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Abstract

Monte Carlo simulations of quantum field theories on a lattice become increasingly expensive as the continuum
limit is approached since the cost per independent sample grows with a high power of the inverse lattice spacing.
Simulations on fine lattices suffer from critical slowdown, the rapid growth of autocorrelations in the Markov chain
with decreasing lattice spacing a. This causes a strong increase in the number of lattice configurations that have
to be generated to obtain statistically significant results. In this paper, hierarchical sampling methods to tame this
growth in autocorrelations are discussed. Combined with multilevel variance reduction techniques, this significantly
reduces the computational cost of simulations for given tolerances εdisc on the discretisation error and εstat on the
statistical error. For an observable with lattice errors of order α and an integrated autocorrelation time that grows
like τint ∝ a−z, multilevel Monte Carlo can reduce the cost from O(ε−2

statε
−(1+z)/α
disc ) to O(ε−2

stat| log εdisc|2 + ε
−1/α
disc )

or O(ε−2
stat + ε

−1/α
disc ). Even higher performance gains are expected for non-perturbative simulations of quantum field

theories in D-dimensions. The efficiency of the approach is demonstrated on two non-trivial model systems in quantum
mechanics, including a topological oscillator that is badly affected by critical slowdown due to freezing of the topological
charge. On fine lattices, the new methods are several orders of magnitude faster than standard, single level sampling
based on Hybrid Monte Carlo. For high resolutions, multilevel Monte Carlo can be used to accelerate even the
cluster algorithm for the topological oscillator. Performance is further improved through perturbative matching. This
guarantees efficient coupling of theories on the multilevel lattice hierarchy, which have a natural interpretation in
terms of effective theories obtained by renormalisation group transformations.

keywords: Multilevel Monte Carlo, Path Integral, Hierarchical Methods, Numerical Algorithms

1 Introduction

The Euclidean path integral formulation of quantum me-
chanics [1] allows the calculation of observable quantities
as expectation values with respect to infinite-dimensional
and highly peaked probability distributions. After dis-
cretising the theory on a lattice with finite spacing a, ex-
pectation values are computed with Markov Chain Monte
Carlo methods (see for example [2] for a highly accessi-
ble introduction). This approach is elegant and attrac-
tive since it can be extended to quantum field theories,
where it allows first principles-predictions for strongly
interacting theories such as Quantum Chromodynamics
(QCD), see e.g. [3, 4]. Ultimately, however, one is in-
terested in the value of observables in the continuum
limit of vanishing lattice spacing a → 0. Since the cost
of the calculation grows with a high power of a−1, ef-
ficient Monte Carlo sampling techniques are crucial to
obtain precise and accurate numerical predictions. To-
day state-of-the-art techniques [5] are routinely used to
accelerate the Metropolis-Hastings algorithm [6, 7] and
in particular the Hybrid Monte Carlo (HMC) method [8]
has proved to be highly successful in lattice QCD simu-
lations. However, lattice calculations with HMC meth-
ods still become prohibitively expensive as the continuum

limit is approached. The reasons for this are twofold:

1. For quantum mechanical problems the cost Csample

of generating a single discretised path grows at least
in proportion to the number of lattice sites, which
increases with a−1 if the physical size of the simula-
tion box is kept fixed (for a quantum field theory in
D dimensions the growth would be even faster with
a cost of a−D per configuration).

2. As the theory approaches a critical point, subsequent
states in the Markov chain are increasingly corre-
lated, which requires the generation of more paths
to obtain a given number of statistically independent
samples.

Furthermore, the law of large numbers dictates that to
reduce the statistical (sampling) error below a given tol-
erance εstat, at least Nindep ∝ ε−2

stat independent samples
have to be generated. While in lattice QCD the contin-
uum limit is usually taken by extrapolating simulations
at different lattice spacings a and fixed tolerance εstat on
the statistical error, in the multilevel Monte Carlo liter-
ature (see e.g. the classical paper [9]) it is more common
to decrease εstat in proportion to the tolerance εdisc on
the discretisation error as the lattice spacing is reduced.
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Reducing the combined statistical and discretisation er-
ror in this way would make optimal use of computational
resources to obtain a result with a given total error for a
specific fine lattice spacing.

The correlation of subsequent samples in the Markov
chain is quantified by the integrated autocorrelation time
τint, which grows particularly rapidly for some quantities,
such as the topological susceptibility χt in QCD, where it
has been observed that τint ∝ a−z with z = 5 [10]. This
is attributed to “freezing” of the topological charge, and
can lead to observable effects. Those can be both direct,
since e.g. the mass of the η′ meson receives important
contributions from the topological susceptibility in a pure
Yang-Mills theory [11, 12], and more indirect due to the
coupling of slow modes with large autocorrelation times
to other observables. The authors of [10] further report a
milder but still significant growth with z = 0.5−1.0 for a
range of other physically relevant observables. While the
rapid growth of the integrated autocorrelation time for
the topological susceptibility can be addressed by using
open boundary conditions in time [13, 14], this introduces
additional complications since it requires lattices with a
very large extent in the temporal direction.

To estimate the overall growth in cost of a simulation,
as the lattice spacing a is reduced, consider a quantum
mechanical observable with a discretisation error that is
O(aα), where values such as α = 1, 2 are typical. To
reduce the discretisation error below a tolerance of εdisc

and the statistical error below εstat incurs a cost

CStMC(εdisc, εstat) = Nindep × τint × Csample

= O(ε−2
statε

−(1+z)/α
disc ),

(1)

with standard Monte Carlo (StMC), since εdisc ∝ aα.
To get an intuitive understanding of this and subsequent
complexity estimates it might be instructive to consider
the special case α = 2, z = 0: since the discretisation
error decreases quadratically with a, reducing this error
by a factor of 4 can be achieved by halving the lattice
spacing, which in turn doubles the cost for generating a
single sample if the physical size of the simulation box is
kept fixed; in other words, the cost per sample grows in

proportion to ε
−1/2
disc

In this paper, it is shown how this explosion in com-
putational cost can be significantly reduced with hi-
erarchical sampling [15] and Multilevel Monte Carlo
(MLMC) [16, 9], which has recently been extended to
a Markov chain setting [17, 18]. To generate samples,
a hierarchy of L − 1 coarser lattices with spacings of
2a, 4a, . . . , 2L−1a and corresponding coarse-grained ver-
sions of the original theory are constructed. Based on
this hierarchy, a recursive implementation of the delayed
acceptance method in [15] is proposed. Starting on the
coarsest level, proposals are successively extended by ad-
ditional modes and screened with a standard Metropolis-
Hastings accept/reject step on increasingly finer lattices.
At this point is important to stress that the coarse lat-
tices are only used to accelerate sampling and do not in-
troduce any additional bias because ultimately each new
sample is accepted or rejected step with the correct, orig-
inal action on the finest lattice. Since evaluating the ac-

tion on the coarse lattices is substantially cheaper, the
cost of generating a single fine level sample is not sub-
stantially higher than if a single-level sampler was used.
In fact, when compared to a method such as HMC, it
may be smaller since the cost of generating an HMC tra-
jectory can be shifted to the coarsest level where it is
substantially shorter. Since on each level proposals are
screened with a Metropolis-Hastings accept/reject step,
the method samples from the correct distribution on the
original lattice with spacing a and does not introduce
any additional bias, cf. [15]. Due to the convergence of
the lattice theories on subsequent levels of the hierarchy
with a→ 0, hierarchical sampling eliminates the growth
in autocorrelation time, reducing the computational cost
to

Chierarchical(εdisc, εstat) = O(ε−2
statε

−1/α
disc ). (2)

MLMC is a variance reduction technique, which uses
the fact that the expectation value of an observable (or
quantity of interest) Q on a lattice with spacing a can
be written as a telescoping sum. For this assume that
there is some integer L ∈ N and a constant a0 such that
a = 2−L+1a0. Further, let Q` be the observable measured
on a lattice with spacing 2−`a0. Then

E[Q] = E[QL−1] = E[QL−1 −QL−2] + E[QL−2] =

= . . . =
L−1∑
`=0

E[Y`] ≈
L−1∑
`=0

Ŷ`
(3)

where

Y` :=

{
Q0 for ` = 0

Q` −Q`−1 for ` = 1, 2, . . . , L− 1,

Ŷ` :=
1

N`

N∑̀
j=1

Y
(j)
` .

Here, the sums in Ŷ` are taken over independent samples,
labelled by the superscript “(j)”. The key observation is
that, except for the very coarsest level, MLMC estimates
differences of the observable instead of the quantity of in-
terest itself. Provided that theories on subsequent levels
can be coupled efficiently and the variance of the dif-
ference Q` − Q`−1 decreases sufficiently rapidly as the
lattice spacing a is reduced, significantly lower numbers
of samples N` are sufficient on the finer levels of the grid
hierarchy. The majority of the cost can be shifted to
the coarser levels `� L, where sampling is substantially
cheaper. Due to the exactness of the telescoping sum
(i.e. the first equality in Eq. (3)), MLMC does not intro-
duce any additional bias if the individual MC estimators
Ŷ` are unbiased. The algorithms described in the paper
allow the construction of estimators Ŷ` which have an ar-
bitrarily small bias. In the numerical results presented
below the size of this bias is comparable to the discreti-
sation error on the original, fine level lattice. Compared
to Eqs. (1) and (2), MLMC further reduces the compu-
tational complexity to

CMLMC(εdisc, εstat) = O(ε−2
stat| log εdisc|2 + ε−1

disc), (4)
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see below. Similar estimates have been derived in
[9, 17, 18] and it has been demonstrated numerically
that MLMC leads to a significant reduction in compu-
tational complexity and overall runtime for a range of
applications, e.g. in uncertainty quantification (UQ) for
sub-surface flow [19, 17], inverse problems [20] or material
simulation [21].

While this paper focuses on the application of these
new methods in quantum mechanics, the ultimate goal
is to apply them in D-dimensional quantum field theo-
ries, such as lattice QCD with D = 4 and α = 2. For
D > α, the expected gains are even larger, since the cost
to generate a single configuration grows like a−D instead
of a−1 while the accuracy is still decreasing no faster than
a2. The predicted improvement in computational perfor-
mance is summarised in the following diagram, general-
ising Eqs. (1), (2) and (4) to D dimensions:

C(QFT)
StMC (εdisc, εstat) = O(ε−2

statε
−(D+z)/α
disc )

↓ (hierarchical sampling)

C(QFT)
hierarchical(εdisc, εstat) = O(ε−2

statε
−D/α
disc )

↓ (multilevel Monte Carlo)

C(QFT)
MLMC(εdisc, εstat) = O(ε−2

statε
1−D/α
disc + ε

−D/α
disc ).

(5)
For example, consider the prediction of the topologi-
cal susceptibility (z = 5) in lattice QCD (D = 4)
with improved action (α = 2). In this case, hierarchi-
cal sampling reduces the cost of a Monte Carlo sim-
ulation from O(ε−2

statε
−4.5
disc ) to O(ε−2

statε
−2
disc) and MLMC

reduces the computational complexity even further to
O(ε−2

statε
−1
disc + ε−2

disc).

To discuss this further, consider first the relative ad-
vantage of MLMC over standard Monte Carlo in the con-
tinuum limit εdisc → 0 for fixed εstat. MLMC only re-
quires the generation of a small number of samples on
the finest lattice for small εdisc (eventually only one for
very small εdisc), whereas the number of configurations
that have to be generated with a standard Monte Carlo
method is proportional to ε−2

stat. As can be seen from the
final two lines of Eq. (5), MLMC is a factor of κε−2

stat

faster than standard Monte Carlo with hierarchical sam-
pling for εdisc → 0. This argument holds for general α
and D; the coefficient κ depends on the relative cost of
generating independent samples on the finest level and
the coarser levels. Provided those costs are proportional
to the number of unknowns on each level (and the con-
stant of proportionality is independent of εdisc) we expect
κ to lie between 1 and 2.

