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In this work, we demonstrate that applying deep generative machine learning models for lattice
field theory is a promising route for solving problems where Markov Chain Monte Carlo (MCMC)
methods are problematic. More specifically, we show that generative models can be used to estimate
the absolute value of the free energy, which is in contrast to existing MCMC-based methods which
are limited to only estimate free energy differences. We demonstrate the effectiveness of the pro-
posed method for two-dimensional φ4 theory and compare it to MCMC-based methods in detailed
numerical experiments.

Introduction. The free energy of a physical system is
of great importance since it can be related to several
thermodynamical observables. In particular, at non-zero
temperature, it allows to compute the entropy, the pres-
sure or, more generally, the equation of state of the con-
sidered physical system. For example, QCD at high tem-
perature –as a generic strongly interacting field theory–
plays an essential role in the physics of the early universe
and is now extensively probed in large-scale heavy ion
experiments [1]. Hence, knowing such thermodynamic
quantities from QCD alone is of very high relevance.

The main tool to study strongly-coupled field theories,
such as QCD, is to discretize them on a spacetime lat-
tice and use Monte-Carlo Markov-Chain (MCMC) meth-
ods to numerically calculate the relevant physical quan-
tities. Unfortunately, these thermodynamical quantities
are challenging to compute using existing MCMC meth-
ods. The fundamental difficulty is that MCMC is not
able to directly estimate the partition function of the
lattice field theory. Therefore, the absolute value of the
free energy cannot be estimated straightforwardly.

Instead, there are a number of MCMC methods to es-
timate differences of free energies. One typically chooses
a free energy difference ∆F = Fb − Fa such that Fa is
known either exactly or approximately. One can then
deduce the value of the free energy Fb = ∆F +Fa at the
desired point in parameter space. If the free energy Fa
is not known exactly, this induces an unwanted approxi-
mation error. Most of the methods to estimate ∆F rely
on integrating a derivative of the partition function over
a trajectory in the parameter space of the lattice field
theory [2]. Alternatively, one can use a reweighting pro-
cedure to calculate free energy differences between neigh-
bouring points of the discretized trajectory and then sum
them up [2, 3]. These approaches require simulations at
each parameter point of the discretized trajectory which
is numerically costly and leads to accumulation of errors.

This effect is often the dominant contribution to the er-
ror - especially if the trajectory passes a phase transi-
tion. Such situations arise for example in the context
of studying the deconfined phase of SU(3) Yang–Mills
theory [4, 5]. We stress that the accumulation of the
statistical error along the trajectory and the approxi-
mation error of its starting point are not independent.
The former could be reduced if a better starting point
was available. There are also non-equilibrium methods
based on Jarzynski’s identity to estimate free energy dif-
ferences without the need for integration [5–7]. However,
also these methods require expensive repeated simula-
tions corresponding to an ensemble of non-equilibrium
trajectories through phase-space.

It is therefore desirable to develop methods which allow
the direct estimation of the free energy at a given point
in parameter space.

In the following, we will propose such a method based
on deep generative machine learning models. As we will
discuss, our method comes with rigorous error estimators
and asymptotic guarantees. Over the last years, deep
generative models have been applied with great success
to generate, for example, high-resolution images, natu-
ral speech, and text (see [8] for an overview). In [9],
a machine-learning-based regression algorithm for deter-
mining action parameters from an ensemble of field con-
figurations is proposed and [10] uses a neural network
to predict the structure of phase transitions from field
configurations. References [11–15] conjecture a relation
between Restricted Boltzmann Machines and Quantum
Fields in the context of the holographic duality. In the
recent works [16–18], deep generative models have also
been used in the context of lattice quantum field theories
(see also [19, 20]). The main objective of these works was
to reduce the integrated autocorrelation of the simula-
tions. In contrast, this work demonstrates that deep gen-
erative models can be used to estimate quantities which
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are not (directly) obtainable by MCMC approaches.
We also note that generative models have been used

in [21] to estimate free energy differences in the context
of statistical mechanics by combining these models with
the Zwanzig free energy perturbation method [22]. Con-
trary to this approach, our method estimates the abso-
lute value of the free energy. We furthermore note that
the free energy can also be directly computed using the
Tensor Renormalization Group method, see [23] for an
application to φ4-theory. For other novel approaches to
obtain thermodynamic quantities and, in particular, the
equation of state, see [24, 25].

In the following, we will give a brief overview of rele-
vant aspects of lattice field theories and generative mod-
els. We will then discuss how generative models can be
used to estimate the free energy and compare this ap-
proach to MCMC-based methods in numerical experi-
ments.

Lattice Field Theory. A lattice field theory can be
described by an action S(φ). In the following, we will
consider (euclidian) real scalar field theory for concrete-
ness, i.e. φ(x) ∈ R for each lattice site x ∈ Λ of the
lattice Λ. The path integral then reduces to an ordinary
high-dimensional integral. Therefore, expectation values
of operators O(φ) can be calculated by

〈O〉 =
1

Z

∫
D[φ]O(φ) exp(−S(φ)) ,

where we defined D[φ] =
∏
x∈Λ d[φ(x)] and the partition

function Z is given by

Z =

∫
D[φ] exp(−S(φ)) .

