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Abstract: This work concerns the quantum Lorentzian and Euclidean black hole non-

linear sigma models. For the Euclidean black hole sigma model an equilibrium density

matrix is proposed, which reproduces the modular invariant partition function from the

2001 paper of Maldacena, Ooguri and Son. For the Lorentzian black hole sigma model, us-

ing its formulation as a gauged SL(2,R) WZW model, we describe the linear and Hermitian

structure of its space of states and also propose an expression for the equilibrium density

matrix. Our analysis is guided by the results of the study of a certain critical, integrable

spin chain. In the scaling limit, the latter exhibits the key features of the Lorentzian black

hole sigma model including the same global symmetries, the same algebra of extended

conformal symmetry and a continuous spectrum of conformal dimensions.
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Fig. 1. Space-time diagram for the Lorentzian black hole (1.1). The cross defined by the equation

UV = 0 is a horizon, while the metric possesses a physical singularity on the hyperbola UV = 1.

1 Introduction

It was observed by Witten in ref.[1] that the two dimensional space equipped with the

metric

(dσLBH)2 =
dUdV

1− UV
(1.1)

exhibits the characteristic features of a black hole geometry. As depicted in the space-

time diagram in fig. 1, it possesses a horizon at UV = 0 as well as a curvature singularity

at UV = 1 just as the four dimensional Schwarzschild black hole in terms of Kruskal

coordinates. There is no globally defined time coordinate for the metric. Rather, there is

a Killing vector that is time-like only in regions I and II of fig.1 and space-like in regions

III and IV.

Similar to the 3 + 1 dimensional black hole, the Euclidean version of (1.1) is of prime

interest. The latter can be introduced in the spirit of the Hartle-Hawking analytic continu-

ation [2]. It is performed by a “Wick rotation” of the Killing coordinate T = 1
2 log(−U/V )

from region I to pure imaginary values. This makes U and V satisfy the reality condition

V = −U∗. Then, ignoring the overall negative sign, the Lorentzian metric becomes one of

Euclidean signature:

(dσEBH)2 =
dUdU∗

1 + UU∗
. (1.2)

The manifold equipped with (dσEBH)2 may be embedded into three dimensional Euclidean

space and visualized as a half-infinite cigar as shown in fig. 2. The tip is located at U = 0

while in the domain |U | � 1, where the metric becomes flat, the target manifold resembles

a half-infinite cylinder.
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Fig. 2. Visualization of the 2D manifold with metric (1.2).

For each of the metrics (dσLBH)2 and (dσEBH)2 one can associate a Non-Linear Sigma

Model (NLSM) whose classical dynamics is governed by the action1

SLBH =
1

2~

∫
d2x

∂µU∂
µV

1− UV
(1.3a)(

~→ 0+
)

SEBH =
1

2~

∫
d2x

∂µU∂
µU∗

1 + UU∗
. (1.3b)

It is a challenging problem, in general, to assign a meaning to a quantum NLSM whose

target space metric is of Lorentzian signature. In particular the status of the quantum

Lorentzian black hole NLSM is rather tentative. Contrary to this the quantum Euclidean

black hole NLSM is a well studied CFT[1, 3–12].

In refs.[9, 10] an explicit formula was presented for the partition function ZEBH. The

latter is defined as a Euclidean path integral involving the Euclidean action with the world-

sheet compactified on a torus. The partition function contains a divergence which comes

from the contribution of the asymptotically flat domain of the target manifold:

ZEBH = Z(sing)
ε + Z(reg)

EBH . (1.4)

The singular part is somewhat universal. It coincides with the partition function of two free

bosons, one of them being compactified, arg(U) ∼ arg(U) + 2π , while the other, log |U | ,
taking values in a segment of length ∝ log(1/ε). Thus, as the regularization parameter

ε→ 0,

Z(sing)
ε ∝ log(1/ε)→ +∞ . (1.5)

On the other hand, the finite part Z(reg)
EBH in (1.4) depends on the infra red regularization

of the target manifold, which can be thought of as being the result of interactions with an

external thermostat. In the works [8–10] the Euclidean black hole NLSM occurs in the con-

text of bosonic string theory on AdS3. This provides a particular regularization. Its major

advantage, which makes it especially attractive from the stringy point of view, is that ZEBH

1In this paper we use the following conventions. We assume Minkowski signature for the world-sheet

(x0, x1) ≡ (t, x) so that ∂0 = ∂0 ≡ ∂
∂x0

, ∂1 = −∂1 ≡ ∂
∂x1

with the space co-ordinate belonging to the

segment x ∈ [0, 2π]. The integration measure is taken to be d2x = dx0dx1. The Plank constant is a

positive dimensionless parameter. We’ll also use the Levi-Civita symbol εµν = −εµν , below, which is

defined as ε01 = −ε10 = 1.
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is invariant w.r.t modular transformations of the world-sheet torus. Then an immediate

question arises concerning the full equilibrium density matrix ρ̂EBH corresponding to such

a regularization. The latter can not be recovered from just the knowledge of the partition

function, which is given by the trace of ρ̂EBH.2 A conjecture for ρ̂EBH was put forward in

the original work [9]. However numerical analysis shows that the proposed expression fails

to reproduce the modular invariant partition function.

In ref.[27] Ikhlef, Jacobsen and Saleur made the interesting proposal that the Euclidean

black hole NLSM is the CFT governing the scaling limit of a certain integrable spin chain.

This opened a potential way of obtaining the equilibrium density matrix ρ̂EBH. In the recent

work [32] an extensive study of the spin chain was performed and the original conjecture

from [27] was re-examined. Here, based on the results of that work, we address the following

questions:

(i) What is the correct expression for ρ̂EBH?

(ii) What is the space of states of the Lorentzian black hole NLSM and how to assign to

it a meaningful equilibrium density matrix ρ̂LBH? In turn, how would the latter be

related to its Euclidean counterpart?

2 Classical gauged SL(2,R) WZW model

2.1 The classical action

The Lorentzian black hole NLSM can be obtained by gauging a non-compact one dimen-

sional subgroup of the classical SL(2,R) WZW model. Following the work [1] consider the

classical action

S =
1

~

∫
d2x

1

2

[
∂µU∂

µV + ∂µX∂
µY + log(X/Y ) εµν∂µU∂νV (2.1)

+ aµ
(
Y ∂µX −X∂µY

)
+ εµνaµ

(
U∂νV − V ∂νU

)
− aµaµXY

]
.

Here the integrand in the first line is just the classical Lagrangian density of the usual

WZW model [13], LWZW[g], expressed via the matrix entries of the fundamental WZW

field

g =

(
X U

−V Y

)
∈ SL(2,R) . (2.2)

Note that the term involving log(X/Y ) comes from the Wess-Zumino term and, up to a

total derivative, can be rewritten in various ways by employing the constraint

XY + UV = 1 . (2.3)

2We use the non-standard convention that the trace of the (equilibrium) density matrix rather than

being one, coincides with the partition function.
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The second line in (2.1) contains the gauge potential aµ. The action is invariant w.r.t. the

infinitesimal gauge transformation of the form

δX = δωX , δY = −δω Y , δU = δV = 0 ; δaµ = ∂µ(δω) . (2.4)

This can be seen by rewriting the Lagrangian density corresponding to the action (2.1) as

L =
1

2

[
∂µU∂

µV

1− UV
− (1− UV ) fµf

µ + εµν∂µCν

]
(2.5)

with

fµ = aµ − 1
2 ∂µ log(X/Y )− εµν Jν , Cµ = 1

2 log(X/Y ) (U∂µV − V ∂µU) (2.6)

and

Jµ =
1

2

U∂µV − V ∂µU
1− UV

. (2.7)

The extremum condition δ
δaµ

S = 0 leads to the equation

aµ = 1
2 ∂µ log(X/Y ) + εµν J

ν . (2.8)

The field strength corresponding to this vector potential is given by

∂µaν − ∂νaµ = ∂σJ
σ εµν . (2.9)

It vanishes for any solution of the classical equations of motion, which includes the conti-

nuity equation ∂µJ
µ = 0.

In the orthodox formulation of the gauged SL(2,R) WZW model, the matrix valued

field g is assumed to be periodic:

g(t, x+ 2π) = g(t, x) . (2.10)

If we take U and V from the domain

0 ≤ UV < 1 , (2.11)

it is natural to fix the gauge by setting [1]

X = Y (2.12)

which, in view of eq. (2.8), results in aµ = εµν J
ν . Then, after eliminating the auxiliary

field aµ, the action S (2.1) becomes that of the Lorentzian black hole NLSM (1.3a). Note

that, as was also pointed out in [1], if we take the SL(2,R) picture literally the full target

space of the Lorentzian black hole NLSM would contain two copies of the regions III and

IV in fig. 1 corresponding to the cases X,Y > 0 and X,Y < 0.
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2.2 Generalized boundary conditions

In what follows we’ll consider the gauged SL(2,R) WZW model, but with more general

boundary conditions than (2.10). It is instructive to discuss the latter using another for-

mulation of the classical field theory [6, 14]. In this description the Lagrange density is

just the sum of that of the WZW model and the massless Gaussian theory:

L̃ = LWZW[G] + 2 ∂η∂̄η . (2.13)

The interaction is introduced through the constraints

Υ ≡ 1
2 Tr

[
σz ∂G G−1

]
− ∂η = 0 , Ῡ ≡ 1

2 Tr
[
σz G−1 ∂̄G

]
+ ∂̄η = 0 , (2.14)

where we use ∂ = 1
2(∂0 + ∂1) and ∂̄ = 1

2(∂0− ∂1). If the infinitesimal gauge transformation

of the WZW field and the massless Gaussian field is defined as

δG = 1
2

(
σzG + Gσz

)
δω , ∂µδη = εµν∂

ν (δω) , (2.15)

then δL̃ turns out to be a total derivative provided the constraints (2.14) are imposed. The

classical field theory, thus defined, is equivalent to the gauged WZW model governed by

the action (2.1). In particular for any field configuration satisfying the equations of motion

for (2.13), (2.14),

g = e
1
2
ωσz G e

1
2
ωσz , aµ = −εµν∂νη + ∂µω (2.16)

would be a solution of the Euler-Lagrange equations associated with the action (2.1). Here

ω is an arbitrary periodic function ω(t, x+ 2π) = ω(t, x), which appears as a manifestation

of the gauge invariance of the model.

To specify the boundary conditions, let us first recall some basic facts concerning the

phase space of the WZW model (see, e.g., [13, 15, 16]). The latter is conveniently described

in terms of the left and right WZW currents,3

∂GG−1 = LAtA , G−1∂̄G = R̄AtA , (2.17)

which satisfy the closed set of equal-time Poisson Bracket relations:{
LA(t, x), LB(t, y)

}
= −1

2 κ
AB δ′(x− y)− 1

2 f
AB

C L
C(t, x) δ(x− y){

R̄A(t, x), R̄B(t, y)
}

= +1
2 κ

AB δ′(x− y) + 1
2 f

AB
C R̄

C(t, x) δ(x− y) (2.18){
LA(t, x), RB(t, y)

}
= 0 .

3Here and below we use the notation tA for the 2× 2 real traceless matrices,

t3 =

(
1 0

0 −1

)
, t+ =

(
0 1

0 0

)
, t− =

(
0 0

1 0

)
: [tA, tB ] = fAB

C tC .

Indices are raised and lowered via the Killing form defined as

κAB = 1
2

Tr[ tAtB ] , κAC κ
CB = δBA .
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Assuming that the currents are periodic fields,

LA(t, x+ 2π) = LA(t, x) , R̄A(t, x+ 2π) = R̄A(t, x) , (2.19)

the center of the Poisson algebra is generated by two elements

C = Tr

[
←−
P exp

(
+

∫ x0+2π

x0

dxLA tA

)]
, C̄ = Tr

[
−→
P exp

(
−
∫ −x0−2π

−x0

dx R̄A tA

)]
. (2.20)

We will focus on the field configurations such that the values of the central elements are

restricted by the inequalities

−2 < C, C̄ < 2 (2.21)

and use the parameterization

C = 2 cos(2πP ) , C̄ = 2 cos(2πP̄ ) (2.22)

with real P and P̄ . In this case the path ordered exponentials inside the traces in (2.20)

may be expressed as

←−
P exp

(
+

∫ x0+2π

x0

dxLA tA

)
= M e+2πiPσy M−1 (2.23)

−→
P exp

(
−
∫ −x0−2π

−x0

dx R̄A tA

)
= M̄ e−2πiP̄ σy M̄−1 ,

where the 2× 2 real non-degenerate matrices M and M̄ depend on the initial integration

point x0. If we require them to be SL(2,R) matrices, then e+2πiPσy and e−2πiP̄ σy are

uniquely defined. At the same time there is an ambiguity in M and M̄ of the form

M 7→ ±M eiφσy and M̄ 7→ ±M̄ eiφ̄σy with arbitrary real φ and φ̄. This can be fixed using

the Iwasawa decomposition for SL(2,R) matrices, which allows one to specify that

M =

(
d 0

0 d−1

) (
1 b

0 1

)
, M̄ =

(
d̄ 0

0 d̄−1

) (
1 b̄

0 1

)
with d, d̄ > 0 . (2.24)

The values of the currents at t = 0 are not enough to fully define the time dependence

of the matrix valued field G(t, x). Indeed the equations of motion in the WZW model are

given by

∂̄LA = 0 , ∂R̄A = 0 . (2.25)

This implies that

G(t, x) = Ω(t+ x) G(0, x0) Ω̄(t− x) , (2.26)

where

Ω(u) =
←−
P exp

(
+

∫ u

x0

dxLA tA

)
(2.27)

Ω̄(ū) =
−→
P exp

(
−
∫ ū

−x0

dx R̄A tA

)
,
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while G(0, x0) is an arbitrary SL(2,R) matrix. Its entries, together with the initial values of

the currents, constitute the full set of the initial data. We consider the field configurations

at t = 0 to be such that

G(0, x0) = M eiασy M̄−1 , (2.28)

where M , M̄ are the same as in (2.23), (2.24) and α is some real number. This is motivated

through the following arguments. Assuming LA are given, the path ordered exponent Ω(u)

(2.27) solves the linear differential equation

∂Ψ = LA tA Ψ . (2.29)

However Ω(u), apart from the WZW currents, also depends on an arbitrarily chosen initial

integration point x0 at which it becomes the identity matrix. At the same time ΨP =

Ω(u)M is the Floquet solution of the matrix ODE (2.29), which is fixed unambiguously

provided M is taken to be of the form (2.24). A change in the initial integration point

x0 to x′0 would result in the transformation ΨP 7→ ΨP eiα0σy , where α0 = α0(x0, x
′
0).