If εstat is kept fixed as the continuum limit is taken,
eventually the statistical error will dominate the discreti-
sation error. To avoid this, one might consider the case
where εdisc = εstat = ε/

√
2 and the combined root mean

square error is reduced below some given tolerance ε.
This is the common choice in the multilevel Monte Carlo
literature (see e.g. [9]). In that case, the complexity

estimates in Eq. (5) become

C(QFT)
StMC (ε) = O(ε−2−(D+z)/α)

↓ (hierarchical sampling)

C(QFT)
hierarchical(ε) = O(ε−2−D/α)

↓ (multilevel Monte Carlo)

C(QFT)
MLMC(ε) = O(ε−1−D/α)

(6)

In quantum field theories, coarse grained actions are
naturally obtained by integrating out high-frequency
modes in a renormalisation group (RG) transformation,
which results in an effective theory with less degrees of
freedom. In practice, the RG transformation can be car-
ried out either non-perturbatively (e.g. through a block
spin transformation) or through perturbative matching.
The latter would, in fact, be sufficient for MLMC as long
as the variance of Y` decays sufficiently rapidly since the
coarse levels are only used to accelerate sampling on the
original, fine level. For asymptotically free theories, such
as lattice QCD, Symanzik-improved actions [22, 23] can
be constructed by systematically adding suitable terms
which are proportional to powers of the lattice spacing a
and which are multiplied by appropriate, so-called ‘im-
provement coefficients’. These coefficients can be tuned
non-perturbatively [24, 25], or they can be computed us-
ing perturbation theory for sufficiently small lattice spac-
ing [22, 23]. In the MLMC approach, the perturbatively
calculated improvement coefficients on different levels of
the lattice hierarchy are in fact sufficient since the differ-
ences of these coefficients between subsequent levels are
sufficiently small on fine lattices.

As a proof-of-concept, hierarchical sampling and mul-
tilevel Monte Carlo are applied to two problems in quan-
tum mechanics (D = 1): a non-symmetric double-well
potential and the topological oscillator studied in [26].
The latter case is particularly interesting since it has a
topological quantum number, which freezes in the contin-
uum limit (a→ 0). This results in a rapid growth of the
autocorrelation time of the topological susceptibility if
standard HMC sampling is used. Hierarchical sampling
all but eliminates this growth, resulting in a dramatic
reduction in runtime. Furthermore, the coarse-grained
theories can be improved using a perturbative matching
technique for this problem, which further increases the ef-
ficiency of the hierarchical approach. As demonstrated in
[26], for the topological oscillator the so-called ’cluster al-
gorithm’ [27] almost entirely eliminates autocorrelations
through long-range spin updates. However, this method
can be further accelerated with MLMC, leading to a re-
duction in computational complexity and in absolute run-
time for high resolutions. Similar gains are observed for
the non-symmetric double-well potential problem with
MLMC.

In summary, the main achievements of this work are:

1. It is described in detail how algorithms for hierar-
chical sampling and multilevel Monte Carlo acceler-
ation can be applied to the path integral formulation
of quantum mechanics.

3



2. It is shown how hierarchical sampling techniques
dramatically reduce autocorrelation times.

3. It is further demonstrated that combining this with
MLMC leads to an additional reduction in compu-
tational complexity and in the total runtime.

4. It is explained how perturbative matching can fur-
ther improve performance for the topological oscil-
lator.

It is stressed again that the additional gains due
to MLMC accelerating are expected to be significantly
larger in high-dimensional theories, such as lattice QCD
(see Eq. (5)). The present paper therefore aims to lay the
foundation for further work on extending the described
methods to quantum field theories on a lattice.

Structure. This paper is organised as follows: after
briefly reviewing the literature on related approaches in
Section 1.1, the application of hierarchical sampling and
multilevel Monte Carlo to the path integral formulation
of quantum mechanics is discussed in Section 2. The
quantum mechanical model problems that are used in
this work are described in Section 3, including the con-
struction of coarse-grained actions for those problems.
Numerical results for the non-symmetric double-well po-
tential and the topological oscillator are presented in
Section 4, in particular we compare the runtime of all
considered algorithms for fixed εstat. Section 5 contains
the conclusion and outlines directions for future work.
More technical topics, such as a detailed cost analysis
of MLMC and a discussion of how the methods can
be extended to higher dimensional problems, are rele-
gated to the appendix where we also show results for
εstat = εdisc = ε/

√
2.

1.1 Relationship to previous work

While hierarchical sampling techniques have been sug-
gested previously (see e.g. [28, 29, 30, 31]), the variance
reduction techniques from MLMC significantly improve
on this. Eqs. (2) and (4) show that the additional ac-
celeration will lead to a further dramatic reduction in
computational complexity. The presented methods are
therefore expected to be superior to the approach in [32],
which uses a hierarchical method to initialise the simula-
tion, but not for the Monte Carlo sampling. Earlier work
in [30, 31] uses renormalisation group techniques to sam-
ple close to the critical point of the Ising model where
the theories on the coarser levels become self-similar.
Similarly, collective cluster-update algorithms [33, 27, 34]
have been applied to models in solid state physics close
to phase transitions (see e.g. [35]). However, the appli-
cation of all those techniques is limited to spin systems.
The approach here applies to general systems and de-
livers significant additional speedup through multilevel
Monte Carlo variance reduction.

2 Methods

2.1 Path integral formulation of quan-
tum mechanics

For completeness and to introduce the discretised path
integral for non-experts, we recapitulate the key prin-
ciples here. The path integral formulation of quantum
mechanics [1] expresses the expectation value of physical
observables as the infinite-dimensional sum over all pos-
sible configurations or paths {x(t)}, where x(t) ∈ D ⊂ R
for all times t ∈ R. In this sum each path x(t) is weighted

by a complex amplitude e
i
~S(x(t)), where S(x(t)) is the

action, the integral over the Lagrangian L of the system.
This formulation is very elegant since it allows the di-
rect quantisation of any system which can be described
by a Lagrangian. In the limit ~→ 0 fluctuations around
the classical path which minimises the action cancel out,
and the Euler-Lagrange equations are recovered. How-
ever, for simplicity from now on we will work in atomic
units where ~ = 1. To make the evaluation of the path in-
tegral tractable, two approximations are made: (1) time
is restricted to a finite interval t ∈ [0, T ) and (2) the
time interval is divided into d intervals of size a = T/d,
which is known as the lattice spacing. Conditions have
to be imposed on the paths at t = 0 and t = T ; here
we use periodic boundary conditions x(T ) = x(0). Each
path x(t), which is defined for all times t ∈ [0, T ), is
replaced by a vector x = (x0, x1, . . . , xd−1) ∈ Ω = Dd.
For each j = 0, 1, . . . , d−1 the quantity xj approximates
the position x(tj) of the particle at the time tj = aj.
Those two approximations turn the infinite dimensional
integral over all paths into an integral over a finite, but
high-dimensional domain Dd. Evaluating the integral in
Euclidean time converts it to the canonical ensemble av-
erage of a statistical system at a finite temperature. More
specifically, the expectation value of an observable (com-
monly known as “Quantity of interest”, QoI, in the UQ
literature) which assigns a value Q(x) to each discrete
path x can be written as the following ratio

E[Q] =

∫
D . . .

∫
D Q(x)e−S(x) dx0 . . . dxd−1∫

D . . .
∫
D e
−S(x) dx0 . . . dxd−1

=

∫
Ω

π∗(x)Q(x) dx

(7)

with the d-dimensional probability density π∗ given by

π∗(x) = Z−1e−S(x), for all x ∈ Ω, (8)

with normalisation constant Z. The action S(x) is an
approximation of the continuum action

S(x(t)) =

∫ T

0

L(x(t)) dt

where L is the Lagrangian.
Physically meaningful predictions, which can be com-

pared to experimental measurements, are obtained by
extrapolating to the continuum limit a → 0 and infi-
nite volume T → ∞. As d is inversely proportional to
the lattice spacing, the integrals in Eq. (7) become very

4



high dimensional in the continuum limit. In this paper
we do not discuss finite volume errors (due to finite val-
ues of T ). In other words, we take the continuum limit
Qexact = lima→0 E[Q] for finite T as the “true” value for
any observables studied here.

2.2 Standard Monte Carlo

Since the distribution π∗ in Eq. (8) is highly peaked, the
expectation value in Eq. (7) is usually computed with
importance sampling. For this, the Metropolis-Hastings
algorithm [6, 7] is used to iteratively generate a sequence
of samples x(0), x(1), . . . ,x(N−1) ∼ π∗. The expectation
value can then be approximated as the sample average

E[Q] ≈ Q̂StMC :=
1

N

N−1∑
j=0

Q(x(j)). (9)

A single Metropolis-Hastings step for computing x(t+1),
given x(t), is written down in Alg. 1.

Algorithm 1 Standard Metropolis-Hastings step.
Input: current sample x(t) ∼ π∗
Output: new sample x(t+1) ∼ π∗

1: Pick proposal y from a probability distribution q(·|x(t)).
2: Compute

π∗(y)

π∗(x(t))
· q(x

(t)|y)

q(y|x(t))
= exp[−∆S]

with

∆S := S(y)− S(x(t)) + log q(y|x(t))− log q(x(t)|y)

3: if ∆S < 0 then
4: Set x(t+1) ←[ y
5: else
6: Draw uniformly distributed random number u ∈ [0, 1).
7: if u < exp[−∆S] then
8: Set x(t+1) ←[ y
9: else

10: Set x(t+1) ←[ x(t)

11: end if
12: end if

The Markov chain x(0),x(1),x(2), . . . is generated by
starting from some x(0), which is either a given vec-
tor or drawn at random. Since this x(0) is not drawn
from the correct distribution, all subsequent samples x(t)

are distributed according to some distribution π∗(t) with
limt→∞ π∗(t) = π∗. In practice, the first nburnin samples
are discarded, and throughout this paper we implicitly
assume that nburnin � 1 is chosen such that for all sub-
sequent samples the error due to the difference between
π∗(t) and π∗ is much smaller than the discretisation- and
sampling- errors.

The law of large numbers states that in the limit of
a large number of samples N � 1 the sample average
Q̂StMC in Eq. (9) is distributed according to a Gaussian
N (µ, σ) with mean µ = E[Q] and variance

σ2 =
τintVar[Q]

N
. (10)

In this expression τint is the integrated autocorrelation
time defined as

τint = 1 + 2
∞∑
s=1

E[Q(x(tmeas))Q(x(tmeas+s))]

E[Q(x(tmeas))2]
, (11)

where tmeas � nburnin is an arbitrary point in time. As
can be seen from Eq. (10), the number of samples re-
quired to reduce the statistical error below a given tol-
erance grows with τint, and it is therefore important to
reduce the correlation between subsequent samples as far
as possible. This can be achieved by carefully choos-
ing the proposal y in line 1 of Alg. 1. In lattice QCD
with dynamical fermions, Hybrid Monte Carlo [8] is very
popular since it generates global updates. We therefore
choose to use this method here, being aware that other
algorithms, such as heat bath sampling, might be more
efficient for particular applications. We nevertheless be-
lieve that HMC is representative, since τint grows with
a large power of the inverse lattice spacing as the con-
tinuum limit is approached also with other sampling ap-
proaches. The only exception are some problem-specific
samplers, such as the cluster algorithm [27] for the topo-
logical oscillator, which we therefore also consider in this
work.

2.3 Multilevel Monte Carlo

We now describe hierarchical methods for overcoming the
growth in autocorrelations and reducing the variance of
the measured observable.

Lattice hierarchy

Recall that a path describes the position of the particle
at the discrete points tj = aj with j = 0, 1, 2, . . . , d − 1.
More formally, define a lattice T as the set of points

T = {tj = ja, j = 0, 1, . . . , d− 1}.