If we impose periodic boundary conditions in time for a
lattice with temporal extend NT , the theory is at finite
temperature T = 1

β = 1
NT a

, where a denotes the lattice
spacing. The free energy is then defined by

F = −T ln(Z) , (1)

and can be related to the pressure p = −F
V , where V

denotes the spatial volume of the lattice Λ whose number
of lattice sites we denote by |Λ|. Similarly, the entropy
H can be obtained from the free energy by F = U −TH,
where the U is the internal energy.

Deep Generative Models. We focus on a particular
subclass of generative models called normalizing flows
(see [26] for a recent review). These flows are distribu-
tions qθ with learnable parameters θ. They also have the
appealing property that they allow for efficient sampling
and calculation of the probability of the samples.

In more detail, these flows are constructed by defining
an invertible neural network gθ. For a brief overview of
neural networks, we refer to the Supplement. The sam-
ples φ ∈ R|Λ| are obtained by applying this network to

samples z ∈ R|Λ| drawn from a simple prior distribution
qZ such as a standard normal N (0, 1):

φ = gθ(z) , z ∼ qZ . (2)

Since the network gθ is invertible by assumption, it then
follows by the change of variable theorem that φ ∼ qθ
with

qθ(φ) = qZ(g−1
θ (φ))

∣∣∣∣dgθdz

∣∣∣∣−1

. (3)

The architecture of the neural network gθ is chosen such
that i.) invertibility of gθ and ii.) efficient evaluation of

the Jacobian determinant
∣∣∣dgθdz

∣∣∣ are ensured. A particular

example of such an architecture is Non-linear Indepen-
dent Component Estimation (NICE) [27] for which the
neural network gθ consists of invertible coupling layers
yl : R|Λ| → R|Λ|, i.e.

gθ(z) =
(
yL ◦ yL−1 ◦ · · · ◦ y1

)
(z) (4)

Invertiblity and efficient evaluation of Jacobian determi-
nant is then ensured by splitting the components of the
layer yl = (ylu, y

l
d) in two parts ylu ∈ R|Λ|−k and yld ∈ Rk

for given k ∈ {1, |Λ| − 1}. The layer yl+1 = (yl+1
u , yl+1

d )
is then recursively defined by

yl+1
u = ylu ,

yl+1
d = yld +m(ylu) , (5)

where m is another neural network (not necessarily sat-
isfying the two requirements from above). Due to the
splitting, this can be easily inverted by

ylu = yl+1
u ,

yld = yl+1
d −m(yl+1

u ) ,

and the determinant of the Jacobian is given by

det
∂yl+1

∂yl
=

∣∣∣∣∣∣
∂yl+1
u

∂ylu

∂yl+1
u

∂yld
∂yl+1
d

∂ylu

∂yl+1
d

∂yld

∣∣∣∣∣∣ =

∣∣∣∣I 0
∗ I

∣∣∣∣ = 1 .

The total Jacobian determinant is then
∣∣∣dgθdz

∣∣∣ = 1 since it

is the product of the Jacobian determinant of each layer.
Training. We want to train a generative model which

samples field configurations φ ∼ qθ approximately from
the path-integral distribution

p(φ) =
1

Z
exp(−S(φ)) . (6)

For this, the Kullback–Leibler divergence [28] between
the normalizing flow qθ and the target distribution p is
minimized, i.e.

KL(qθ||p) =

∫
D[φ] qθ(φ) ln

(
qθ(φ)

p(φ)

)
= β (Fq − F ) ,
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where we have defined the variational free energy

βFq = Eφ∼qθ [S(φ) + ln qθ(φ)] (7)

as well as the expectation value Eq[O] =
∫
D[φ]qθ(φ)O(φ)

and the free energy F = − 1
β ln(Z). This divergence van-

ishes if and only if the distributions q and p are identical
[29].

The KL divergence is minimized by gradient descent
with respect to the parameter θ of the flow qθ. Since
the free energy F does not depend on the flow q, the
variational free energy Fq can equivalently be minimized.
Therefore, the training procedure does not require a tar-
get distribution (6) with a tractable partition function
Z. Using the explicit expression for the probability of
the flow (3), we can rewrite the variational free energy as

βFq = Ez∼qZ
[
S(gθ(z))− ln

∣∣∣∣dgθdz

∣∣∣∣ (z) + ln qZ(z)

]
.

In training, the expectation value is approximated by
its Monte-Carlo estimate. In machine learning, this ap-
proach of learning a model from an unnormalized target
distribution is very well established [30–33]. Recently,
the same method has been used in the context of lattice
field theories [16]. Furthermore, this approach has been
applied to quantum chemistry [34] and statistical physics
[35–37].

The variational free energy does not allow us to infer
the value of the KL divergence since the free energy F
is not known. In order to alleviate this shortcoming, we
define the random variable C(φ) = S(φ)+ln qθ(φ), which
is related to the variational free energy by βFq = 〈C〉q.
In the Supplement, we show that

KL(qθ||p) = 1
2 Varq(C) +O(Eq[|w − 1|3]) ,

where we have defined the importance weight w(φ) =
p(φ)
q(φ) . Thus convergence of training will result in a small

variance Varq(C). In practice, a Monte-Carlo estimate
of this quantity can be calculated without any signifi-
cant overhead during training as C(φ) is also needed for
Monte-Carlo estimation of the variational free energy Fq,
see (7). It is therefore advisable to closely monitor the
variance of C during training.