The solutions of the ODE with periodic coefficients possess the band structure. Thus

the parameter P labeling the Floquet solutions ΨP can be defined such that P ∈ R and

2P /∈ Z, where the band number coincides with the greatest integer less than P + 1
2 . The

above carries over to the Floquet solution ΨP̄ = M̄−1 Ω̄(ū) of the barred counterpart of

the ODE (2.29). This way the construction of the WZW field G(t, x) given by eqs. (2.26)

and (2.28) involves the Floquet solutions as well as an additional variable α ∼ α+2π. Thus

the algebra of functions on the phase space of the WZW model, generated by the currents

LA and R̄A subject to the periodic boundary conditions (2.19), should be extended by the

inclusion of the compact generalized coordinate α. The latter can be viewed as a dynamical

variable canonically conjugated to the sum 2π(P + P̄ ). As for the difference, we assume

that e2πi(P−P̄ ) = e2πik, with 1
2 < k ≤ 1

2 being a fixed parameter. Equivalently,

P − P̄ = k + w (w ∈ Z) (2.30)

so that the integer w labels different disjoint components of the phase space.

The boundary values of the WZW field at t = 0, defined by the formulae (2.26) and

(2.28), satisfy the relations

G(0, x0 + 2π) = M e2πikσy M−1 G(0, x0) = G(0, x0) M̄ e2πikσy M̄−1 . (2.31)

This implies

Tr
[

G(t, x+ 2π)
(
G(t, x)

)−1
]

= 2 cos(2πk) , (2.32)

which should be imposed along with the periodicity condition for the currents (2.19). In

fact there is an extra condition which needs to be taken into account. Substituting the

matrix M (2.24) into eq.(2.31) one finds

Tr
[

(−iσy) G(0, x0 + 2π)
(
G(0, x0)

)−1
]

= sin(2πk)
(
d2 + d−2 + d2b2

)
. (2.33)
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This results in the inequality

Tr
[

(−iσy) G(t, x+ 2π)
(
G(t, x)

)−1
]/

sin(2πk) > 0 . (2.34)

The constraints (2.14) will only make sense when both derivatives ∂η and ∂̄η are

periodic:

∂η(t, x+ 2π) = ∂η(t, x) , ∂̄η(t, x+ 2π) = ∂̄η(t, x) . (2.35)

In view of the relation (2.16), the gauge field aµ(x, t) in the original formulation of the

gauged WZW model is also periodic,

aµ(t, x+ 2π) = aµ(t, x) , (2.36)

as was implicitly assumed in our initial analysis of the model. The boundary condition

(2.32) as well as the inequality (2.34) are invariant under the gauge transformation and

therefore the field g satisfies the similar relations

Tr
[

g(t, x+ 2π)
(
g(t, x)

)−1
]

= 2 cos(2πk) (2.37a)

Tr
[

(−iσy) g(t, x+ 2π)
(
g(t, x)

)−1
]/

sin(2πk) > 0 . (2.37b)

Let us make the following important point. In the case of the gauged SL(2,R) WZW

model with k = 0, the conditions (2.37) yield g(t, x + 2π) = g(t, x), i.e., periodicity of all

the matrix elements X,Y, U, V . In turn one can use the gauge fixing condition X = Y .

However for k 6= 0, since X and Y are no longer periodic fields, the same gauge fixing

condition is not applicable. This makes the model with k = 0 (which is equivalent to the

Lorentzian black hole NLSM) a very special one that is not obtainable literally through a

naive k→ 0 limit.

The Poisson structure of the massless Gaussian model, whose Lagrange density is given

by the second term in the r.h.s. of (2.13), reads as{
∂η(t, x), ∂η(t, y)

}
= −

{
∂̄η(t, x), ∂̄η(t, y)

}
= 1

2 δ
′(x− y) ,

{
∂η(t, x), ∂̄η(t, y)

}
= 0 .

(2.38)

With the boundary conditions (2.35) imposed, the center of this Poisson algebra is gener-

ated by

Pη =

∫ 2π

0

dx

2π
∂η , P̄η =

∫ 2π

0

dx

2π
∂̄η . (2.39)

The general solution of the equation of motion ∂∂̄η = 0 is

η(t, x) = 1
2

(
f(t+ x)− f̄(t− x)

)
(2.40)
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where, in view of the boundary conditions, the arbitrary functions f and f̄ are quasiperi-

odic:

f(u+ 2π) = f(u) + Pη , f̄(ū+ 2π) = f̄(ū) + P̄η . (2.41)

The constraints (2.14) imposed on the WZW field G and the Gaussian field, combined

with (2.40), yield the relations

L3 = −1
2 ∂f , R̄3 = −1

2 ∂̄f̄ . (2.42)

It is easy to see now that the matrix G, satisfying the equations of motion, can be brought

to the form

G(t, x) = e−
1
2
f(t+x)σz G(t, x) e−

1
2
f̄(t−x)σz , (2.43)

where G is such that

∂G G−1 = ξ−t− − ξ+t+ , G−1 ∂̄G = ξ̄−t− − ξ̄+t+ (2.44)

with

ξ− = e−f L− , ξ+ = −e+f L+

ξ̄− = e+f̄ R̄− , ξ̄+ = −e−f̄ R̄+ . (2.45)

The latter are real chiral fields, ∂̄ξ± = ∂ξ̄± = 0, subject to the quasiperiodic boundary

conditions

ξ±(u+ 2π) = B±1 ξ±(u) , ξ̄±(ū+ 2π) = B̄±1 ξ̄±(ū) , (2.46)

where B = e2πPη and B̄ = e2πP̄η . We set B = B̄ or, equivalently, Pη = P̄η (assuming that

Pη and P̄η are real). In this case, as it follows from eqs. (2.40) and (2.41), the field η is

periodic:

η(t, x+ 2π) = η(t, x) . (2.47)

Note that the on-shell gauge potential aµ, entering into the initial formulation of the

SL(2,R) gauged WZW model, satisfies the condition

B = B̄ = exp

(∮
dxµ aµ

)
. (2.48)

2.3 The phase space

Consider now the classical fields defined through the relations

W
(cl)
2 = ξ+ ξ− , W

(cl)
3 = 1

2

(
ξ− ∂ξ+ − ξ+ ∂ξ−

)
,

W
(cl)
2 = ξ̄+ ξ̄− , W

(cl)
3 = 1

2

(
ξ̄− ∂ξ̄+ − ξ̄+ ∂ξ̄−

)
.

(2.49)
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Using (2.45) they can be rewritten in terms of the WZW currents along with ∂η and ∂̄η:

W
(cl)
2 = (∂η)2 −

(
(L3)2 + L+L−

)
, W

(cl)
3 = 2 ∂η L+L− + 1

2 (L+∂L− − L−∂L+)

W
(cl)
2 = (∂̄η)2 −

(
(R̄3)2 + R̄+R̄−

)
, W

(cl)
3 = 2 ∂̄η R̄+R̄− + 1

2 (R̄+∂R̄− − R̄−∂̄R̄+)

.

(2.50)

It is straightforward to check using the PB relations (2.18) and (2.38) that the W fields

Poisson commute (in a weak sense) with the constraints Ῡ and Υ (2.14),{
W

(cl)
j (t, x),Υ(t, y)

}∣∣
Υ=0

=
{
W

(cl)
j (t, x), Ῡ(t, y)

}
= 0

{
W

(cl)
j (t, x), Ῡ(t, y)

}∣∣
Ῡ=0

=
{
W

(cl)
j (t, x),Υ(t, y)

}
= 0

. (2.51)

Since W
(cl)
2 and W

(cl)
2 coincide with the nonvanishing components of the stress energy

tensor, the Hamiltonian commutes with Ῡ and Υ. Also it is easy to see that{
Υ(t, x),Υ(t, y)

}
=
{

Ῡ(t, x), Ῡ(t, y)
}

=
{

Υ(t, x), Ῡ(t, y)
}

= 0 (2.52)

and, hence, the system of constraints (2.14) are of the first class. The W fields are “classical

observables” which are

(i) chiral

W
(cl)
j = W

(cl)
j (t+ x) , W

(cl)
j = W

(cl)
j (t− x) (2.53)

(ii) real (
W

(cl)
j (u)

)∗
= W

(cl)
j (u∗) ,

(
W

(cl)
j (ū)

)∗
= W

(cl)
j (ū∗) (2.54)

(iii) periodic

W
(cl)
j (u+ 2π) = W

(cl)
j (u) , W

(cl)
j (ū+ 2π) = W

(cl)
j (ū) . (2.55)

They generate a closed Poisson algebra in the following sense. Straightforward calculations

lead to{
W

(cl)
2 (u1),W

(cl)
2 (u2)

}
= −

(
W

(cl)
2 (u1) +W

(cl)
2 (u2)

)
δ′(u1 − u2)

{
W

(cl)
3 (u1),W

(cl)
2 (u2)

}
= −3 W

(cl)
3 (u1) δ′(u1 − u2)− ∂W (cl)

3 (u1) δ(u1 − u2) (2.56)

{
W

(cl)
3 (u1),W

(cl)
3 (u2)

}
= −1

4

(
W

(cl)
2 (u1) +W

(cl)
2 (u2)

)
δ′′′(u1 − u2)− δ′(u1 − u2)×(

W
(cl)
4 (u1) +W

(cl)
4 (u2) + 2W

(cl)
2 (u1)W

(cl)
2 (u2)− 3

20

(
∂2W

(cl)
2 (u1) + ∂2W

(cl)
2 (u2)

))
.

Here W
(cl)
4 , which appears in the last line, is expressed in a form similar to (2.49):

W
(cl)
4 = 2

5

(
ξ+ ∂

2ξ− + ξ− ∂
2ξ+

)
− 6

5 ∂ξ+∂ξ− . (2.57)
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Analogous relations hold true for the “barred” fields. A recursive computation of the

Poisson brackets of the W fields amongst themselves yields two infinite sets
{
W

(cl)
j

}∞
j=2

and
{
W

(cl)
j

}∞
j=2

. We’ll refer below to the fields from these sets as the (classical) W currents.

All of them satisfy the conditions (i)-(iii) as well as (2.51). The integer j = 2, 3, . . . coincides

with the Lorentz spin of W
(cl)
j while the Lorentz spin of W

(cl)
j is given by (−j). The W

currents form a quadratic Poisson algebra [17]. Since all the Poisson bracket between the

W currents of different chirality vanish, we’ll refer to it as the classical W∞⊗W∞ - algebra.

The above considerations suggest that the phase space for the gauged SL(2,R) WZW

model, subject to the boundary conditions (2.19), (2.32), (2.34) and (2.47) is made up of

the symplectic leaves, ΓP̄ ,P,B , labeled by the real numbers B (2.48) as well as P , P̄ , which

satisfy the relation P − P̄ = k + w with w ∈ Z. On each leaf the symplectic form is

non-degenerate. The algebra of functions on the leaf, Γ?
P̄ ,P,B

, is generated by the currents

W
(cl)
j (u) and W

(cl)
j (ū), subject to the reality and boundary conditions (2.54), (2.55), which

form the classical W∞ ⊗W∞ - algebra

There are two evident continuous symmetries. The first one is the U(1) invariance

w.r.t. a shift of the compact variable α (2.28),

Uφ : eiασy 7→ ei(α+φ)σy . (2.58)

The other one corresponds to the transformation

Rθ : η(t, x) 7→ η(t, x) + θ . (2.59)

Both symmetry transformations are canonical, i.e., they preserve the symplectic structure.

They have no effect on the W currents and act trivially on the symplectic leaves. The

gauged SL(2,R) WZW model also possesses the global symmetries, which leave the La-

grange density (2.13), the constraint (2.14) as well as the boundary conditions imposed on

the fields unchanged. We’ll use the notation D for the Z2 symmetry, which acts on the

fields and the symplectic leaves as

D :
G 7→ −σy Gσy , η → −η

ΓP̄ ,P,B 7→ ΓP̄ ,P,B−1

. (2.60)

Also, by CP symmetry, we’ll mean the invariance under the transformation

CP : G(t, x) 7→
(
G(t,−x)

)−1
, η(t, x) 7→ η(t,−x) . (2.61)

Note that the condition P − P̄ = k + w (w ∈ Z) is unchanged when P 7→ −P̄ , P̄ 7→ −P .

This suggests that the action of CP on the symplectic leaves is described as

CP : ΓP̄ ,P,B 7→ Γ−P,−P̄ ,B . (2.62)
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3 Quantum gauged SL(2,R) WZW model

3.1 BRST quantization

Once the gauged SL(2,R) WZW model is formulated as a classical dynamical system pos-

sessing constraints of the first class one can consider the problem of its quantization within

the BRST approach. Here we briefly sketch the algebraic procedure for the construction

of the chiral component of the space of states.

The chiral component of the energy momentum tensor of the quantum theory is split

into three terms:

Ttotal = TWZW + TGauss + Tghost . (3.1)

The first one is [18]

TWZW = − n2

n+ CV
κAB L

ALB . (3.2)

It is built from the left currents of the WZW model

LA(u) = n−1
∞∑

m=−∞
jAm e−imu (A = 3,±) (3.3)

whose Fourier coefficients obey the commutation relations[
jAm, j

B
r

]
= −n κAB m

2 δm+r,0 − i
2 f

AB
C jCm+r . (3.4)

Here the level (central element) of the Kac-Moody algebra has been denoted by n. It is

related to the Plank constant as

~ =
2π

n
. (3.5)

The constant CV entering into (3.2) stands for the so-called dual Coxeter number:

CV κ
AB = 1

4 f
AC

D f
BD

C (3.6)

and in the case under consideration CV = 2. The second term in (3.1) represents the

contribution of the massless Gaussian field,

TGauss = n (∂η)2 (3.7)

with

∂η(u) = n−
1
2

∞∑
m=−∞

am e−imu :
[
am, ar

]
= m

2 δm+r,0 . (3.8)

Finally Tghost is the chiral component of the energy momentum tensor for the bc - system:

Tghost = i b∂c . (3.9)
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The ghost fields have conformal dimensions (∆b,∆c) = (1, 0) and, as with the chiral fields

LA and ∂η, can also be expanded in the Fourier series

b(u) =

∞∑
m=−∞

bm e−imu , c(u) =

∞∑
m=−∞

cm e−imu , (3.10)

where {
bm, cr

}
= δm+r,0 ,

{
bm, br

}
=
{
cm, cr

}
= 0 .

