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Summations by parton showers of large logarithms in electron-positron annihilation
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In a companion publication, we have explored how to examine the summation of large logarithms
in a parton shower. Here, we apply this general program to the thrust distribution in electron-
positron annihilation, using several shower algorithms. The method is to work with an appropriate
integral transform of the distribution for the observable of interest. Then, we reformulate the parton
shower calculation so as to obtain the transformed distribution as an exponential for which we can
compute the terms in the perturbative expansion of the exponent.

Keywords: perturbative QCD, parton shower

I. INTRODUCTION

A parton shower event generator can provide a QCD
based approximation for a cross section σ̂J(v) for an ob-
servable J to take a value v in hadron-hadron, lepton-
hadron, or electron-positron collisions. For example J
could denote the transverse momentum distribution in
the Drell-Yan process and v could be v = kT. Suppose
that the observable J is infrared safe with a scale Q̂2

J(v)

substantially greater than 1 GeV2. Then we can, at least
in principle, omit a model for hadronization in the event
generator. This leaves us with just an event generator
based on a parton shower, which uses parton splitting
functions based on the soft and collinear singularities of
QCD. Running the parton shower event generator gives
us an approximation σ̂J(v; shower) for the cross section
σ̂J(v).

The QCD perturbative expansion for σ̂J(v) will con-

tain logarithms, L = log(µ2
h/Q̂

2
J(v)), where µ2

h is the
scale of the hardest interaction in the event. Typically
one finds perturbative contributions to σ̂J(v) propor-

tional to αns (µ2
h)L2n. If µ2

h is close to Q̂2
J(v), then we

do not need the parton shower at all. Rather, we can
use just fixed order perturbation theory. However, if
1 GeV2 � Q̂2

J(v) � µ2
h, and L2 >∼ 1/αs(µ

2
h), then fixed

order perturbation theory is not adequate. One must
try to sum the contributions at each order of perturba-
tion theory that have the most powers of L. Since the
splitting functions in a parton shower reflect the soft and
collinear singularities of QCD and since it is these singu-
larities that lead to the appearance of the logarithms L,
we may hope that a parton shower provides an adequate
approximation to the cross section σ̂J(v).

We caution the reader that we do not expect that a
given parton shower algorithm correctly sums the log-
arithms for all infrared safe observables that generate

∗ Zoltan.Nagy@desy.de
† soper@uoregon.edu

large logarithms in perturbation theory. Thus we would
not speak of a next-to-leading-log parton shower, without
specifying just what logs are correctly summed.

For some observables J one can derive an analyti-
cal approximation, σ̂J(v; analytical), to σ̂J(v) that sums
the large logarithms in an appropriate sense. In some
cases [1, 2], it is also possible to find an analyti-
cal formula that well approximates the shower result
σ̂J(v; shower). Then one can tell whether σ̂J(v; shower)
agrees with σ̂J(v; analytical) to the accuracy with which
σ̂J(v; analytical) sums the large logarithms. However,
this is usually difficult.

Normally, the approximation σ̂J(v; shower) obtained
with a parton shower is limited to a numerical re-
sult obtained by averaging over many generated events.
In the limit of very large hard scattering scales µ2

h,
σ̂J(v; shower) should match σ̂J(v; analytical). How-
ever, for µ2

h in the kinematic range of experiments,
σ̂J(v; shower) contains effects that are numerically im-
portant but are not included in σ̂J(v; analytical). Thus
it is difficult to tell whether σ̂J(v; shower) agrees with
σ̂J(v; analytical).

One approach to comparing σ̂J(v; shower) to
σ̂J(v; analytical) is to directly calculate σ̂J(v; shower)
for a sequence of very large hard scattering scales µ2

h that
are far from the range of experiments. This approach
can work [3], and in fact we use it to a limited extent
in this paper. However, it is difficult to maintain the
required numerical accuracy at very large values of µ2

h

in a practical parton shower event generator.

In an analytical approach, one typically starts by tak-
ing an appropriate integral transform of σ̂J(v). Then one
calculates a cross section σJ(r) depending on a variable
or variables r. The cross section σJ(r) contains loga-
rithms L(r) that are large when r approaches a limit.
For instance, one might take the Fourier transform of
the kT distribution in the Drell-Yan process. Then r is
the transverse position, usually called b. The logarithm
is L = log(b2µ2

h), which is large when b2 →∞.

The aim of this paper is to redesign the calculation of
the parton shower cross section so that it produces the
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same result for σJ(r) as before but so that it produces
a calculation of σJ(r) and not a cross section for other
observables. The redesigned calculation gives σJ(r) as
an exponential of a quantity that can be expanded in
powers of the shower splitting operator. The leading or-
der term in the exponent is simple and is the candidate
for the summation of large logarithms produced by the
shower. If the higher order contributions to the expo-
nent are suitably small, then they to not interfere with
the summation represented by the leading order terms.

We have presented a general formulation of this pro-
gram in Ref. [4]. The general formulation applies to
hadron-hadron collisions, lepton-hadron collisions, and
electron-positron collisions and to a general infrared-safe
observable J . In this paper, we apply the general formal-
ism to a simple example. We examine the thrust distri-
bution in electron-positron annihilation. In this case, the
original variable v is τ = 1 − T , where T is the thrust.
We take the Laplace transform of the τ distribution, so
that the transformed variable r is the Laplace transform
variable ν.

There is much to be learned from this example. In par-
ticular, we learn that the shower result for σJ(ν) depends
on some details of the parton shower algorithm that one
might have thought are not important.

II. THE PARTON SHOWER FRAMEWORK

A parton shower can be described using operators on
a vector space, the “statistical space,” that describes the
momenta, flavors, colors, and spins for all of the par-
tons created in a shower as the shower develops. We use
this description in the parton shower event generator De-
ductor [5–12]. The general theory includes parton spins
but Deductor simply averages over spins, so our expla-
nation here will leave out parton spins. With m final
state partons in electron-positron annihilation, the par-
tons carry labels 1, 2, . . . ,m. The partons have momenta
{p}m = {p1, . . . , pm} and flavors {f}m. We take the par-
tons to be massless: p2

i = 0. For color, there are ket color
basis states |{c}m〉 and bra color basis states 〈{c′}m|. We
use the trace basis, as described in Ref. [5]. Color appears
in the statistical space as the density matrix, with basis
elements |{c}m〉〈{c′}m|. Then the m-parton basis states
for the statistical space are denoted by |{p, f, c, c′}m).
Deductor uses specific choices with respect to shower

kinematics, the shower ordering variable, the parton
splitting functions, and the treatment of color. In this
section, we outline some of these choices that play a role
in the analysis of this paper.

An exact color treatment is used in the general formal-
ism. However the code of Deductor mostly uses only
an approximation, the leading-color-plus (LC+) approx-
imation [8]. The LC+ approximation consists of simply
dropping some terms in the splitting functions. In this
paper, we generally use full color but sometimes use the
LC+ approximation.

In Deductor, the default is to order splittings ac-
cording to decreasing values of a hardness parameter Λ2.
The hardness parameter is based on virtuality. For mass-
less final state partons in electron-positron collisions, the
definition is1

Λ2 =
(p̂l + p̂m+1)2

2pl ·Q
Q2 . (1)

Here the mother parton in a final state splitting has
momentum pl and the daughters have momenta p̂l and
p̂m+1. Here Q is the total momentum Q of all of the
final state partons, which remains the same throughout
the shower. It proves convenient to use a dimensionless
virtuality variable y = Λ2/Q2:

y =
(p̂l + p̂m+1)2

2pl ·Q
. (2)

Thus y decreases from one shower splitting to the next.
One could use a hardness parameter other than Λ to

order the shower. We will consider also a shower ordered
by the transverse momentum [13] in a splitting,

k2
T = z(1− z)(p̂l + p̂m+1)2 = z(1− z)y Q2/al , (3)

where z is the momentum fraction in the splitting and

al =
Q2

2pl ·Q
. (4)

We denote the hardness scale of a splitting by µ2. When
we use the default ordering variable Λ for the shower,
then µ2 = Λ2. If we use kT ordering, then µ2 = k2

T.
To measure an infrared-safe observable OJ in electron-

positron annihilation, we can use the notation

σJ =
(
1
∣∣OJ U(µ2

f , Q
2)
∣∣ρh) . (5)

Here |ρh) is the starting parton state for the hard scatter-
ing process. If we were to evaluate |ρh) beyond leading
order, then it would contain appropriate subtractions to
remove infrared singularities. In this paper, we evaluate
|ρh) at lowest order so that it is simply a qq̄ state. We as-
sociate a scale µ2

h = Q2 with the hard scattering, where Q
is the qq̄ momentum. The operator U(µ2

f , Q
2) expresses

the evolution of the system from the scale Q2 to a scale
µ2

f of order 1 GeV2, at which the shower is turned off.
After this evolution, we have a statistical state that can
be expanded in the basis states |{p, f, c, c′}m). This ex-
pansion is realized as an integral, which takes the form of
a Monte Carlo integration that is obtained by generating
many Monte Carlo events. We then apply an operator OJ
that embodies the desired measurement. We still have a

1 In hadron-hadron collisions, Q in Eq. (1) is replaced by the mo-
mentum Q0 of the final state partons at the start of the shower.
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sum and integral of basis states. We take the product
with the statistical bra state (1|, which is defined by(

1
∣∣{p, f, c, c′}m) =

〈
{c′}m

∣∣{c}m〉 . (6)

This leaves us with the numerical result for σJ .