Estimation of Thermodynamical Observables. The
partition function Z can be rewritten as

Z =

∫
D[φ] qθ(φ) w̃(φ) , (8)

where we have defined the unnormalized importance

weight w̃(φ) = exp(−S(φ))
qθ(φ) . Therefore, the partition func-

tion can be estimated by Monte-Carlo as follows

Ẑ =
1

N

N∑
i=1

w̃(φi) with φi ∼ qθ . (9)

0.0 0.1 0.2 0.3 0.4 0.5
hopping parameter κ
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⟨|ϕ|⟩
|Λ|

⟨4x⟩
4⟩x⟩
32x⟩
1⟨x⟩

FIG. 1. Absolute magnetization density as a function of hop-
ping parameter κ for bare coupling λ = 0.022. Results for
various lattice sizes overlap. The values were estimated with
an overrelaxed HMC [38–41]. The dashed line denotes the
hopping parameter value κ = 0.3 for the free energy estima-
tion in the numerical experiments.

16x8 32x8 48x8 64x8
Lattice Λ

−1.056

−1.054
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−1.050

−1.048

F
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FIG. 2. Estimate of free energy density at λ = 0.022 and
κ = 0.3 obtained by both the flow-based and MCMC-
based method for various lattice sizes. MCMC estimates are
obtained from integrating free energy differences. Both meth-
ods use the same number of samples (5.6 M) for estimation.
Errors are obtained with the delta and uwerror method [42]
for flow and HMC respectively (see Appendix for Jackknife
error analysis).

We emphasize that the sampling procedure does not need
to be sequential (as for a Markov Chain). As a result,
it can very efficiently be parallelized and does not suf-
fer from autocorrelation. From Ẑ, one can then easily
estimate the free energy by

F̂ = −T ln Ẑ . (10)
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From the free energy (10), one can then straightfor-
wardly obtain estimates for the pressure and entropy, as
explained above. The estimator (10) has been exten-
sively studied in the context of training an Importance
Weighted Variational Autoencoder (IWAE) [43–45]. It
was shown in [43] that it is a statistically consistent es-
timator if q has support larger or equal to the target p.
In [44], its variance and bias were derived using the delta
method (see also [36, 45]). For convenience, we summa-
rize the relevant results in the Supplement. Alternatively,
one can use the Jackknife method to estimate the bias
and variance [46].

Numerical Experiments. We apply the proposed
method to two-dimensional real scalar field theory with
action

S =
∑
x∈Λ

−2κ
2∑

µ̂=1

ϕ(x)ϕ(x+ µ̂) + (1− 2λ)ϕ(x)2

+λϕ(x)4 ,

where κ is the hopping parameter and λ denotes the bare
coupling constant of the theory. The action is invariant
under Z2-transformations, i.e. φ → −φ. Figure 1 shows
the absolute magnetization 〈|φ|〉 as a function of the hop-
ping parameter κ. As the hopping parameter κ increases,
spontaneous magnetization is observed.

In the following, we will estimate the free energy Fe at
λe = 0.022 and κe = 0.3 for lattice sizes |Λ| = NL ×NT
of 64× 8, 48× 8, 32× 8, 16× 8 with both the flow-based
and an MCMC-based method.

Using the flow method, we can directly estimate these
free energies. We modify the NICE architecture to ensure
that the flow qθ is invariant under Z2-transformations,
i.e. qθ(φ) = qθ(−φ). By the definition (3) of qθ, an odd
function gθ(−z) = −gθ(z) implies Z2-invariance of qθ.
The map gθ is odd if all its coupling blocks yl are odd,
see (4). The latter condition can be ensured by choosing
an odd neural network m for the coupling (5) which we
achieve by using tanh non-linearities and vanishing biases
for the network m.

After training has completed, the free energy is then
computed using the proposed estimator (10). For error
analysis, we use both the Jackknife as well as the delta-
method and check that they lead to consistent error es-
timates. In many applications, generative models suffer
from mode dropping [47], i.e. some modes of the target
p are not captured by the model qθ. For our specific
estimation method however, a simple consistency check
can be performed ensuring that mode dropping does not
occur. To this end, we estimate Z = (Ep[w̃−1])−1 by
a single Markov chain at the target point in parameter
space and ensure that this leads to a compatible estimate,
see Supplement.

For MCMC, we use a reweighting procedure [2, 3]
which is significantly more involved and uses the rela-
tion Fe = ∆Fe b + Fb. Here, Fb is the free energy at

κb = 0 and λb = λe. The value of Fb can be analytically
calculated since for vanishing Hopping parameter κ:

F (λ) = −|Λ|T ln z(λ) ,

where |Λ| denotes the number of sites of the lattice Λ and

z(λ) =

√
1− 2λ

4λ
exp

(
(1− 2λ)2

8λ

)
K 1

4

(
(1− 2λ)2

8λ

)
,

with Kn being the Bessel function of the second kind. We
prove this relation in the Supplement. The free energy
difference ∆Fe b = Fe − Fb = −T ln Ze

Zb
can be obtained

by

Epb
[

exp(−Se)
exp(−Sb)

]
=

1

Zb

∫
D[φ] e−Sb(φ) e

−Se(φ)

e−Sb(φ)
=
Ze
Zb

.

We estimate this expectation value with an overrelaxed
HMC algorithm [38–41]. In practice, the variance of the
estimator will become prohibitively large if the two dis-
tributions pb and pe do not have sufficient overlap. We
therefore choose intermediate distributions pi1 , . . . piK
ensuring that neighbouring distributions pik and pik+1

have sufficient overlap. The free energy difference can
then be obtained by

∆Fe b = ∆Fe,iK + ∆FiK iK−1
+ · · ·+ ∆Fi1 b .