The Virasoro central charge of the bc - system is equal to (−2), so that the total central

charge associated with the energy momentum tensor (3.1) is given by

ctotal = cWZW + cGauss + cghost =
3n

n+ 2
+ 1− 2 = 2− 6

n+ 2
. (3.11)

The highest weight representation for the combined chiral algebra generated by the

Fourier coefficients jAm, am, bm, cm is constructed in the usual manner. First of all one

requires that the highest state is annihilated by all the positive frequency modes with

m > 0. Since the zero modes of the WZW currents satisfy the commutation relations[
jA0 , j

B
0

]
= − i

2 f
AB

C jC0 , (3.12)

the highest states form a representation of the sl2 algebra. It makes sense to require that

it is an irreducible one, characterized by the value of the Casimir operator

ĈG = −κAB jA0 jB0 , (3.13)

which in the sl2 case is usually denoted as `(` + 1). Rather than ` we will employ the

parameter p = ` + 1
2 . Together with this quantum number the highest states can be

labeled by the eigenvalues of the zero modes j3
0 and a0:

ĈG |p, µ, s〉 =
(
p2 − 1

4

)
|p, µ, s〉 , j3

0 |p, µ, s〉 = µ |p, µ, s〉 , a0 |p, µ, s〉 = s√
n
|p, µ, s〉 .

(3.14)

The highest states form a representation not only of the sl2 algebra but also the simple

fermionic one

{b0, c0} = 1 , b20 = c2
0 = 0 . (3.15)

Thus we supplement the set of conditions defining them with

c0 |p, µ, s〉+ = 0 , |p, µ, s〉− ≡ b0 |p, µ, s〉+ . (3.16)

The highest weight representation is built by the action of the negative frequency modes

jAm, am, bm, cm with m < 0 on the highest state multiplet. The corresponding linear space

will be denoted by Ap,s. The latter possesses a grading induced by the Virasoro algebra
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generator L(total)

0 . For given L = 0, 1, 2, . . . , the level subspace A(L)
p,s is finite dimensional and

all its states have the same conformal dimension ∆p,s + L with

∆p,s =
p2 − 1

4

n+ 2
+
s2

n
. (3.17)

Note that the conformal dimensions of the primary states do not depend on the quantum

number µ.

The parameter p and its barred counterpart p̄ are related to the central elements

(2.20)-(2.22) of the Poisson algebra of the WZW currents. In particular the sum p + p̄

can be identified with the eigenvalues of the operator −i ∂
∂α with α being the dynamical

variable from (2.28). Then the compactness condition α ∼ α+ 2π yields the quantization

rule p+ p̄ ∈ Z. This, in view of the classical relation (2.30), leads to4

p = 1
2

(
u + (n+ 2) (k + w)

)
, p̄ = 1

2

(
u− (n+ 2) (k + w)

) (
u, w ∈ Z

)
. (3.18)

At the same time s may take any real value,

s ∈ R . (3.19)

The central rôle in the BRST approach belongs to the BRST charge and the ghost

number operator. These obey the relations

Q̂2
BRST = 0 ,

[
Q̂BRST, q̂ghost

]
= Q̂BRST . (3.20)

In the case at hand they read explicitly as

Q̂BRST =
1

~

∫ 2π

0
du
(
L3 − ∂η

)
c(u) =

(
j3
0 −
√
na0

)
c0 +

∑
m6=0

(
j3
m −
√
nam

)
c−m (3.21)

q̂ghost =

∫ 2π

0

du

2π
bc(u) = b0c0 +

∞∑
m=1

(
b−mcm − c−mbm

)
.

It is easy to see that both operators commute with the zero mode of the current L3(u):[
j3
0 , Q̂BRST

]
=
[
j3
0 , q̂ghost

]
= 0 . (3.22)

Let µ be an eigenvalue of j3
0 corresponding to one of the states from the highest state

multiplet of Ap,s. Consider the eigenspace Ap,µ,s ⊂ Ap,s such that

j3
0 Ap,µ,s = µ Ap,µ,s . (3.23)

4Here we identify the difference p − p̄ with (n + 2) (P − P̄ ). Within the semi-classical analysis where

n� 1, n and n+ 2 are indistinguishable. The finite renormalization n 7→ n+ 2 may be advocated for using

similar arguments as those in the work [6].

– 15 –



Since both the BRST charge and ghost number operator act invariantly in this subspace,

one can introduce the component of the factor space Ker[QBRST]/Im[QBRST] with zero ghost

number,

Ãp,µ,s ⊂ Ker[QBRST]/Im[QBRST]|Ap,µ,s : q̂ghost Ãp,µ,s = 0 . (3.24)

The operators Q̂BRST, q̂ghost and j3
0 , all commute with the energy momentum tensor[

Q̂BRST, Ttotal(u)
]

=
[
q̂ghost, Ttotal(u)

]
=
[
j3
0 , Ttotal(u)

]
= 0 . (3.25)

This implies that Ãp,µ,s is a naturally graded space and similar to Ap,s admits the decom-

position

Ãp,µ,s =

∞⊕
L=0

Ã(L)
p,µ,s . (3.26)

The dimensions of the level subspaces Ã(L)
p,µ,s depend essentially on whether or not µ − s

vanishes. This difference is the coefficient in front of the ghost zero mode c0 in (3.21) when

the action of the BRST charge is restricted to the eigenspace Ap,µ,s. Consider the highest

states |p, µ, s〉±. If µ 6= s, then the state |p, µ, s〉+ is annihilated by the BRST charge. On

the other hand Q̂BRST|p, µ, s〉− 6= 0 and is proportional to |p, µ, s〉+. This implies that the

level subspace Ã(0)
p,µ,s with µ 6= s is trivial. In the case when µ = s both highest states are

annihilated by the BRST charge. However only |p, s, s〉+ has zero ghost number so that

dim
(
Ã(0)
p,s,s

)
= 1. Recall that |p, s, s〉+ is a state from a sl2 irrep characterized by p. The

eigenvalues of j3
0 for the other highest states from the multiplet are given by µ = s + im,

where m is a nonzero integer, and hence the difference µ − s for these states would be

nonvanishing. Proceeding further, it is straightforward to check at least for small values

of L = 0, 1, 2, . . . , that all the spaces Ã(L)
p,µ,s are trivial for µ 6= s, while the dimensions of

Ã(L)
p,s,s with generic p is equal to the number of bipartitions of L.

3.2 W∞ - algebra

Perhaps the easiest way to explore the linear structure of the factor space Ãp,µ,s is to

bosonize the ŝl(2,R) current algebra [19–21]. This allows one to isolate the physical states

in Ap,s and to show that dim
(
Ã(L)
p,s,s

)
coincides with the corresponding dimensions of the

level subspaces of the highest weight representation of the quantum W∞ - algebra. The

bosonization of ŝl(2,R) requires three chiral Bose fields. The spin 2 current which commutes

with L3(u) is identified with W2(u). It can be arranged so that

W2 = (∂ϑ)2 + (∂ϕ)2 +
i√
n+ 2

∂2ϕ , (3.27)

which involves only two of the chiral fields. By construction the field W2 commutes with

the BRST charge and q̂ghost. Using the Operator Product Expansion (OPE),

ϕ(u)ϕ(0) = −1
2 log(u) +O(1) , ϑ(u)ϑ(0) = −1

2 log(u) +O(1) , (3.28)
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a simple calculation shows that

W2(u)W2(0) =
c

2u4
− 2

u2
W2(0)− 1

u
∂W2(0) +O(1) , (3.29)

where the central charge

c = 2− 6

n+ 2
(3.30)

coincides with ctotal from eq. (3.11). The spin 3 W current is also obtained from the com-

mutativity condition with L3(u). However, it contains an ambiguity related to the addition

of ∂W2(u). The requirement that W3(u) be a primary conformal field, i.e.,

W2(u)W3(0) = − 3

u2
W3(0)− 1

u
∂W3(0) +O(1) (3.31)

fixes it up to an overall multiplicative factor. We take

W3 =
6n+ 8

3n+ 6
(∂ϑ)3+2 (∂ϕ)2∂ϑ+i

√
n+ 2 ∂2ϕ∂ϑ− in√

n+ 2
∂ϕ∂2ϑ+

n

6(n+ 2)
∂3ϑ . (3.32)

As in the classical case, the currents W2 and W3 generate a closed algebra, whose commu-

tation relations may be conveniently encoded via OPEs. In particular, the spin 4 current

is obtained via the OPE of W3 with itself:

W3(u)W3(0) = −c(c+ 7)(2c− 1)

9(c− 2)u6
+

(c+ 7)(2c− 1)

3(c− 2)u4

(
W2(u) +W2(0)

)
− 1

u2
× (3.33)

(
W4(u) +W4(0) +W 2

2 (u) +W 2
2 (0) +

2c2 + 22c− 25

30(c− 2)

(
∂2W2(u) + ∂2W2(0)

))
+O(1) .

The definition of W4, in principle, is not unique and contains the freedom in the addition

of any of the spin 4 fields ∂2W2, ∂W3 as well as the composite field W 2
2 . Fixing W4 as in

eq. (3.33), it turns out that the singular terms ∝ u−6 and u−3 are absent in the OPE

W2(u)W4(0) =
(c+ 10)(17c+ 2)

15(c− 2)u4
W2(0)− 4

u2
W4(0)− 1

u
∂W4(0) +O(1) . (3.34)

This way, by recursively computing OPEs one can generate the full set of quantum W

currents {Wj(u)}∞j=2. In the classical limit with n→∞,

Wj → nj/2 W
(cl)
j (3.35)

and the quantum W∞ - algebra becomes the classical Poisson algebra, whose first few PB

relations are given in (2.56) [17].

The quantum W currents, similar to the classical ones, are periodic fields and can be

expanded in a Fourier series,

Wj(u) = − c

24
δj,2 +

∞∑
m=−∞

W̃j(m) e−imu . (3.36)
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Note that the expansion coefficients for the W2 current, defined in such a way, satisfy the

Virasoro algebra commutation relations:

[Lm, Lr] = (m− r)Lm+r + c
12 m(m2 − 1) δm+r,0

(
Lm ≡ W̃2(m)

)
. (3.37)

The Fourier modes W̃j(m) are used in the construction of the highest weight irreps of the

W∞ - algebra. The highest state is defined by the conditions

W̃j(m) |ω〉 = 0 (∀m > 0) , W̃j(0) |ω〉 = ωj |ω〉 , (3.38)

where ω = (ω2, ω3) is the highest weight. Notice that the component ω2 is equal to the

conformal dimension of the state. It turns out that |ω〉 is fully specified by the relations

(3.38) with j = 2, 3. The linear span of states

W̃2(−l1) . . . W̃2(−lm) W̃3(−l′1) . . . W̃3(−l′m′)|ω〉 (3.39)

with 1 ≤ l1 ≤ l2 ≤ . . . ≤ lm and 1 ≤ l′1 ≤ l′2 ≤ . . . ≤ l′m′ form a representation of the

W∞ - algebra which is usually referred to as the Verma module. The latter is a graded

linear space, and the dimensions of its level subspace with L =
∑

i li +
∑

i′ l
′
i′ is given by

par2(L) – the number of bipartitions of L. For generic values of the highest weight ω and

the central charge c, the Verma module is an irrep of the W∞ - algebra. However, under

certain conditions imposed on the parameters, it may contain null vectors – highest states

occurring at non-zero levels. In this case the irrep can be obtained from the Verma module

by factoring out all of the invariant subspace(s) generated by the null vector(s). We’ll

parameterize the central charge by n according to (3.30), and the highest weight ω by the

pair (p, s) as

ω2 =
p2 − 1

4

n+ 2
+
s2

n
≡ ∆p,s (3.40)

ω3 =
2s√
n

( p2

n+ 2
+

(3n+ 4) s2

3n (n+ 2)
− 2n+ 3

12 (n+ 2)

)
.

In turn the highest weight irrep of the W∞ - algebra will be denoted by Wp,s ≡ W−p,s.

The motivation for swapping from ω to the pair of parameters (p, s) is based on the

following. The bosonization formulae (3.27) and (3.32) introduce the structure of the W∞
Verma module in the Fock space FP. The latter is the space of the representation of

two independent copies of the Heisenberg algebra, generated by the Fourier modes of ∂ϑ

and ∂ϕ, whose commutation relations are the same as in eq. (3.8). The space FP with

P = ( p√
n+2

, s√
n

) is characterized by the highest weight – the values of the zero modes of

the chiral fields ∂ϑ, ∂ϕ in FP:∫ 2π

0

du

2π
∂ϕ
∣∣
FP

=
p√
n+ 2

,

∫ 2π

0

du

2π
∂ϑ
∣∣
FP

=
s√
n
. (3.41)

Then eqs. (3.27) and (3.32) yield that the highest weight ω = (ω2, ω3) is related to p and

s as in (3.40).
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3.3 Space of states

So far we have been mainly focused on just one chirality. Of course, all the above follows

through for the other chirality as well. This way one concludes that the algebra of extended

conformal symmetry for the gauged SL(2,R) WZW model coincides with W∞ ⊗W∞. In

turn the full space of states, H(cont), can be decomposed into the irreps W p̄,s⊗Wp,s of this

algebra. At this point we put forward the conjecture that for generic values of the twist

parameter k, the linear structure of H(cont) is described by

H(cont) =
⊕
u,w∈Z

∫ ⊕
R

ds W p̄,s ⊗Wp,s with
p = 1

2 u + 1
2 (n+ 2) (k + w)

p̄ = 1
2 u−

1
2 (n+ 2) (k + w)

. (3.42)

The subscript “cont” is used to emphasize the presence of the direct integral in the above

linear decomposition.