The shower operator U takes the form

U(µ2
2, µ

2
1) = T exp

(∫ µ2
1

µ2
2

dµ2

µ2
S(µ2)

)
. (7)

There is an instruction T that indicates that if we expand
the exponential, the operators S(µ2) with the smallest
values of µ2 belong on the left. This is simply a com-
pact way of saying that U(µ2

2, µ
2
1) obeys the differential

equation

µ2
1

∂

∂µ2
1

U(µ2
2, µ

2
1) = U(µ2

2, µ
2
1)S(µ2

1) . (8)

In general, the generator S(µ2) is a sum of terms with
approximations to nr real emissions and nv virtual ex-
changes,

S(µ2) =

∞∑
nr,nv=0
nr+nv≥1

S [nr,nv](µ2) . (9)

In existing parton shower event generators like Deduc-
tor, only the terms with nr + nv = 1 are implemented.
This is also the case for other parton shower algorithms
that we consider here. Thus in this paper we assume

S(µ2) = S [1,0](µ2) + S [0,1](µ2) . (10)

The operator S [1,0](µ2) creates a splitting, changing an
m parton state to an m + 1 parton state. The oper-
ator S [0,1](µ2) leaves the number of partons and their
momenta and flavors unchanged, although in a full color
treatment it modifies the parton color state. The opera-
tor S [0,1](µ2) is related to the inclusive sum over splitting
variables in S [1,0](µ2) by (1|S [0,1](µ2) = −(1|S [1,0](µ2),
so that (

1
∣∣S(µ2) = 0 . (11)

If we had contributions to the shower generator with nr+
nv > 1, we would still have (1|S(µ2) = 0 [14].

The operator S [1,0](yQ2) in Deductor [8, 13] is not
simple. However, in the cases for which we need an ex-
plicit expression in our analytical formulas here, we need
only its form when y � 1 and (1 − z) � 1. This is
the limit in which S [1,0](yQ2) expresses the soft×collinear
double singularity of QCD. (However, our numerical re-

sults use the full S [1,0](yQ2).) In this limit, we have

S [1,0](yQ2)
∣∣{p, f, c, c′}m)

≈ −
m∑
l=1

m∑
k=1
k 6=l

[Tl ⊗ T †k + Tk ⊗ T †l ]
∣∣{c, c′}m)

×
∫
dφ

2π

∫
dz

1− z
αs(λR(1− z)yQ2/al)

2π

×Θ

(
aly

ϑ(l, k)
< 1− z < 1

)
×
∣∣{p̂, f̂}m+1

)
.

(12)

There is a sum over parton indices l and k. We split
parton l with dipole partner parton k, creating a new
parton m + 1, which we consider to be a gluon. The
momenta {p̂}m+1 of the partons after the splitting are
functions of the momenta {p}m before the splitting and
the splitting variables y, z, φ, as specified in Eqs. (92) and
(97).

In Eq. (12), [Tl ⊗ T †k ] and [Tk ⊗ T †l ] are operators on

the parton color space. The notation (Cket ⊗ C†bra) for
color operators represents the following. A color basis
vector |{c, c′}m) in the statistical space represents the
color density operator |{c}m〉〈{c′}m|. Here |{c}m〉 and
|{c′}m〉 are basis vectors for color amplitudes. Let Cket

and Cbra be operators on color amplitudes for m partons
that yield color amplitudes for m̂ partons with m̂ ≥ m.
In the case of S [1,0](yQ2), m̂ = m + 1. The statistical

space vector (Cket ⊗ C†bra)|{c, c′}m) then represents the

color density operator Cket|{c}m〉〈{c′}m|C†bra. In the case

of [Tl ⊗ T †k ], the operator creates a new gluon with color
index a by inserting a color generator matrix T a on the
color line for parton l in the ket state and inserting T a

on the color line for parton k in the bra state.

The argument of αs in Eq. (12) contains the standard
factor [15]

λR = exp

(
−CA(67− 3π2)− 10nf

3 (11CA − 2nf)

)
. (13)

The rest of the argument of αs is k2
T, Eq. (3), except

that we drop the factor z because we are interested only
in small 1− z. Although the operators S [1,0](µ2) contain
one power of αs, this αs is evaluated at a scale that is
not µ2. Thus if we expand S(µ2) in powers of αs(µ

2), all
powers will appear.

The parameter ϑ(l, k) is

ϑ(l, k) =
1

2
[1− cos(θ(l, k))] , (14)

where θ(l, k) is the angle between partons l and k in
|{p, f, c, c′}m). With this definition, ϑ ≈ θ2/4 for small

θ. The angle θ̂(l,m+1) between partons l and m+1 after
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a splitting is given by

[1− cos θ̂(l,m+1)] =
Q2

p̂l ·Q p̂m+1 ·Q
p̂l · p̂m+1

∼ 2aly

z(1− z)
+O(y2) .

(15)

For small y and small (1− z), this gives

ϑ̂(l,m+1) ≈ aly

1− z
. (16)

Thus the lower limit on (1− z) is equivalent to an upper

limit on the splitting angle, ϑ̂(l,m+1) < ϑ(l, k). The
splitting angle should be smaller than the angle between
the two partons l and k. The restriction (1−z) < 1 gives
a lower limit on the splitting angle. The net range for
the new splitting angle is

aly < ϑ̂(l,m+1) < ϑ(l, k) . (17)

III. PREVIEW

In this paper, we propose a way to gain more direct
access to the summation of large logarithms in a parton
shower than by simply running the shower and examining
the result numerically. The analysis adapts the general
formulation of this program in Ref. [4] to the practical
analysis of first order parton shower algorithms. Our
example is the thrust distribution in electron-positron
annihilation. Here is a brief preview.

• We are interested in the thrust distribution g(τ) with
τ = 1− T , where T is the thrust.

• As in analytical approaches, we work with the Laplace
transform g̃(ν) of g(τ).

• g̃(ν) contains large logarithms, αs(µ
2
h)n logj(ν) with

j ≤ 2n.

• We suppose that we know the proper summation of the
log(ν) factors in full QCD at a certain level of accuracy,
but a leading order parton shower is not full QCD. We
wish to know what result the parton shower gives.

• The result of simply running the shower and examining
the result numerically can be expressed as in Eq. (5),

g̃(ν) =
1

σh

(
1
∣∣O(ν)U(µ2

f , Q
2)
∣∣ρh) . (18)

Here σh is the total hard scattering cross section and
(1| · · · |ρh) indicates an ensemble average in the sta-
tistical state |ρh) representing the perturbative hard
scattering. Then U(µ2

f , Q
2) represents the operator on

the statistical space that generates the shower. This
gives us states consisting of tens of partons. We could
measure any operator OJ that we like in this many-
parton state. We apply a simple operator O(ν) that
measures the Laplace transformed thrust distribution
on this state.

• In this paper, we rewrite g̃(ν) in the form

g̃(ν) =
1

σh

(
1
∣∣T exp

(
I(ν)

)
O(ν)

∣∣ρh) . (19)

The notation T indicates an ordering instruction for the
exponential, as in Eq. (7) and later in Eq. (48). In the
example used in this paper, the operator O(ν) applied
to the hard state |ρh) simply gives an eigenvalue 1.

• With this form, we have expressed g̃(ν) in terms of the
exponential of an operator I(ν). This operator has an
expansion2

I(ν) =
∞∑
k=1

I [k](ν) , (20)

where each term in I [k](ν) contains k factors of the
splitting operator S.

• We can further expand in powers of αs evaluated at a
fixed scale Q2/ν:

I [k](ν) =
∞∑
n=k

[
αs(Q

2/ν)

2π

]n
I [k]
n (ν) . (21)

• The most important feature of Eq. (19) is that the op-
erators I [k](ν) can be computed using two fairly simple
recursion relations.

• The first order contribution, I [1](ν), is obtained rather
trivially from one power of the shower splitting opera-
tor S(µ2). This operator is then the obvious candidate
for the exponentiation of g̃(ν) generated by the shower.
If S(µ2) is suitably defined, I [1](ν) matches the expo-
nentiation in full QCD.

• If I [1](ν) generates the desired exponentiation, then
I [k](ν) for k ≥ 2 should be small, so as not to destroy
the desired exponentiation.

• For next-to-leading-log summation (NLL), this implies

that I [k]
n (ν) should not contain more than n−1 powers

of log(ν).

• In one case examined in this paper, we can show ana-

lytically that I [k]
n (ν) does not contain more than n− 1

powers of log(ν).

• The operator I [2]
2 (ν) is of special interest. It should not

contain more than one power of log(ν).

2 In Ref. [4], we expanded operators in powers of αs(µ2) at a run-
ning scale µ2 appropriate to the operator. Here, we expand oper-
ators in powers of the splitting operator S of the parton shower.
This technique simplifies the analysis of a shower algorithm that
is based on lowest order perturbation theory.
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• In some cases, we can show analytically that I [2]
2 (ν)

does not contain more than one power of log(ν).

• We can write the integral for I [2]
n (ν) and evaluate it

numerically to see if it contains more than n−1 powers
of log(ν).

• For some shower algorithms examined here, I [2]
n (ν)

passes this test. For one algorithm examined, it fails.

IV. THE THRUST DISTRIBUTION AND ITS
LAPLACE TRANSFORM

We will examine the distribution of thrust, T , defined
for parton momenta {p}m by [16, 17]

T = max
~nt

∑
i |~pi · ~nt|∑
i |~pi|

=
1√
Q2

max
~nt

∑
i

|~pi · ~nt| . (22)

The axis defined by the unit vector ~nt that maximizes
the sum is the thrust axis. We will be interested in the
behavior of the thrust distribution for small values of

τ = 1− T . (23)

We can write τ in a useful form by defining sets R and
L of partons by ~pi · ~nt > 0 for i ∈ R and ~pi · ~nt < 0 for
i ∈ L. Then,

τ =
1√
Q2

[∑
i∈R

(Ei − ~pi · ~nt) +
∑
i∈L

(Ei + ~pi · ~nt)

]
. (24)

Using the thrust axis, we define ± components of vectors
by

p± =
[
p0
i ± ~p · ~nt

]
/
√

2 . (25)

Then we can write

τ = τR + τL , (26)

where, using Q2 = 2Q+Q− with Q+ = Q−,

τR =
∑
i∈R

p−i
Q−

, τL =
∑
i∈L

p+
i

Q+
. (27)

In order to use a parton shower to analyze the thrust
distribution, we begin with the cross section

g(τ) =
1

σh

dσ

dτ
, (28)

where σh is the hard scattering cross section, equal to
dσ/dτ integrated over τ . We wish to analyze the small τ
behavior of g(τ). For this purpose, it is standard to work
with the Laplace transform of g(τ),

g̃(ν) =

∫ ∞
0

dτ e−ντg(τ) . (29)

The coefficient of αns in the perturbative expansion of
g(τ) is not a normal function but is a distribution with

logj−1(τ)/τ singularities at τ = 0. In order to work with
normal functions, we define the integral of g(τ),

f(τ) =

∫ τ

0

dτ̄ g(τ̄) . (30)

The coefficients in the perturbative expansion of f(τ)

are functions with logj(τ) integrable singularities. The
cross section g(τ̄) vanishes for τ̄ > 1/2, so f(τ) = 1 for
τ > 1/2.