In our numerical experiments, we keep λ = 0.022 fixed
and only vary the hopping parameter κ of the interme-
diate distributions pi. We choose a difference in hopping
parameter of δκ = 0.01 for κ ∈ [0.2, 0.3] and δκ = 0.05 for
all other intermediate hopping parameters κ. We there-
fore use K = 14 Markov chains with 400k steps each.
Thus, a total number of 5.6 million configurations is used
for estimation. For a detailed analysis of the dependence
of our results on this choice of δκ, we refer to the Sup-
plement.

The error analysis is performed with both the uwerr
[42] and Jackknife method which are checked to lead to
consistent estimates. We again refer to the Supplement
for a more detailed description.

Figure 2 shows that the estimates of both the flow and
MCMC are compatible within errorbars. However, the
trajectory of the MCMC method has to pass the critical
region which is challenging due to critical slowing down.
The flow-based estimate can be directly performed at the
desired point in parameter space and therefore does not
suffer from this problem. This conceptual difference leads
to a significantly more precise estimate by the flow-based
method. For regions in parameter space which do not re-
quire the crossing of a phase transition, MCMC-based
methods have errors of comparable order of magnitude
(see Supplement). The ability of the flow to perform di-
rect estimates is both of practical as well as of conceptual
importance. For example in finite-temperature QCD, one



5

often uses a trajectory whose initial free energy is approx-
imated by the Hadron Resonance model (see for example
[2]) leading to an undesirable systematic error. Further-
more, summing up the free energy differences along the
trajectory leads to an accumulation of errors. This effect
is often the dominant contribution to the error and is
particularly pronounced in situations for which the tra-
jectory has to cross a phase transition. Such situations
are of great practical relevance, for example in the de-
confined phase of SU(3) gauge theory [4, 5]. We stress
that both error sources are related since the initial free
energy is the starting point of the trajectory.

Conclusion. In this letter, we have proposed a
method to directly estimate the free energy and hence
thermodynamical observables of lattice field theories
using deep generative models. This method is of great
conceptual appeal as it avoids cumbersome integration
through parameter space and does not require an
exactly or approximately known integration constant.
Future work will focus on scaling this approach to
four-dimensional gauge theories. Recent work has
successfully constructed flows which are manifestly
gauge-invariant [17, 18]. This recent progress, combined
with the enormous ongoing advances in deep learning,
makes it very promising that our method can be applied
to non-abelian gauge theories, and ultimately QCD, in
the not too distant future.

Acknowledgements. This work was supported in
part by the German Ministry for Education and Re-
search (BMBF) under Grants 01IS14013A-E, 01GQ1115,
01GQ0850, 01IS18025A and 01IS18037A. This work
is also supported by the Fraunhofer Heinrich-Hertz-
Institut (HHI) and by the grant funded by the DFG
(EXC 2046/1, Project-ID 390685689). P.S. thanks the
Helmholtz Einstein International Berlin Research School
in Data Science (HEIBRiDS) for funding. Research at
Perimeter Institute is supported by the Government of
Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province
of Ontario through the Ministry of Economic Develop-
ment, Job Creation and Trade. We want to express our
gratitude for valuable feedback by Klaus-Robert Müller,
Wojciech Samek, Nils Strodthoff, Alessandro Nada, and
Stefan Kühn.
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Conventions for Action

The form of the action S used in the main text is

S(φ) =
∑
x∈Λ

−2κ
2∑

µ̂=1

φ(x)φ(x+ µ̂) + (1− 2λ)φ(x)2

+ λφ(x)4 . (11)

It can be obtained by starting from the (more standard)
action

S(ϕ) =
∑
x∈Λ

a2 1

2

2∑
µ̂=1

(ϕ(x+ aµ̂)− ϕ(x))2

a2

+
m2

0

2
ϕ2(x) +

g0

4!
ϕ4(x) (12)

and performing the following re-definitions

ϕ = (2κ)
1
2φ , (13)

(am0)2 =
1− 2λ

κ
− 4 , (14)

a2g0 =
6λ

κ2
. (15)

A brief overview of Deep Learning

Neural Networks Neural networks are a machine
learning algorithm which has proven to be particularly
powerful. A neural network is build of layers which are
defined by

y(l)(x) = σ(W lx+ bl) ,

where x ∈ Rn, yl ∈ Rm are input and output of the layer.
The output of the layer is also often called the activation
of the layer. The weights W l ∈ Rm,n and the bias bl ∈ Rn
are the learnable parameters of the neural network. The
non-linearity σ : R → R is a non-linear function which
is applied element-wise to the components of W lx + bl.
Widely-used activation function are σ(x) = max(x, 0) or
σ(x) = tanh(x).

A neural network consists of L such layers, i.e.

g(x) = (y(L) ◦ · · · ◦ y(1))(x) .

It is important to note that the weights W l and biases
bl do not have to be of the same dimensionality for each
layer (although we did not make this explicit in our no-
tation). It is also important to note that we merely de-
scribed the most simple type of neural network, namely
a fully-connected neural network. There is a zoo of other
neural networks but we will refrain from a more detailed
discussion as it is not needed for our purposes (see [8] for
an overview).