Paths x on this lattice are objects in the domain Ω =
Dd ⊂ Rd. We introduce a hierarchy of L lattices T` for
` = 0, 1, . . . , L− 1, such that lattice T` has d` = 2`−L+1d
points and a lattice spacing of a` = T/d` = 2L−1−`a, i.e.

T` = {tj = ja` : j = 0, 1, . . . , d` − 1}.

Here TL−1 = T is the original lattice with dL−1 = d
points and a spacing of aL−1 = a. Paths on lattice T` are
represented by vectors in the domain Ω` = Dd` ⊂ Rd` ,
where obviously ΩL−1 = Ω.

Note that the lattices are nested, and the points of the
lattice T`−1 are a subset of the points of T`, namely the
points with even indices. A path on a particular level `
stores values at the odd and even lattice points, where
the latter are also present on the next-coarser lattice.
Formally this can be expressed as

Ω` = Ω`−1 ⊕ Ω`−1 (12)

such that all x ∈ Ω` can be written as

x := [x̃,x′] with x̃,x′ ∈ Ω`−1 and

xj =

{
x′j/2 for even j

x̃(j−1)/2 for odd j.

(13)
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On each lattice we define an action S` : Ω` → R such
that SL−1 = S is the original action. In the simplest case
the coarse-level actions are obtained by re-discretising
the original action S with the appropriate lattice spac-
ings, but other choices are possible and will be discussed
below. On each level the action induces a probability
distribution π` such that

π`(x) = Z−1
` exp [−S`(x)] for all x ∈ Ω`,

where Z−1
` is the normalisation constant. The probabil-

ity distribution πL−1 on the finest level is identical to
π∗ defined in Eq. (8). Further, introduce a conditional
probability distribution π̃`(·|x′) for the values at the odd
points on level `, given the values at the even points on
the same level, namely

π̃`(x̃|x′) = Z̃`(x′)−1 exp
[
−S̃`([x̃,x′])

]
. (14)

for all x̃,x′ ∈ Ω`−1. The action S̃` should be some ap-
proximation to S`, such that it is possible to sample from
π̃` for a given x′. For the quantum mechanical model
problems considered in this work the construction of S̃`
is described in Sections 3.1.1 and 3.2.1.

We stress that although in this paper we assume that
the lattice can be partitioned into sets of mutually inde-
pendent even and odd sites, the ideas developed here can
be generalised to higher dimensions. This is outlined in
Appendix A.

Hierarchical sampling

Similar to the delayed-acceptance approach in [15], we
next introduce a hierarchical algorithm to efficiently con-
struct a Markov chain on a given level ` using coarser
levels: First we define the two-level Metropolis-Hastings

step in Alg. 2. Setting x
(t)
` = [x̃

(t)
` ,x

(t)
`−1] this algorithm

assumes that on a given level ` there is a coarse level pro-

posal distribution q`−1(·|x(t)
`−1) which depends on x

(t)
`−1.

Based on this, it proposes a new fine-level state which

is either accepted and returned as the new state x
(t+1)
`

or rejected; in the latter case the previous state x
(t)
` is

returned as x
(t+1)
` . It was shown in [15] that this defines

a correct Metropolis-Hastings algorithm targeting π`.

Let q
(TL)
` (x

(t+1)
` |x(t)

` ) be the transition kernel for the

process x
(t)
` → x

(t+1)
` implicitly defined by Alg. 2. The

key idea is now to use the algorithm recursively by using

q
(TL)
`−1 as the proposal distribution q`−1 on level `−1. The

process of picking y`−1 from q`−1(·|x(t)
`−1) = q

(TL)
`−1 (·|x(t)

`−1)
in the first line of Alg. 2 then corresponds to a recursive
call to the same algorithm on the next-coarser level. On
the coarsest level (` = 0) y0 is drawn with the standard
Metropolis-Hastings step in Alg. 1 with corresponding

transition kernel q
(MH)
0 (·|x(t)

0 ); here we always assume
that the proposal in this Metropolis Hastings step is gen-
erated with a symmetric method such as HMC.

Algorithm 2 Two-level Metropolis Hastings step.

Input: level `, current sample x
(t)
` ∼ π`,

proposal distribution q`−1

Output: new sample x
(t+1)
` ∼ π`

1: Let x
(t)
` = [x̃

(t)
` ,x

(t)
`−1] and pick y`−1 from q`−1(·|x(t)

`−1).

2: if x
(t+1)
`−1 = x

(t)
`−1 (coarse level proposal rejected) then

3: Set x
(t+1)
` ←[ x(t)

`

4: else
5: Pick ỹ` from π̃`(·|y`−1) and let y` = [ỹ`,y`−1].
6: Compute

π`(y`)

π`(x
(t)
` )
·
π̃`(x̃

(t)
` |x

(t)
`−1)

π̃`(ỹ`|y`−1)
·
π`−1(x

(t)
`−1)

π`−1(y`−1)
= exp[−∆S`]

with

∆S` := S`(y`)− S`(x
(t)
` )

+ S̃`([x̃
(t)
` ,x

(t)
`−1])− S̃`([ỹ`,y`−1])

+ S`−1(x
(t)
`−1)− S`−1(y`−1)

+ log Z̃`(x(t)
`−1)− log Z̃`(y`−1).

7: if ∆S` < 0 then
8: Set x

(t+1)
` ←[ y`

9: else
10: Draw uniformly distributed random u ∈ [0, 1).
11: if u < exp[−∆S`] then

12: Set x
(t+1)
` ←[ y`

13: else
14: Set x

(t+1)
` ←[ x(t)

`

15: end if
16: end if
17: end if

More specifically, to construct a sequence of samples

x
(0)
` ,x

(1)
` ,x

(2)
` , · · · ∈ Ω` distributed according to π` we

use Alg. 3, which is illustrated schematically in Fig. 1.

Algorithm 3 Hierarchical delayed-acceptance sampler
(recursive implementation).

Input: level `, current sample x
(t)
` ∼ π`

Output: new sample x
(t+1)
` ∼ π`

1: Generate x
(t+1)
` using Alg. 2 with level `, current sample

x
(t)
` ∼ π` and proposal distribution

q`−1(·|x(t)
`−1) =

{
q

(MH)
0 (·|x(t)

0 ) for ` = 1

q
(TL)
`−1 (·|x(t)

`−1) for ` = 2, 3, . . . , L− 1

Note that x
(t+1)
` = x

(t)
` unless the proposals on all

levels 0, 1, . . . , ` get accepted. At first sight this seems to
imply that the overall acceptance probability of Alg. 3
drops as the number of levels increases, and subsequent
samples are highly correlated. However, this turns out
not to be the case if the theories on subsequent level
converge with ` → ∞: in this case the proposal from
the two-level step in Alg. 2 is almost certainly accepted
on finer levels. Our numerical experiments confirm this
observation.

In practice, it is more convenient to implement Alg. 3
iteratively, starting from the coarsest level. As discussed
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Figure 1: Hierarchical sampling, as described in Alg. 3,
for L = 3 levels.

in Appendix B, the cost of executing Alg. 3 on level ` can
be bounded by a constant times the number of unknowns
d` on this particular level. Observe also that setting ` =
L − 1 in Alg. 3 allows drawing a new sample x(t+1) ∼
π∗ from the original fine level probability distribution
defined in Eq. (8).

Relationship to the literature. The two-level step
in Alg. 2 is closely related to similar algorithms in
[15, 17]. If the coarse level sample is drawn with

an arbitrary Metropolis-Hastings kernel q`−1(·|x(t)
`−1) =

q
(MH)
`−1 (·|x(t)

`−1), then Alg. 2 above is a variant of the
delayed-acceptance method in [15, Alg. 1] with proposal

distribution q(y`|x
(t)
` ) = π̃`(ỹ`|y`−1)q

(MH)
`−1 (y`−1|x

(t)
`−1)

and approximation f∗x(y`) = π̃`(ỹ`|y`−1)π`−1(y`−1), re-

calling the notation x
(t)
` = [x̃

(t)
` ,x

(t)
`−1], y` = [ỹ`,y`−1].

On the other hand, if the coarse level sample is drawn

from the exact coarse level distribution, i.e. if q(·|x(t)
`−1) =

π`−1(·), Alg. 2 is identical to [17, Alg. 2].

Multilevel Monte Carlo algorithm

As discussed in the introduction, the multilevel Monte
Carlo algorithm computes the quantity of interest Q0 on
the coarsest level and adds corrections to this by com-
puting the difference Y` of the observable on subsequent
levels ` = 1, 2, . . . , L − 1 according to the telescoping
sum in Eq. (3). Since those differences Y` have a smaller
variance, this allows shifting the cost to the coarser lev-
els where samples can be generated cheaply. The orig-
inal MLMC algorithm described in [9] assumes that it
is possible to draw independent identically distributed
(i.i.d.) samples from a distribution on each level. For
the Markov chain Monte Carlo setting considered here
this is not possible since subsequent samples in the chain
are correlated and, as discussed in [17], this introduces an
additional bias. This bias can be reduced by construct-

ing sequences z
(0)
` , z

(1)
` , z

(2)
` , . . . of samples for each level

` = 0, . . . , L−1 with Alg. 3 and sampling those sequences
with sufficiently large sub-sampling rates t`. The typical
rule in statistics is to use twice the integrated autocor-
relation time τint,` to achieve (sufficient) independence.
In our numerical experiments, we set t` = d2τint,`e and
observe that the additional bias due to computing the
coarse level samples which are only approximately inde-

pendent is comparable to the discretisation error.
The multilevel Monte Carlo algorithm which we use

in this work is presented in Alg. 4 and visualised in
Fig. 2. It is similar to the multilevel algorithm in
[17], but with the recursive independent sampler in [17,
Alg. 3] replaced by the (suitably sub-sampled) hierar-
chical delayed-acceptance sampler in our Alg. 3 above.
Multilevel Monte Carlo computes

Q̂MLMC
L,{Neff

` }
=
L−1∑
`=0

Ŷ`,Neff
`

with Ŷ`,Neff
`

=
1

N eff
`

Neff∑̀
j=1

Y
(j)
` ,

(15)
which as unbiased estimator for the expectation E[Q] in
Eq. (3). On each level `, the number of samples is chosen
to be

N eff
` = max

{
1 , ε−2

stat

(
L−1∑
`=0

√
V`Ceff

`

)√
V`
Ceff
`

}
, (16)

where Ceff
` is the effective cost of generating an indepen-

dent sample (taking into account autocorrelations) and
V` = Var[Y`] is the variance of the quantity Y` on level `,
which converges to zero as `→∞.

Algorithm 4 Multilevel Monte Carlo.
Input: Number of levels L, number of
samples per level N eff

` and sub-sampling
rates t` for ` = 0, . . . , L− 1
Output: MLMC estimate for QoI.

1: for level ` = 0, . . . , L− 1 do
2: for j = 1, . . . , N eff

` do
3: if ` = 0 then
4: Create a new sample x

(t+t0)
0 from x

(t)
0 with a

standard Metropolis-Hastings method.
5: Compute Y

(j)
0 = Q0(x

(t+t0)
0 )

6: else
7: Create a new sample x

(t+1)
` from x

(t)
` with

Alg. 2 and q`−1(·|x(t)
` ) = π`−1 ;

In practice, use t`−1 steps of Alg. 3 to compute

an approximately independent sample z
(t+t`−1)

`−1

on level `− 1.

8: Compute Y
(j)
` = Q`(x

(t+1)
` )−Q`−1(z

(t+t`−1)

`−1 ).
9: end if

10: end for
11: end for
12: Compute the MLMC estimator defined in Eq. (15).

