four-point functions involving the scalar fields φi .
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C.3 Counterterms

Now we list the divergent parts of the counterterms. It is important to notice that we have to make use of an

SO(1,1) redundancy to renormalize the theory. We introduce the counterterms to the scalar potential V as

V = λα+δλα

4

[
(1+θ) (σ+Φ) (σ+θΦ)+ (

ξ̄+δξ̄
)
φ2

i

]2 + λΛ+δλΛ

4
(1+4θ) (σ+Φ)4

+ λm +δλm

4
(1+2θ) (σ+Φ)2 φ2

i +
λ+δλ

4
φ4

i , (C.18)

where θ reflects the SO(1,1) redundancy that corresponds to the shift

σ→σcoshθ+Φsinhθ, Φ→Φcoshθ+σsinhθ. (C.19)

Here we expand the fields with respect to θ around θ = 0 to first order. Note that there are only six countert-

erms, δλα,θ,δλΛ,δλm ,δξ̄,δλ, while there are nine divergent four-point functions. Hence it is a non-trivial

check of our computation that we can indeed renormalize the theory. After renormalization, the divergent

parts of the counterterms are given by

δλα = 1

32π2

λ2
α

ε

[
5+2N ξ̄2] , (C.20)

θ = 1

32π2

1

ε

[
2λα+N ξ̄λm

]
, (C.21)

δλΛ = 1

64π2

1

ε

[
λα (λα−4λΛ)+Nλm

(
λm −8ξ̄λΛ

)]
, (C.22)

δλm = 1

32π2

1

ε

[
2ξ̄

(
2ξ̄−1

)
λ2

α+ (−3+8ξ̄+4ξ̄2)λαλm −2N ξ̄λ2
m +2(N +2)λmλ

]
, (C.23)

δξ̄= 1

32π2

1

ε

[
ξ̄λα

(−3+4ξ̄+4ξ̄2)+2(N +2) ξ̄λ
]

, (C.24)

δλ= 1

16π2

1

ε

[(
2ξ̄−1

)2
ξ̄2λ2

α+12ξ̄2λαλ+ (N +8)λ2
]

. (C.25)

One can readily derive the one-loop RGEs from these expressions.

D Computational details of two-loop RGEs

In this appendix, we explain how we obtain the full two-loop RGEs of the Higgs-R2 theory shown in Sec. 2.4

with the help of SARAH. Our main purpose in this appendix is to explain how to take into account the minus

sign in front of the kinetic term of the conformal mode Φ without modifying the public code itself. For this

purpose, it is important to notice that once we replace

Φ= iφ, (D.1)

the kinetic term of φ has the conventional sign. After this replacement, the coupling between φ and the other

fields is multiplied by a power of the imaginary unit i . It suggests that we can take into account the negative

sign of the kinetic term of Φ by putting factors of the imaginary unit i in front of the couplings. One may feel

uncomfortable with the imaginary couplings, but they should be understood merely as a mathematical trick
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to translate an output of public codes/literature (which usually assume the positive sign for the scalar kinetic

terms) to our theory with the ghost-like mode Φ.\15 We again emphasize that, although ghost-like, Φ does not

cause any issue thanks to the residual gauge symmetry. In the following, we explain how the above idea is

implemented in practice. We divide the procedure into five steps. Although we focus on the Higgs-R2 theory,

our procedure can be equally applied to other models.

Step 1: compute the RGEs of a “usual" theory. As a first step, we compute the RGEs of a “usual" theory, i.e.,

the theory that contains two singlet scalar fields φ and σ in addition to the SM, which are later mapped to the

conformal mode of the metric Φ, and the scalaron σ, respectively. We take the scalar potential to be generic,

or

V = λ1

4
φ4 + λ2

4
φ3σ+ λ3

4
φ2σ2 + λ4

4
φσ3 + λ5

4
σ4 +

(κ1

2
φ2 +κ2φσ+ κ3

2
σ2

)
|H |2 +λUV |H |4 , (D.2)

where λi , κi and λUV are the scalar quartic couplings. At this moment, both singlets φ and σ are assumed to

have positive kinetic terms, and hence we can easily compute the RGEs of this system with the help of public

codes such as SARAH, or literature on the general RGEs such as Refs. [31–34].