Let’s clarify the condition that −1
2 < k ≤ 1

2 be generic. What we mean by this is that

(n+ 2) k /∈ Z. Then, if s is real, each of the irreps Wp,s and W p̄,s coincide with the Verma

module. The corresponding character,

chp,s(q) ≡ TrWp,s

[
qW̃2(0)− c

24

]
, (3.43)

is given by

chp,s(q) =
q
− 1

12
+ s2

n
+ p2

n+2

(q, q)2
∞

(
p, s generic

)
, (3.44)

where (q, q)−2
∞ is the generating function for par2(L):

1

(q, q)2
∞
≡
∞∏
m=1

1

(1− qm)2
=
∞∑
L=0

par2(L) qL . (3.45)

Each term in the linear decomposition (3.42) can be interpreted as being the result of

the quantization of the algebra of functions on the classical symplectic leaf ΓP̄ ,P,B . One

can make the following identification

B = e
4πs
n , (3.46)

while in the classical limit p̄
n+2 → P̄ , p

n+2 → P . The classical theory possesses a set

of global symmetries, which were described in eqs. (2.58)-(2.62) and are inherited by the

quantum model. Regarding the continuous symmetries, the operators Ûφ and R̂θ, being

restricted to a W∞ ⊗W∞ irrep, are proportional to the identity operator:

Ûφ
(
W p̄,s ⊗Wp,s

)
= ei(p̄+p)φ W p̄,s ⊗Wp,s (3.47a)

R̂θ
(
W p̄,s ⊗Wp,s

)
= e2isθ W p̄,s ⊗Wp,s . (3.47b)

The generator of the Z2 symmetry, D̂, acts as the intertwiner,

D̂ : W p̄,s ⊗Wp,s 7→ W p̄,−s ⊗Wp,−s (3.48)
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and satisfies the following relations with the W currents

D̂Wj(u) D̂ = (−1)jWj(u) , D̂W j(ū) D̂ = (−1)jW j(ū) . (3.49)

Similarly, the action of the CP transformation is described by the formula

CP : W p̄,s ⊗Wp,s 7→ W−p,s ⊗W−p̄,s , ĈP̂Wj(u) = W j(u) ĈP̂ . (3.50)

In the classical theory the W currents are real fields (see eq. (2.54)). Upon quantization,

this translates to the conjugation conditions(
Wj(u)

)?
= Wj(u

∗) ,
(
W j(ū)

)?
= W j(ū

∗) . (3.51)

The latter induce an inner product for the states belonging to the irreps W p̄,s ⊗Wp,s. In

the case when the central charge c < 2 it turns out that such an inner product is not a

positive definite one [5]. This way the space of states H(cont) is equipped with the structure

of a pseudo-Hilbert space. The conjugation conditions (3.51) are not sufficient to fix the

inner product of the W∞ ⊗W∞ primary states, Ψu,w,s , which, in general, has the form〈
Ψu′,w′,s′ ,Ψu,w,s

〉
= Nu,w,s δu′,u δw′,w δ(s

′ − s) . (3.52)

Notice that, though the coefficients Nu,w,s contain the ambiguity

Nu,w,s 7→ Nu,w,s |Cu,w,s|2 , (3.53)

a change in the normalization of the primary states has no effect on the sign of Nu,w,s

for given u, w and s. Thus, despite the ambiguity, the “norms” Nu,w,s are an important

characteristic of the quantum theory.

4 Lorentzian black hole NLSM

4.1 Space of states

The field theory governed by the action (1.3a) with periodic boundary conditions imposed

on U and V corresponds to the gauged WZW model with k = 0. However, as was already

pointed out, even at the classical level this case requires some special attention. A brief

examination of formula (3.42) specialized to k = 0 shows that each termW p̄,s⊗Wp,s in the

decomposition of H(cont) appears together withW−p̄,s⊗W−p,s. Both of them are equivalent

representations of the W∞ ⊗W∞ - algebra. This signalizes the presence of an additional

global symmetry that would commute with all of the W currents

ĈWj(u) = Wj(u) Ĉ , ĈW j(ū) = W j(ū) Ĉ . (4.1)

We will refer to it as C conjugation. The space of states H(cont) is splitted into the two

components

H(cont) = H(cont)
even

⊕
H(cont)

odd (4.2)
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having definite C parity +1 (even) and −1 (odd). As linear spaces, each of the compo-

nents are identical.5 Together with the W currents, Ĉ also commutes with the symmetry

operators D̂, ĈP̂ and R̂θ: [
Ĉ, D̂

]
=
[
Ĉ, ĈP̂

]
=
[
Ĉ, R̂θ

]
= 0 . (4.3)

However with Ûφ it satisfies the relation

Ĉ Ûφ Ĉ = Û−φ . (4.4)

Hence, since φ ∼ φ+ 2π, the operator Ĉ commutes only with Ûπ – the generator of a 180◦

rotation.

At the classical level, the action of the Ûπ transformation, as follows from the general

formula (2.58) and (2.28), reduces to flipping the sign of the matrix G:

Uπ :
G 7→ −G , η 7→ η

ΓP̄ ,P,B 7→ ΓP̄ ,P,B

. (4.5)

At the same time, the action of the C conjugation can be identified as

C :
G 7→ −σz Gσz , η 7→ η

ΓP̄ ,P,B 7→ Γ−P̄ ,−P,B

(4.6)

which is similar to the relation (2.60) for the Z2 symmetry transformation D.6 Recall

that applying the gauge fixing condition X = Y (see (2.12)) in the original formulation of

the gauged SL(2,R) WZW model, results in two identical copies of the Lorentzian black

hole NLSM corresponding to the cases X = Y > 0 and X = Y < 0. The C conjugation

intertwines these two copies. By “symmetrizing” them one can arrange so that C, by

definition, would act as the identity operator in the Lorentzian black hole NLSM.

To get more insight into the symmetries and the global structure of the phase space of

the classical model, it is useful to consider elementary solutions of the classical equations

of motion. These may be constructed by setting f = f̄ = 0 as well as ξ± = P and ξ̄± = P̄

in the general relations (2.42)-(2.45), yielding

U(t, x) = V (t, x) = sin
(

(P + P̄ ) t+ (P − P̄ )x
)
. (4.7)

One can easily see that the equations of motion corresponding to the action (1.3a) are

indeed satisfied. The periodic boundary condition for U and V requires that the difference

P − P̄ be an integer,

P − P̄ = 0,±1,±2, . . . , (4.8)

5The space W p̄,s ⊗Wp,s with p = −p̄ = 1
2
(n+ 2) w turns out to be C invariant and the splitting into its

C even and C odd components requires some clarification. This will be addressed in sec. 6.
6For k 6= 0 the C invariance of the model is broken by the condition (2.34).
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which coincides with (2.30) for the case k = 0.

The explicit solutions provide some hints concerning the action of the global symme-

tries on the phase space. There are two evident space-time symmetry transformations of

the model (1.3a). Namely, time-reversal and parity conjugation, which are defined as

T : U(t, x) 7→ U(−t, x) , V (t, x) 7→ V (−t, x) (4.9)

P : U(t, x) 7→ −U(t,−x) , V (t, x) 7→ −V (t,−x) .

The extra sign in the definition of P is a matter of convention since the transformation Uπ :

U 7→ −U , V 7→ −V is also a symmetry. The solutions (4.7) are unchanged under the PT
transformation. More generally, we will assume that two solutions related via PT belong

to the same symplectic leaf, i.e.,

PT : ΓP̄ ,P,B 7→ ΓP̄ ,P,B . (4.10)

The action of P and T on the fundamental fields, as described by formula (4.9), induces

the action of these transformations on ΓP̄ ,P,B . We make the assumption that two solutions

related through separate P or T transformations belong to different symplectic leaves. A

brief examination of (4.7) motivates that

T : ΓP̄ ,P,B 7→ Γ−P,−P̄ ,B

P : ΓP̄ ,P,B 7→ ΓP,P̄ ,B . (4.11)

An immediate consequence is that PT maps ΓP̄ ,P,B to Γ−P̄ ,−P,B. In view of the condition

(4.10) the following identification must be made

ΓP̄ ,P,B ≡ Γ−P̄ ,−P,B . (4.12)

Notice that the latter is required for setting the C conjugation (4.6) to be the identity

transformation for the Lorentzian black hole NLSM. Then, without loss of generality, one

can assume that

P + P̄ ≥ 0 . (4.13)

It should be emphasized that the identification (4.12) is expected to hold true only in the

case k = 0, as otherwise neither P nor C separately are symmetries of the model.

Taking into account (4.13) one arrives at the conjecture that the space of states of the

Lorentzian black hole NLSM is given by

H(LBH) =
∞⊕
u=0

[ ∞⊕
w=−∞

∫ ⊕
R

ds W p̄,s ⊗Wp,s

]
with

p = 1
2 u + 1

2 (n+ 2) w

p̄ = 1
2 u−

1
2 (n+ 2) w

. (4.14)

At first glance, in view of the above discussion of the C conjugation, the formula seems to

be a straightforward consequence of (3.42). However, one should keep in mind that the

notation Wp,s stands for the irreducible highest weight representation of the W∞ - algebra.

– 22 –



For (n + 2) k /∈ Z and s ∈ R each of the irreps Wp̄,s and Wp,s coincides with the Verma

module. However for k = 0 some of the Verma modules become reducible. It turns out

that (see, e.g., [22, 32])

Verρ,s =Wρ,s

⊕
Wρ+m(n+2),s for ρ = 1

2

(
r −m (n+ 2)

)
, m, r = 1, 2, . . . (4.15)

Note that the character of Wρ,s in the direct sum reads as

chρ,s(q) = q
− 1

12
+ s2

n
+ ρ2

n+2
1− qmr

(q, q)2
∞

,
ρ = 1

2

(
r −m (n+ 2)

)
, m, r = 1, 2, . . .

s ∈ R , n− generic ,
(4.16)

while the character of Wρ+m(n+2),s is described by eq. (3.44). This way the C even compo-

nent of the space (3.42) as k→ 0 admits the decomposition

H(cont)
even = H(LBH)

⊕
H(null) . (4.17)

Here H(LBH) is given by (4.14), while the space H(null) is a direct sum of two components,

H(null) = H(null)
+

⊕
H(null)
− . (4.18)

The latter are decomposed identically into the irreps of the algebra of extended conformal

symmetry

H(null)
± =

+∞⊕
v,w=1

∫ ⊕
R

ds Wρ,s ⊗Wρ,s

(
ρ = 1

2 v + 1
2 (n+ 2) w

)
. (4.19)

The highest state in either one Wρ,s or Wρ,s, appearing in the integrand, coincides with

the null vector in the original Verma module (see (4.15)).

There is a simple minded argument in support of the dropping of the “null” component

in (4.17) for the construction of the space of states of the Lorentzian black hole NLSM. The

space H(null) admits an evident symmetry, which interchanges the subspaces H(null)
+ and

H(null)
− in (4.18). On the other hand, there is no clear manifestation of such an additional

Z2 symmetry for the model described by the classical action (1.3a).

4.2 Minisuperspace approximation

For a better qualitative understanding of the quantum NLSM it is useful to consider the

model within the so-called minisuperspace approximation. This entails taking into account

only those field configurations that do not depend on the space co-ordinate x, such as the

classical solutions (4.7) with P = P̄ . We still keep U and V to satisfy the constraint

0 ≤ UV < 1 corresponding to the union of regions III and IV in fig. 1. For a preliminary

analysis it is convenient to parameterize U, V from this domain as

U = eΘ sin(Φ) , V = e−Θ sin(Φ) ; Φ ∈ (−π
2 ,

π
2 ) , Θ ∈ (−∞,∞) . (4.20)
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Then the minisuperspace version of the classical action (1.3a) reads as

S
(ms)
LBH =

π

~

∫
dt
(

Φ̇2 − tan2(Φ) Θ̇2
)
. (4.21)

Since the generalized coordinate Θ is cyclic, its conjugate momentum ΠΘ = − tan2(Φ) Θ̇

is an integral of motion. The effective Lagrangian (the Routhian) for the non-cyclic degree

of freedom is given by

Leff =
1

2

(
Φ̇2 − Veff(Φ)

)
, Veff(Φ) = −Π2

Θ cot2(Φ) . (4.22)

The latter describes a 1D particle falling to the origin Φ = 0. An elementary calculation

shows that for any value ΠΘ 6= 0 the particle, starting its motion at t = 0, reaches the

origin in a finite amount of time tfall < +∞. For t > tfall the motion remains undetermined.

Thus the action (4.21) specifies the time evolution of the mechanical system only within

a finite time interval (except for the trajectories with ΠΘ = 0). To continue the classical

trajectories for t > tfall the unbounded effective potential should be somehow regularized.

There are of course numerous ways of doing this. A simple minded one is to replace

Veff(Φ) = −Π2
Θ cot2(Φ) by a smooth potential V

(reg)
eff (Φ), which together with its derivative

is bounded from below within the infinitesimal interval Φ ∈ (−ε, ε). Outside this interval

V
(reg)

eff (Φ) = Veff(Φ). To keep the original symmetry of the potential we assume that the

regularized one is an even function:

V
(reg)

eff (Φ) = V
(reg)

eff (−Φ) . (4.23)

Then the motion of Φ becomes globally defined and periodic for any values of ΠΘ 6= 0.

With basic intuition from quantum mechanics, we can predict the symmetry properties

of the minisuperspace stationary wave functions. First of all, that the regularized potential

is an even function of Φ implies that the stationary states may be assigned a parity σ = ±1,

Ûπ Ψ(σ)(U, V ) ≡ Ψ(σ)(−U,−V ) = σΨ(σ)(U, V ) , (4.24)

where we now switch to the original target space coordinates (U, V ). This relates the values

of the wave function in the domains III and IV from fig. 1. Next, Ψ(σ) can be chosen to be

an eigenfunction of the operator Π̂Θ = ~
i ∂Θ = ~

i (U∂U − V ∂V ):

Π̂Θ Ψ(σ)
s = 2~s Ψ(σ)

s . (4.25)

It follows that

Ψ(σ)
s (U, V ) =

(
U

V

)is

F (σ)
s (UV ) . (4.26)

The minisuperspace approximation ignores the presence of the oscillatory modes so that the

wave functions Ψ
(σ)
s are expected to correspond to W∞⊗W∞ primary states, characterized

by p = p̄ and s (it is instructive to compare eqs. (4.24) and (4.25) with (3.47a) and (3.47b),
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respectively). In turn the minisuperspace energy becomes ∆p,s+∆p̄,s = 2∆p,s in the leading

non-vanishing order of ~ = 2π
n (the approximation is reliable only in the limit n → ∞).

Namely,

E(ms) = ~
π

(
p2 + s2 − 1

4

)
. (4.27)

At this point p can be thought of as a real number parameterizing the minisuperspace

energy E(ms) and the corresponding wavefunction Ψ
(σ)
p,s . Since the highest weight is an even

function of p,

Ψ
(σ)
−p,s(U, V ) = Ψ(σ)

p,s (U, V ) . (4.28)

As was emphasized previously, one can assume that p = p̄ ≥ 0.

Though the highest weight of the W∞ irrep ω = (ω2, ω3) is not sensitive to the sign

of p, as follows from (3.40) it does depend on the sign of s: ω3(p,−s) = −ω3(p, s). Thus

the primary states characterized by (p, s) and (p,−s) are distinguishable. They are related

through the Z2 transformation, so that

D̂Ψ(σ)
p,s (U, V ) = Ψ

(σ)
p,−s(U, V ) . (4.29)

On the other hand, by definition, this symmetry interchanges U and V :

D̂Ψ(σ)
p,s (U, V ) ≡ Ψ(σ)

p,s (V,U) . (4.30)

Combining the above two relations with (4.26) one concludes that

Ψ(σ)
p,s (U, V ) =

(
U

V

)is

F (σ)
p,s (UV ) , where F (σ)

p,s (z) = F
(σ)
−p,s(z) = F

(σ)
p,−s(z) . (4.31)

Having described the symmetry properties of the stationary wave functions, we turn

to deriving them explicitly. In the work [6], a minisuperspace analysis was performed for

the NLSM (1.3a) with the fields U , V belonging to region I from fig. 1 (or equivalently II).