Consider the Laplace transform of f(τ):

f̃(ν) =

∫ ∞
0

dτ e−ντf(τ) . (31)

We have

f̃(ν) =

∫ ∞
0

dτ ′ e−ντ
′
∫ τ ′

0

dτ g(τ)

=

∫ ∞
0

dτ g(τ)

∫ ∞
τ

dτ ′ e−ντ
′

=
1

ν

∫ ∞
0

dτ g(τ) e−ντ .

(32)

Thus

f̃(ν) =
g̃(ν)

ν
. (33)

The function f(τ) is given by the inverse Laplace trans-

form of f̃(ν):

f(τ) =
1

2πi

∫
C

dν eντ
g̃(ν)

ν
. (34)

The contour C runs from ν0 − i∞ to ν0 + i∞ parallel to
the imaginary ν axis, where ν0 > 0 so that the contour
is to the right of the singularity of g̃(ν)/ν at ν = 0.

We expect the coefficient of αns in the perturbative ex-

pansion of f(τ) to contain terms proportional to logj(τ)
for τ → 0. To see how this translates to g̃(ν), we can
start by noting that

f(τ) = τA =⇒ g̃(ν) = Γ(1 + A) ν−A . (35)

Thus

f(τ) =
∞∑
j=0

Aj

j!
logj(τ) =⇒

g̃(ν) = Γ(1 + A)
∞∑
j=0

(−A)j

j!
logj(ν) .

(36)

Matching powers of A, we learn that logarithms of τ for
small τ translate into logarithms of ν for large ν.

We wish to use the parton shower formalism to find
an analytical formula that sums the logarithms of ν in
g̃(ν). We can then compare what we find to the standard
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QCD formula that sums these logarithms. The final step
needed to obtain something that can be compared to ex-
periment would be to perform the inverse Laplace trans-
form (34). This step is the same for the parton shower
method or the normal analytical methods. We discuss
this step only briefly in this paper.

V. THE MEASUREMENT OPERATOR

If we want to measure the thrust distribution, then we
define, following Eq. (5),

g(τ) =
1

σh

(
1
∣∣δ(τ − τop)U(µ2

f , µ
2
h)
∣∣ρh) , (37)

where τ is a real number times the unit operator on the
statistical space and τop is the operator defined by

τop

∣∣{p, f, c, c′}m) = τ({p}m)
∣∣{p, f, c, c′}m) , (38)

where τ({p}m) is 1−T for partons with momenta {p}m,
as defined in Eqs. (26) and (27). Here σh = (1|ρh). This
is the Born cross section for e+e− → qq̄ since, in this
paper, we evaluate |ρh) at lowest order.

Rather than measuring g(τ), we wish to measure the
Laplace transform g̃(ν). For this we have, using Eq. (29)
in Eq. (37),

g̃(ν) =
1

σh

(
1
∣∣O(ν)U(µ2

f , Q
2)
∣∣ρh) , (39)

where

O(ν) = e−ντop . (40)

We will analyze g̃(ν) in the subsequent sections. For this
analysis, it is important that O(ν) has an inverse

O(ν)−1 = eντop . (41)

VI. SETTING UP THE SHOWER ANALYSIS

Eq. (39) allows us to calculate g̃(ν) numerically using
the shower evolution operator U(µ2

f , µ
2
h). We would now

like to reformulate the shower result so that it takes an
analytical form if, indeed, the shower generates g̃(ν) in a
simple exponentiated form.

A. The operators Y and SY

We begin with an operator Y(µ2; ν), which is defined
in Ref. [4] using the all-order formalism of Ref. [14]
for describing parton shower algorithms. The operator
Y(µ2; ν) is defined to have two properties. First, it does
not change the number of partons or their momenta or
flavors [4]. Second,(

1
∣∣Y(µ2; ν) =

(
1
∣∣O(ν)U(µ2

f , µ
2)O−1(ν) . (42)

These properties apply either for electron-positron anni-
hilation or for hadron-hadron collisions. In this paper, we
consider only electron-positron annihilation. Although
Y(µ2; ν) does not change the number of partons or their
momenta or flavors [4], it can change the parton colors.
There is some freedom to define what Y(µ2; ν) does to the
parton color state. We will define the action of Y(µ2; ν)
on states in the statistical space in Eqs. (73) and (74)
below.

The property Eq. (42) can be written as(
1
∣∣O(ν)U(µ2

f , µ
2) =

(
1
∣∣Y(µ2; ν)O(ν) . (43)

This result allows us to rewrite g̃(ν) as given by Eq. (39)
as

g̃(ν) =
1

σh

(
1
∣∣Y(Q2; ν)O(ν)

∣∣ρh) . (44)

We see that instead of generating a complete parton
shower as in Eq. (39) and then measuring O(ν) for the
resulting many parton state, we can measure O(ν) just
on the hard state and then apply the operator Y(µ2; ν)
that depends on ν but leaves the number of partons un-
changed.

How can one evaluate Y(µ2; ν)? We note first from
the form of Eq. (42), that Y(µ2; ν) has a perturbative
expansion beginning with Y(µ2; ν) = 1 + O(αs) and at
µ2 = µ2

f it is exactly

Y(µ2
f ; ν) = 1 . (45)

We define an infinitesimal generator SY(µ2; ν) for
Y(µ2; ν) by

1

µ2
SY(µ2; ν) = Y−1(µ2; ν)

d

dµ2
Y(µ2; ν) . (46)

Then Y(µ2; ν) obeys the differential equation

µ2 d

dµ2
Y(µ2; ν) = Y(µ2; ν)SY(µ2; ν) , (47)

with boundary condition Y(µ2
f ; ν) = 1. We can use the

notation

Y(µ2; ν) = T exp

(∫ µ2

µ2
f

dµ̄2

µ̄2
SY(µ̄2; ν)

)
(48)

to indicate the solution to Eq. (47). The instruction T
indicates that the operators SY(µ̄2; ν) with the smallest
values of µ̄2 belong on the left.

We will sometimes adopt the notation

I(ν) =

∫ Q2

µ2
f

dµ2

µ2
SY(µ2; ν) (49)

when the upper integration limit is Q2 and we do not
need to explicitly display SY(µ2; ν).3

3 This is a useful definition even though Y(µ2; ν) is not the expo-
nential of I(ν) because of the T instruction in Eq. (48).
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B. Relation of SY to the shower generator S

We can relate SY(µ2, ν) to S(µ2). From Eq. (8), we
have

µ2 ∂

∂µ2
U(µ2

f , µ
2) = U(µ2

f , µ
2)S(µ2) . (50)

Using Eqs. (50) and (47) to differentiate Eq. (42), we
have(

1
∣∣Y(µ2; ν)SY(µ2; ν)

=
(
1
∣∣O(ν)U(µ2

f , µ
2)S(µ2)O−1(ν) .

(51)

Using Eq. (43), this becomes(
1
∣∣Y(µ2; ν)SY(µ2; ν)

=
(
1
∣∣Y(µ2; ν)O(ν)S(µ2)O−1(ν) .

(52)

We can also use Eq. (47), together with the boundary
condition (45), to write an equation for Y(µ2; ν),

Y(µ2; ν) = 1 +

∫ µ2

µ2
f

dµ̄2

µ̄2
Y(µ̄2; ν)SY(µ̄2; ν) . (53)

C. Operator mapping P

To use Eq. (52), we introduce some useful notation.
Let A be an operator that increases the number of par-
tons or leaves the number of partons unchanged and
changes momenta, flavors, and colors. Let B be an op-
erator on the statistical space that leaves the number m
of partons and their momenta and flavors {p, f}m un-
changed, although it can change the parton color state.4

Let B be defined such that(
1
∣∣B =

(
1
∣∣A . (54)

We will define a linear relation A → B that realizes this
relation. To represent this linear relation, we adopt the
notation

B =
[
A
]
P . (55)

The needed construction is straightforward. Suppose
that A maps states with m partons into states with m̂
partons, with m̂ ≥ m. Let A have the form

A = (Cket ⊗ C†bra)R , (56)

where R acts on the momentum and flavor factor of the
statistical space and (Cket⊗C†bra) acts on the color factor.

4 In Ref. [4], A is sometimes an operator that is defined in d =
4− 2ε dimensions that contains poles 1/ε and singularities when
the momenta of partons created by A become soft or collinear.
However, (1|A is well defined in d = 4 dimensions. Then B is
well defined in 4 dimensions.

Recall from Sec. II the meaning of the color operators

(Cket⊗C†bra). Letting |{c}m〉 and |{c′}m〉 be basis vectors
for color amplitudes, a color basis vector |{c, c′}m) in
the statistical space represents the color density operator

|{c}m〉〈{c′}m|. Then (Cket ⊗ C†bra)|{c, c′}m) represents

the color density operator Cket|{c}m〉〈{c′}m|C†bra.
Let us evaluate (1|A|{p, f, c, c′}m) for an arbitrary m-

parton basis state |{p, f, c, c′}m). The inner product of
(1| with a statistical basis state is given in Eq. (6). We
insert a sum over the basis states [5] with m̂ partons,(

1
∣∣A∣∣{p, f, c, c′}m)
=

1

m̂!

∫
[d{p, f}m̂]

∑
{c,c′}m̂

(
1
∣∣{p̂, f̂ , ĉ, ĉ′}m̂)

×
(
{ĉ, ĉ′}m̂

∣∣Cket ⊗ C†bra

∣∣{c, c′}m)
×
(
{p̂, f̂}m̂

∣∣R∣∣{p, f}m) .
(57)

For the color, this gives us the trace of the color density

operator obtained by applying Cket ⊗ C†bra to |{c, c′}m),

namely the trace of Cket|{c}m〉〈{c′}m|C†bra. The result is(
1
∣∣A∣∣{p, f, c, c′}m)
=
〈
{c′}m

∣∣C†braCket

∣∣{c}m〉
× 1

m̂!