Step 2: map to the Higgs-R2 theory. After computing the RGEs of the above theory, we map it to the Higgs-

R2 theory. The scalar potential of the Higgs-R2 theory is given by

V =λ |H |4 + λm

2
e2θ (Φ+σ)2 |H |2 + λΛ

4
e4θ (Φ+σ)4 + λα

4

[
(σcoshθ+Φsinhθ)eθ (Φ+σ)+2ξ̄ |H |2

]2
, (D.3)

where we have also included the SO(1,1) redundancy θ. Note that θ is unphysical since we can always replace

σcoshθ+Φsinhθ→σ, Φcoshθ+σsinhθ→Φ, (D.4)

without affecting the kinetic terms of Φ and σ. The inclusion of this redundancy θ is nevertheless important

for the renormalization, as we have already seen in App. C. We replace the scalar modes of the Higgs-R2 theory

as

Φ→ iφ, σ→σ. (D.5)

As a result, the two theories are related via

λ1 = λα

4

(
1−e2θ

)2 +e4θλΛ, λ2 = i e2θ
(
λα

(
1−e2θ

)
−4e2θλΛ

)
, λ3 = λα

2

(
1−3e4θ

)
−6e4θλΛ, (D.6)

λ4 = i e2θ
(
λα

(
1+e2θ

)
+4e2θλΛ

)
, λ5 = λα

4

(
1+e2θ

)2 +e4θλΛ, λUV =λ+ ξ̄2λα, (D.7)

κ1 =−e2θλm +
(
1−e2θ

)
ξ̄λα, κ2 = i e2θ (

λm + ξ̄λα

)
, κ3 = e2θλm +

(
1+e2θ

)
ξ̄λα. (D.8)

By inserting these mappings, we can compute the RGEs of the Higgs-R2 theory from the RGEs computed in

the step 1.

\15At a deeper level, it might be related to the PT symmetry.
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Step 3: consistency check I. Before computing the RGEs of the Higgs-R2 theory, we have to perform a con-

sistency check of our procedure. The “usual" theory contains nine scalar quartic couplings λi , κi and λUV,

while the corresponding Higgs-R2 theory has only six parameter in the scalar potential, λ, λm , λΛ, λα, ξ̄ and

the redundancy θ. Thus, there are three redundancies among λi , κi and λUV after the mapping, given by

0 =−2λ1 + iλ2 + iλ4 +2λ5, (D.9)

0 =−λ1 + iλ2 +λ3 − iλ4 −λ5, (D.10)

0 =−κ1 +2iκ2 +κ3. (D.11)

We have to check that these redundancies are maintained by the beta functions after the mapping, i.e.,

0 =−2βλ1 + iβλ2 + iβλ4 +2βλ5 , (D.12)

0 =−βλ1 + iβλ2 +βλ3 − iβλ4 −βλ5 , (D.13)

0 =−βκ1 +2iβκ2 +βκ3 , (D.14)

after replacing the couplings following Eqs. (D.6)-(D.8). These conditions, once satisfied, guarantee that the

Higgs-R2 theory is renormalizable. We have explicitly checked that these conditions are indeed satisfied up

to two-loop in the Higgs-R2 theory.

Step 4: compute the RGEs of the Higgs-R2 theory. Once the above consistency check is done, we are ready

to compute the RGEs of the Higgs-R2 theory. From the mappings (D.6)-(D.8), we can obtain the RGEs as

βλα
= 1

2

(
3βλ1 +βλ3 +3βλ5

)
, (D.15)

βθ =
e2θβλα

2(λ1 −λ5)
+ βλ1 −βλ5

2(λ1 −λ5)
, (D.16)

βλΛ
=−e−4θβθ (2λ1 +2λ5 −λα)+ e−4θ

2

(
βλ1 +βλ5

)− βλα

4

(
1+e−4θ

)
, (D.17)

βξ̄ =
(
βκ1 +βκ3

)
2λα

− ξ̄

λα
βλα

, (D.18)

βλm =−1

2

(
βκ1 +βκ3

)− i e−2θ (
βκ2 −2κ2βθ

)
, (D.19)

βλ =βλUV −2ξ̄λαβξ̄− ξ̄2βλα
. (D.20)

It is convenient to compute the beta functions in this ordering, as the beta functions given in the later equa-

tions are expressed by those computed earlier. The RGEs of the other SM parameters, such as the Yukawa and

gauge couplings, are also obtained by replacing the parameters following the mappings (D.6)-(D.8).