Though this is not the domain of interest, we can still follow the same line of arguments of

that paper. In particular, up to a trivial factor, the minisuperspace Hamiltonian coincides

with the “dilatonic” Laplacian:

Ĥ(ms) = − ~
4π
4D , 4D =

1

eD
√
−G

∂i
(
eD
√
−GGij∂j

)
, (4.32)

where the metric is the one in (1.1) and the dilaton field is given by

D = log(1− UV ) . (4.33)

The stationary Schrödinger equation Ĥ(ms) Ψ = E(ms) Ψ reads explicitly as

−
(

(1− UV ) ∂U∂V − 1
2 (U∂U + V ∂V )

)
Ψ = π

~ E
(ms) Ψ . (4.34)
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Using the general form (4.26) for the stationary wave functions and parameterizing the

energy as in (4.27), it is straightforward to show that F (z) = z−is F
(σ)
p,s (z) obeys the Gauss

hypergeometric equation

z (1− z)F ′′ +
(
1 + 2is− 2 (1 + is) z

)
F ′ −

(
1
2 + is+ p

)(
1
2 + is− p

)
F = 0 . (4.35)

Keeping in mind our preliminary analysis, the ODE (4.35) is applicable only in the domain

ε2 < z < 1 with a small regularization parameter ε� 1 (recall that z = UV = sin2(Φ)).

The function F
(σ)
p,s (z) (4.31) is a certain linear combination of z±is

2F1

(
1
2 ± is+ p, 1

2 ±
is− p, 1± 2is, z), which can be specified as follows. Applying the elementary identity

eD
√
−G

(
Ψ∗1 Ĥ

(ms) Ψ2 −Ψ2 Ĥ
(ms) Ψ∗1

)
=

~
4π

∂i

[
eD
√
−GGij

(
Ψ2∂jΨ

∗
1 −Ψ∗1∂jΨ2

)]
(4.36)

to the pair of stationary wave functions Ψ1, Ψ2 corresponding to the energies E
(ms)
1 , E

(ms)
2

and then integrating the result over the domain Bε : ε2 < UV < 1, one obtains(
E

(ms)
2 −E(ms)

1

) ∫
Bε

dUdV eD
√
−G Ψ∗1Ψ2 =

~
4π

∫
∂Bε

d` eD
(
Ψ2∂nΨ∗1−Ψ∗1∂nΨ2

)
. (4.37)

Here the integral in the r.h.s. is taken over the boundary of Bε, which is the union of

UV = ε2 and UV = 1. Also, ∂n stands for the normal derivative to ∂Bε. As was discussed

before, the wave functions possess a definite parity. Due to this either the wave function

or its normal derivative vanishes at UV = 0. Hence as ε → 0 the horizon UV = 0 does

not contribute to the r.h.s. of eq. (4.37). Further, since the dilaton factor eD vanishes at

the black hole singularity UV = 1 one could make the whole boundary integral vanish

by imposing that both the eigenfunctions and their normal derivatives remain finite at

UV = 1. In this case the wave functions corresponding to different energies would be

orthogonal w.r.t. the inner product〈
Ψ1,Ψ2

〉
=

∫
0<UV <1

dUdV eD
√
−G Ψ∗1Ψ2 . (4.38)

This suggests to take F
(σ)
p,s (z) in (4.31) as

F (σ)
p,s (z) = zis

2F1

(
1
2 + is+ p, 1

2 + is− p, 1; 1− z) (ε2 < z < 1) (4.39)

or, equivalently,

F (σ)
p,s (z) = Ap,+s z

+is
2F1

(
1
2 + is+ p, 1

2 + is− p, 1 + 2is; z) (4.40)

+ Ap,−s z
−is

2F1

(
1
2 − is+ p, 1

2 − is− p, 1− 2is; z) ,

where

Ap,s =
Γ(−2is)

Γ(1
2 − is− p)Γ(1

2 − is+ p)
. (4.41)
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For z � 1 it is convenient to use the variable y such that z = ey. Then F
(σ)
p,s asymp-

totically approaches to a superposition of two plane waves

F (σ)
p,s � Ap,+s e+isy +Ap,−s e−isy

(
1� (−y) < 2 log(1/ε)

)
. (4.42)

The regularized interaction discussed before in the domain (−y) > 2 log(1/ε) results in a

quantization condition for s

ε−4is e
i
2
δ(ms)(p,s) � σ . (4.43)

The phase shift δ(ms) here depends on the precise form of the regularized potential. As

ε→ 0, the spectrum of s becomes continuous and is characterized by the density of states

ρ(ms)(s) = 2
π log(1/ε) + 1

4π ∂s δ
(ms)(p, s) . (4.44)

The corresponding minisuperspace wave functions would be orthogonal w.r.t. the inner

product (4.38): 〈
Ψ

(σ′)
p′,s′ ,Ψ

(σ)
p,s

〉
∝ δp′,p δσ′,σ δ(s′ − s) . (4.45)

Here we use the Dirac δ-function for s since the latter can be any real number. At the same

time the Kronecker symbol indicates that p belongs to some discrete set. The quantization

of p seems rather natural once we note that the term ~
π (p2 − 1

4) in the formula for the

minisuperspace energy (4.27) can be interpreted as the contribution of the non-cyclic degree

of freedom Φ, which executes periodic motion in the regularized effective potential. This

is consistent with our discussion of the quantization of the Lorentzian black hole NLSM.

Setting w = 0 in formula (4.14) giving the admissible values of p and p̄, one has 2p = 2p̄ =

v = 0, 1, 2, . . . . Also δσ′,σ in (4.45) can be ignored – the sign factor σ is not an independent

quantum number and is defined by the parity of the integer v (see eq. (3.47a) with φ = π).

5 Low energy states of the Z2 invariant spin chain in the scaling limit.

Continuous spectrum

In the seminal work [23], Baxter introduced a multiparametric, integrable, statistical sys-

tem that covers a variety of classes of critical behaviour. In particular, it was observed

in [24] that the Z2 invariant spin chain, corresponding to a certain specialization of the

parameters of the general Baxter model, is critical and possesses a continuous spectrum

of scaling dimensions. The spin chain was subsequently studied in the works [25–31]. In

the recent paper [32] a systematic analysis, including a study of the finite size corrections,

was performed. Arguments were presented that the low energy states, in a suitably de-

fined scaling limit, organize into the space H(cont), whose linear structure is described by

eq. (3.42). This leads to the idea that the critical behaviour of the spin chain is governed

by the gauged WZW model. Here, accepting the conjecture, we use the results obtained

for the lattice system to move forward in the study of the field theory.
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5.1 Global symmetries and Hermitian structure

The subject of our interest is a spin 1
2 chain of length N , which is always an even number,

governed by the Hamiltonian7

H =
1

sin(2γ)

N∑
m=1

(
2 sin2(γ) σzm σ

z
m+1 −

(
σxm σ

x
m+2 + σym σ

y
m+2 + σzm σ

z
m+2

)
− i sin(γ)

(
σxmσ

x
m+1 + σymσ

y
m+1

)(
σzm−1 − σzm+2

) )
+N cot(2γ) 1̂ . (5.1)

The operators σAm stand for the Pauli matrices that act non-trivially in the m-th factor of

the tensor product

VN = C2
N ⊗ C2

N−1 ⊗ · · · ⊗ C2
1 (N − even) . (5.2)

They are taken to satisfy the quasiperiodic boundary conditions:

σ±N+` = e±2iπk σ±` , σzN+` = σz` (` = 1, 2) , (5.3)

where

σ±m = 1
2 (σxm ± iσym) . (5.4)

The Hamiltonian commutes with the z projection of the total spin operator

Sz =
1

2

N∑
m=1

σzm :
[
Sz, H

]
= 0 , (5.5)

which is the infinitesimal generator of the U(1) symmetry. The action of the finite rotation

Ûφ on the local spin operators is given by

Ûφ σ±m Û−1
φ = e±iφ σ±m , Ûφ σzm Û−1

φ = σzm . (5.6)

Another evident symmetry of (5.1) and (5.3) is CP-invariance. The corresponding trans-

formation is described through the formula

ĈP̂ σ±m ĈP̂ = σ∓N+1−m , ĈP̂ σzm ĈP̂ = −σzN+1−m (m = 1, . . . , N ) . (5.7)

A characteristic property of the model is the presence of an additional Z2 symmetry. The

adjoint action of its generator D̂ on σAm is more involved and for odd m reads as

D̂ σ±m D̂ =
1

cos(γ)

(
σ±m+1 − i sin(γ)σzm+1σ

±
m

)
(5.8a)

D̂ σzm D̂ =
1

cos2(γ)

(
σzm+1 − sin2(γ) σzm + 2i sin(γ)

(
σ+
m+1 σ

−
m + σ−m+1 σ

+
m

) )
,

7This form for the Hamiltonian, up to an overall multiplicative factor and an additive constant, appeared

in ref.[26]. The one defined by eq. (2) in the work [31] coincides with V̂H V̂−1, where H is as in (5.1), while

V̂ =
∏N/2
m=1 exp

(
iπ
4
σz2m−1

)
.
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while for even m:

D̂ σ±m D̂ =
1

cos(γ)

(
σ±m−1 + i sin(γ)σ±mσ

z
m−1

)
(5.8b)

D̂ σzm D̂ =
1

cos2(γ)

(
σzm−1 − sin2(γ) σzm − 2i sin(γ)

(
σ−m σ

+
m−1 + σ+

m σ
−
m−1

) )
.

The lattice system also possesses the time-reversal symmetry generated by the anti-unitary

transformation T̂ , such that

T̂Ψ =

( N∏
m=1

σxm

)
Ψ∗ , Ψ ∈ VN . (5.9)

With the anisotropy parameter in the domain 0 < γ < π, the spin chain (5.1), (5.3)

is critical. However, different types of critical behaviour occur depending on whether

γ ∈ (0, π2 ) or γ ∈ (π2 , π). The latter case was considered in ref.[26]. The relation between

the spin chain and the gauged WZW model, which was proposed in the work [32], occurs

when 0 < γ < π
2 . Then γ is related to the parameter n ≡ 2π/~ from the field theory side

as

γ =
π

n+ 2
( 0 < n < +∞ ) . (5.10)

The twist parameter k ∈
(
− 1

2 ,
1
2

]
in (5.3) is identified with that entering into the boundary

condition (2.32).

The Hamiltonian (5.1) is not Hermitian w.r.t. the usual matrix Hermitian conjugation

O† =
(
OT
)∗

. Nevertheless one can introduce a conjugation,

Ô? = X̂−1
? Ô† X̂? , (5.11)

for which the Hamiltonian satisfies

H? = H . (5.12)

The expression for the matrix X̂? = X̂†? is given by formula (19.62) in [32]. It should be kept

in mind that the ? - conjugation does not correspond to any positive definite inner product.

A manifestation of this is that some of the eigenvalues of the 2N dimensional matrix H are

complex. The analysis of [32] shows that the conjugation (5.11) in the scaling limit induces

the field theory conjugation for the W currents (3.51) in the space H(cont). Moreover it

yields that the normalization of the W∞ ⊗W∞ primary states can be chosen such that

their “norms”, i.e., the coefficients Nu,w,s entering into eq. (3.52), are given by

Nu,w,s =
Γ(1 + 2p̄

n+2) Γ(1 + 2p
n+2)

Γ(1 + 2p̄) Γ(1 + 2p)
with

p = 1
2 u + 1

2 (n+ 2) (k + w)

p̄ = 1
2 u−

1
2 (n+ 2) (k + w)

. (5.13)

Note that the norms are independent of s, while the quantum number u is identified with

the eigenvalue of the operator Sz:

u = Sz = 0,±1,±2, . . . . (5.14)

– 29 –



Similar to the gauged WZW model with k = 0, the spin chain subject to periodic

boundary conditions possesses an extra symmetry – that of C conjugation. For the finite

lattice system the matrix Ĉ is given by

Ĉ = cN

N∏
m=1

(ηm)
1
2
σzm σxm , where ηm = (−1)m+1 i (5.15)

and the choice of the overall sign factor, c2
N = 1, is a matter of convention.8 Since Ĉ

anticommutes with the z projection of the total spin,

Ĉ Sz = −Sz Ĉ , (5.17)

the C even and C odd components of the space of states of the spin chain would not

be invariant w.r.t. the action of the U(1) transformation (5.6), except the case φ = π.

Nevertheless |Sz| = 0, 1, 2, . . . is a well defined quantum number for the states from each

component. Taking the scaling limit results in the spaces H(cont)
even and H(cont)

odd , which appear

in eq. (4.2). Recall that of special interest is the subspace H(LBH) (4.14) of H(cont)
even , which is

expected to serve as the space of states for the Lorentzian black hole NLSM. The Hermitian

structure of H(LBH) is specified through the conjugation conditions (3.51) of the W currents

as well as the norms of the primary W∞ ⊗W∞ states occurring in its decomposition. The

latter may be obtained from (5.13) via a taking of the limit k→ 0. However, special care

is needed for the states with u = 0 and w 6= 0, as the Γ - functions in that formula become

singular. The issue is treated in the work [32] with the result that〈
Ψu′,w′,s′ ,Ψu,w,s

〉
LBH

= N (LBH)
u,w δu′,u δw′,w δ(s

′ − s) , (5.18)

where

N
(LBH)
0,0 = 1 , N (LBH)

u,w =


(−1)w

sin(π(n+ 2)w)

π(n+ 2)
u = 0, w 6= 0

Γ(1− w + u
n+2) Γ(1 + w + u

n+2)

Γ(1 + u− (n+ 2) w) Γ(1 + u + (n+ 2) w)
u ≥ 1, w ∈ Z

(5.19)

Then H(LBH) is a pseudo-Hilbert space equipped with a non-positive definite inner product.

This would reflect the fact that the target space for the NLSM (1.3a) has Lorentzian

signature.

8We found it convenient to set

cN =

(−1)N/4 N/2 − even

1 N/2 − odd
. (5.16)

For N/2 even the ground state, i.e., the state with the lowest possible energy (ordered w.r.t the real part),

of the lattice Hamiltonian with periodic boundary conditions is non-degenerate. With this choice of cN its

C parity is equal to +1. When N/2 is odd there are two ground states, forming a Z2 doublet, which are

distinguished by their C parity.
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5.2 Density of states

The distinguishing feature of the spin chain (5.1), (5.3) in the parametric domain 0 < γ < π
2

is that the spectrum of the rescaled energy (E−Evac)N , though it remains discrete for finite

N , becomes densely distributed as N → ∞. The analysis of the scaling limit leads to a

certain density matrix for the gauged SL(2,R) WZW model as well as the Lorentzian black

hole NLSM. Here we give a brief summary of the relevant results obtained in refs.[24, 25, 27–

32].