∫
[d{p, f}m̂]

(
{p̂, f̂}m̂

∣∣R∣∣{p, f}m) . (58)

We now need to define B = [A]P so that(
1
∣∣[A]P =

(
1
∣∣A . (59)

We distinguish two cases. First, if m̂ = m we leave the
color operator in A unchanged,[

(Cket ⊗ C†bra)R
]
P

∣∣{p, f, c, c′}m) (60)

= (Cket ⊗ C†bra)
∣∣{p, f, c, c′}m)

× 1

m!

∫
[d{p̂, f̂}m]

(
{p̂, f̂}m

∣∣R∣∣{p, f}m) .
Second, if m̂ > m we define[

(Cket ⊗ C†bra)R
]
P

∣∣{p, f, c, c′}m) (61)

=
1

2

(
C†braCket ⊗ 1 + 1⊗ C†braCket

) ∣∣{p, f, c, c′}m)
× 1

m̂!

∫
[d{p̂, f̂}m̂]

(
{p̂, f̂}m̂

∣∣R∣∣{p, f}m) .
In either case, this satisfies (1|[A]P = (1|A.

There is a special case of some importance. Suppose
that m̂ = m and, in addition, A leaves the momenta and
flavors of all partons unchanged. That is, |{p, f}m) is an
eigenvector of R:

R
∣∣{p, f}m) = r({p, f}m)

∣∣{p, f}m) . (62)

Then A applied to |{p, f, c, c′}m) takes the form

A
∣∣{p, f, c, c′}m) = (Cket ⊗ C†bra) r({p, f}m)

×
∣∣{p, f, c, c′}m) . (63)
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In this case, the definition (60) gives us[
A
]
P = A . (64)

There is some freedom available in fixing the color

part of [(Cket ⊗ C†bra)R]P, as discussed in Sec. VI D of
Ref. [14]. We could add any operator A′ to [A]P if A′ has
the property that (1|A′ = 0. The form in Eqs. (60) and
(61) is recommended by its simplicity, so we will use it
in this paper.

This defines the operator [A]P in general. However,
when [A]P acts on the qq̄ initial hard scattering state in
e+e− annihilation, the action of [A]P is simpler. The
color space for |{c, c′}2) has {c} = {c′} and is one dimen-
sional. Therefore, the color operator in either of Eqs. (60)
and (61) acting on the |{c, c′}2) state can only return an
eigenvalue. That is, we have

(Cket ⊗ C†bra)
∣∣{c, c}2) = λcolor

∣∣{c, c}2) (65)

or

1

2

(
C†braCket ⊗ 1 + 1⊗ C†braCket

)∣∣{c, c}2)
= λcolor

∣∣{c, c}2) . (66)

This tells us that |{p, f, c, c}2) is an eigenvector of [A]P:[
A
]
P

∣∣{p, f, c, c}2) = λA
∣∣{p, f, c, c}2) , (67)

where

λA = λcolor

∫
[d{p̂, f̂}2]

(
{p̂, f̂}2

∣∣R∣∣{p, f}2) . (68)

Using (1|{p, f, c, c}2) = 〈{c}2|{c}2〉 and 〈{c}2|{c}2〉 = 1
[5], we have a very simple result for the eigenvalue,

λA =
(
1
∣∣A∣∣{p, f, c, c}2) . (69)

D. Recursive definition of SY

We can now define SY(µ2; ν) so that it satisfies
Eq. (52). Recall that Y(µ2; ν) = 1 + O(αs). Because
of this, it is possible to isolate SY(µ2; ν) on the left hand
side of Eq. (52):(

1
∣∣SY(µ2; ν) =

(
1
∣∣{Y(µ2; ν)O(ν)S(µ2)O−1(ν)

+
[
1− Y(µ2; ν)

]
SY(µ2; ν)

}
.

(70)

Using the operator mapping
[
· · ·
]
P, this is

SY(µ2; ν) =
[
Y(µ2; ν)O(ν)S(µ2)O−1(ν)

]
P

+
[[

1− Y(µ2; ν)
]
SY(µ2; ν)

]
P .

(71)

Note that the operators Y(µ2; ν) and SY(µ2; ν) in the
second line of Eq. (71) leave the number of partons, their

momenta, and their flavors unchanged. Thus Eq. (64)
applies and the [· · ·]P operation has no effect.

Equation (71) can be used to define SY(µ2; ν) and
Y(µ2; ν) recursively. We can write SY(µ2; ν), Y(µ2; ν),
and I(ν) as expansions in powers of the shower evolu-
tion operator S:

SY(µ2; ν) =
∞∑
k=1

S [k]
Y (µ2; ν) ,

Y(µ2; ν) = 1 +
∞∑
k=1

Y [k](µ2; ν) ,

I(ν) =
∞∑
k=1

I [k](ν) ,

(72)

where each of S [k]
Y (µ2; ν), Y [k](µ2; ν), and I [k](ν) contain

k factors of S. Then we can write Eq. (71) as

S [k]
Y (µ2; ν) =

[
Y [k−1](µ2; ν)O(ν)S(µ2)O−1(ν)

]
P

−
k−1∑
j=1

Y [k−j](µ2; ν)S [j]
Y (µ2; ν) .

(73)

Similarly, we can write Eq. (53) as

Y [k](µ2; ν) =
k∑
j=1

∫ µ2

µ2
f

dµ̄2

µ̄2
Y [k−j](µ̄2; ν)S [j]

Y (µ̄2; ν). (74)

These equations apply for k = 1, 2, . . . with Y [0](µ2; ν) =
1.

We now illustrate this for the first two orders. At order
1, Eq. (73) gives us

S [1]
Y (µ2; ν) =

[
O(ν)S(µ2)O−1(ν)

]
P . (75)

At order α2
s , we have

S [2]
Y (µ2; ν) =

[
Y [1](µ2; ν)O(ν)S(µ2)O−1(ν)

]
P

− Y [1](µ2; ν)S [1]
Y (µ2; ν) .

(76)

From Eq. (53) at first order, we have

Y [1](µ2; ν) =

∫ µ2

µ2
f

dµ̄2

µ̄2
S [1]
Y (µ̄2; ν) . (77)

For S [1]
Y (µ2; ν) we can use Eq. (75). This gives us

S [2]
Y (µ2; ν) =

∫ µ2

µ2
f

dµ̄2

µ̄2

[[
O(ν)S(µ̄2)O−1(ν)

]
P

×
[
O(ν)S(µ2)O−1(ν)

]
1−P

]
P .

(78)

Here we use the abbreviation[
A
]
1−P = A−

[
A
]
P . (79)
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The operator SY(µ2; ν) is a complicated operator in
general. However, it is significant that, because of
Eqs. (67) and (69), the initial qq̄ state is an eigenvec-
tor of SY(µ2; ν):

SY(µ2; ν)
∣∣{p, f, c, c}2) = λSY

∣∣{p, f, c, c}2) , (80)

where

λSY =
(
1
∣∣SY(µ2; ν)

∣∣{p, f, c, c}2) . (81)

VII. EVALUATION OF S [1]
Y (µ2; ν)

Let us see what we can say about S [1]
Y (µ2; ν) as given

in Eq. (75). In a first order shower, like Deductor, we
divide S(µ2) into its real emission and virtual parts as in
Eq. (10). Then Eq. (75) gives us

S [1]
Y (µ2; ν) =

[
O(ν)S [1,0](µ2)O−1(ν)

+O(ν)S [0,1](µ2)O−1(ν)
]
P .

(82)

The virtual operator S [0,1](µ2; 0) leaves the momentum
and flavor state unchanged, so this is

S [1]
Y (µ2;ν)

=
[
O(ν)S [1,0](µ2)O−1(ν) + S [0,1](µ2)

]
P .

(83)

Recall from Eq. (11) that (1|S [0,1](µ2) = −(1|S [1,0](µ2).
This tells us that[

S [0,1](µ2)
]
P = −

[
S [1,0](µ2)

]
P . (84)

Using Eq. (84), Eq. (83) becomes

S [1]
Y (µ2;ν)

=
[
O(ν)S [1,0](µ2)O−1(ν)− S [1,0](µ2)

]
P .

(85)

This is a convenient form for calculations.

VIII. CHANGE IN τ INDUCED BY A
SPLITTING

The operator O(ν)S [1,0](µ2)O−1(ν) appears in

Eq. (85) for S [1]
Y (µ2; ν). This operator is

O(ν)S [1,0](µ2)O−1(ν) = e−ντopS [1,0](µ2)e+ντop . (86)

The operator S [1,0](µ2) is a sum of operators,

S [1,0](µ2) =
∞∑
l=1

S [1,0]
l (µ2) , (87)

where l is the label of the parton that splits. When we

apply S [1,0]
l (µ2) to a state |{p, f, c, c′}m), the splitting

operator creates a new state |{p̂, f̂ , ĉ, ĉ′}m+1) as long as

l ≤ m. For l > m, Sl just gives zero. The operators τop

measure the values of τ before and after the splitting.
Thus(
{p̂, f̂ , ĉ, ĉ′}m+1

∣∣O(ν)S [1,0]
l (µ2)O−1(ν)

∣∣{p, f, c, c′}m)
= e−ν(τ̂−τ)

(
{p̂, f̂ , ĉ, ĉ′}m+1

∣∣S [1,0]
l (µ2)

∣∣{p, f, c, c′}m) ,
(88)

where τ = τ({p}m) and τ̂ = τ({p̂}m+1). Thus we need
to know how τ changes in a splitting. We are looking
for the leading contributions to logarithms of ν, so we
can use the approximations that τ is small and that the
splitting is nearly soft or collinear.

We start with momenta {p}m and suppose that the
parton that splits is in the right thrust hemisphere, l ∈
R. The splitting produces a new parton l and a parton
m+1. After the splitting, we have partons with momenta
{p̂}m+1.

The emission of a parton changes the thrust axis. How-
ever, in the case of a nearly soft or collinear splitting of
a parton in a state with small τ , the thrust axis changes
by very little. For this reason, we calculate τ({p̂}m+1)
for the new parton state using the thrust axis of the old
parton state {p}m. We also assume that after the split-
ting partons l and m + 1 are still in the right thrust
hemisphere.

Now we turn to the calculation of τ̂ − τ . We use the
definition, Eqs. (26) and (27), to write

τ̂ − τ =
p̂−l + p̂−m+1 − p

−
l

Q−

+
∑
i∈R

i6={l,m+1}

p̂−i − p
−
i

Q−
+
∑
i∈L

p̂+
i − p

+
i

Q+
.