Learning Parameters with Backpropagation The pa-
rameters of the neural networks,

W = {(W l, bl) , i = 1, . . . , L} ,

are determined by minimizing a certain loss function L by
gradient descent (see (7) for the particular loss function
used in this work). It is important to emphasize that the
number of parameters are typically large (of order 103 −
106 for typical modern neural networks). It is therefore
clear that one cannot determine the gradient by finite-
difference (as we would need calculate the finite difference
ratio for each of these parameters which is prohibitively
expensive).

The basic idea for calculating the gradient ∇WL is
to use the fact that we know the functional form of the
neural network: the gradient of the loss is given by

∇WL =
∂L
∂yL

∂yL

∂yL−1
. . .

∂y1

∂x
.

Each term in this expression is known, for example

∂yl+1

∂yl
= σ′(yl)W l .

For a fixed non-linearity, we know the analytical form
of the derivative σ′. This observation leads to the fol-
lowing algorithm: we first perform a forward pass of the
neural network, i.e. starting from the input x, we cal-
culate the activations yl for each layer and store them
in memory. This process ends with the final activation
yL which is, by definition, the output of the neural net-

work. The gradient of each layer ∂yl+1

∂yl
= σ′(yl)W l can

then directly be calculated (as we have stored the activa-
tion yl). Crucially, we only need the matrix product of
these Jacobians and it is efficient to start by calculating
the gradient with respect to the output layer L, then the
layer L − 1 and so forth. This is because the loss func-
tion has a scalar output value and therefore the matrix
product of the Jacobians

∂L
∂yL

∂yL

∂yL−1
. . .

∂yl+1

∂yl

is a vector with the same number of components as yl.
We can therefore save memory by simply overwriting the
stored activation yl. This algorithm is called backpropa-
gation and allows us to calculate the gradient ∇WL for
roughly the same cost as a forward pass of the neural
network.

Relation between Var(C) and KL divergence

Theorem. Let C(φ) = S(φ) + ln q(φ). The following
relation between the KL divergence and the variance of
C holds:

KL(qθ||p) = 1
2 Varq(C) +O(Eq[|w − 1|3]) ,
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where w(φ) = p(φ)
q(φ) is the normalized importance weight.

Proof. The expectation value of the normalized impor-
tance weight is

Eq

[
p

q

]
=

∫
D[φ] p(φ) = 1 .

The Kullback-Leibler divergence can be rewritten in
terms of the normalized importance weight

KL(q|p) = Eq

[
ln

q

p

]
= −Eq [lnw] .

We now expand the KL divergence around the expecta-
tion value of the normalized importance weight

KL(q|p) = −Eq [ln (1− (w − 1))]

= Eq




∞∑
j=0

(−1)j

j
(w − 1)j




= Eq[w − 1]︸ ︷︷ ︸
=0

+
1

2
Eq[(w − 1)2] +O(Eq[|w − 1|3]) .

We now relate this expression to the variance of C. To
this end, we first observe that C = − ln w̃, where w̃ =
exp(−S)/q is the unnormalized importance weight. We
then rewrite the expectation value of C as

Eq[C] = −Eq[ln w̃]

= −Eq [lnw + lnZ]

= − lnZ − Eq[lnw]

= − lnZ +KL(q|p)
= − lnZ +O(Eq[(w − 1)2]) ,

where the last step uses the expansion for the KL diver-
gence derived above. It then follows its variance is given
by

Varq(C) = Eq

[
(C − Eq[C])

2
]

= Eq

[
(− ln w̃ + Eq[ln w̃])

2
]

= Eq

[(
− ln w̃ + lnZ︸ ︷︷ ︸

=− lnw

+O
(
Eq[(w − 1)2]

) )2
]

Expanding the logarithm around Eq[w] = 1 again, we
obtain

Varq[C] = Eq[(w − 1)2] +O
(
Eq[|w − 1|3]

)
.

Combining this expression with the expansion derived for
the KL divergence, we obtain the claim of the theorem.

The higher-order moments will be small towards the
end of the training process for which q ≈ p and thus w ≈
1. Thus, the variance of C will become small. We indeed
observe this behaviour in our numerical experiments, see
Figure 3 for an example.

FIG. 3. The variance Varq(C) decreases during training. We
use hopping parameter κ = 0.3 and bare coupling λ = 0.022
for a 16× 8 lattice.

Analytic Solution for Partition Function

The action of the scalar field theory is given by

S =
∑
x∈Λ

−2κ

2∑
µ̂=1

ϕ(x)ϕ(x+ µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4 .

We want to calculate the partion function

Z =

∫
D[φ] exp(−S(φ)) ,

which for vanishing hopping parameter κ decouples in
independent integrals of each lattice site of the lattice Λ:

Z =
∏
x∈Λ

(∫
dφ(x) exp(−λφ(x)4 − (1− 2λ)φ(x)2)

)

The partition function can then be calculated analyti-
cally using the integral
∫

exp(−ax4 − bx2) dx =

√
b

4a
exp

(
b2

8a

)
K 1

4

(
b2

8a

)
,

where Kn is the modified Bessel function of the second
kind. Using this formula, we obtain the following analytic
form of the free energy

F = −T |Λ| ln(z) ,

where we have defined

z(λ) =

√
1− 2λ

4λ
exp

(
(1− 2λ)2

8λ

)
K 1

4

(
(1− 2λ)2

8λ

)
.