A key rôle in the description of the scaling limit of the Z2 invariant spin chain belongs

to the so-called quasi-shift operator B. The latter was first introduced in ref.[27]. The

expression for this operator, in the conventions adopted in this paper, is given by eq. (8.4)

of the work [32]. The quasi-shift operator belongs to the commuting family of matrices,

which includes the Hamiltonian H, the z projection of the total spin Sz and the lattice

translation operator K, whose matrix elements read as(
K
)bN bN−1...b1
aNaN−1...a1

= eiπk (a1+a2) δ
bN−2
aN δ

bN−3
aN−1 . . . δ

bN−1
a1 . (5.20)

Here the indices am and bm take the values ± and label the states in the space (5.2).

Each eigenstate belonging to the low energy part of the spectrum can be assigned,

together with Sz, the “winding number” w = 0,±1,±2, . . . and a pair of non-negative

integers (L̄, L), which are referred to as the levels. In view of the conjectured relation with

the gauged WZW model, we swap the notation Sz in favour of u (see (5.14)) and also use

p and p̄ defined through eq. (3.18). The extensive numerical work performed in refs.[24, 25,

27–31] suggests that the large N behaviour of the eigenvalues of the Hamiltonian H and

the lattice translation operator K is described by the formula

E = e∞N +
4πvF
N

(
p2 + p̄2

n+ 2
+

2b2

n
− 1

6
+ L + L̄

)
+ o
(
N−1−ε) (5.21a)

K = exp

(
4πi

N

(
p2 − p̄2

n+ 2
+ L− L̄

))
. (5.21b)

Here

e∞ = −2vF

π

∫ ∞
0

dt
sinh

(
2t
n

)
sinh

( (n+2)t
n

)
cosh(t)

, vF =
2(n+ 2)

n
, (5.22)

while the correction term o
(
N−1−ε) contains an infinitesimally small positive ε > 0 (for a

more detailed description of the correction term see ref.[31]). The structure (5.21) looks

typical for the low energy spectrum of a critical 1D system, where the states organize

into the conformal towers [33]. However, an unusual feature is the presence of the N -

dependent term ∝ b2 with b = b(N). The latter turns out to be related to the eigenvalue

of the quasi-shift operator computed on the state

b(N) =
n

4π
log(B) , BΨ = BΨ . (5.23)
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It is important to keep in mind the following point. In writing the asymptotic formulae

(5.21) as well as (5.23) we have implicitly assigned an N dependence to a stationary state

Ψ = ΨN . For a general lattice system there are obvious difficulties in doing this, i.e.,

forming Renormalization Group (RG) trajectories for individual states. Of course, since

the space of states of a finite lattice model has different dimensions for different lattice

sizes, the problem only makes sense for the low energy part of the spectrum. It is clear

how to assign an N dependence to the ground state or, for that matter, the lowest energy

state in a disjoint sector of the space of states (say in a sector with given value of Sz for the

case under consideration). However forming individual RG flow trajectories for low energy

stationary states that are densely distributed does not seem to be a trivial task. For the

Z2 invariant spin chain the problem was discussed in ref.[31] and essentially exploits the

integrable structure.

It turns out that the large N behaviour of b = b(N) for a state Ψ = ΨN can be

described through the asymptotic relation

ε−4ib e
i
2
δΨ(b) = σ +O

(
log(1/ε)−∞

)
, σ = (−1)

N
2
−Sz . (5.24)

Here δΨ(b) depends on the stationary state under consideration and, for future convenience,

we swap N for the parameter ε, defined as

ε−1 =
2
n+2
n Γ

(
3
2 + 1

n

)
√
π Γ
(
1 + 1

n

) N . (5.25)

Formula (5.24) resembles the quantization condition of a particle in a potential well of

length ∝ log(1/ε) with δΨ being the phase shift picked up by the particle at the turn-

ing points. It has the same form as the quantization condition (4.43) appearing in our

discussion of the Lorentzian black hole NLSM. For the “primary” states, corresponding

to vanishing levels L = L̄ = 0 in eq. (5.21), the explicit formula for the phase shift was

proposed in ref.[27]:

e
i
2
δΨ(s) =

Γ(1
2 + p− is) Γ(1

2 + p̄− is)

Γ(1
2 + p+ is) Γ(1

2 + p̄+ is)
( L = L̄ = 0 ) . (5.26)

In the later work [34] a closed form expression for δΨ was obtained for an arbitrary low

energy state.

There is a class of low energy states such that =m
(
b(N)

)
→ 0 as N → ∞. In

the scaling limit they form the space H(cont), whose linear structure is described through

the decomposition (3.42) into the highest weight irreps of the W∞ ⊗W∞ - algebra with

c = 2 − 6
n+2 . As usual, the exact knowledge of the phase shift is sufficient to derive the

density of states that occurs in the continuous limit. In particular, let ρ
(L̄,L)
p̄,p (s) ∆s be the
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number of states with given p, p̄, L and L̄ such that <e
(
b(N)

)
∈ (s, s + ∆s). Then as

ε ∝ N−1 → 0, the density of states is given by

ρ
(L̄,L)
p̄,p (s) =

2

π
par2(L) par2(L̄) log

(
1/ε
)

+ ρ̃
(L̄,L)
p̄,p (s) + o(1) , (5.27)

where the finite part reads as

ρ̃
(L̄,L)
p̄,p (s) =

1

2πi
∂s log

[ (
D

(L̄)
p̄ (s)

)par2(L) (
D(L)
p (s)

)par2(L̄)
]

(5.28)

with

D(`)
ρ (s) =

(
Γ(1

2 + ρ− is)

Γ(1
2 + ρ+ is)

)par2(`) `−1∏
a=0

[(
1
2 + a+ ρ− is

) (
1
2 + a− ρ− is

)(
1
2 + a+ ρ+ is

) (
1
2 + a− ρ+ is

)]par2(`)−da(`)

.

(5.29)

Recall that par2(`) denotes the number of bipartitions of `. The integers da(`) appearing

in the exponent in the last formula are defined through their generating function,

χa(q) ≡ 1

(q, q)2
∞

∞∑
m=0

(−1)m qma+
m(m+1)

2 =

∞∑
`=0

da(`) q
` . (5.30)

Introduce the density matrix ρ̂, which is an operator acting in H(cont) that commutes

with the CFT Hamiltonian and total momentum operator

ĤCFT = L0 + L̄0 −
c

12
, P̂CFT = L0 − L̄0 . (5.31)

Being restricted to the level subspace of the highest weight representation W p̄,s⊗Wp,s, the

operator ρ̂ is given by

ρ̂
∣∣
W(L̄)
p̄,s⊗W

(L)
p,s

=

[
2

π
log(1/ε) +

ρ̃
(L̄,L)
p̄,p (s)

par2(L̄) par2(L)

]
q̄∆p̄,s− c

24
+L̄ q∆p,s− c

24
+L 1̂ , (5.32)

where ∆p,s is as in (3.40), while q and q̄ = q∗ are two complex conjugated numbers such

that |q| < 1. The contribution of the low energy states forming H(cont) in the scaling limit

to the spin chain partition function reads as

Z(cont) =

√
n

=m(τ)

log
(
1/ε
)

π (q̄, q̄)2
∞(q, q)2

∞

∞∑
u,w=−∞

q̄
− 1

12
+ p̄2

n+2 q
− 1

12
+ p2

n+2 (5.33)

+
∞∑

u,w=−∞

∫ +∞

−∞
ds

∑
L,L̄≥0

ρ̃
(L̄,L)
p̄,p (s) q̄−

1
12

+ s2

n
+ p̄2

n+2
+L̄

q
− 1

12
+ s2

n
+ p2

n+2
+L ,

where =m(τ) = − 1
4π log(qq̄). This can be equivalently expressed as the trace of the density

matrix:

Z(cont) = TrH(cont)(ρ̂) . (5.34)
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It is possible to perform the sum over L and L̄ in the second line of the formula (5.33)

and show that ∑
L,L̄≥0

ρ̃
(L̄,L)
p̄,p (s) q̄L̄qL = −rp̄(s, q̄) + rp(s, q)

π (q̄, q̄)2
∞(q, q)2

∞
(5.35)

with

rp(s, q) =
1

2

∑
σ=±

ψ
(

1
2 + p+ iσs

)
(5.36)

+

∮
|z|<1

dz

2πi

(q, q)2
∞

(z, q)∞(z−1 q, q)∞

1

2

∑
σ,σ′=±

Φ(z, 1, 1
2 + σ′p+ iσs) .

Here ψ(α) = ∂α log Γ(α), while Φ(z, 1, α) stands for the Lerch transcendent,

Φ(z, s, α) =
∞∑
m=0

zm

(m+ α)s
. (5.37)

The relation (5.35) is useful for the numerical computation of Z(cont).

6 Density matrix for the Lorentzian black hole NLSM

Since H(LBH) (4.14) is expected to be the space of states of the Lorentzian black hole NLSM,

the equilibrium density matrix

ρ̂LBH : H(LBH) 7→ H(LBH) ,
[
ρ̂LBH, ĤCFT

]
=
[
ρ̂LBH, P̂CFT

]
= 0 (6.1)

is of special interest. The space H(LBH) admits the decomposition

H(LBH) =
∞⊕
u=0

∞⊕
w=−∞

H(LBH)
u,w . (6.2)

The operator ρ̂LBH acts invariantly in the sectors H(LBH)
u,w , which are the linear span of states

with given quantum numbers u and w. In a similar manner,

H(cont) =

∞⊕
u=−∞

∞⊕
w=−∞

H(cont)
u,w (6.3)

and the sectors H(cont)
u,w are invariant subspaces for ρ̂ (5.32) for any value of k including

k = 0.

When u = 0 and for any w ∈ Z, the highest weight representations W p̄,s ⊗Wp,s with

k 6= 0 remain irreducible at k = 0. In the last case, the irreps are also C invariant. As

a result, the subspace H(LBH)
0,w coincides with the C even component of H(cont)

0,w . The latter
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occurs in the scaling limit of the low energy states with Sz = 0 and given w. It turns

out that for fixed N � 1 the difference between the number of C even and odd such low

energy stationary states is of order one. Furthermore, in the limit N → ∞ the density of

C even and odd states with fixed L, L̄, p = −p̄ = (n + 2) w is the same and coincides with
1
2 ρ

(L̄,L)
p̄,p described by eqs. (5.27)-(5.29) (for further details see sec. 17.4 from ref.[32]). Thus

the restriction of the density matrix ρ̂LBH to the level subspaces of the irreps occurring in

the decomposition of H(LBH)
0,w is given by

ρ̂LBH

∣∣
W(L̄)
p̄,s⊗W

(L)
p,s

=
1

2

[
2

π
log(1/ε) +

ρ̃
(L̄,L)
p̄,p (s)

par2(L̄) par2(L)

]
(6.4)

× q̄∆p̄,s− c
24

+L̄ q∆p,s− c
24

+L 1̂
(
p = −p̄ = 1

2 (n+ 2) w , w ∈ Z
)
.

For w = 0 the irrepsW p̄,s⊗Wp,s, like in the previous case, remain irreducible at k = 0.

Also the subspaces H(LBH)
u,0 and H(cont)

u,0 for u > 0 are equivalent. Hence the operator ρ̂LBH

restricted to the level subspaces of the corresponding irreps is given by the same formula

as (5.32):

ρ̂LBH

∣∣
W(L̄)
p̄,s⊗W

(L)
p,s

=

[
2

π
log(1/ε) +

ρ̃
(L̄,L)
p̄,p (s)

par2(L̄) par2(L)

]
(6.5)

× q̄∆p̄,s− c
24

+L̄ q∆p,s− c
24

+L 1̂
(
p = p̄ = 1

2 , 1,
3
2 , 2, . . .

)
.

However some care is needed in specializing the density of states to p = p̄ = 1
2 u for odd u.

In this case, as follows from eqs. (5.28) and (5.29) the function ρ̃
(L̄,L)
p̄,p (s) contains a simple

pole at s = 0, making its integration over s ambiguous. The ambiguity can be resolved

by starting with non-zero k and performing the limit k→ 0. Using the Sokhotski-Plemelj

formula one finds

ρ̃
(L̄,L)
p̄,p (s) = P.V.

(
ρ̃

(L̄,L)
p̄,p (s)

)
(6.6)

+
(

par2(L) dp− 1
2
(L̄) − par2(L̄) dp− 1

2
(L)
)
δ(s)

(
p = p̄ = 1

2 ,
3
2 ,

5
2 , . . .

)
where the symbol P.V. stands for the principal value, while the integers da(L) are defined

through their generating function in eq. (5.30).

When u > 0 and w 6= 0 the subspaces H(LBH)
u,w and H(cont)

u,w do not coincide. In turn, the

operator ρ̂LBH can not be obtained through a k→ 0 limit of ρ̂. Instead, one should return

to the lattice system and compute the density of low energy stationary states that become

part of H(LBH)
u,w in the scaling limit. To express the result, together with the function D

(`)
ρ (s)

(5.29), we use

D̃(`)
ρ (s) =

`−1∏
a=0

( 1
2 + a+ ρ− is
1
2 + a+ ρ+ is

)d̃a(` |+ρ) ( 1
2 + a− ρ− is
1
2 + a− ρ+ is

)d̃a(` |−ρ)

(6.7)

×
(

Γ(1
2 + ρ− is)

Γ(1
2 + ρ+ is)

)par2(`)−par2(`−mr)
, where ρ = 1

2 r −
1
2 (n+ 2)m .

– 35 –



The generating function for the exponents d̃a(` | ± ρ) entering into the above product is

given by

∞∑
`=0

d̃a(` | ± ρ) q` =
1

(q, q)2
∞

∞∑
j=1

(−1)j+1 qja+
j(j+1)

2
(

1− q(m±j) r ) . (6.8)

Note that we take by definition par2(` −mr) = 0 when ` < mr. With this notation, the

density matrix restricted to the subspaces W(L̄)
p̄,s ⊗W

(L)
p,s with

p = 1
2 u + 1

2 (n+ 2) w , p̄ = 1
2 u−

1
2 (n+ 2) w and u > 0 , w 6= 0 (6.9)

is given by

ρ̂LBH

∣∣
W(L̄)
p̄,s⊗W

(L)
p,s

=

(
2

π
log(1/ε) +

1

2πi
∂s
(
f

(L̄)
p̄ (s) + f (L)

p (s)
))
× q̄∆p̄,s− c

24
+L̄ q∆p,s− c

24
+L 1̂

(6.10)

where

f (`)
ρ (s) =


logD

(`)
ρ (s)

par2(`)
for m < 0

log D̃
(`)
ρ (s)

par2(`)− par2(`−mr)
for m > 0

(
ρ = 1

2 r −
1
2 (n+ 2)m

)
.