(89)

Now we need to evaluate (p̂−l + p̂−m+1 − p
−
i )/Q− and

(p̂±i − p
±
i )/Q±. Following the notation of Appendix B of

Ref. [13], we define

h± = (1 + y ± λ)/2 ,

λ =
√

(1 + y)2 − 4aly ,

al =
Q2

2pl ·Q
,

(90)

where y was defined in Eq. (2). We suppose that y � 1.
We define a lightlike vector nl by

nl =
2pl ·Q
Q2

Q− pl . (91)

Note that nl is independent of the normalization of Q.
We write the momentum vectors for partons l andm+1

after the splitting as

p̂l = h+z pl + h−(1− z)nl + k⊥ ,

p̂m+1 = h+(1− z)pl + h−z nl − k⊥ ,
(92)

where k⊥ ·pl = k⊥ ·nl = 0. The splitting is specified by y,
the momentum fraction z in Eq. (92), and the azimuthal
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angle φ of k⊥. The magnitude of k⊥ is determined by
the condition p̂2

l = 0 or p̂2
m+1 = 0:

− k2
⊥ = z(1− z)y 2pl ·Q . (93)

Define

Pl = p̂l + p̂m+1 = h+pl + h−nl . (94)

This gives us P 2
l = 2pl ·Qy. Using these results we obtain

(Q− pl)2 = (Q− Pl)2 . (95)

We require that momentum be conserved in the splitting,
so that

Q− pl =
m∑
i=1
i6=l

pi , Q− Pl =
m∑
i=1
i6=l

p̂i . (96)

The relation (95) allows the p̂i for i /∈ {l,m + 1} to be
obtained from the pi by a Lorentz transformation,

p̂µi = Λµν p
ν
i , i /∈ {l,m+1} . (97)

The needed Lorentz transformation can be a small boost
in the pl-Q plane. Let

pi = αipl + βinl + pi,⊥ , (98)

where pi,⊥ · pl = pi,⊥ · nl = 0. Then define p̂i for i /∈
{l,m+ 1} by

p̂i = eωαipl + e−ωβinl + pi,⊥ . (99)

The needed boost angle is small:

ω = y +O(y2) . (100)

Using Eq. (97) in Eq. (89), we have

τ̂ − τ =
p̂−l + p̂−m+1 − p

−
l

Q−

+
∑
i∈R
i6=l

(Λ−ν − δ−ν )
pνi
Q−

+
∑
i∈L

(Λ+
ν − δ+

ν )
pνi
Q+

.
(101)

We will see momentarily that (p̂−l + p̂−m+1 − p
−
l )/Q− is

small, of order y. This allows τ̂ − τ to be of order y.
In the third term, for i ∈ R, (Λµν − δµν ) is of order y.

The thrust axis defines the ± components of vectors in
Eq. (101). If pl were exactly aligned with the thrust axis,
then the only nonvanishing index choice for Λ−ν would be
ν = −. But p−i /Q

− � 1 for i ∈ R, since this quan-
tity is of order τ and we suppose that τ � 1. This
restriction on the index choices is not exact. However,
for i ∈ R, the components pνi /Q

− for ν ∈ {1, 2} are of
order pνi /Q

− ∼ [p+
i p
−
i ]1/2/Q−, which is at most of or-

der
√
τ . The component pνi /Q

− for ν = + can be of
order 1. However, Λ−+ = Λ−− is at most of order y2 since
Λ = exp(ωw) where ω is given by Eq. (100) and the first

order contribution to Λ−− vanishes because the genera-
tor matrix wµν is antisymmetric. Thus the second term
in Eq. (101) is of order y times a small factor, either τ ,√
τ , or y. The same reasoning applies to the third term.
We conclude that the only surviving term in Eq. (101)

is the first:

τ̂ − τ ≈
p̂−l + p̂−m+1 − p

−
l

Q−
. (102)

We have

p̂−l + p̂−m+1 − p
−
l

Q−
≈

(1− al)yp−l + alyn
−
l

Q−
. (103)

With our kinematic conventions,

p−l
Q−

=
1− cos θ(l, ~nT)

2al
,

n−l
Q−

=
1 + cos θ(l, ~nT)

2al
,

(104)

where

cos θ(l, ~nT) =
|~pl · ~nt|
|~pl|

. (105)

This gives us

p̂l + p̂−m+1 − p
−
l

Q−
≈ ξl y , (106)

where

ξl = 1−
(

1− 1

2al

)
[1− cos(θ(l, ~nT))] . (107)

That is

τ̂ − τ ≈ ξl y . (108)

The same result holds for l ∈ L if we change 1 −
cos(θ(l, ~nT)) to 1 + cos(θ(l, ~nT)).

If we are splitting the quark or the antiquark in the
two parton state created initially in e+e− annihilation,
then al = 1 and θ(l, ~nT) = 0. Then ξl = 1.

In the general case, 0 < 1− cos(θ(l, ~nT)) < 1 for l ∈ R
and 1/2 < (2al − 1)/(2al) < 1, so

0 < ξl < 1 . (109)

We get ξl → 0 only when θl → π/2 and parton l is very
soft, 1/al → 0. Notice that there is no singularity for
θl → π/2, so there is no singularity for ξl → 0. There
is a singularity for θ(l, ~nT) → 0 for all partons l. This
corresponds to ξl → 1. Thus in the general case we can
treat ξl as being close to 1. We will argue in Appendix A
that for the purpose of finding next-to-leading logarithms
of ν we can simply set ξl to 1.
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We conclude that the effect of the operators O(ν) in a
splitting of parton l can be approximated by

O(ν)S [1,0]
l (µ2)O−1(ν)

∣∣{p, f, c, c′}m)
≈ S [1,0]

l (µ2) e−νξ
op
l y
∣∣{p, f, c, c′}m) , (110)

where ξop
l is an operator that, acting on a state

|{p, f, c, c′}m), has eigenvalue ξl as defined in Eq. (107)
as long as l ≤ m. For l > m, we can simply define ξl to
have eigenvalue 1. We recall that ξl is generally of order
1 and equals 1 exactly in the case of a splitting of one of
the partons in a two parton state. Using this in Eq. (85)
gives us

S [1]
Y (µ2; ν) ≈ −

∑
l

[
S [1,0]
l (µ2)

]
P(1− e−νξ

op
l y) . (111)

IX. S [1]
Y FOR A QUARK-ANTIQUARK STATE

For the qq̄ state created initially in electron-positron
annihilation, Eq. (111) simplifies considerably. First, the
index l denoting the parton that splits can take only the
values l = 1 (for the quark) and l = 2 (for the antiquark).
Each choice gives the same result, so we can take l = 1
and multiply by two. Also, the color factors are trivial. In

[S [1,0]
l (µ2)]P we encounter color operators T1 ·T1, T2 ·T2,

and T1 · T2, where Ti · Tj =
∑
a T

a
i T

a
j and T ai inserts a

color matrix T a on parton line i. The operators T1 · T1

and T2 · T2 simply give an eigenvalue CF times the unit
color operator, while T1 · T2 gives −CF. This gives us a
result of the form

S [1]
Y (µ2;ν)

∣∣{p, f, c, c′}2)
≈ − (1− e−νy)λ(y)

∣∣{p, f, c, c′}2) . (112)

The eigenvalue λ(y) is obtained in a straightforward cal-
culation from the q → q + g splitting functions used in
Deductor [8]. There is an integral over the splitting
variables z and φ. The φ integral is trivial and gives
simply a factor 2π. The integration over the momentum
fraction z remains,

λ(y) = 2CF

∫ 1

0

dz
{αs(λR(1− z)yQ2)

2π
fsing(z, y)

+
αs(λRyQ

2)

2π
freg(z, y)

}
.

(113)

The argument of αs contains the standard factor λR,
Eq. (13), and, in the first term, a factor (1 − z), as
in Eq. (12) with al = 1. The functions fsing(z, y) and
freg(z, y) are taken directly from Deductor and are
quite complicated. However, they are simple in the rele-
vant limits, y → 0 with fixed z and y → 0 with 1−z ∝ y.
In these limits, they are

fsing(z, y) ≈ 2

1− z + y
− 2 ,

freg(z, y) ≈ 1− z .
(114)

Note that fsing(z, 0) + freg(z) = (1 + z2)/(1 − z) is just
the DGLAP splitting kernel for q → q + g. However in
fsing(z, y) the singularity at (1 − z) → 0 is regulated by
adding y in the denominator.

We have written these results in the form used in De-
ductor. In fsing(z, y), we could recognize that the sec-
ond term could have been transferred to freg(z, y).

We would now like to compare this to the standard
results for the summation of logs of τ in Ref. [18]. We
begin by inserting Eq. (114) into Eq. (113):

λ(y) ≈ 2CF

∫ 1

0

dz
{αs(λR(1− z)yQ2)

2π

2

1− z + y

− αs(λR(1− z)yQ2)

2π
2

+
αs(λRyQ

2)

2π
(1− z)

}
.

(115)

We will want to evaluate this approximately for small
y in such a way that if we expand the result in pow-
ers of αs(yQ

2) we retain all terms proportional to
αns (yQ2) logn(y) and αns (yQ2) logn−1(y). After integrat-
ing over µ̄2 = yQ2 as in Eq. (48), this will give con-
tributions αns (Q2) logn+1(ν) and αns (Q2) logn(ν). These
are the leading log (LL) and next-to-leading log (NLL)
terms. In λ(y), we neglect contributions proportional to
fewer powers of log(y) or to powers of y.

In order to carry out this approximate evaluation, we
note first that we can use

αs(Aµ
2) = αs(µ

2)− β0 log(A)α2
s (µ2) +O(α3

s ) , (116)

where β0 = (11CA − 2nf)/(12π). Then we can omit the
λR(1 − z) factor in the argument of αs in the second
term in Eq. (115) and the λR in the third term, since
these terms do not have 1/(1 − z + y) singularities that
could produce log(y) factors after integration. In the first
term, there is a 1/(1− z + y) singularity. For this term,
we need to keep the α2

s contribution in Eq. (116). After
performing the z integration in the last two terms, this
gives us

λ(y) ≈ 4CF

∫ 1

0

d(1− z) 1

1− z + y

× αs((1− z)yQ2)− β0 log(λR)α2
s((1− z)yQ2)

2π

− 3CF
αs(yQ

2)

2π
.