This result corresponds to the zeroth order of the hop-
ping expansion [46] of the partition function Z and one
may, in principle, also calculate higher-order corrections.
However, they are not needed for our purposes.
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FIG. 4. Integrated autocorrelation time of the free energy during refinement of the step size. The shaded red areas refers to
the interval in hopping parameter κ ∈ [0.265, 0.28] for which the refinement is applied. Darker shading indicates narrower step
size. The experiments were performed using the overrelaxed HCM algorithm.

Error Analysis for Free Energy Estimator

Our discussion is based on [44] which discussed the
same results in the context of variational inference. We
provide a review here since these results may be hard to
extract for physicist not familiar with variational infer-
ence. We also point out a subtlety that was not discussed
in the previous work.

The estimator for the free energy is given by

F̂ = −T ln
1

N

N∑
i=0

w̃(φi) , φi ∼ qθ . (16)

Theorems for the variance and bias of this estimator are
discussed in the following. For this, we use the delta
method of moments which is summarized in the following
theorem.

Theorem. Let X̂N = 1
N

∑N
i=1 Xi be the sample mean of

independent and identically distributed random variables
Xi with E

[
X2k+2

i

]
< ∞ for k ∈ {0, 1}. Let h be a real-

valued function with uniformly bounded derivatives. It
then holds that

E
[
h(X̂N )

]
= c0 +

c1
N

+O
(

1

N2

)
,

where

c0 = h(µ) , c1 = h′′(µ)
σ2

2
,

with σ2 = E
[
(X − EX)2

]
and µ = E [X].

We refer to Chapter 5.3 of [48] for a proof and more
details.

The application of the delta method to the free energy
estimator F̂ is, in practise, subject to a subtlety regarding
the bounded differentiablity of the function h. We will
ignore this subtlety in the following and return to it at
the end of the section.

Theorem. The bias of F̂ is given by

B[−βF̂ ] = − 1

2N

Eq

[
(w̃ − Eq[w̃])

2
]

Eq[w̃]2
+O(N−2) , (17)

assuming that Eq[w̃
2k+2] < ∞ for k = 0, 1.

Proof. The bias of −βF̂ = ln Ẑ is given by

B[−βF̂ ] = Eq[ln Ẑ]− lnZ .

Using the delta method for moments, we derive that

Eq[ln Ẑ] = lnZ − 1

2NZ2
Eq

[
(w̃ − Eq[w̃])

2
]
+O

(
N−2

)
,

(18)

where we have used that h(x) = ln(x) has second deriva-
tive h′′(x) = − 1

x2 . The proof then concludes by observing
that

Eq [w̃] = Z .
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Theorem. The variance of F̂ is given by

Var
[
−βF̂

]
=

1

N

Eq (w̃ − Eq [w̃])
2

(Eq[w̃])2
+O

(
1

N2

)
, (19)

assuming that Eq[w̃2k+2] <∞ for k = 0, 1.

Proof. The variance can be written as

Var[−βF̂ ] = Eq[(ln Ẑ)2]− Eq[ln Ẑ]2 .

We now evaluate both terms on the right-hand-side in-
dividually using the delta method. For the first term,
we use the delta method with h(x) = (lnx)2 which has
second derivative

h′′(x) =
2

x2
− 2

ln(x)

x2
.

Using this expression, we then obtain that Eq[(ln Ẑ)2] is
equal to

(lnZ)2 +

(
1

Z2
− logZ

Z2

) Eq
[
(w̃ − Eq[w̃])2

]
N

+O(N−2)

For the squared expectation value, we use the expansion
(18) derived in the proof for the bias. This gives that
(Eq ln Ẑ)2 is equal to(

lnZ − 1

2NZ2
Eq
[
(w̃ − Eq[w̃])2

]
+O

(
N−2

))2

= (lnZ)2 − 1

NZ2
Eq
[
(w̃ − Eq[w̃])2

]
+O

(
N−2

)
.

Subtracting these two expressions, it then follows

Var[−βF̂ ] =
1

Z2

Eq
[
(w̃ − Eq[w̃])2

]
N

+O(N−2) ,

and the proof concludes by observing that Z = Eq[w̃].

A few remarks are in order: from the theorems, it fol-
lows that the standard deviation of the estimator F̂ is of
order O(1/

√
N). In the large N limit, we can therefore

neglect the bias correction as it is of order O(N−1). Fur-
thermore, we can replace the expectation values in the
theorems by the sample mean up to (negligible) higher-
order corrections. In practise, we therefore use these
results to estimate the variance and bias of F̂ . Alter-
natively, one can use a standard Jackknife analysis to
estimate variance and bias (see for example [46]). In our
experiments, we use both methods to estimate the errors
and check that they lead to consistent results. Lastly,
we remark that error estimators for general observables
involving the partition function can be derived, see [36].

As mentioned above, the delta method requires that
the derivatives of the function h are (uniformly) bounded.
For a generic LQFT, this will not be the case for h(x) =
ln(x) since its derivatives diverge for x → 0+. To the

best of our knowledge, the same problem will generically
arise in the context of variational inference but seems to
have not been discussed in the literature.

To address this subtlety, one could require that the ac-
tion of the lattice quantum field theory is bounded. For
example, this can be ensured by putting the field theory
in a box potential. Since only very high energy config-
urations are affected by this (for suitably large choice
of the box potential) and since these configurations are
extremely unlikely to be sampled, this modification will
have no practical effect on the numerical experiments.
After this modification, Ẑ is bounded from below and
h(n)(Ẑ) is also bounded as a result.