(6.11)

7 Low energy states of the Z2 invariant spin chain in the scaling limit.

Discrete spectrum

The low energy spectrum of the Z2 invariant spin chain consists of two classes of states

which are distinguished by the large N behaviour of the eigenvalue of the quasi-shift op-

erator. Up till now we have been focused on the states, where the imaginary part of b(N)

(5.23) vanishes as N → ∞. In the scaling limit these organize into the space H(cont). For

(n + 2) k /∈ Z the linear structure of this space is given by (3.42), while its Hermitian

structure is specified through the conjugation conditions (3.51) along with the inner prod-

uct of the W∞ ⊗W∞ primary states (3.52), (5.13). For the states from the second class

limN→∞ b(N) is a pure imaginary number whose admissible values form a discrete set. The

energy-momentum spectrum is still described by the large N asymptotic formula (5.21).

We’ll refer to the space into which the states organize in the scaling limit as H(disc). Here

we quote the results of ref.[32] regarding its linear and Hermitian structure for (n+2) k /∈ Z.

7.1 Decomposition into the irreps of the algebra of extended conformal sym-

metry

The space H(disc) is splitted into two sectors

H(disc) = H(disc,+)
⊕
H(disc,−) . (7.1)
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In turn for each of the spaces,

H(disc,±) =
⊕
u,w∈Z

H(disc,±)
u,w (7.2)

where, similar to (6.3), the components H(disc,±)
u,w are formed by the linear span of states

with fixed value of Sz = u and winding number w. For H(disc,+)
u,w the linear decomposition

into irreps of the W∞ ⊗W∞ - algebra is given by

H(disc,+)
u,w =

⊕
σ=±1

(
H(1,+)

u,w,σ ⊕ H(2,+)
u,w,σ

)
(7.3)

with

H(1,+)
u,w,σ =

⊕
a∈Σ(p)

W p̄,σiqa ⊗Wp,σiqa , H(2,+)
u,w,σ =

⊕
a∈Σ(p̄)

W p̄,σiq̄a ⊗Wp,σiq̄a . (7.4)

Here qa and q̄a are defined as

qa = −p− 1
2 − a, q̄a = −p̄− 1

2 − a . (7.5)

The summation in (7.4) is taken over the non-negative integer a restricted to the set

Σ(p) =
{
a : a ∈ Z+, −p− n+2

4 ≤ a < −1
2 − p

}
(7.6)

as well as Σ(p̄), which is given by the same formula with p substituted by p̄.

The linear structure of H(disc,−)
u,w is more involved. To describe it, in addition to p, p̄,

qa and q̄a, we use the notation

p+ = 1
2 u + 1

2 (n+ 2)(k + w + 1) , p̄+ = 1
2 u−

1
2 (n+ 2)(k + w + 1)

p− = 1
2 u + 1

2 (n+ 2)(k + w− 1) , p̄− = 1
2 u−

1
2 (n+ 2)(k + w− 1)

q′a = −p− n+1
2 − a , q̄′a = −p̄− n+1

2 − a .

(7.7)

Then

H(disc,−)
u,w =

⊕
σ=±1

(
H(1,−)

u,w,σ ⊕H(2,−)
u,w,σ ⊕H(3,−)

u,w,σ ⊕H(4,−)
u,w,σ

)
(7.8)

and the decomposition of each of the four spaces H(i,−)
u,w,σ into the irreps of the W∞ ⊗W∞ -

algebra reads explicitly as

H(1,−)
u,w,σ =

⊕
a∈Σ1(p)

W p̄+,σiq′a ⊗Wp+,σiq′a , H(2,−)
u,w,σ =

⊕
a∈Σ2(p)

W p̄,σiqa ⊗Wp+,σiq′a

(7.9)

H(3,−)
u,w,σ =

⊕
a∈Σ2(p̄)

W p̄−,σiq̄′a ⊗Wp,σiq̄a , H(4,−)
u,w,σ =

⊕
a∈Σ1(p̄)

W p̄−,σiq̄′a ⊗Wp−,σiq̄′a
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The summation index a takes negative integer values and runs over the sets

Σ1(p) =
{
a : a ∈ Z−, −p− n+2

4 ≤ a < −1
2 − p & a < −u

}
(7.10)

Σ2(p) =
{
a : a ∈ Z−, −p− n+2

4 ≤ a < −1
2 − p & a ≥ −u

}
and Σ1(p̄), Σ2(p̄), which are defined by the analogous formulae.

All the chiral irreps appearing in the decomposition of H(disc) are of the form

Wρ,ν : =m(ρ) = <e(ν) = 0 , ρ+ 1
2 ± iν ∈ Z (7.11)

with some choice of the sign ±. In this case the irrep of the W∞ - algebra does not coincide

with the Verma module as the latter contains null vector(s). It turns out that if either

ρ+ 1
2 + iν = −a ∈ Z or ρ+ 1

2 − iν = −a ∈ Z and 2ρ /∈ Z, the character of Wρ,ν is given by

[22]

chρ,ν(q) =
q
− 1

12
+ ν2

n
+ ρ2

n+2

(q, q)2
∞

∞∑
m=0

(−1)m qm|a+ 1
2
|+m2

2

ρ+ 1
2 ± iν ∈ Z

ρ generic
. (7.12)

Note that when 2ρ, 2iν ∈ Z, while 2(ρ+ iν) is an odd integer then, assuming also that n is

irrational,9

chρ,ν(q) =
q
− 1

12
+ ν2

n
+ ρ2

n+2

(q, q)2
∞

∞∑
m=0

(−1)m q
m2

2
(
qm| |ρ|−|ν| | − q(m+1)(|ρ|+|ν|+1)− 1

2
)
, (7.13)

where =m(ρ) = <e(ν) = 0 such that |ρ| ± |ν| ∈ 1
2 + Z.

The linear decomposition of H(disc) described above together with the formula (7.12)

for the character are sufficient to compute the partition function

Z(disc) = TrH(disc)

[
q̄L̄0− c

24 qL0− c
24

]
. (7.14)

To write the result in a compact way we borrow the notation χd(j,a−j)(q) from ref.[11]. Up

to a simple factor, this function coincides with χa(q) defined in eq. (5.30),

χd(j,a−j)(q) ≡ q
− 1

12
− (j+ 1

2 )2

n
+

(j−a)2

n+2 χa(q) (a ∈ Z) . (7.15)

It is related to the character (7.12) as

χd(j,a−j)(q) = cha−j,i(j+ 1
2

)(q)×

1 for a ≥ 0

q−a for a < 0
. (7.16)

9For integer n = 2, 3, . . . the corresponding formula for the character was first obtained in ref.[35] (see

also [22]). In addition note that the formulae (3.44), (4.16), (7.12), (7.13) for the characters, which assume

that c = 2− 6
n+2

< 2, can be applied to the case c > 2 if one makes the formal substitutions n→ −n− 2,

ρ→ is, ν → ip. The central charge and highest weight of the irrep would be parameterized as in (8.3) and

(8.4) below (see refs.[17, 36]).
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Also introduce the notation J(v, u) for the finite set of all real numbers belonging to the

half-open segment [−n+1
2 ,−1

2) such that

J(v, u) ≡
{
j : j ∈

[
− n+1

2 ,−1
2

)
& j− 1

2 v−
1
2 (n+ 2)(k + u) ∈ Z

}
. (7.17)

Then the calculation of the trace over the space H(disc) = H(disc,+)
⊕
H(disc,−) yields10

Z(disc) = 2
∑
v,u∈Z

∑
j∈J(v,u)

χd(j,p̄)(q̄)χd(j,−p)(q) , (7.18)

where

p̄ = 1
2 v−

1
2 (n+ 2) (k + u) , p = 1

2 v + 1
2 (n+ 2) (k + u) . (7.19)

The overall factor of 2 in the formula for Z(disc) occurs due to the global Z2 invariance of

the model.

The following comment is in order here. For arbitrary values of k, the inclusion of

the endpoints into the interval for j in (7.17) has no effect on the set J(v, u). However

for k = 0 and with n generic, j may coincide with −n+1
2 or −1

2 . Taking the limit k → 0

of Z(disc) one finds that in order for (7.18) to correctly describe the contribution of the

discrete spectrum to the partition function Z(disc) with k = 0 one of the endpoints in (7.17)

must be included. The choice of whether to include j = −n+1
2 or j = −1

2 does not matter,

since they correspond to the contribution of the same states to Z(disc).

7.2 Hermitian structure

The spaceH(cont) is built out of the W∞⊗W∞ irreps whose highest weights, (ω̄2, ω̄3;ω2, ω3),

are real. In this case the inner product was introduced via the conjugation conditions (3.51)

for the W currents. On the other hand, for the irreps appearing in the decomposition of

H(disc), though ω2, ω̄2 are real, ω3 and ω̄3 are pure imaginary. As was discussed in the work

[32], the natural inner product for such irreps is the one that is induced by the conjugation

conditions [
Wj(u)

]i
= (−1)jWj(u

∗) ,
[
W j(ū)

]i
= (−1)jW j(ū

∗) . (7.20)

It turns out that the latter occur in the scaling limit of the finite length spin chain with

the matrix conjugation being defined as

Ôi = X̂−1
i Ô† X̂i , Ô ∈ End

(
VN
)
. (7.21)

Here X̂i = X̂†i is related to the matrix X̂? appearing in eq. (5.11) via the generator of the

Z2 symmetry:

X̂i = X̂? D̂ . (7.22)

10In the formula (7.18) for Z(disc) the integers v and u are formal summation variables, which can not

be identified with the eigenvalue of Sz and the winding number w. In turn the notation p and p̄ in (7.19)

should not be confused with p and p̄ from (3.18).
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Since the Hamiltonian commutes with D̂, it follows from (5.12) that it is Hermitian w.r.t.

the i - conjugation as well:

Hi = H? = H . (7.23)

Note that for the lattice translation operator (5.20),

Ki = K? = K−1 . (7.24)

Let

Ψρ̄,ρ,ν̄,ν ∈ Wρ̄,ν̄ ⊗Wρ,ν ⊂ H(disc) (7.25)

be the W∞ ⊗W∞ primary state, where the admissible set of values for (ρ̄, ρ, ν̄, ν) is de-

scribed by the formulae (7.1)-(7.10). The inner product of these states, together with the

conjugation conditions (7.20) for the W currents, fully specify the structure of the pseudo-

Hilbert space for H(disc). The results of [32] imply that the normalization of the primary

W∞ ⊗W∞ states can be chosen in such a way that〈
Ψρ̄,′ρ′,ν̄′,ν′ , Ψρ̄,ρ,ν̄,ν

〉
disc

= σ fρ̄,ν̄ fρ,ν δρ̄′,ρ̄ δρ′,ρ δν̄′,ν̄ δν′,ν , (7.26)

where

fρ,ν =
Γ(1 + 2ρ) Γ

(
1
2 + ρ− |ν|

)
2π Γ(1 + 2ρ

n+2)
×


(−1)a a! if 1

2 + ρ+ |ν| = −a = 0,−1, . . .

2π

Γ(1
2 + ρ+ |ν|)

otherwise

(7.27)

Here the sign factor σ = (−1)N/2−S
z

is the same one that enters into the quantization

condition (5.24) and depends on whether, in constructing the RG trajectories, N/2 − Sz

is kept to be an even or an odd number. Let’s reiterate that the above formulae are not

literally applicable when (n + 2) k ∈ Z, including the case k = 0.

The fact that the Hermitian structures for the spaces H(cont) and H(disc) correspond to

different conjugation conditions in the algebra of extended conformal symmetry suggests

that the states from these two spaces can not be interpreted simultaneously as normalizable

states within a single conformal field theory. In this paper we argue that for generic values

of k, H(cont) serves as the pseudo-Hilbert space for the gauged SL(2,R) WZW model.

Perhaps the simplest idea for the field theory whose quantization results in the pseudo-

Hilbert spaceH(disc), is the model described by the same Lagrangian density and constraints

(2.13), (2.14) as well as the boundary conditions (2.19) for the WZW currents and (2.35)

for ∂µη. However the fields now are subject to different reality conditions. The classical

counterpart to (7.20) reads as

(
W

(cl)
j

)∗
= (−1)j W

(cl)
j ,

(
W

(cl)
j

)∗
= (−1)j W

(cl)
j . (7.28)
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In view of eq. (2.50) this would follow from the reality conditions(
L3
)∗

= −L3 ,
(
L±
)∗

= L∓ ,
(
R3
)∗

= −R3 ,
(
R±
)∗

= R∓ (7.29)

imposed on the classical WZW currents and(
∂η
)∗

= −∂η ,
(
∂̄η
)∗

= −∂̄η (7.30)

for the Gaussian field. Furthermore iη is expected to be a real and compactified field,

iη ∼ iη + 2π . (7.31)

The latter implies that the zero mode momenta Pη and P̄η (2.39) are no longer equal, but

instead

i (Pη − P̄η) ∈ Z . (7.32)

Notice that B = e2πPη and B̄ = e2πP̄η appearing in the boundary conditions (2.46) still

coincide. Such reality and boundary conditions for the currents correspond to the SU(2)

WZW model gauged over the compact subgroup. However, they are not enough to fully

specify the field theory. In the SL(2,R) case there were the additional constraints (2.32)

and (2.34) whose motivation relied on the fact that the WZW field G ∈ SL(2,R). At the

moment, it is not clear to us what extra conditions need to imposed for the SU(2) case.

8 Density matrix for the Euclidean black hole NLSM

In the work [27] the authors put forward the pioneering conjecture that the Euclidean

black hole NLSM is the CFT governing the scaling limit of the Z2 invariant spin chain in

the domain of the anisotropy parameter γ ∈ (0, π2 ). This is not quite in line with what

is proposed here. Nevertheless the study of the spin chain yields a certain density matrix

whose trace coincides with the modular invariant partition function ZEBH. This makes it a

good candidate for the equilibrium density matrix ρ̂EBH.

The classical field theory is described by the action (1.3b), where U and U∗ are a pair

of complex conjugated fields. Usually they are assumed to be periodic, however, it is useful

to consider the more general quasiperiodic boundary conditions

U(t, x+ 2π) = e2πik U(t, x) . (8.1)

Thus defined, the model possesses a U(1) symmetry with the corresponding Noether current

given by

Iµ =
1

2i

U∗∂µU − U∗∂µU
1 + UU∗

. (8.2)

There is also an infinite set of chiral currents, which form the classical W∞ ⊗W∞ Poisson

algebra. The quantization of the latter leads to the algebra of extended conformal symmetry

with central charge c > 2. The Hilbert space of the quantum theory can be classified
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according to the highest weight irreps of the W∞ ⊗ W∞ - algebra. It is convenient to

parameterize the central charge and the highest weight of the irreps, ω = (ω2, ω3), using

n, s and p as

c = 2 +
6

n
> 2 (8.3)

and

ω2 =
s2 + 1

4

n
+

p2

n+ 2
≡ ∆(c>2)

p,s (8.4)

ω3 =
2p√
n+ 2

( s2

n
+

(2 + 3n) p2

3n (n+ 2)
− 2n+ 1

12n

)
.