We now discuss how the cost of Alg. 4 increases as the
tolerance on the total error is tightened, assuming for
simplicity i.i.d. samples on all levels. Let the exact value
of the observable in the continuum limit be Qexact. The
total mean square error of the multilevel Monte Carlo
estimator defined in Eq. (15) can be expanded

E
[(
Q̂MLMC
L,{Neff

` }
−Qexact

)2]
= Var

[
Q̂MLMC
L,{Neff

` }

]
+
(
E
[
Q̂MLMC
L,{Neff

` }

]
−Qexact

)2

,

(17)

where the first term in the final line of Eq. (17) is the
squared statistical error, whereas the second term is the
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Figure 2: Schematic visualisation of Multilevel Monte
Carlo, as described in Alg. 4, for L = 3 levels.

squared discretisation error. An easy calculation shows
that choosing N eff

� as in Eq. (16) guarantees that

Var
[
Q̂MLMC

L,{Neff
� }

]
=

L−1∑
�=0

V�

N eff
�

≤ ε2stat.

To analyse the complexity we assume that

(i) the discretisation error is of order O(aα� ),

(ii) V� converges with order O(aβ� ) for some β > 0,

(iii) the integrated autocorrelation times of Y�, and thus
also the sub-sampling rates t�, can be bounded by
a constant independent of � such that the cost Ceff

�

of generating an independent sample does not grow
faster than the number of unknowns d� for all �.

As shown in more detail in Appendix B, it is then pos-
sible to choose the number of levels L such that the dis-
cretisation error in Eq. (17) does not exceed εdisc. As
a consequence, the cost CMLMC(εdisc, εstat) of computing
the MLMC estimator in Eq. (15) with a statistical error
less than εstat and a discretisation error less than εdisc
has the following computational complexity:

CMLMC =




O
(
ε−2
stat + ε

−1/α
disc

)
for β > 1,

O
(
ε−2
stat| log εdisc|2 + ε

−1/α
disc

)
for β = 1,

O
(
ε−2
statε

− 1−β
α

disc + ε
−1/α
disc

)
for β < 1.

(18)
For the choice εdisc = εstat = ε/

√
2, the total mean square

error in Eq. (17) does not exceed ε2 and Eq. (18) becomes

CMLMC(ε) =





O
(
ε−2

)
for β > 1

O
(
ε−2| log ε|2

)
for β = 1

O
(
ε−2− 1−β

α

)
for β < 1

, (19)

which is a special case of the well-known estimate in [9].
However, the samples created by Alg. 4 on each of the

levels � are generated with a Markov chain and thus only
asymptotically distributed according to π�. As discussed
in [17], the complexity analysis can be modified to ad-
dress this issue, leading to an additional factor | log εdisc|

Figure 3: Double well potential used for numerical ex-
periments

in Eqs. (18) and (19). This seems to be not visible
in the numerical results below or in [17] (at least pre-
asymptotically).

2.4 Memory requirements

Although the one dimensional quantum mechanical prob-
lems considered here do not require significant storage,
the memory requirements of the algorithms introduced
in this paper need to be considered in addition to their
runtimes. This is particularly important for simulations
of higher dimensional quantum field theories on modern
many-core architectures where the memory per compute
core is limited.

As discussed in detail in Appendix C, on a given level
the hierarchical sampler in Alg. 3 requires less mem-
ory than a standard Metropolis Hastings method with
a HMC proposal distribution. The memory footprint of
the multilevel Monte Carlo method in Alg. 4 is less than
three times that of a HMC based Metropolis Hastings
algorithm.

3 Quantum mechanical model
systems

To demonstrate the performance of the methods dis-
cussed in the previous section we consider two non-trivial
quantum mechanical problems.

3.1 Non-symmetric double-well poten-
tial

The first system describes a particle with mass m0 mov-
ing subject to a non-symmetric double-well potential

V (x) = m0µ
2

2 x2 + λ
4 (x − η)4. Fig. 3 shows this po-

tential for the choice of parameters that were used in our
numerical experiments, namely m0 = 1, µ2 = −1, λ = 1,
η = 1

4 . In the Euclidean time formulation of the path

8



integral the corresponding Lagrangian is

L(x(t)) =
m0

2

(
dx

dt

)2

+
m0µ

2

2
x2 +

λ

4
(x− η)4 (20)

where x(t) ∈ R. For a given path x =
(x0, x1, . . . , xd−1) ∈ Rd the discretised lattice action is

S(x) = a
d−1∑
j=0

{
m0

2

(
xj − xj−1

a

)2

+
m0µ

2

2
x2
i +

λ

4
(xi − η)4

}
.

(21)

The observable we consider is the average squared dis-
placement

Q(x) =
1

d

d−1∑
j=0

x2
j . (22)

Note that since points on the lattice are correlated with
a correlation length which is constant in physical units,
the variance of this observable does not go to zero in the
continuum limit. In other words, the sampling error is
not automatically reduced on finer lattices.

3.1.1 Coarse level action

Coarse grained versions S` of the action in Eq. (21) are
obtained by re-discretising the Lagrangian in Eq. (20)
on the lattice T` with d` = 2`−L+1d points and lattice
spacing a` = 2L−1−`a on level ` to obtain

S`(x) = a`

d`−1∑
j=0

{
m0

2

(
xj − xj−1

a`

)2

+
m0µ

2

2
x2
j +

λ

4
(xj − η)4

}
.

To construct the action S̃` defined in Eq. (14), observe
that

π`(x) = πeven
` (x0, x2, . . . , xd`−2)×

×
d`−1−1∏
j=0

πodd
` (x2j+1|x2j , x2j+2)

(23)

where πeven
` is the marginal distribution of the even points

πeven
` (x0, x2, . . . , xd`−2) =

∫
D
· · ·
∫
D
π`(x)dx1 dx3 . . . dxd`−1

and

πodd
` (x2j+1|x2j , x2j+2) = Z−1

`,j exp [−W`(x2j+1|x2j , x2j+2)] .
(24)

Here W` is defined for arbitrary values x−, x+ as

W`(x|x−, x+) =
m0

a`

(
x2 − (x− + x+)x

)
+ a`

(
m0µ

2

2
x2 +

λ

4
(x− η)

4

)
.

and Z`,j = Z`,j(x2j , x2j+2) is a normalisation constant
which depends on x2j , x2j+2. The distribution in Eq.
(24) can be approximated by a Gaussian by writing

W`(x|x−, x+) ≈ G`(x|x−, x+)

with

G`(x|x−, x+) =
m0

a`
σ`(x−, x+) (x− ζ`(x−, x+))

2
,

where ζ` = ζ`(x−, x+) is the minimum of W`(x|x−, x+)
and satisfies the non-linear equation(

1 +
1

2
a2
`µ

2

)
ζ` + a2

`

λ

2m0
(ζ` − η)3 =

x− + x+

2
. (25)

In the code ζ` is found by a small number of fixed point
iterations of Eq. (25), using x = (x−+x+)/2 as a starting
guess. Further, 2m0σ`/a` is the curvature of the function
W`, evaluated at the point x ≈ ζ`(x−, x+), i.e.

2m0

a`
σ`(x−, x+) =

∂2W`

∂x2
(x|x−, x+)

=
2m0

a`

(
1 +

1

2
a2
`

(
µ2 +

3λ

m0
(x− η)2

))
≈ ∂2W`

∂x2
(ζ`(x−, x+)|x−, x+).

Now write x = [x̃,x′] as in Eq. (13). Given ζ`(x
′
j , x
′
j+1)

and σ`(x
′
j , x
′
j+1) for all j = 0, 1, . . . , d`−1−1, we can then

construct

S̃`([x̃,x
′]) =

d`−1−1∑
j=0

G`(x̃j |x′j , x′j+1).

The resulting probability density π̃`(·|x′) defined in Eq.
(14) is a multivariate normal distribution with diagonal
covariance matrix, which can be easily sampled; the nor-
malisation constant in Eq. (14) is

Z̃`(x′) =

√√√√(4πm0

a`

)d`−1
d`−1−1∏
j=0

σ`(x′j , x
′
j+1).

3.2 Topological oscillator

The second model system is the topological oscillator, de-
scribed for example in [26]. This is an interesting prob-
lem since it has a topological quantum number which can
only take on integer values. The Lagrangian is

L(x, t) =
I0
2

(
dx

dt

)2

(26)

where now crucially x ∈ [−π, π), i.e. the particle is con-
fined to a finite interval. The Lagrangian in Eq. (26) can
be obtained from the action of a free particle with mass
m0 confined to a circle with radius R,

L(y, z, t) =
m0

2

((
dy

dt

)2

+

(
dz

dt

)2
)
,
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with (y, z) ∈ R2, y2 + z2 = R2 by setting y(t) =
R cos(x(t)), z(t) = R sin(x(t)) and I0 = R2m0. The form
of the discretised action chosen here is

S(x) =
I0
a

d−1∑
j=0

(1− cos(xj − xj−1)) .

As above we used periodic boundary conditions xd = x0.
Note that

1− cos(xj − xj−1)

a2
=

1

2

(
dx

dt

)2

+O
(
a2
)
.

For a given path x(t) the topological charge q(x) of the
system describes the number of complete revolutions dur-
ing the time period T . Mathematically it is defined as

q(x(t)) =
1

2π

∫ T

0

dx(t)

dt
dt ∈ Z.

For the discretised system this becomes

q(x) =
1

2π

d−1∑
j=0

{
(xj − xj−1) mod [−π, π)

}
∈ Z.

Following the notation in [26], for any x ∈ R the quantity
z = x mod [−π, π) is defined as z = x+ 2πk with k ∈ Z
such that −π ≤ z < π. The observable we consider is the
topological susceptibility

Q(x) = χt(x) =
q2(x)

T
. (27)

Defining ξ := T/I0 and z := a/I0, a tedious but
straightforward calculation shows that the ex-
pectation value of χt for finite a, T is given by

E[χt] =
1

4π2I0

(
1− ξΣ̂2(ξ) +

[
1

2
− ξΣ̂2(ξ) +

1

4
ξ2
(

Σ̂4(ξ)− Σ̂2(ξ)2
)]
z

)
+O(z2)

a→0−−−→ 1− ξΣ̂2(ξ)

4π2I0

T→∞−−−−→ 1

4π2I0
,

(28)

where for any p ∈ N, ξ > 0 the function Σ̂p is defined as

Σp(ξ) :=
∑
m∈Z

mp exp

[
−1

2
ξm2

]
, Σ̂p(ξ) :=

Σp(ξ)

Σ0(ξ)
.

(29)

Eq. (28) allows the calculation of the constant ∆0 in the
Taylor expansion E[χt] = E[χt(a = 0)] + ∆0a + O(a2)
of the topological susceptibility. In other words, we can
work out the bias for a given lattice spacing. This will
also allow us to balance the discretisation- and statistical-
errors in the MLMC estimator if we choose εdisc = εstat.
In the continuum limit (a→ 0) the variance of χt can be
shown to be

Var[χt] = E
[
(χt − E[χt])

2
]

=
R(4π2/ξ)

8π4I2
0

T→∞−−−−→ 1

8π4I2
0

(30)
with the function R defined by

R(ζ) :=
1

2
ζ2
(

Σ̂4(ζ)− Σ̂2(ζ)2
)
.

3.2.1 Coarse level action

For the topological oscillator the coarse level action is

S`(x) =
I

(`)
0

a`

d`−1∑
j=0

(1− cos(xj − xj−1)) ,

where the moment of inertia I
(`)
0 is level dependent. In

the simplest case one could simply set I
(`)
0 = I0 for all

` = 0, 1, . . . , L−1. However, as will be shown below, per-
formance can be improved significantly by using a per-

turbative matching procedure to construct I
(`)
0 on the

coarser levels. To obtain S̃`, rewrite π` as in Eqs. (23)

and (24), where now

W`(x|x−, x+) = W `(x|x−, x+) + 2− 1

2
σ`(x−, x+)

with

W `(x|x−, x+) =
I

(`)
0

a`
σ`(x−, x+) sin2

(
x− ζ`(x−, x+)

2

)
σ`(x−, x+) = 4

∣∣∣∣cos

(
x+ − x−

2

)∣∣∣∣ ,
tan ζ`(x−, x+) =

sin(x+) + sin(x−)

cos(x+) + cos(x−)
.