Step 5: consistency check II. Finally we have two additional consistency checks of our procedure. First, as

we have explained above, the parameter θ is unphysical and hence the beta functions should not depend

on it. Second, the beta functions βλα
, βξ̄ and βλ should be independent of λm and λΛ, and βλm should be

independent of λΛ. This property is easily understood in the Jordan frame from the mass dimension of the
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couplings. It is, however, a non-trivial check that it is satisfied in our formalism since all the parameters are

treated as scalar quartic couplings once we map the Higgs-R2 theory to the LSM (2.27). We have checked that

these properties are indeed satisfied by the RGEs computed by our procedure.

The two-loop RGEs in Sec. 2.4 are derived following the above steps 1-5. We have also checked that the

one-loop RGEs computed by this procedure agree with those derived from the direct computation in App. C.

E Renormalizability and residual gauge symmetry

In this paper, we have confirmed by explicit computation that the LSM (2.27) is renormalizable (at least) up

to two-loop. In other words, all the divergences that appear in the theory can be cancelled by the operators

within the LSM and hence one does not have to introduce additional operators as counter terms.

We emphasize that the renormalizability of the LSM (2.27) is non-trivial if we regard Φ and σ as usual

scalar fields. This is because the scalar potential of the LSM (2.27) does not exhaust all the possible scalar

quartic interactions. If one regards Φ and σ as usual scalar fields, one would expect that there are nine oper-

ators, Φ4, Φ3σ, Φ2σ2, Φσ3, σ4, Φ2φ2
i , Φσφ2

i , σ2φ2
i , and φ4

i , with independent coefficients. Instead, the coef-

ficients of these operators are related in the LSM (2.27) such that there are only six independent parameters

(including the SO(1,1) redundancy). It is nevertheless renormalizable thanks to the the ghost-like property

of Φ, as one can see by explicit computation. In this appendix, we describe our attempt to understand this

renormalizability from the residual gauge symmetry. In particular, we see that the residual gauge symmetry

restricts possible forms of the scalar quartic interactions of the LSM (2.27).

E.1 Residual gauge symmetry and conformal weight

We first explain the residual gauge symmetry of our gauge fixing condition (2.21). Here we focus on the scalar

part of the residual gauge symmetry, which is given by

xµ → xµ−∂µξ, (E.1)

where the index is raised by ηµν, and ξ satisfies

∂µ∂νξ= 1

4
ηµν�ξ. (E.2)

It follows that ξµ ≡ ∂µξ satisfies the conformal killing equation (of flat spacetime),

∂µξν+∂νξµ = 2

d
ηµν∂αξ

α, (E.3)

where d = 4 is the spacetime dimension, and hence this residual gauge symmetry is (one form of) the confor-

mal symmetry, or the dilatation symmetry. Here one should not confuse the conformal transformation with

the Weyl transformation. The former is a general coordinate transformation under which a given metric (ηµν

in our case) does not transform up to the overall normalization,\16 while the latter is a field redefinition of the

\16Or equivalently, a general coordinate transformation times a Weyl transformation that keeps a given metric unchanged.
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metric and is unrelated to the general coordinate transformation.\17 Note that the above conformal killing

equation in particular means that

∂µ�ξ=�2ξ= 0. (E.4)

For our purpose, it is useful to define the conformal weight. We assign the conformal weight nα to an

operator Oα if it transforms as

Oα →
[

1+ nα

4
�ξ+ (

∂µξ
)
∂µ

]
Oα, (E.5)

under the residual gauge symmetry. Note that the conformal weight is additive, that is, if operators Oα and

Oβ have conformal weights nα and nβ, respetively, the composite operator OαOβ transforms as

OαOβ →
[

1+ nα+nβ

4
�ξ+ (

∂µξ
)
∂µ

]
OαOβ. (E.6)

The derivative ∂µ raises the conformal weight of a given operator by unity, or

∂µOα →
[

1+ nα+1

4
�ξ+ (

∂νξ
)
∂ν

]
∂µOα, (E.7)

as one can show by using the conformal killing equation. If an operator O has conformal weight four, one can

show that ∫
d 4xO →

∫
d 4x

[
1+�ξ+ (

∂νξ
)
∂ν

]
O =

∫
d 4xO, (E.8)

i.e., its integrand is invariant under the residual gauge symmetry. It follows that only operators with conformal

weight four can show up in the Lagrangian due to the requirement of invariance under the residual gauge

transformation.