(117)

Now we note that the y in the denominator in the first
term of Eq. (117) places an effective lower cutoff on (1−z)
at about (1− z) = y. This observation suggests that the
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integration over (1− z) can be written in a simpler form:

λ(y) ≈ 4CF

∫ 1

y

d(1− z)
1− z

× αs((1− z)yQ2)− β0 log(λR)α2
s((1− z)yQ2)

2π

− 3CF
αs(yQ

2)

2π
. (118)

In fact, this correctly reproduces the αns logn(y) terms
and the αns logn−1(y) terms in the expansion of the inte-
gral. To see this, one can approximately solve the renor-
malization group equation for αs in the form [19]

1

αs(Aµ2)
=

1 + β0 log(A)αs(µ
2)

αs(µ2)

+
β1

β0
log
(
1 + β0 log(A)αs(µ

2)
)

+ · · · ,

(119)

with µ2 = yQ2 and A = 1 − z. Here β1 = (17C2
A −

5CAnf − 3CFnf)/(24π2). This yields αs(Aµ
2) as a series

αs(Aµ
2) = αs(µ

2)

{
1 +

∞∑
n=2

αns (µ2)
[
cn logn(A)

+ dn logn−1(A) + · · ·
]}

.

(120)

Then one can check that the integral (117) agrees with
the integral (118) at the NLL level.

The current code in Deductor does not include the β1

contributions in evaluating the z dependence of αs((1 −
z)yQ2). This appears to be not particularly significant
numerically, but it is significant in principle because it

means that some of the NLL contributions to S [1]
Y (µ2; ν)

are absent.
We can now compare to Ref. [18] by changing the in-

tegration variable to q2 = (1− z)yQ2:

λ(y) ≈ 4CF

∫ yQ2

y2Q2

dq2

q2

αs(q
2)− β0 log(λR)α2

s(q
2)

2π

− 3CF
αs(yQ

2)

2π
.

(121)

This agrees with the result in Eq. (64) of Ref. [18] for the
LL and NLL contributions to λ(y).

We have been seeking a formula for the summation
of logarithms of ν in the Laplace transform g̃(ν) of the
thrust distribution. We use Eq. (44) for g̃(ν), choosing
for |ρh) the state with a quark and an antiquark with
opposite momenta. The operator O(ν) acting on this
state is just 1. Then

g̃(ν) =
1

σh

(
1
∣∣Y(Q2; ν)

∣∣ρH) . (122)

We approximate Y(Q2; ν), using Eq. (48), as the expo-

nential of the integral of the first order generator S [1]
Y ,

which we take from Eq. (112). This gives

g̃(ν) ≈ exp

(
−
∫ 1

µ2
f /Q

2

dy

y
(1− e−νy)λ(y)

)
. (123)

Here λ(y) can be either the exact function from Deduc-
tor, as in Eq. (113), or else the approximate function
given in Eq. (118). The factor (1 − e−νy) puts an effec-
tive lower cutoff on the y integration at y = 1/ν. Then a
factor logn(y) in λ(y) produces a factor logn+1(ν) in the
exponent of Eq. (123).

We have seen that one can start with Eq. (39) for g̃(ν)
as given by a parton shower and rearrange the operators
to express g̃(ν) in the form Eq. (122). Then approxi-

mating SY(µ2; ν) by S [1]
Y (µ2; ν) in Y gives us a candidate

result (123) for the summation of logarithms of ν in g̃(ν).
We do note that the shower splitting functions contain
ingredients related to the argument of αs in the parton
splitting function. These ingredients are somewhat ad
hoc from the perspective of just representing the soft and
collinear singularities of a single splitting. Their purpose
was to build into the first order splitting functions some
approximation to splitting functions beyond leading or-
der so as to improve the effectiveness of a parton shower
in summing large logarithms. We have seen the effect of
these ingredients in giving us the standard summation of
thrust logarithms at the NLL level.

Our analysis uses primarily the Laplace transform g̃(ν)
of the thrust distribution. One can take the inverse
Laplace transform of g̃(ν) to obtain the thrust distri-
bution g(τ), Eq. (28), itself. The function g(τ) is the
derivative of f(τ), Eq. (30):

g(τ) =
df(τ)

dτ
. (124)

We can follow Ref. [18] to evaluate f(τ) at NLL accuracy:

f(τ) = exp

(
− CF

πβ2
0

{
f1(λ)

αs(Q2)
+ f2(λ)

})
× 1

Γ(1− γ(λ))
.

(125)

Here

λ = β0αs(Q
2) log(1/τ) , (126)

the LL function f1(λ) is

f1(λ) = (1−2λ) log(1−2λ)−2(1−λ) log(1−λ) , (127)
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the NLL function f2(λ) is

f2(λ) = − β1

2β0
2 log2(1− λ) +

β1

2β0
log2(1− 2λ)

+ 2β0γE log

(
1− λ
1− 2λ

)
−
(
β1

β0
+ β0 log(λR)

)
log

(
(1− λ)2

1− 2λ

)
+

3β0

2
log(1− λ) ,

(128)

where γE is Euler’s constant, and the function γ(λ) is

γ(λ) = −2CF

πβ0
log

(
1− λ
1− 2λ

)
. (129)

The logarithm of f(τ) contains LL contributions pro-
portional to αs(Q

2)n logn+1(1/τ) and NLL contribu-
tions proportional to αs(Q

2)n logn(1/τ), but contribu-

tions proportional to αs(Q
2)n logj(1/τ) with j < n are

dropped. Of course, a parton shower does not drop terms
beyond NLL.

X. RESULT FROM THE PARTON SHOWER

We have manipulated the operators used in a parton
shower to produce a candidate formula (123) for the sum-
mation of logarithms for the thrust distribution. We have
seen that this formula reproduces the known result [18]
for g̃(ν) in QCD at the NLL level. We now ask what
the result for g̃(ν) is in a first order parton shower that
uses the Deductor algorithm or another algorithm of
interest. That is, what do we get from Eqs. (39) and (7),

g̃(ν) =
1

σh

(
1
∣∣O(ν)T exp

(∫ Q2

µ2
f

dµ2

µ2
S(µ2)

)∣∣ρh), (130)

when the shower generator S(µ2) represents a first order
shower? This must be the same as the result of using
Eq. (48) in Eq. (44),

g̃(ν) =
1

σh

(
1
∣∣T exp

(∫ Q2

µ2
f

dµ2

µ2
SY(µ2; ν)

)
O(ν)

∣∣ρh) .
(131)

Here we take |ρh) to be the initial qq̄ state in e+e− an-
nihilation (with massless quarks). Then there is some
simplification because O(ν)|ρh) = |ρh). There is a more
significant simplification because |ρh) is an eigenvector of
SY(µ2; ν). We use Eq. (80), Eq. (81), and (1|ρh) = σh to
give

g̃(ν) = exp

(∫ Q2

µ2
f

dµ2

µ2

(
1
∣∣SY(µ2; ν)

∣∣{p, f, c, c}2)) .

(132)

Here |{p, f, c, c}2) is a color singlet qq̄ basis state with
p1 +p2 = Q. The results are independent of the direction
of ~p1 = −~p2 and independent of the quark flavor f1 =
−f2. There is only one possible color state. The basis
state is normalized to (1|{p, f, c, c}2) = 1 [5].

We use the operator I(ν) defined in Eq. (49),

I(ν) =

∫ Q2

µ2
f

dµ2

µ2
SY(µ2; ν) , (133)

to write Eq. (132) as

g̃(ν) = exp
[(

1
∣∣I(ν)

∣∣{p, f, c, c}2)] . (134)

In Eq. (134), I(ν) is obtained from just S(µ2), not from
any higher order splitting functions that might be present
in a higher order shower algorithm. The result for g̃(ν)
in Eq. (134) could be very different from g̃(ν) as given by
Eq. (123) because a first order parton shower is not the
same as full QCD.

Using Eq. (72), we expand I(ν) as a series of terms
I [k](ν), where I [k](ν) contains k powers of the shower
splitting operator S(µ2). Thus I [k](ν) contains k powers
of αs evaluated at a running scale inside the integrations
that give I [k](ν). We can expand I [k](ν) in powers of
αs evaluated at a fixed scale. A convenient choice5 is
µ2

fixed = Q2/ν. Thus we write

I [k](ν) =
∞∑
n=k

[
αs(Q

2/ν)

2π

]n
I [k]
n (ν) . (135)

In I [k]
k (ν) there are k integrations over scale variables y

and k integrations over momentum fractions z, so I [k]
k (ν)

could contain 2k factors of log(ν). Changing the scale in
αs can produce one more factor log(ν) for each factor

αs, so that I [k]
n (ν) could contain n+ k factors of log(ν).

However the exponent in g̃(ν) in Eq. (123) contains only

contributions proportional to αns (Q2/ν) logj(ν) with j ≤
n+1. Thus a minimal expectation for the parton shower

is that I [k]
n (ν) contains only j factors of log(ν) with j ≤

n+1. If this is the case, we can say that the log(ν) factors
exponentiate.

If we expand the QCD result for the exponent in g̃(ν)
as given by Eq. (123) in powers of αs(Q

2/ν), the co-
efficients of αns (Q2/ν) logn+1(ν) and αns (Q2/ν) logn(ν)
take particular values. These values are generated by
I [1](ν) using αs with its argument suitably specified by

the shower algorithm. Thus for k ≥ 2, I [k]
n (ν) must not

5 In Sec. IX, we used µ2
fixed = Q2. Using Eq. (119), one can

transform between expansions
∑
c(n, j)αn

s (Q2/ν) logj(ν) and∑
c′(n, j)αn

s (Q2) logj(ν) with j ≤ n in each case, so both choices
of µ2

fixed work equally well in an analytical treatment. In a nu-
merical evaluation, µ2

fixed = Q2/ν has the advantage that this
scale is closer to the running scale at which αs is evaluated inside
the integrals for I[k](ν).
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contain a factor logn+1(ν) if we are to maintain the log-
arithmic summation at LL level and additionally must
not contain a factor logn(ν) if we are to maintain the
logarithmic summation at NLL level.

We investigate how many powers of log(ν) are con-

tained in I [k]
n (ν) in the following two sections.