Again write x = [x̃,x′] as in Eq. (13), and given
ζ`(x

′
j , x
′
j+1) and σ`(x

′
j , x
′
j+1) for all j = 0, 1, . . . , d`−1− 1

construct

S̃`([x̃,x
′]) =

d`−1−1∑
j=0

W `(x̃j |x′j , x′j+1).

The normalisation constant in Eq. (14) is

Z`(x′) = (2π)d`−1 exp

−I(`)
0

2a`

d`−1−1∑
j=0

σ`(x
′
j , x
′
j+1)


×

d`−1−1∏
j=0

B0

(
I

(`)
0

2a`
σ`(x

′
j , x
′
j+1)

)

where B0 is the zero-order modified Bessel function of
the first kind. The resulting probability density π̃` is the
product of one-dimensional densities of the form

pσ,δx(x) = Z−1
σ exp

[
−2σ sin2

(
x− δx

2

)]
with

Zσ = 2πe−σB0(σ),

(31)
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which can be easily sampled for arbitrary values of σ and
δx. In our code we find that rejection sampling with a
suitable Gaussian envelope (as described in Appendix D)
gives good results.

3.2.2 Coarse level matching

Ideally, the coarse level actions should be obtained by
recursively integrating out the modes that can be repre-
sented on a given lattice, but not on the next coarser one.
In other words, S`−1 is an effective action obtained from
S`. While for an arbitrary action this can not be done ex-
actly, an approximate effective action can be constructed
by a perturbative renormalisation group transformation
or through (approximate) matching. Here we follow the
latter procedure for the topological oscillator to adjust

the moment of inertia I
(`)
0 on the coarser levels, starting

from the physical value I0 = I
(L−1)
0 on the finest lattice.

Let χt(a, I0, T ) be the topological susceptibility calculate
for a given I0, T and lattice spacing a, and recall that we
can compute χt(a, I0, T ) up to corrections of O((a/I0)2).
We now require that

χt(a`−1, I
(`−1)
0 , T ) = χt(a`, I

(`)
0 , T ) +O((a`/I

(`)
0 )2)

for all ` = 1, . . . , L− 1. Using Eq. (28) this gives

I
(`−1)
0 =

(
1 +

a`

I
(`)
0

· δI
(
T/I

(`)
0

))
I

(`)
0 +O((a`/I

(`)
0 )2).

with

δI(ξ) =
1

2
·

1− 2ξΣ̂2(ξ) + 1
2ξ

2
(

Σ̂4(ξ)− Σ̂2(ξ)2
)

1− 2ξΣ̂2(ξ) + ξ2
(

Σ̂4(ξ)− Σ̂2(ξ)2
)

and Σ̂p as defined in Eq. (29). As the following nu-

merical results show, computing I
(0)
` with this approx-

imate coarse level matching procedure significantly im-
proves performance both for the hierarchical sampler in
Alg. 3 and the MLMC method in Alg. 4.

4 Results

We now quantify the performance gains of the numerical
algorithms described above. All results were generated
with a C++ code developed by the authors which is freely
available at

https://bitbucket.org/em459/mlmcpathintegral/

The reported runtimes were obtained by running a se-
quential version of the code (which was compiled with
version 18.5.274 of the Intel C compiler) on a single core
of an Intel E5-2650 v2 (2.60 GHz) CPU.

For all numerical results we set T = 4; as remarked
above we do not consider finite-volume errors here, i.e.
we assume that the exact value is the expectation value of
the observable in the limit a→ 0 at a given T . As can be
seen from Eq. (28), finite-volume errors are exponentially

suppressed for the topological oscillator1. For the double-
well potential the mass is set to m0 = 1.0 whereas the
moment of inertia for the topological oscillator is I0 =
0.25.

4.1 Autocorrelations

To quantify the significant reduction of autocorrelations
which is achieved by hierarchical sampling, we measure
the integrated autocorrelation time τint for the single level
Metropolis-Hastings algorithm (Alg. 1) if either a simple
HMC algorithm or the hierarchical delayed acceptance
sampler in Alg. 3 is used. We refer to the first method
as “StMC” from now on, whereas the latter is denoted as
“HSMC”. In the latter case the number of levels is chosen
such that the coarsest level is fixed and always has d0 =
16 points for the double-well potential and d0 = 32 for the
topological oscillator (corresponding to lattice spacings of
a0 = 0.25 and a0 = 0.125 respectively). A HMC sampler
is used to generate proposals on the coarsest level. In all
cases (i.e. either on the fine level for the StMC method
or on the coarsest level for HSMC) 100 HMC steps are
carried out and the size of the HMC timestep is tuned
such that the acceptance probability of the HMC sampler
is close to 80%. We implemented a simple HMC method
based on a symplectic leapfrog integrator. The integrated
autocorrelation time defined in Eq. (11) is estimated by
measuring the QoI for N = 105 samples and computing

τ̂int = 1 + 2
W∑
s=1

ρ̂(s)

ρ̂(0)
≈ τint with

ρ̂(s) =
1

N − s

N−s∑
j=1

Q(j)Q(j+s)

≈ E[Q(x(tmeas))Q(x(tmeas+s))],

where tmeas is defined as in Eq. (11). As described in [36]
the size of the window W is chosen such that systematic
and statistical errors on τ̂int are balanced. Fig. 4 shows
the integrated autocorrelation time of the quantity of in-
terest defined in Eq. (22) for the double well potential.
As can be seen from this plot, τint increases in proportion
to a−z with z ≈ 2.29 for small lattice spacings, whereas
it is completely flat for the hierarchical sampler.

For the topological oscillator the observable is the
topological susceptibility defined in Eq. (27). Here two
different setups are considered for the hierarchical sam-

pler: in the first setup the value of I
(`)
0 on the coarse levels

is adjusted with the perturbative matching procedure de-
scribed in Section 3.2.2. For comparison we also consider

the case where I
(`)
0 = I0 = 0.25 is kept fixed on all levels,

we refer to this as the “not renormalised” setup in the
plots. As Fig. 5 shows, for the topological susceptibility
the integrated autocorrelation time increases very rapidly
with approximately τint ∝ a−z, z = 8.77 for small lattice
spacings if a standard HMC sampler is used. In fact,
the measured τ̂int is larger than 1000 for lattice spacings
smaller than 0.03, and the single level method becomes

1To see this, note that for T � I0 the leading order term in the
sum Σ̂2(T/I0) defined in Eq. (29) is 2e−T/(2I0).
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Figure 4: Integrated autocorrelation time for double well
potential. Results are shown both for a standard HMC
and the hierarchical sampler.

Figure 5: Integrated autocorrelation time for topological
oscillator. Results are shown both for a standard HMC
and the hierarchical sampler.

Figure 6: Acceptance probability pacc = P(x(t+1)
L−1 �=

x
(t)
L−1) of standard Monte Carlo with hierarchical sam-

pling (HSMC). Results are shown both for the double
well potential and the topological oscillator action.

practically unusable if a is reduced further. This is con-
sistent with the results shown in [26, Fig. 1] and can be
attributed to freezing of the integer-valued topological
charge q: for small lattice spacings tunnelling between
sectors with different values of q becomes increasingly
unlikely. If the hierarchical sampler is used, this problem
is dramatically reduced: τint is around 10 and grows only
weakly for small lattice spacings. Perturbative matching
reduces τint by a factor of approximately two.

The slow growth of the integrated autocorrelation for
the hierarchical sampler is related to the acceptance
probability of Alg. 3. Recall that a proposal on the finest

level is only accepted (i.e. x
(t+1)
L−1 �= x

(t)
L−1) if all coarse

level proposals have been accepted. In other words, the

overall acceptance probability pacc = P(x(t+1)
L−1 �= x

(t)
L−1) is

the probability of accepting the proposal generated with
HMC on the coarsest level (this probability is tuned to
around 80%), times the probabilities of accepting the pro-
posals generated with the two-level step in Alg. 2 on all
levels � = L− 1, L− 2, . . . , 1.

Fig. 6 shows this overall acceptance probability pacc as
the number of levels L increases for both the double-well
potential and the topological oscillator. For the double-
well potential the overall acceptance rate does not drop
below 75% which implies that the acceptance probabil-
ity of an individual two-level Metropolis-Hastings step
approaches 100% on the finer levels. For the topolog-
ical oscillator a similar behaviour can be observed, al-
though the curve flattens slower and the total acceptance
rate approaches a smaller value for small lattice spacings.
As expected, the acceptance probability is higher for the
renormalised action. This is not surprising since in the
two-level Metropolis-Hastings step the coarse level pro-
posal is a better approximation of the even modes on
the next-finer level. Although this explains the smaller
absolute value of the autocorrelation time in Fig. 5, mea-
surements of the runtime (see Tab. 3 below) show that
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Figure 7: Discretisation error ∆disc(a) as a function of
the lattice spacing a for the double well potential. The
fit takes the form ∆0a

2. Statistical errors are shown as
vertical bars, and the data points are labelled with the
number of dimensions d for each lattice spacing.

using the renormalised action for the HSMC method has
a smaller impact on the overall runtime since the average
cost per sample grows as the acceptance probability in-
creases. This can be seen immediately from Alg. 2: if the
proposal is already rejected on one of the coarser levels,
it is no longer necessary to carry out the more expensive
two-level Metropolis Hastings steps on the finer levels.

4.2 Discretisation error and variance de-
cay

To quantify the discretisation error ∆disc(a) as a function
of the lattice spacing, we derive an asymptotic bound on
∆disc(a). For this assume that

∆disc(a) = E[Q(a)]− E[Q(a = 0)] = ∆0a
α +O(aα+1).

For the double-well potential the parameters ∆0 and α
are obtained by calculating Q̂(a) with N = 4 · 108 sam-
ples (using the hierarchical method in Alg. 3) for a range
of lattice spacings a = 1/32, 1/16, 1/8, 1/4. As shown in
Fig. 7, the measured data is consistent with α = 2. The
coefficient ∆0 is estimated by approximating E[Q(a = 0)]

by Q̂(afine) with afine = 1/512 and fitting a function of

the form log∆0+2 log a to log(Q̂(a)−Q̂(afine)) to obtain
∆0 = 0.11408. Based on this result we use the rela-
tionship εdisc = ∆0a

2 to relate the lattice spacing to the
tolerance on the discretisation error in the following. For
the topological oscillator the asymptotic form of the dis-
cretisation error can be deduced from Eq. (28), which
implies that at leading order the error is linear in the lat-
tice spacing (α = 1). For our choice of numerical values
we find that ∆0 = 0.21567.

For the performance of the multilevel Monte Carlo
method the behaviour of the variance V� of the differ-
ence of the quantity of interest between subsequent lev-
els is important. Recall in particular that the computa-

Figure 8: Variance of difference estimators Y� and the
quantity of interest Q� for the double well potential. The
lattice spacing on level � is a� = 2L−1−�a. The data
points are labelled with the number of dimensions d� for
each lattice spacing.

tional complexity of the MLMC algorithm given in Eq.
(18) depends on value of β which bounds V�/V�−1 ≤
2−β . Fig. 8 shows V� for the double well potential
as well as the variance of the quantity of interest it-
self. As can be seen from this plot, β is larger than
1 but smaller than 2, and hence (since α = 2, as dis-
cussed above) we expect the computational complexity

of MLMC to be O(ε−2
stat + ε

−1/2
disc ). This assumes that the

sub-sampling rates and integrated autocorrelation times
can be bounded, which appears plausible given the re-
sults shown in Figs. 4 and 5. The variance decay for the
topological oscillator is shown in Fig. 9, both for the per-
turbatively renormalised action and the un-renormalised
action. Renormalising the action reduces the absolute
value of V�. In both cases it is safe to assume that β ≥ 1,
and hence we expect the computational complexity to
be no worse than O(ε−2

stat| log εdisc|2 + ε−1
disc), provided the

sub-sampling rates and integrated autocorrelation times
can be bounded as a → 0.