E.2 Possible interactions

Now we write down possible interactions of the LSM that are invariant under the residual gauge symmetry.

We start with only Φ and the SM particles as the particle content. In other words, we do not include the

scalaron as a fundamental degree of freedom at the beginning.

The conformal mode of the metric transforms under the residual gauge symmetry as

Φ→
[

1+ 1

4
�ξ+ (

∂µξ
)
∂µ

]
Φ, (E.9)

and hence it has conformal weight one. Since we rescaled the SM fields by an appropriate factor of eϕ, the

SM fields (in the “comoving frame") transform under the residual gauge symmetry as

H →
[

1+ 1

4
�ξ+ (

∂µξ
)
∂µ

]
H , (E.10)

ψ→
[

1+ 3

8
�ξ+ (

∂µξ
)
∂µ

]
ψ, (E.11)

Aν →
[

1+ 1

4
�ξ+ (

∂µξ
)
∂µ

]
Aν, (E.12)

\17In the literature, the word “conformal transformation" is sometimes used instead of the Weyl transformation in the latter mean-

ing. In this paper we follow the terminology we have defined above in order to avoid possible confusion.
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where H is the Higgs doublet, ψ represents the SM fermions and Aν the SM gauge bosons.

Since we start from the theory which does not have the scalaron σ explicitly, the operators with conformal

weight four that are written solely in terms of Φ are

(∂Φ)2 ,

(
�Φ
Φ

)2

, Φ4. (E.13)

They correspond to the operators R, R2 and the cosmological constant, respectively. Of course one can write

down more terms by using more derivatives, but they are higher-dimensional operators and hence we ignore

them below. In the purely SM sector, all the usual SM interactions are allowed. For the SM-Φ mixed sector,

the following are the leading order terms that respect both the residual gauge symmetry and the SM gauge

symmetry:

|H |2Φ2, |H |2 �Φ
Φ

, (E.14)

where the first one corresponds to the Higgs mass term and the second one to the non-minimal coupling

to gravity ξ (or more precisely ξ̄). Again we can write down other operators but we omit them due to their

higher-dimensional nature. It follows that the scalar quartic interactions of the LSM (2.27) are determined by

the residual gauge symmetry.

E.3 A few remarks

We have seen above that the structure of the theory and hence the scalar potential are controlled by the

residual gauge symmetry. We still feel that there are unsatisfactory points in this argument. In this subsection

we point out some of them in order to motivate possible future work on the theoretical structure of the Higgs-

R2 theory.

The first unsatisfactory point is that we had to assume that the scalaron is not a fundamental degree of

freedom at the beginning in our discussion above. The reason is that if we include the scalaron σ from the

beginning, the scalar part of the residual gauge symmetry does not distinguish σ from usual singlet scalar

fields, and hence it does not prohibit generic scalar quartic interactions involving σ. Moreover, we can still

write down (�Φ/Φ)2 which would even introduce an additional “scalaron." We think that there should be a

propertry of σ that distinguishes it from other usual scalar fields, whose study we leave as a future work.

The second unsatisfactory point is the criteria of higher dimensional operators. In the discussion above,

we have included only the SM operators and the operators in Eqs. (E.13) and (E.14) by arguing that others are

higher dimensional operators. A rule of thumb is that we count the mass dimensions of the SM particles and

the derivative as usual, but we count that of Φ as zero. We also allow only Φ to appear in the denominator of

operators. A given operator is then regarded as higher dimensional if the total mass dimensions exceeds four.

We know that this criteria practically works, but we do not know a physical reason behind it. We again leave

this point for future work.
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