To avoid confusion let us emphasize that in these relations n > 0, s and p are formal

parameters, without the meaning that was assigned to them in the previous sections. The

Hilbert space of the NLSM contains both a continuous H(cont)
EBH and a discrete component

H(disc)
EBH . The linear decomposition of the continuous one into the irreps of the W∞ ⊗W∞ -

algebra is given by [6–12]

H(cont)
EBH =

+∞⊕
v,w=−∞

∫ ⊕
s>0

ds W(c>2)
p̄,s ⊗W(c>2)

p,s , where
p = 1

2 v + 1
2 (n+ 2) (k + w)

p̄ = 1
2 v−

1
2 (n+ 2) (k + w)

.

(8.5)

Here v is the eigenvalue of the U(1) conserved charge ~−1
∮

dxI0 associated with the Noether

current (8.2). It takes integer values provided that the Planck constant is identified with

n as

~ =
2π

n+ 2
. (8.6)

The integer w may be interpreted as a winding number related to the fact that the boundary

condition (8.1) is invariant w.r.t. the substitution k 7→ k + w with w ∈ Z. Let us note that

the highest weight (8.4) is not sensitive to the sign of s. Due to this the direct integral in

(8.5) is restricted to positive values of s. For the states at the level L̄ and L in the irrep

W(c>2)
p̄,s ⊗W(c>2)

p,s , the corresponding energy E = ∆ + ∆̄− c
12 in terms of the parameters n,

s and p reads as

E = −1

6
+

2s2

n
+
p2 + p̄2

n+ 2
+ L + L̄ . (8.7)

It is worth mentioning that the space of states HEBH = H(cont)
EBH

⊕
H(disc)

EBH is equipped with

a positive definite inner product [5] such that the Fourier modes of the W and W currents,

generating the W∞ ⊗W∞ - algebra with c > 2, satisfy the conjugation conditions[
W̃j(m)

]†
= W̃j(−m) ,

[
W̃ j(m)

]†
= W̃ j(−m) . (8.8)

In the works [9, 10] a modular invariant partition function was found for the Euclidean

black hole NLSM with periodic boundary conditions imposed on the fundamental field
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(k = 0). It is straightforward to generalize the result to the case of twisted boundary

conditions. This yields11

ZEBH =

√
n(n+ 2)

=m(τ)

∑
a,b∈Z

∫
Dε

d2z e
−π(n+2)
=m(τ)

|z+a+(b+k) τ |2+ 2π
=m(τ)

(=m(z))2
∣∣∣∣ η(τ)

ϑ1(z|τ)

∣∣∣∣2 , (8.9)

where ϑ1 and η are the standard elliptic theta and Dedekind eta functions:

ϑ1(u|τ) = 2q
1
8 sin(πu) (e2πiu q, q)∞ (e−2πiu q, q)∞ (q, q)∞ (8.10)

η(τ) = q
1
24 (q, q)∞ ( q = e2πiτ ) .

Note that the dependence on the twist parameter k manifests itself only as a shift of the

summation variable b 7→ b + k, which appears in the exponent in the integrand in (8.9).

The integral is taken over the parallelogram D in the complex z plane with vertices at

z = ±1
2 ±

1
2 τ . However since the integrand is singular at z = 0, a small neighbourhood

around the origin, whose size is controlled by the parameter ε, should be excluded from

the integration domain. We found it convenient to take

Dε = D
/{
z : |z| < 1

2π e−γE ε
}
, (8.11)

where γE denotes the Euler constant. Then as |q| → 0

ZEBH =
1

2π

√
n

=m(τ)
|q|−

1
6

(
log(4eγE/ε) + o

(
|q|0
))

. (8.12)

Through a numerical study, we found the following relation between the partition

function of the Euclidean black hole NLSM and that which occurs in the scaling limit of

the Z2 invariant spin chain:

2ZEBH = Z(cont) + Z(disc) . (8.13)

Here Z(cont) and Z(disc) are given by eqs. (5.33) and (7.18), respectively. Both sides of the

above formula contain a divergent part ∝ log(1/ε). For the Euclidean black hole NLSM

this parameter regularizes the integral in (8.9), while for the lattice model ε ∝ N−1 as in

eq. (5.25). To perform a numerical check of (8.13) the divergent part needs to be subtracted.

For this purpose, introduce the regularized partition function of the Euclidean black hole

NLSM as

Z
(reg)
EBH = lim

ε→0

(
ZEBH − Z(sing)

ε

)
(8.14)

with

Z(sing)
ε =

√
n

=m(τ)

log(4eγE/ε) + 1
2 log

(
=m(τ)

)
2π (q̄, q̄)2

∞(q, q)2
∞

∑
u,w∈Z

q̄
− 1

12
+ p̄2

n+2 q
− 1

12
+ p2

n+2 (8.15)

11The formulae for the partition function presented in the works [9, 10] is twice ZEBH given by (8.9) with

k = 0. This is related to the fact that the corresponding NLSM was obtained by gauging the U(1) symmetry,

g 7→ hgh (h = e
iφ
2
σy ), of the SL(2,R) WZW model. This results in two copies of the Euclidean black hole

NLSM. A similar occurrence happens for the Lorentzian black hole NLSM, as mentioned in sec. 2.2.

– 43 –



and recall that q = e2πiτ , q̄ = e−2πiτ∗ . Here an extra term ∝ log
(
=m(τ)

)
was included

into the definition of Z
(sing)
ε in order to ensure that the regularized partition function is

invariant under modular transformations in the case when k = 0 (for k 6= 0 the partition

function is not a modular invariant quantity). In turn, we define the regularized part of

Z(cont) to be

Z(cont)
reg =

∑
u,w∈Z

∫ +∞

−∞
ds

∑
L,L̄≥0

ρ̃
(L̄,L)
p̄,p (s) q̄−

1
12

+ s2

n
+ p̄2

n+2
+L̄

q
− 1

12
+ s2

n
+ p2

n+2
+L

−
√

n

=m(τ)

log(4eγE) + 1
2 log

(
=m(τ)

)
π (q̄, q̄)2

∞(q, q)2
∞

∑
u,w∈Z

q̄
− 1

12
+ p̄2

n+2 q
− 1

12
+ p2

n+2 . (8.16)

Here the density of states ρ̃
(L̄,L)
p̄,p (s) is given by eqs. (5.28)-(5.30). Then (8.13) is equivalent

to

2Z
(reg)
EBH = Z(cont)

reg + Z(disc) . (8.17)

The numerical data in support of this relation is presented in tabs. 1 and 2.

The following comments concerning some statements appearing in the literature are

in order here. It was proposed in the works [9, 10] that ZEBH (8.9) could be represented as

2ZEBH

∣∣
k=0

=
∞∑

u,w=−∞

∫ ∞
0

ds 2ρ(s) chp̄,s(q̄) chp,s(q) + Z(disc) ( from refs. [9, 10] ) .

(8.18)

The character entering into this formula is given by (3.44), while for the density of states

ρ(s) =
2

π
log(1/ε) +

1

2πi
∂s log

[
Γ(1

2 + p− is) Γ(1
2 + p̄− is)

Γ(1
2 + p+ is) Γ(1

2 + p̄+ is)

]
. (8.19)

A numerical check of the consistency of (8.18) with (8.9) rules the conjecture out. Also the

formula for the contribution of the discrete spectrum to the partition function ZEBH|k=0 is

given in ref.[11]. It appears to be identical with 1
2 Z

(disc) from (7.18) specialized to k = 0.

However, eqs. (2.5) and (2.10) from ref.[11] do not quite correctly take into account the

contribution of the states to Z
(disc)
EBH with j = −n+1

2 , −1
2 corresponding to the boundary of

the interval in the set J(v, u) (7.17). Finally, the highly non-trivial formula (8.13) is in

full agreement with the original observation of ref.[27]. However, let’s emphasize that in

order to state that the Euclidean black hole NLSM governs the critical behaviour of the

Z2 invariant inhomogeneous six-vertex model, this relation is insufficient. Among others,

the numerical study of the finite size corrections to the CFT Hamiltonian performed in

[32], which are controlled by irrelevant perturbations, show that the extended conformal

symmetry algebra is the W∞ ⊗W∞ - algebra with c < 2.

In view of eqs. (8.17) and (8.16) one arrives at a conjecture for the equilibrium density

matrix of the Euclidean black hole NLSM. Namely, being restricted to the level subspaces
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τ Z
(cont)
reg Z(disc) Z

(cont)
reg + Z(disc) 2Z

(reg)
EBH

τ = .9i −3.9509313 0.0210525 −3.9298787 −3.9298786

−1/τ −3.9358543 0.0059766 −3.9298776 −3.9298787

τ + 1 −3.9509313 0.0210525 −3.9298787 −3.9298786

τ = .2 + .9i −3.8983544 0.0065418 −3.8918125 −3.8918125

−1/τ −3.8925978 0.0007853 −3.8918125 −3.8918124

τ + 1 −3.8983544 0.0065418 −3.8918125 −3.8918124

τ = .66i −4.4682528 0.0943594 −4.3738934 −4.3738934

−1/τ −4.3744476 0.0005542 −4.3738934 −4.3738933

τ + 1 −4.4682528 0.0943594 −4.3738934 −4.3738933

τ = .5i −5.7668560 0.2960118 −5.4708441 −5.4708421

−1/τ −5.4708761 0.0000322 −5.4708439 −5.4708437

τ + 1 −5.7668560 0.2960118 −5.4708441 −5.4708421

τ = .33i −12.070612 1.5569389 −10.513673 −10.5129976

−1/τ −10.513561 7.662 · 10−8 −10.513561 −10.5135606

τ + 1 −12.070612 1.5569389 −10.513673 −10.5129975

Tab. 1. A comparison of the numerical data for twice the regularized partition function of the

Euclidean black hole NLSM (8.14) with Z
(cont)
reg + Z(disc) for the case k = 0 and n = 3. Here

Z(disc) is given by eqs. (7.17) and (7.18), while Z
(cont)
reg is defined by (8.16). The table also illustrates

modular invariance of the regularized partition function for k = 0. Note that in order to achieve

good accuracy for decreasing values of =m(τ) one must take into account an increasing number of

terms in the sum over u and w for Z(cont) as well as a and b in eq. (8.9). This significantly increases

the computer time.

of the irreps of the W∞⊗W∞ - algebra belonging to H(cont)
EBH , it is given by a formula similar

to eq. (5.32):

ρ̂EBH

∣∣
W(L̄)
p̄,s⊗W

(L)
p,s

=

[
2

π
log(1/ε) +

ρ̃
(L̄,L)
p̄,p (s)

par2(L̄) par2(L)

]
q̄
− 1

12
+ s2

n
+ p̄2

n+2
+L̄

q
− 1

12
+ s2

n
+ p2

n+2
+L 1̂

(8.20)

with ρ̃
(L̄,L)
p̄,p (s) being defined via eqs. (5.28)-(5.30). It is important to keep in mind that

the irreps appearing in the decomposition of H(cont)
EBH (8.5) are those of the W∞ ⊗ W∞ -

algebra with c = 2 + 6
n > 2. The above formula is expected to be applicable to the case of

– 45 –



τ Z
(cont)
reg Z(disc) Z

(cont)
reg + Z(disc) 2Z

(reg)
EBH

0.9 i −3.1430392 0.0233941 −3.1196452 −3.1196450

0.2 + 0.9 i −3.0646040 0.0099983 −3.0546057 −3.0546064

0.66 i −3.7836669 0.1033699 −3.6802970 −3.6802972

0.2 + 0.66 i −3.5074556 0.0418838 −3.4655718 −3.4655717

0.50 i −5.1054421 0.3209649 −4.7844771 −4.7844724

0.33 i −11.2855973 1.6391928 −9.6464045 −9.646289

0.25 i −26.5761236 5.4010183 −21.1751053 −21.171536

Tab. 2. The last column contains numerical data for 2Z
(reg)
EBH (8.14) with the parameters set to

be k = −0.1 and n = 3. This is compared to Z
(cont)
reg + Z(disc), where Z(disc) was computed using

eqs. (7.17), (7.18) and Z
(cont)
reg via (8.16).

twisted boundary conditions (8.1) with generic k. For the model with periodic boundary

conditions, the density matrix is obtained via a taking of the limit k → 0. Some care

is needed for the irreps with p = 1
2 u + 1

2 (n + 2) k, p̄ = 1
2 u −

1
2 (n + 2) k and u odd, as

ρ̃
(L̄,L)
p̄,p (s) could contain simple poles at s = ± i

2 (n + 2) k, which approach the real axis for

vanishing k. This gives rise to contact terms as in eq. (6.6). Finally ρ̂EBH, being restricted

to the discrete component H(disc)
EBH of the space of states of the Euclidean black hole NLSM

coincides with the usual thermal density matrix

ρ̂EBH

∣∣
H(disc)

EBH

= qL0− c
24 q̄L̄0− c

24 . (8.21)

9 Conclusion

In this work we apply the results obtained for the Z2 invariant integrable spin chain to the

study of two NLSMs. These are of interest since their target space geometries mimic that

of a Lorentzian black hole and its Euclidean version.

The space of states occurring in the scaling limit of the low energy states of the spin

chain contains both a discrete H(disc) and continuous H(cont) component. For the latter, the

spectrum of conformal dimensions forms a continuous distribution which is characterized

by a density of states. We conjecture that the pseudo-Hilbert space of the Lorentzian black

hole NLSM coincides with a subspace of the C even sector of H(cont) in the case of periodic

boundary conditions for the spin chain. In turn, from the density of states restricted to

this subspace we construct an equilibrium density matrix for the NLSM. An important
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point is that H(disc) is excluded from the identification. This was motivated through the

study of the Hermitian structures for the spin chain, which suggests that the states from

H(disc) and H(cont) can not be interpreted simultaneously as normalizable states within a

single CFT.

Contrary to the Lorentzian black hole NLSM, the Hilbert space of the Euclidean one

contains a discrete component made up of normalizable states, whose wavefunction(als) are

localized in the vicinity of the tip of the target manifold. Remarkably, their contribution

to the CFT partition function coincides with one half of the contribution of the states

from H(disc) to the partition function of the spin chain. Using the full density of states for

H(cont) an equilibrium density matrix for the Euclidean black hole NLSM is proposed, which

reproduces the modular invariant partition function originally obtained by Maldacena,

Ooguri and Son in ref.[9].
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