4.3 Total runtime

Finally, we compare the total runtime for three different
setups:

StMC The standard single level Monte Carlo method in
Alg. 1 with a HMC sampler.

HSMC The standard Monte Carlo method in Alg. 1
with the hierarchical delayed-acceptance sampler
written down in Alg. 3.

MLMC The multilevel Monte Carlo method in Alg. 4

The configuration of StMC and HSMC is described in
Section 4.1. For the multilevel method the coarsest level
has d0 = 16 points for the double-well potential and
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Figure 9: Variance of difference estimators Y� and the
quantity of interest Q� for the topological oscillator. The
lattice spacing on level � is a� = 2L−1−�a. The contin-
uum limit as given in Eq. (30) is shown as a red dashed
line. The data points are labelled with the number of
dimensions d� for each lattice spacing.

d0 = 32 points for the topological oscillator. The sub-
sampling rates t� in Alg. 4 are set to �2τ̂int,�� where τ̂int,�
is the estimated integrated autocorrelation time of the
quantity of interest on level � obtained with the hierar-
chical sampler. We confirmed that this choice of sub-
sampling rate is sufficient to generate approximately in-
dependent samples and that any additional bias in the
final MLMC estimator due to imperfect sub-sampling is
comparable to the discretisation error. In all cases we
generated and discarded a sufficiently large number of
samples before computing estimators to ensure that the
Markov chains are equilibrated on all levels. The run-
times reported here do not include the time spent in this
burn-in phase of the simulation. The tolerance on the
statistical error is set to a fixed value of εstat = 10−4 for
the double well potential and εstat = 10−2 for the topo-
logical oscillator, where the difference in size accounts for
the fact that the discretisation error decreases much more
rapidly for the double well problem. Figs. 10 and 11 show
the total runtime for those values of εstat and different lat-
tice spacings a, corresponding to different values of εdisc:
as discussed in Section 4.2, for both considered problems
we bound the discretisation error by εdisc = ∆0a

α with
α = 2, ∆0 = 0.11408 for the double-well potential and
α = 1, ∆0 = 0.21567 for the topological oscillator. The
times reported for HSMC and MLMC in Figs. 10 and 11
were obtained with the renormalised coarse level action.
As can be seen from those figures, the runtime grows

rapidly with ε
−(1+z)/α
disc for the StMC method, which is

proportional to a high power a−1−z of the inverse lattice
spacing since the discretisation error is first order in all
cases. Here a factor a−1 arises since the cost of generat-
ing a path is O(a−1) and the remaining power a−z can be
explained by the growth in τint discussed in Section 4.1.
As the results in Figs. 10 and 11 show, by taming au-

Figure 10: Runtime of different Monte Carlo sampling
algorithms for the double well potential with a fixed tol-
erance εstat = 10−4 on the statistical error. Results are
shown in seconds and as a function of the tolerance εdisc.
The data points are labelled with the number of dimen-
sions d for each lattice spacing.

Figure 11: Runtime of different Monte Carlo sampling
algorithms for the topological oscillator with a fixed tol-
erance εstat = 10−2 on the statistical error. Results are
shown in seconds and as a function of the tolerance εdisc.
The data points are labelled with the number of dimen-
sions d for each lattice spacing.
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tocorrelations the HSMC method reduces the growth of
computational cost. In fact, for the lattice spacings con-
sidered here the cost grows slower than predicted by the
theoretical O(ε−1

disc) complexity bound for the topological
oscillator. This is a pre-asymptotic effect and the reason
for it is twofold: firstly, the (fixed) cost of the expensive
coarse level HMC sampler still contributes significantly
to the overall cost of the hierarchical sampler which is
not yet dominated by the evaluation of the action on the
finer levels. Secondly, as can be seen from the initial drop
of the total acceptance probability in Fig. 6, the prob-
ability of accepting a proposed sample in the two-level
Metropolis-Hastings step on a given level is smaller than
1 on the coarser levels, before is approaches 1 on the finer
levels. As a consequence, in a significant proportion of
cases generating a hierarchical sample does not require
the evaluation of the fine-level action since the proposal
is already rejected on a coarser level.

MLMC reduces the asymptotic rate of growth further,
and for the double-well potential MLMC is significantly
faster than HSMC for the smallest tolerance εdisc con-
sidered here. Tab. 1 summarises the speedup of
MLMC over StMC for both problems. The relative gain
of MLMC over HSMC is shown in Tab. 2. Although
the gap between the runtime of the two methods also
reduces for the topological oscillator, for the tolerances
considered here HSMC is still faster than MLMC.

While here we kept the tolerance εstat fixed, in Ap-
pendix E we also show the runtime as a function of the
tolerance ε on the total root mean square error, i.e. for
εdisc = εstat = ε/

√
2.

4.3.1 Breakdown of MLMC cost

For the multilevel method it is instructive to break down
the total computational cost into the time spent on the
individual levels of the lattice hierarchy. To estimate the
fraction of the runtime spent on level � we computed

N eff
� Ceff

�∑L−1
�=0 N eff

� Ceff
�

,

which is plotted in Fig. 12. As can be seen from this
plot, for the double well potential more than half of the
time is spent on the coarsest level of the lattice hierarchy.
This can be explained by the fact that, as Fig. 8 shows,
the variance of difference estimators decreases by a factor
between 2 and 4 between subsequent levels. The cost is
more evenly distributed between levels for the topological
oscillator problem since in this case the variance decays
with a near-linear rate (see Fig. 9).

4.3.2 Gains from coarse level matching

Finally, we quantify the gains from coarse-level matching
for the topological oscillator. For this the HSMC and
MLMC runs were repeated without coarse level match-

ing, i.e. with I
(�)
0 = I0 = 0.25 for all � = 0, 1, . . . , L − 1.

Tab. 3 shows that this results in a relatively modest
reduction of the runtime for the HSMC sampler. As al-
ready discussed at the end of Section 4.1, this can be

Figure 12: Estimated breakdown of cost per level for
MLMC. Results are shown for the finest lattice spacing
with d = 2048 for the double well potential and d = 1024
for the topological oscillator.

explained by the fact that renormalising the coarse level
action leads to a reduction of the integrated autocorrela-
tion time, but this effect is largely compensated by the in-
creased cost per sample. As the corresponding speedups
for MLMC in Tab. 4 show, the gain is significantly larger
for the multilevel method, where coarse level matching
more than halves the runtime. This is because for MLMC
matching the actions has the additional effect of reduc-
ing the absolute value of the variance of the difference
estimators, as can be seen from Fig. 9.

4.3.3 Multilevel accelerated cluster algorithm

For the topological oscillator the cluster algorithm [27]
can be used to generate Monte Carlo updates with ex-
tremely small autocorrelations for arbitrarily small lat-
tice spacing. We implemented a variant of Alg. 4 in

which the new samples x
(t+t0)
0 (line 4) and the coarse

level samples z
(t+t�−1)
�−1 (line 7) are generated with the

(single-update) cluster algorithm instead of the hierarchi-
cal sampler in Alg. 3. Again the sub-sampling rates are
set to t� = �2τ̂int,�� and we find numerically that τ̂int,� ≈ 3
for all levels � considered here. The number of unknowns
on the coarsest level was fixed to d0 = 512, while increas-
ing to fine-level problem size from d = 1024 to d = 16384.
The performance of this MLMC algorithm is compared to
the standard, single-level cluster algorithm, again updat-
ing a single cluster in each Metropolis Hastings step. As
the numerical results in Fig. 13 show, MLMC is around
40% faster than the standalone cluster algorithm for the
smallest lattice spacing considered here. The speedup of
the MLMC accelerated cluster algorithm over the single-
level cluster algorithm for all lattice spacings is shown
in Tab. 5. More importantly, the numerical experi-
ments show that the runtime of MLMC increases roughly
as O(| log(εdisc)|2) and thereby grows significantly slower
than the runtime of the cluster algorithm, which shows
the expected O(ε−1

disc) growth. Again we also show the
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d a εdisc tStMC tMLMC speedup

doublewell


32 0.1250 1.78 · 10−3 0.17 0.64 0.3×
64 0.0625 4.46 · 10−4 0.14 0.87 0.2×
128 0.0312 1.11 · 10−4 1.54 1.03 1.5×
256 0.0156 2.79 · 10−5 14.32 1.16 12.3×
512 0.0078 6.96 · 10−6 152.21 1.20 126.9×
1024 0.0039 1.74 · 10−6 1160.02 1.38 840.9×

topological
oscillator


64 0.0625 1.35 · 10−2 1.13 1.72 0.7×
96 0.0417 8.99 · 10−3 39.26 3.51 11.2×
128 0.0312 6.74 · 10−3 665.32 4.95 134.4×

Table 1: Comparison of runtime for standard, single-level Monte Carlo (StMC) and multilevel Monte Carlo (MLMC).
All times for the double well potential were obtained with εstat = 10−4 and are given in units of 104 seconds. For the
topological oscillator a value of εstat = 10−2 was used and times are given in seconds.

d a εdisc tHSMC tMLMC speedup

doublewell



32 0.1250 1.78 · 10−3 0.14 0.64 0.2×
64 0.0625 4.46 · 10−4 0.21 0.87 0.2×
128 0.0312 1.11 · 10−4 0.34 1.03 0.3×
256 0.0156 2.79 · 10−5 0.59 1.16 0.5×
512 0.0078 6.96 · 10−6 1.13 1.20 0.9×
1024 0.0039 1.74 · 10−6 2.12 1.38 1.5×
2048 0.0020 4.35 · 10−7 4.10 1.46 2.8×

topological
oscillator


64 0.0625 1.35 · 10−2 0.31 1.72 0.2×
128 0.0312 6.74 · 10−3 0.44 4.95 0.1×
256 0.0156 3.37 · 10−3 0.62 5.72 0.1×
512 0.0078 1.68 · 10−3 0.91 7.42 0.1×
1024 0.0039 8.42 · 10−4 1.36 8.76 0.2×
2048 0.0020 4.21 · 10−4 1.97 10.47 0.2×

Table 2: Comparison of runtime for Monte Carlo with hierarchical sampling (HSMC) and multilevel Monte Carlo
(MLMC). All times for the double well potential were obtained with εstat = 10−4 and are given in units of 104 seconds.
For the topological oscillator a value of εstat = 10−2 was used and times are given in seconds.
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d a εdisc t
(0)
HSMC tHSMC speedup

64 0.0625 1.35 · 10−2 0.36 0.31 1.2×
128 0.0312 6.74 · 10−3 0.64 0.44 1.4×
256 0.0156 3.37 · 10−3 0.96 0.62 1.5×
512 0.0078 1.68 · 10−3 1.44 0.91 1.6×

1024 0.0039 8.42 · 10−4 1.90 1.36 1.4×
2048 0.0020 4.21 · 10−4 2.57 1.97 1.3×

Table 3: Comparison of Monte Carlo with hierarchical
sampling (HSMC) without and with coarse level mass

matching, denoted by t
(0)
HSMC and tHSMC respectively. All

times were obtained with εstat = 10−2 and are given in
seconds.

d a εdisc t
(0)
MLMC tMLMC speedup

64 0.0625 1.35 · 10−2 4.07 1.72 2.4×
128 0.0312 6.74 · 10−3 10.68 4.95 2.2×
256 0.0156 3.37 · 10−3 16.47 5.72 2.9×
512 0.0078 1.68 · 10−3 19.27 7.42 2.6×

1024 0.0039 8.42 · 10−4 21.92 8.76 2.5×
2048 0.0020 4.21 · 10−4 25.64 10.47 2.5×

Table 4: Comparison of Multilevel Monte Carlo (MLMC)
runtime without and with coarse level mass matching,

denoted by t
(0)
MLMC and tMLMC respectively. All times

were obtained with εstat = 10−2 and are given in seconds.

corresponding results for varying εstat = εdisc = ε/
√
2 in

Fig. 17 in Appendix E.
It should be stressed at this point, that while the clus-

ter algorithm proved to be highly efficient for the topo-
logical oscillator, its applicability is highly problem de-
pendent and can for example not be directly used for the
double well potential problem considered in this work or
many other problems in quantum field theory.