More rigorously, the result for the variance can be de-
rived without assumptions on a bound for the derivatives
by using the delta method for in law approximation which
takes the following form

Theorem. Let X̂N = 1
N

∑N
i=1Xi be the sample mean

of independent and identically distributed random vari-
ables Xi with E

[
Xk
i

]
< ∞ for k ∈ {1, 2}. Let h be a

differential function at µ = Eq[X]. Then

√
n
(
h(X̂N )− h(µ)

)
D→ N (0, σ2(h)) ,

where σ2(h) = h′(µ)Var(X).

For a proof, we again refer to [48], see Theorem 5.3.3.
Applying this theorem to the free energy estimator
−βF̂ = ln Ẑ, we obtain the same expression for its vari-
ance as derived above. However, the theorem does not
require any bound on the derivatives of h(x) = ln(x).

Systematic Errors

In this section, we discuss the various sources of
systematic error relevant for both the flow-based and
MCMC-based estimation methods and discuss how they
can be assessed.

Mode-dropping for Generative Model: We ensure that
no mode-dropping for the generative model takes place,
i.e. all modes of the target distribution p are captured
by the generative model q. Mode-dropping can cause
underestimation of the partition function Z. To this end,
we use the relation

Eφ∼p[w̃−1(φ)] =
1

Z

∫
D[φ] e−S(φ) q(φ)

e−S(φ)
= Z−1 .

The left-hand-side can be estimated using a single
Markov chain. Note that we sample from the target
distribution p as opposed to the generative model q.
Therefore, the estimator is consistent even if q is mode-
dropping. The resulting estimate Ẑ for the partition
function can then be plugged into (10) to obtain an es-
timate for the free energy. It is then checked that the
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FIG. 5. The left-hand and right-hand sides show the estimates
for the free energy at hopping parameters κ = 0.2 and κ =
0.3 for fixed bare coupling λ = 0.022 respectively. We used
the same procedure as for Figure 2 on both the smallest and
largest lattice for illustration. The first and second flow-based
method use as a sampler p and q respectively and lead to
compatible results. We use the uwerr method for MCMC
error analysis.

result is consistent with the one obtained from (9), see
Figure 5. We stress that this consistency check only re-
quires a single Markov chain and is therefore equal in cost
to the overlap consistency check of the MCMC method
discussed below.

Bias due to imperfect training: From the theoretical
analysis of the variance of the estimator (19), it is ex-
pected that it has a standard deviation with the typical
N− 1

2 fall-off in the number of samples N . On the other
hand, the bias of the estimator (17) due to imperfect
training has a subleadingN−1 fall-off. We check carefully
that our error estimates indeed show the theoretically
predicted N− 1

2 behaviour in our numerical experiments.

Repeated runs: We repeated the estimate for the
smallest lattice ten times. The resulting estimates are
shown in Figure 6. The sample standard deviation is
consistent with our error estimates. Furthermore, the
MCMC-based method does not systematically over- or
underestimate with respect to the flow.

Step size for MCMC: As explained in the main text,
the free energy difference ∆Fe b is calculated in steps

∆Fe b = ∆Fe,iK +∆FiK iK−1
+ · · ·+∆Fi1 b .

In the following, we will analyze the dependency of our
results on the chosen steps.

We start from an initial step size corresponding to a
change in hopping parameter κ of δκ = 0.05. Between
κ = 0.2 and κ = 0.3, we however take a finer step size
of δκ = 0.01. Since we are interested in the free energy
difference ∆Fe b between κb = 0.0 and κe = 0.3, this cor-
responds to running K = 14 Markov chains. We focus

FIG. 6. Free energy estimation as for Figure 2 repeated ten
times for the 16× 8 lattice.

FIG. 7. Free energy at κ = 0.3 obtained by both MCMC-
based and flow-based method. For the MCMC-based method,
different step size δκ of the hopping parameter were used.
Details on the step sizes δκ are summarized in Table I. For
the flow-based method, we use the same number of samples
as for the corresponding refined MCMC method. As a result,
also the error of the flow’s estimate decreases.

on the 16 × 8 lattice and use an overelaxed HMC algo-
rithm to sample 400k configurations for each chain. The
overrelaxation is performed every 10 steps.

We then repeatedly refine the step size in a certain
subregion around the critical κ value. The details can be
found in Table I.

The results of this analysis are shown in Figure 7. We
observe that the error of the estimator does not signifi-
cantly decrease. We note that the error of the flow de-
creases during refinement because its free energy esti-
mation uses the same number of samples as all Markov
chains combined (and this number increases by the ad-
ditional refinement steps).
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FIG. 8. Free energy at κ = 0.3 and λ = 0.022 using both
Zi/Zi+1 (down) and Zi+1/Zi (up). We use the same setup
(i.e. number of steps, hopping parameter change δκ, etc) as
for Figure 2.

TABLE I. Details on the refinement analysis. In each refine-
ment stage, we take smaller steps δκ in a certain subregion
of the hopping parameter κ trajectory (see last column). The
step size taken in this region is shown in the first column.
Outside of the most refined region, the same step sizes as in
the previous refinement stage are taken. Since each chain is
taken to be of the same length, the total number of samples
(third column) grows proportional to the number of chains
(second column).