XI. PARTON SHOWER AT LEADING LOG

In this section we examine the operators S [k]
Y (µ2; ν)

with the aim of discovering the behavior of g̃(ν) as given
by a leading order parton shower using the Λ-ordered
Deductor algorithm. The Laplace transform of g̃(ν)
can be represented according to Eq. (134) in terms of the
integral I(ν) of SY(µ2; ν) defined in Eq. (49). We write
the definition in the form

I(ν) =

∫ ν

0

dx

x
SY(xQ2/ν; ν) . (136)

Here we have defined a standard scale Q2/ν and a scale
variable x that gives the ratio of µ2 to this standard scale:
µ2 = xQ2/ν. If we expand the exponential (not just the
exponent) in Eq. (134) in powers of αs(Q

2/ν), we will find

terms proportional to αns (Q2/ν) logj(ν) with j ≤ 2n.

The simplest expectation would be that I(ν) also has

an expansion with terms αns (Q2/ν) logj(ν) with j ≤ 2n.
Such a representation would not be very useful, even
if we knew all of the coefficients for j = 2n. It is
much more useful if there are nonzero contributions
αns (Q2/ν) logj(ν) only for j ≤ n + 1 and we knew the
coefficients for terms with j = n + 1. We then call the
j = n+ 1 terms the leading log, LL, terms.

In the notation of this paper, the operator I [1](ν) is
proportional to one power of the shower splitting opera-
tor and thus to one power of a running αs rather than the
fixed αs(Q

2/ν). As we have seen, this operator generates

a whole LL series αns (Q2/ν) logj(ν) with j = n + 1. We
may hope that this is all that survives at the LL level.
That is, we may hope that I [k](ν) for k ≥ 2 generates

only terms αns (Q2/ν) logj(ν) with j ≤ n. If so, we will
say that g̃(ν) as given by the leading order parton shower
exponentiates at the LL level.

In this section, we demonstrate that g̃(ν) does expo-
nentiate at the LL level in this sense. In the following
section, we will turn our attention to the NLL level.

We will need a small preliminary analysis. We see

from Eq. (78) that for S [2]
Y (xQ2/ν; ν) we will need

[O(ν)S(µ̄2)O−1(ν)]P and [O(ν)S(µ̄2)O−1(ν)]1−P.

For [O(ν)S(µ̄2)O−1(ν)]P, we briefly repeat the deriva-
tion that gave us Eq. (111). We use Eq. (10), then

Eq. (84), then Eqs. (87) and (110):[
O(ν)S(xQ2/ν)O−1(ν)

]
P

=
[
O(ν)S [1,0](xQ2/ν)O−1(ν) + S [0,1](xQ2/ν)

]
P

=
[
O(ν)S [1,0](xQ2/ν)O−1(ν)− S [1,0](xQ2/ν)

]
P

=
∑
l

[
S [1,0]
l (xQ2/ν)e−ξ

op
l x − S [1,0]

l (xQ2/ν)
]
P

= −
∑
l

[
S [1,0]
l (xQ2/ν)

]
P(1− e−ξ

op
l x) . (137)

For
[
O(ν)S(µ̄2)O−1(ν)

]
1−P, we need a somewhat dif-

ferent argument. We use Eqs. (79) and (10). Then we
note that [S [0,1](xQ2/ν)]P = S [0,1](xQ2/ν) according to
Eq. (64) because S [0,1](xQ2/ν) leaves the parton mo-
menta and flavors unchanged. Then we use Eqs. (87)
and (110). Finally, we use the definition (79) again. This
gives[
O(ν)S(xQ2/ν)O−1(ν)

]
1−P

=
{
O(ν)S [1,0](xQ2/ν)O−1(ν) + S [0,1](xQ2/ν)

−
[
O(ν)S [1,0](xQ2/ν)O−1(ν) + S [0,1](xQ2/ν)

]
P

}
=
{
O(ν)S [1,0](xQ2/ν)O−1(ν)

−
[
O(ν)S [1,0](xQ2/ν)O−1(ν)

]
P

}
=
{∑

l

S [1,0]
l (xQ2/ν)e−ξ

op
l x

−
∑
l

[
S [1,0]
l (xQ2/ν)

]
Pe
−ξop

l x
}

=
∑
l

[
S [1,0]
l (xQ2/ν)

]
1−Pe

−ξop
l x . (138)

Now we can start with SY(xQ2/ν; ν) at first order.
Eq. (111) gives us the result on the right hand side of
Eq. (137):

S [1]
Y (xQ2/ν; ν)

≈ −
∑
l

[
S [1,0]
l (xQ2/ν)

]
P (1− e−ξ

op
l x) .

(139)

Recall that the eigenvalue ξl of ξop
l , given by Eq. (107),

is of order 1. We will also need Y [1](xQ2/ν; ν). When we
substitute Eq. (139) into Eq. (77), we obtain

Y [1](xQ2/ν; ν)

= −
∫ x

0

dx̄

x̄

∑
l

[
S [1,0]
l (x̄Q2/ν)

]
P (1− e−ξ

op
l x̄) .

(140)

Here, and in the remainder of this section, we set the
infrared cutoff µ2

f to zero. We notice that the factor (1−
e−ξlx̄) is small for x̄ � 1 and approaches zero like x̄
when x̄ → 0. This provides an infrared cutoff for the x̄
integration.
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Now look at SY(xQ2/ν; ν) at second order. We use
Eq. (78):

S [2]
Y (xQ2/ν; ν)

=

∫ x

0

dx̄

x̄

[[
O(ν)S(x̄Q2/ν)O−1(ν)

]
P

×
[
O(ν)S(xQ2/ν)O−1(ν)

]
1−P

]
P .

(141)

With the results (137) and (138), we obtain

S [2]
Y (xQ2/ν; ν)

= −
∑
l̄,l

∫ x

0

dx̄

x̄

[[
S [1,0]

l̄
(x̄Q2/ν)

]
P(1− e−ξ

op

l̄
x̄)

×
[
S [1,0]
l (xQ2/ν)

]
1−Pe

−ξop
l x
]
P .

(142)

We integrate this to form the contribution to I,
Eq. (49), with two powers of S:

I [2](ν) =

∫ ν

0

dx

x
S [2]
Y (xQ2/ν; ν) . (143)

There are potentially two log(ν) factors from the z inte-

grations inside the two factors of S [1,0]
l . After expanding

the running couplings in S [1,0]
l , at order αns (Q2/ν) there

could be a total of n factors of log(ν). Then we integrate
over x and x̄. This could produce two more factors of
log(ν), giving logn+2(ν) at order αns (Q2/ν). But what
happens in the x and x̄ integrations that we find based
on Eq. (142)? If x̄� 1, the factor (1− e−ξl̄x̄) is small, so
that the x̄ integration is effectively limited to the range
1 <∼ x̄. If 1 � x, the factor e−ξl̄x is small, so that the x
integration is effectively limited to the range x <∼ 1. We
also have x̄ < x. Thus the net effective integration range
is 1 <∼ x̄ < x <∼ 1. This leaves only x̄ ∼ x ∼ 1. There are
no log(ν) factors from the x̄ and x integrations.

A contribution to I [2] proportional to
αns (Q2/ν) logn+1(ν) can be designated leading log.
The result (142) shows that there is no LL contribution
to I [2]. Rather, the LL contributions to the integral I
of SY come from S [1]

Y after we account for the argument

of the strong coupling αs in S [1]
Y , Eq. (121). This leaves

the possibility of a NLL, αns (Q2/ν) logn(ν), contribution
to I [2]. We will investigate the NLL contribution in the

following section by looking at the z integrations in S [2]
Y .

We will also need some qualitative information about
the behavior of Y [2]. From Eq. (74) we have

Y [2](xQ2/ν; ν) =

∫ x

0

dx̄

x̄

{
S [2]
Y (x̄Q2/ν; ν) (144)

+ Y [1](x̄Q2/ν; ν)S [1]
Y (x̄Q2/ν; ν)

}
.

Using Eqs. (142), (139), and (140),

Y [2](xQ2/ν; ν)

=
∑
l1,l2

∫ x

0

dx1

x1

∫ x1

0

dx2

x2

×
{[[
S [1,0]
l2

(x2Q
2/ν)

]
P (1− e−ξ

op
l2
x2)

×
[
S [1,0]
l1

(x1Q
2/ν)

]
1−P e

−ξop
l1
x1
]
P

+
[
S [1,0]
l2

(x2Q
2/ν)

]
P (1− e−ξ

op
l2
x2)

×
[
S [1,0]
l1

(x1Q
2/ν)

]
P (1− e−ξ

op
l1
x1)
}
.

(145)

In both terms we have a factor (1 − e−ξl2x2) so there is
an effective integration range 1 <∼ x2 < x1 < x. This

implies that Y [2](xQ2/ν; ν) → 0 for x � 1. In the
first term, there is a factor e−ξl1x1 , so that the inte-
grand is small for 1 � x1. However the second term

contains no such factor. The operators S [1,0]
l1

(x1Q
2/ν)

and S [1,0]
l2

(x2Q
2/ν) can give us logarithms of their argu-

ments. For this reason, Y [2](xQ2/ν; ν) can grow slowly,
like a power of log(x), for 1� x.

If we take x = 1 in Eq. (145), the effective integration
range for x1 and x2 is 1 <∼ x2 < x1 < 1. Thus x2 ∼ x1 ∼
1. Then there are no factors of log(ν) produced by the

integrations over x1 and x2. Each factor of S [1,0]
l (Q2/ν)

contains one factor of log(ν). Thus Y [2](Q2/ν; ν) contains
at most 2 factors of log(ν).

We can generalize these observations to suggest induc-

tion hypotheses for S [k]
Y and Y [k] for k ≥ 2:

1. The operator S [k]
Y (xQ2/ν; ν) is suppressed by a fac-

tor x times logarithms for x → 0 and by an expo-
nential e−cx times logarithms for x →∞. Its only
unsuppressed region is for x ∼ 1.

2. The operator Y [k](xQ2/ν; ν) is suppressed by a fac-
tor x times logarithms for x→ 0 and grows at most
logarithmically for x→∞.

3. The operators S [k]
Y (Q2/ν; ν) and Y [k](Q2/ν; ν) each

contain at most k factors of log(ν) at order
αks (Q2/ν).