5 Conclusion

In this paper we have described a hierarchical sampling
algorithm and applied it for simulations in quantum me-
chanics. We demonstrated that this can overcome the
rapid growth of autocorrelations as the continuum limit
is approached. In particular, we considered the anhar-
monic oscillator with a non-symmetric double well po-
tential and the quantum mechanical topological oscilla-

d a εdisc tStMC tMLMC speedup

1024 0.003906 8.42 · 10−4 2.44 13.13 0.2×
2048 0.001953 4.21 · 10−4 4.86 18.50 0.3×
4096 0.000977 2.11 · 10−4 9.38 19.06 0.5×
8192 0.000488 1.05 · 10−4 20.60 23.81 0.9×

16384 0.000244 5.27 · 10−5 39.51 27.38 1.4×

Table 5: Comparison of singlelevel (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator.
All times were obtained with εstat = 10−3 and are given
in seconds.

Figure 13: Runtime of singlelevel (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator
with a tolerance εstat = 10−3 on the statistical error.
Results are shown in seconds and as a function of the
tolerance εdisc. The data points are labelled with the
number of dimensions d for each lattice spacing.

tor model described in [26]. Empirically we find that
for both cases the integrated autocorrelation time does
not show any signifcant increase towards the continuum
limit when the lattice spacing approaches zero. This re-
sult is particularly significant for the susceptibility of a
topological oscillator, which suffers from freezing of the
topological charge if a single level method with a stan-
dard HMC sampler is used.

Combining this new hierarchical sampling technique
with a multilevel Monte Carlo acceleration results in a
dramatic reduction of the computational complexity and
a significant reduction of the overall runtime. For the
finest considered lattice spacings the additional speedup
from MLMC (compared to hierarchical sampling for a
non-symmetric double well potential or the cluster al-
gorithm for a topological oscillator) is around 1.4× to
2.8×. We find that the accurate construction of coarse
level theories with an approximate matching procedure
is important to achieve optimal performance.

In this paper we have concentrated on reducing the
time spent in the sampling phase of the Markov Chain
Monte Carlo simulation and did not include burn-in times
in the reported runtimes. However, also burn-in can be
accelerated with hierarchical sampling since the reduc-
tion in autocorrelation time allows chains to equilibrate
much faster.

While here we have demonstrated the methods for
quantum mechanical systems, the same techniques can
be used in lattice field theory simulations. In fact, as
explained in the introduction, we expect the speedup to
be more significant in this case since the relative cost of
computations on coarser levels is further suppressed. A
crucial step will be to construct suitable coarse grained
theories which could be achieved analytically in perturba-
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tion theory or by adopting the framework of Symanzik’s
effective theory, where the improvement coefficients can
be computed perturbatively. Since many physically inter-
esting theories, and in particular lattice QCD, is asymp-
totically free, this is expected to work increasingly well
as the continuum limit is approached. Of, course, find-
ing non-perturbative methods to construct the course
grained theory would be even better.

Recently, multilevel Monte Carlo has received signif-
icant attention in other areas, which led to further in-
novations. While here the method is described in the
most natural setup, where coarse levels are constructed
by increasing the lattice spacing, coarsening in other cat-
egories is also possible and potentially leads to further
performance gainsby using the multiindex Monte Carlo
[37] technique. For example the complexity of the the-
ory could be reduced on coarser levels or the physical
volume of the lattices could be increased with `, thus
aiming to approach the continuum limit a→ 0 and large
volume limit T → ∞ simultaneously. In lattice QCD
one might increase the dynamical quark masses on the
coarser levels, which simplifies the computation of the
fermion determinant.

In summary, the success of the benchmark compu-
tations presented in this paper suggests that applying
MLMC techniques to higher dimensional theories, e.g.
to gauge theories, is indeed a promising approach which
we plan to follow in the future.
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A Extension to higher dimensions

To illustrate how the methods in this paper, and in par-
ticular the two-level Metropolis-Hastings step in Alg. 2,
can be extended to higher dimensions, consider a dis-
cretised two-dimensional theory for which the degrees of
freedom are located at the vertices of a uniform lattice
with spacing a. If Ω is the state space and S : Ω → R
is the lattice action, the probability density π∗ which is
sampled with a Monte Carlo method is defined by

π∗(Φ) = Z−1e−S(Φ) for all Φ ∈ Ω.

Starting from the finest lattice T , construct a hierarchy of
L lattices T = TL−1, TL−2, . . . , T0 by doubling the lattice
spacing simultaneously in both dimensions; this is shown
for two subsequent levels T`, T`−1 of the hierarchy in
Fig. 14 (left). On level ` the lattice spacing is written
as a` = 2`−L+1a and we assume that there is an action
S` : Ω` → R with associated probability density π` where

π`(Φ) = Z−1
` e−S`(Φ) for all Φ ∈ Ω`. (32)

Again, the coarse level theories are naturally obtained as
(approximate) effective theories of the original fine-level
theory on level L− 1 where SL−1 = S and πL−1 = π∗.

While the coarse level actions are constructed by start-
ing from the original lattice, the hierarchical sampler in
Alg. 2 constructs new fine level samples by generating a
proposal on the coarsest lattice and successively adding
fine-level modes. On each level ` this requires a mecha-
nism for filling in the values of unknowns in the fine-level
space Ω` for a given state Φ′ ∈ Ω`−1 in the coarse level
space Ω`−1. We use two iterations of the construction
described for the Ising model in [31] to achieve this. As
illustrated in Fig. 1(a) there, the key idea is to use a
rotated lattice with a lattice spacing that is reduced by
a factor

√
2. The values at the additional sites that are

generated in each rotation are drawn from a distribution
which depends only on the values at the already existing
sites2.

To explain this process in more detail, observe that
on each level ` the state space Ω` can be written as

the direct sum of three spaces Ω
(2)
` , Ω

(1)
` and Ω`−1 with

Ω` := Ω
(2)
` ⊕ Ω

(1)
` ⊕ Ω`−1, which should be compared to

the decomposition in Eq. (12). To see this and to define

Ω
(1)
` , Ω

(2)
` , separate the unknowns Φ ∈ Ω` into three dif-

ferent classes, depending on which topological entity of
a coarse grid cell on level `− 1 they are associated with,
namely

1. coarse-level unknowns associated with coarse level
vertices, collected in a vector Φ′ ∈ Ω`−1 and shown
as empty black circles in Fig. 14,

2. fine-level unknowns associated with the interior of

coarse level cells, collected in Φ̃
(1) ∈ Ω

(1)
` and shown

as empty blue squares and

2Although sampling is particularly simple if the action only con-
tains nearest-neighbour interactions (as for the Ising model in [31])
so that the value at each new site can be drawn independently, this
is not a necessary condition.

2a
a

coarse lattice

fine lattice

ℓ-1

ℓ

ℓ

ℓ

Figure 14: Fill-in of fine-level unknowns on a hierarchical
two-dimensional lattice as required in lines 5 and 6 of
Alg. 5. Starting from the coarse level unknowns on a

rotated lattice (upper left), first the unknowns in Ω
(1)
`

associated with the empty blue squares are filled in using

π̃
(1)
` (upper right). Next, the distribution π̃

(2)
` is used to

fill in the unknowns in Ω
(2)
` associated with the solid red

circles (lower right) to finally obtain the state on the fine
lattice (lower left).

3. fine-level unknowns associated with edges of coarse

level cells, collected in Φ̃
(2) ∈ Ω

(2)
` and shown as

solid red circles in the figure.

Given Φ′ ∈ Ω`−1, Φ̃
(1) ∈ Ω

(1)
` and Φ̃

(2) ∈ Ω
(2)
` write

Φ = [Φ̃
(1)
,Φ′] ∈ Ω` := Ω

(1)
` ⊕ Ω`−1 and

Φ = [Φ̃
(2)
,Φ] = [Φ̃

(2)
, [Φ̃

(1)
,Φ′]] ∈ Ω`, (33)

which should be compared to Eq. (13) in the main text.
Assume that there is a conditional probability density

π̃(1)(·|Φ′) on the state space Ω
(1)
` , given the values of

the coarse level unknowns Φ′ ∈ Ω`−1. Since the empty
black circles and empty blue squares in the top right of
Fig. 14 define a rotated lattice with spacing

√
2a`, the

density π̃(1) can be constructed by writing down an action
S̃(1) : Ω` → R on this rotated lattice, namely

π̃(1)(Φ̃
(1)|Φ′) =

(
Z̃(1)
` (Φ′)

)−1

exp
[
−S̃(1)

` ([Φ̃
(1)
,Φ′])

]
.

(34)
This action could for example be obtained by a renor-
malisation group transformation on S`, followed by some
approximations that guarantee that it is possible to ef-

fectively generate states in Ω
(1)
` for a given Φ′. Simi-

larly define a conditional probability density π̃(2)(·|Φ) on

Ω
(2)
` , given the values of the unknowns Φ ∈ Ω`. Here
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S(2) : Ω` → R can be expressed as an approximation of
S` with

π̃(2)(Φ̃
(2)|Φ) =

(
Z̃(2)
` (Φ)

)−1

exp
[
−S̃(2)

` ([Φ̃
(2)
,Φ])

]
=
(
Z̃(2)
` ([Φ̃

(1)
,Φ′])

)−1

× exp
[
−S̃(2)

` ([Φ̃
(2)
, [Φ̃

(1)
,Φ′]])

]
.

(35)
The exact choice of S̃(1) and S̃(2) influences the accep-
tance rate, but does not have any impact on the fine-
level discretisation error. Alg. 3 for the Metropolis-

Hastings step Φ
(t)
` → Φ

(t)
` can now be rewritten for a

two-dimensional theory as shown in the following Alg. 5.

Algorithm 5 Two-level Metropolis Hastings step for
two-dimensional theories.
Input: level `, current sample Φ

(t)
` ∼ π`,

proposal distribution q`−1

Output: new sample Φ
(t+1)
` ∼ π`

1: Let Φ
(t)
` = [Φ̃

(2,t)
` , [Φ̃

(1,t)
` ,Φ

(t)
`−1]] with Φ

(t)
`−1 ∈ Ω`−1,

Φ
(1,t)
` ∈ Ω

(1)
` , Φ

(2,t)
` ∈ Ω

(2)
` as in Eq. (33) and pick Ψ`−1

from q`−1(·|Φ(t)
`−1).

2: if Φ
(t+1)
`−1 = Φ

(t)
`−1 (the coarse level proposal was rejected)

then
3: Set Φ

(t+1)
` ←[ Φ(t)

`

4: else
5: Pick Ψ̃

(1)
` from π̃

(1)
` (·|Ψ`−1)

6: Pick Ψ̃
(2)
` from π̃

(2)
` (·|[Ψ̃(1)

,Ψ`−1])

7: Let Ψ` = [Ψ̃
(2)
` , [Ψ̃

(1)
` ,Ψ`−1]] and compute

exp[−∆S`] = ρ` · ρ(2)
` · ρ

(1)
` · ρ

′
`−1 with

ρ` :=
π`(Ψ`)

π`(Φ
(t)
` )

ρ
(2)
` :=

π̃
(2)
` (Φ̃

(2,t)
` |[Φ̃(1,t)

` ,Φ
(t)
`−1])

π̃
(2)
` (Ψ̃

(2)
` |[Ψ̃

(1)
` ,Ψ`−1)]

ρ
(1)
` :=

π̃
(1)
` (Φ̃

(1,t)
` |Φ(t)

`−1)

π̃
(1)
` (Ψ̃

(1)
` |Ψ`−1)

ρ′`−1 :=
π`−1(Φ

(t)
`−1)

π`−1(Ψ`−1)

8: Accept the proposal Ψ` and set Φ
(t+1)
` ←[ Ψ` with

probability min{1, exp[−∆S`]}; set Φ
(t+1)
` ←[ Φ(t)

` if
the proposal is rejected.