δκ # chains # samples refined κ region
0.01 14 5.6 M 0.20-0.30
0.005 24 9.6 M 0.20-0.30
0.0025 40 16 M 0.22-0.30
0.001 76 30.4 M 0.24-0.30
0.0005 88 35.2 M 0.267-0.279

Mode-dropping for MCMC: In order to ensure that
the distributions pi and pi+1 in

Epi

[
exp(−Si+1)

exp(−Si)

]
=

1

Zi

∫
D[φ] e−Si(φ)

e−Si+1(φ)

e−Si(φ)
=

Zi+1

Zi

have sufficient overlap, we also estimate Zi

Zi+1
by exchang-

ing pi with pi+1 in the relation above. We then check
that this leads to compatible results, see Figure 8. We
note that this consistency check is relatively cheap as it
requires running one additional Markov chain. We also
study the dependence of the integrated autocorrelation
of the free energy on the refinement of δκ, see Figure 4.

Additional point in parameter space

In the main text, we demonstrated our method in a
case where the MCMC-based method had to cross the
critical region to calculate the absolute value of the free

FIG. 9. Free energy estimation using the same setup as for
Figure 2 but at κ = 0.2.

energy because we consider this one of the main applica-
tions of our method. Since this leads to large integrated
autocorrelation times for the MCMC-based method, it
has errors which are significantly larger than the gener-
ative model estimate. In the following however, we will
focus on a point in phase space for which the MCMC ap-
proach does not need to cross a critical region. Namely,
we use the same value for the bare coupling λ = 0.022 as
in the main text but set the hopping parameter κ = 0.2.
As can be seen from Figure 1, this corresponds to a point
before the critical regime. The resulting estimates for the
free energy are shown in Figure 9. The MCMC-based es-
timate has a variance of the same order of magnitude as
the flow-based one in this regime.

Details on Numerical Experiments

HMC: We use a HMC algorithm with overrelaxation.
Each Markov chain has 5k thermalization steps followed
by 400k estimation steps. The sign of the field configu-
ration is flipped every ten steps.

Training of flow: For every lattice, we use a normal-
izing flow with six coupling layers. Each coupling layer
(5) has neural network m with five fully-connected layers
with no bias and Tanh non-linearities. The hidden lay-
ers of m consist of 1000 neurons each. For each coupling
layer, we split the input in half to obtain y(u) and y(d), see
(5), using a checkerboard-type partitioning. Consecutive
coupling blocks use alternating checkerboard partioning
in order to ensure that all lattice sites are updated. We
train the flow for 1M steps using an 8k mini-batch. We
use ReduceLROnPlateau learning rate scheduler of Py-
Torch with an initial learning rate of 5 × 10−4 and pa-
tience of 3k steps. The minimum learning rate was set
to 1× 10−7.
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Estimation: As described in the main text, for HMC-
based estimation we use a step size of δκ = 0.01 for
κ ∈ [0.2, 0.3] and a step size of δκ = 0.05 for all other
values of the hopping parameter. As a result 14 Markov
chains are run. In total, the HMC-based method there-
fore uses 14 × 400k = 5.6M configurations. We use the
same number of samples for the flow-based estimation.
For efficiency, we sample these configurations in mini-
batches of 3k samples.

Error estimation: we use both the uwerr [42] and
jackknife method to estimate uncertainties for HMC. In
order to deal with autocorrelation for jackknife, we per-
form binning with a 1k bin size. Error estimation for flow
is performed by the delta method and also by jackknife,
see Figure 10.

FIG. 10. Free energy estimation with error analysis by both
Jackknife and delta method. Both lead to compatible results.
We use the same data as in Figure 2.

From the free energy estimates, one can then derive
other thermodynamic observables such as the entropy.
We refer to the main text for a discussion of this. Figure
11 shows estimation of entropy. Errors were estimated
using both the Jackknife and uwerr method. Both error
analysis methods lead to consistent results.

Runtime: Normalizing Flows allow for very efficient
sampling. Specifically, we can sample the total of 5.6M
samples in under a minute for all lattices considered in
the main text. Furthermore, this sampling procedure can

be perfectly parallelized over multiple GPUs as the flow
can generate each configuration independently. On the
other hand, flows require a substantial up-front train-
ing cost which is independent of the number of samples
used for free energy estimation and is therefore amortized
over the entire estimation procedure. As a result, the
relative runtime comparison between the flow-based and
HMC-based algorithm strongly depends on the number
of samples (as well as, of course, on the used implementa-
tion and hardware setup). In our numerical experiments,
we use a Intel Xenon 2.4 GHZ CPU with NVidia P100

FIG. 11. Entropy density estimation with error analysis by
both Jackknife and delta method. Both lead to compatible
results. We use the same setup as for Figure 2.

graphics card with 16GB memory. Both our implemen-
tation for the HMC as well as for the generative model
were not optimized. The training time of the genera-
tive models takes about 20 hours to converge. Gener-
ating the samples with 14 different Markov chains takes
about 25 hours. It is likely that both the MCMC run-
time and training time could be substantially reduced by
using more efficient implementations and by tuning the
hyperparameters of the training process, such as initial
learning rate, its decay schedule, choice of optimizer, ini-
tialization of weights, as well as early stopping (see [49]
for an overview). Since the goal of this work was to in-
troduce the method and provide a proof of principle, we
did not explore such techniques as part of this study.
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