9: end if

An explicit expression for ∆S` is readily obtained from
Eqs. (32), (34) and (35). The key difference between Alg.

2 and Alg. 5 is that the fine level states from Ω
(1)
` and

Ω
(2)
` are filled in in two steps and that the triple product

of ratios in Alg. 2 has been replaced by the product of

the four ratios ρ`, ρ
(2)
` , ρ

(1)
` and ρ′`−1 in Alg. 5. A similar

construction is possible in higher dimensions where it is
necessary to successively fill in the fine level unknowns
which are not in the coarse level state space.

B Multilevel Monte Carlo cost
analysis

We make the reasonable assumption that the cost Ccoarse

of generating a sample x
(t+1)
0 with the standard Metropo-

lis sampler on the coarsest level is proportional to the
number of unknowns d0, and does not increase as the
number of levels increases (while keeping a0 fixed). More
specifically, we assume that this cost Ccoarse can be
bounded by

Ccoarse ≤ A0d0 = 2−L+1A0d

for some constant A0. Furthermore, given the coarse level
sample y`−1, the cost of executing Alg. 2 is proportional
to d` and can be bounded by

C2−level
` ≤ B0d` = 2`−L+1B0d

for some other constant B0. A straightforward calcula-

tion shows that the cost of obtaining a new sample x
(t+1)
`

with Alg. 3 can be bounded by

C` ≤ (A0 +B0)d` = 2`−L+1(A0 +B0)d,

i.e. does not grow more than linearly with the number
d` of unknowns on level `. Taking into account the sub-
sampling rates t`, the cost of obtaining an independent

measurement of Y
(j)
` on level ` in Alg. 4 is therefore

Ceff
` =

{
dτint,`e

(
C2−level
` + t`−1C`−1

)
for ` = 1, . . . , L− 1

dτint,0et0Ccoarse for ` = 0

(36)
where τint,` is the integrated autocorrelation time on level
`. In our code we measured Ccoarse, C2−level

` and C` during
the setup phase of each run, and then used Eq. (36) to
compute Ceff

` required in Eq. (16). The integrated auto-
correlation time were updated on-the-fly in the multilevel
Monte Carlo algorithm, generating additional samples if
this increased the N eff

` in Eq. (16).

To quantify the cost of the multilevel Monte Carlo al-
gorithm in Alg. 4, further assume that the sub-sampling
rates t` are bounded by some tmax ≥ t` for all ` =
1, . . . , L − 2. By definition, this is also an upper bound
on the integrated autocorrelation times on all levels, i.e.
τint,` ≤ tmax for ` = 0, 1, . . . , L − 1. Then, there exists

a constant C̃0 such that Ceff
` ≤ C̃0d` = 2`C̃0d0, in other

words the cost for generating an independent measure-

ment Y
(j)
` on level ` does not grow at a faster rate than

the number of unknowns d` = 2`d0 = 2`−L+1d on this
particular level. More generally, to make the following
derivation applicable for field theories in D > 1 dimen-
sions (where D = 1 corresponds to quantum mechanics),
we assume that there is a C0 > 0 such that

Ceff
` ≤ 2D`C0 for all ` = 0, 1, . . . , L− 1.

We now show how the cost of the MLMC algorithm de-
pends on the tolerances εdisc and εstat as εdisc, εstat → 0.
Using the definition of N eff

` in Eq. (16) and the fact that
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max{A,B} ≤ A+B, the total cost of MLMC with a tol-
erance εstat on the statistical error and a given number
of levels L can be bounded by

CMLMC =
L−1∑
`=0

N eff
` Ceff

` ≤ ε−2
statσ(L)2 + σ̃(L) (37)

where

σ(L) :=
L−1∑
`=0

√
V`Ceff

` , σ̃(L) :=
L−1∑
`=0

Ceff
` .

Assuming that

V` ≤ 2−β`V0,

a straightforward calculation shows that σ(L) can be
bounded as follows, depending on whether β is larger,
equal or smaller than D:

σ(L) ≤ κ0

L−1∑
`=0

2
D−β

2 ` ≤


κ+ for β > D

κ0L for β = D

κ−2
1−β
2 L for β < D.

(38)

with the constants

κ0 =
√
C0V0, κ+ =

κ0

1− 2
D−β

2

= −κ−.

The sum σ̃(L) is readily bounded by

σ̃(L) ≤ C0
2DL

2D − 1
(39)

To obtain a bound on the number of levels L, we further
assume that the discretisation is of order α, i.e. for a
given lattice spacing a the discretisation error ∆disc(a)
can be bounded by

∆disc(a) ≤ ∆̃0a
α

for some constants α ≥ 1, ∆̃0. If we set a = 2−Lmax+1a0

with

Lmax = 1 +

⌈
log2

(
a0∆̃

1/α
0

)
− 1

α
log2 εdisc

⌉
the discretisation error will be smaller than εdisc. Hence,
it is not necessary to use more than Lmax levels, and L
in Eq. (38) can be bounded by

L ≤ 2 + log2

(
a0∆̃

1/α
0

)
− 1

α
log2 εdisc.

Using this bound in Eqs. (38) and (39) implies that the
cost in Eq. (37) has the following computational com-
plexity as a function of εdisc and εstat:

CMLMC =


O
(
ε−2
stat + ε

−D/α
disc

)
for β > D

O
(
ε−2
stat| log εdisc|2 + ε

−D/α
disc

)
for β = D

O
(
ε−2
statε

−D−β
α

disc + ε
−D/α
disc

)
for β < D.

(40)

For the quantum mechanical problems considered in this
paper we have that D = 1, which leads to the compu-
tational complexity in Eq. (18); Eq. (4) in the intro-
duction is a special case of this for α = β = 1. In fact,
as explained in [17], α = β holds more generally for the
Markov Chain variant of the multilevel Monte Carlo al-
gorithm. Hence, for quantum field theories in higher di-
mensions with D > α = β the third case in Eq. (40)
applies, which results in Eq. (5) in the introduction. Fi-
nally, setting εstat = εdisc = ε/

√
2 gives Eq. (6).

C Memory requirements

To put the memory requirements of the algorithms de-
scribed in this paper into context consider a D dimen-
sional quantum field theory and HMC sampling as an
established reference method. In addition to the current
state x(t), both the proposal y and ν ≥ 1 temporary
vectors have to be stored to implement the symplectic
timestepping scheme in the enlarged phase space. For the
simple leapfrog implementation used in this work ν = 1
since only one additional momentum vector is required.
If there are d lattice points in each direction this leads to
a total storage requirement of 2+ν state vectors of length
dD orMHMC = (2+ν)dD double precision variables in D
dimensions. Executing the two-level Metropolis Hastings
step in Alg. 2 on level ` of the hierarchy requires stor-

age for x
(t)
` and the proposal y`, which are both vectors

of length dD` . Depending on how the proposal on level
` − 1 is generated, this might require additional vectors
of length dD`−1. For example, if the proposals y`−1 are

drawn from q`−1(·|x(t)
`−1) with a single level Metropolis

Hasting method and a HMC proposal distribution, one
would require ν additional vectors. However, since un-
knowns on the finer levels are filled in recursively and

existing entries of x
(t)
` are used to represent the current

state on coarser levels, the hierarchical sampler in Alg. 3
only needs to store two vectors of length dD` to represent

x
(t)
` and the proposal y` as well as ν vectors of length

dD0 to account for the Metropolis Hastings step on the
coarsest level with ` = 0. This leads to total storage
requirements of MHS(`) = 2dD` + νdD0 for Alg. 3. In
particular, on the finest level

MHS(L− 1) =
(

2 + 2−(L−1)Dν
)
dD <MHMC. (41)

To obtain the memory requirements of the MLMC
method in Alg. 4 note that on each level both the current

state x
(t)
` and a proposal y` have to be stored. In addi-

tion, the storage requirements of the hierarchical sampler
in Alg. 3 have to be taken into account on all but the
very finest level. Consequently for L ≥ 2 levels the total
amount of required memory is

MMLMC = 2
L−1∑
`=0

dD` +
L−2∑
`=0

MHS(`)

=

(
2 + 4

1− 2−(L−1)D

2D − 1
+ ν

L− 1

2(L−1)D

)
dD

< (6 + ν)dD < 3MHMC.

(42)
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As Eqs. (41) and (42) show, the memory footprint of
the hierarchical sampler in Alg. 3 is actually smaller
than that of HMC, whereas the MLMC method in Alg.
4 requires less than three times the amount of storage
used by a standard HMC method for any dimension D.
Limited storage usually restricts the size of systems that
can be simulated for higher dimensions (D ≥ 3). As
the second line of Eq. (42) shows, for those higher di-
mensional problems the additional memory overhead of
MLMC (compared to HMC) is actually less than 30%.

D Rejection sampling

To draw samples from the distribution pσ,δx defined in
Eq. (31) we use rejection sampling with a Gaussian
envelope, as described in the following algorithm:

Algorithm 6 Rejection sampling for distribution pσ,δx
defined in Eq. (31)

1: loop
2: Draw sample x from Gaussian distribution gσ

with gσ(x) =
√

2σ
π3 exp

[
− 2σ

π2 x
2
]
.

3: if −π ≤ x ≤ π then
4: Draw uniformly distributed random u ∈ [0, 1).

5: if u ≤ exp
[
−2σ

(
sin2

(
x
2

)
− x2

π2

)]
then

6: return x+ δx
7: end if
8: end if
9: end loop

E Fixed tolerance on the total er-
ror

While for the results presented in the main text we fixed
εstat and varied the tolerance on the discretisation error,
in the following we also show the (estimated) runtime as a
function of the tolerance ε on the total root mean square
error. For this we set εstat = εdisc = ε/

√
2 as is common

in the multilevel Monte Carlo literature. Figs. 15 and
16 show the runtime of the single-level HMC method,
the hierarchical sampler and the multilevel method as
a function of the tolerance ε on the total error; they
should be compared to Figs. 10 and 11. Finally, Fig.
17 shows the runtime of the standard cluster-sampler and
the multilevel-accelerated variant of the method; the cor-
responding plot in the main text is Fig. 13.

Figure 15: Estimated runtime of different Monte Carlo
sampling algorithms for the double well potential. Re-
sults are shown in seconds and as a function of the tol-
erance ε on the total error. The data points are labelled
with the number of dimensions d for each lattice spacing.

Figure 16: Runtime of different Monte Carlo sampling al-
gorithms for the topological oscillator. Results are shown
in seconds and as a function of the tolerance ε on the to-
tal error. The data points are labelled with the number
of dimensions d for each lattice spacing.
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Figure 17: Runtime of singlelevel (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator.
Results are shown in seconds and as a function of the tol-
erance ε on the total error. The data points are labelled
with the number of dimensions d for each lattice spacing.

23



References

[1] Richard P Feynman, Albert R Hibbs, and Daniel F
Styer. Quantum mechanics and path integrals.
Courier Corporation, 2010.

[2] M Creutz and B Freedman. A statistical approach to
quantum mechanics. Annals of Physics, 132(2):427–
462, 1981.

[3] Heinz J Rothe. Lattice Gauge Theories: An Intro-
duction Third Edition, volume 74. World Scientific
Publishing Company, 2005.

[4] Detar Carleton et al. Lattice methods for quantum
chromodynamics. World Scientific, 2006.
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