In property 3, we note that the operators S [k]
Y (Q2/ν; ν)

and Y [k](Q2/ν; ν) contain higher powers of αs(Q
2/ν) that

arise from expanding the running couplings in their defi-
nitions in powers of αs(Q

2/ν). This expansion can yield
one more power of log(ν) per power of αs(Q

2/ν). Thus
there are at most n powers of log(ν) at order αns (Q2/ν).

We have found that these properties hold at order k =
2. We now establish that they hold for any larger order
by assuming that they hold at order k and showing that
they hold at order k + 1.



16

Begin with S [k+1]
Y . From Eq. (73) we have

S [k+1]
Y (xQ2/ν; ν)

=
[
Y [k](xQ2/ν; ν)

×
{
O(ν)S(xQ2/ν)O(ν)− S [1]

Y (xQ2/ν; ν)
}]

P

−
k−1∑
j=2

[
Y [k+1−j](xQ2/ν; ν)S [j]

Y (xQ2/ν; ν)
]
P

−
[
Y [1](xQ2/ν; ν)S [k]

Y (xQ2/ν; ν)
]
P . (146)

We use Eq. (75) to simplify the first term and Eqs. (77)
and (75) to simplify the last term:

S [k+1]
Y (xQ2/ν; ν)

=
[
Y [k](xQ2/ν; ν)

[
O(ν)S(xQ2/ν)O(ν)

]
1−P

]
P

−
k−1∑
j=2

[
Y [k+1−j](xQ2/ν; ν)S [j]

Y (xQ2/ν; ν)
]
P

−
[ ∫ x

0

dx̄

x̄

[
O(ν)S(x̄Q2/ν)O(ν)

]
P

× S [k]
Y (xQ2/ν; ν)

]
P
. (147)

Now we can use Eq. (138) in the first term and Eq. (137)
in the last term, giving us

S [k+1]
Y (xQ2/ν; ν)

=
∑
l

[
Y [k](xQ2/ν; ν)

[
S [1,0]
l (xQ2/ν)

]
1−P

]
Pe
−ξop

l x

−
k−1∑
j=2

[
Y [k+1−j](xQ2/ν; ν)S [j]

Y (xQ2/ν; ν)
]
P

+
∑
l

[ ∫ x

0

dx̄

x̄

[
S [1,0]
l (x̄Q2/ν)

]
P(1− e−ξ

op
l x̄)

× S [k]
Y (xQ2/ν; ν)

]
P
. (148)

In the first term, property 2 for Y [k](xQ2/ν; ν) implies
that this term is unsuppressed only for 1 <∼ x, while the
factor exp(−ξop

l x) implies that this term is unsuppressed
only for x <∼ 1. Thus this term is unsuppressed only for

x ∼ 1. In the second term, property 1 for S [j]
Y (xQ2/ν; ν)

implies that this term is unsuppressed only for x ∼ 1.

In the third term, property 1 for S [k]
Y (xQ2/ν; ν) implies

that this term is unsuppressed only for x ∼ 1. This gives

us property 1 for S [k+1]
Y (xQ2/ν; ν).

Now set x = 1 in Eq. (148). There is an integration
over x̄ in the third term, but, accounting for the factor
[1 − exp(−ξop

l x̄)], the integration region is 1 <∼ x̄ < 1.
That is, x̄ ∼ 1. We can then use property 3 for the oper-
ators that appear in order to count the maximum possible
number of factors of log(ν) in each term. At order αk+1

s ,

this gives the maximum number of factors of log(ν) as

k + 1, thus verifying property 3 for S [k+1]
Y (Q2/ν; ν).

Now we examine Y(xQ2/ν; ν). We use Eq. (74) to
write for k ≥ 1,

Y [k+1](xQ2/ν; ν)

=

∫ x

0

dx̄

x̄
Y [k](x̄Q2/ν; ν)S [1]

Y (x̄Q2/ν; ν)

+
k∑
j=2

∫ x

0

dx̄

x̄
Y [k+1−j](x̄Q2/ν; ν)S [j]

Y (x̄Q2/ν; ν)

+

∫ x

0

dx̄

x̄
S [k+1]
Y (x̄Q2/ν; ν) . (149)

We use Eq. (75) and (137) to simplify the first term:

Y [k+1](xQ2/ν; ν)

= −
∑
l

∫ x

0

dx1

x1
Y [k](x1Q

2/ν; ν)
[
S [1,0]
l (x1Q

2/ν)
]
P

× (1− e−ξ
op
l x1)

+

k∑
j=2

∫ x

0

dx1

x1
Y [k+1−j](x1Q

2/ν; ν)S [j]
Y (x1Q

2/ν; ν)

+

∫ x

0

dx1

x1
S [k+1]
Y (x1Q

2/ν; ν) . (150)

In each term, condition 2 for Y [k](x1Q
2/ν; ν) or

Y [k+1−j](x1Q
2/ν; ν) or condition 1 for S [k+1]

Y (x1Q
2/ν; ν)

implies that the integrand of the x1 integration is unsup-
pressed only for 1 <∼ x1. Since x1 < x, Y [k+1](xQ2/ν; ν)
is unsuppressed only for 1 <∼ x. This establishes property

2 for Y [k+1](xQ2/ν; ν).
Now set x = 1 in Eq. (150). There is an integration

over x1 in each term, but the integration region is 1 <∼
x1 < 1. We can then use property 3 for the operators that
appear in order to count the maximum possible number
of factors of log(ν) in each term. At order αk+1

s (Q2/ν),
this gives the maximum number of factors of log(ν) as
k + 1, thus verifying property 3 for Y [k+1](Q2/ν; ν).

We call the properties 1,2, and 3 above the LL expo-
nentiation property of SY(µ2; ν), as discussed at the start
of this section. In the following section we analyze the
NLL contributions to SY(µ2; ν).

XII. PARTON SHOWER AT
NEXT-TO-LEADING LOG

We have seen that SY(µ2; ν) has the proper perturba-
tive structure to allow g̃(ν) as given by a leading order
parton shower using the Λ-ordered Deductor algorithm
to exponentiate correctly at the leading log level.

First, the operator S [1]
Y (µ2; ν), constructed from one

power of the shower splitting operator S(µ2) has the
right structure to reproduce the known QCD result [18]
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at LL accuracy and even at NLL accuracy, provided that
the argument the running coupling αs in S(µ2) is prop-
erly defined. For I [1](ν), we can state this in terms
of an expansion in powers of αs(Q

2/ν). We consider

the integral I [1](ν) of S [1]
Y (µ2; ν) defined in Eq. (136).

When the running αs in I [1](ν) is expanded in powers
of αs(Q

2/ν), the coefficients of αns (Q2/ν) logn+1(ν), that
is the LL coefficients, are correct and the coefficients of
αns (Q2/ν) logn(ν), the NLL coefficients, are also correct.

Second, each of the operators S [k]
Y (µ2; ν) for k ≥ 2 has

the right structure so that in the integral I [k](ν), the
coefficient of αns (Q2/ν) logn+1(ν), which contributes to
the exponent in g̃(ν) at LL accuracy, vanish. That is,

the coefficient I [k]
n (ν) of αns (Q2/ν) in I [k](ν) contains at

most n powers of log(ν).
This LL exponentiation property arises from two fea-

tures of S [k]
Y (µ2; ν). First, S [k]

Y (µ2; ν) is suppressed for

µ2 � Q2/ν and for µ2 � Q2/ν, so that only the inte-
gration region µ2 ∼ Q2/ν contributes to I [k](ν) and no
factor of log(ν) arises from integrating over µ2 from Q2/ν

to Q2. Second, S [k]
Y (Q2/ν; ν) at order αns (Q2/ν) contains

at most n factors of log(ν).
Now, if the coefficients of αns (Q2/ν) logn(ν) in I [k](ν)

were to vanish for k ≥ 2, then I [k](ν) would not con-
tribute to g̃(ν) at NLL level. Then the only NLL con-
tributions to g̃(ν) would come from the expansion of the
running coupling in I [1](ν). Since these contributions
match the known QCD result [18], we would conclude
that the first order parton shower according to the De-
ductor algorithm generates the known QCD result at
NLL accuracy.

Remarkably, this is the case: in I [k](ν) for k ≥ 2 the

coefficients I [k]
n (ν) of αns (Q2/ν) contain at most n − 1

powers of log(ν) for large ν. The proof of this result is
somewhat involved, so we present it in Appendix A.

The proof in Appendix A requires that color be treated
exactly. Although, in principle, the Deductor algo-
rithm allows color to be treated with arbitrarily high ac-
curacy [20, 21], high accuracy requires substantial com-
puter resources. The use of a less exact version of color,
the LC+ approximation [8], is more practical and is ade-
quate for most purposes. With the LC+ approximation,
some of the NLL contributions to the exponent in g̃(ν)
will be incorrect at order 1/N 2

c , where Nc = 3 is the
number of colors.

XIII. NUMERICAL BEHAVIOR OF I [2](ν)

We have considered analytically the coefficient I [k]
n (ν)

of [αs(Q
2/ν)/(2π)]n in I [k](ν), Eq. (133). We have seen

analytically in Secs. XI and XII and in Appendix A that

I [k]
n (ν) for k ≥ 2 contains no more than n− 1 powers of

log(ν) for large ν.

The first nontrivial example of this is that I [2]
2 (ν),

when calculated at large log(ν), is proportional to log(ν)

plus a constant but has no log2(ν) contribution. Simi-

larly, I [2]
3 (ν) has at most a log2(ν) contribution at large

ν. We can check these results numerically.
We define the second order term in the exponent in

g̃(ν), Eq. (134):

〈
I [2](ν)

〉
=

∫ Q2

0

dµ2

µ2

(
1
∣∣S [2]
Y (µ2; ν)

∣∣{p, f, c, c}2) . (151)

We expand 〈I [2](ν)〉 in powers of αs(Q
2/ν)/(2π) and cal-

culate numerically the first two coefficients, 〈I [2]
2 (ν)〉 and

〈I [2]
3 (ν)〉,

〈I [2](ν)〉 = 〈I [2]
2 (ν)〉

(
αs(Q

2/ν)

2π

)2

+ 〈I [2]
3 (ν)〉

(
αs(Q

2/ν)

2π

)3

+ · · · .
(152)

The state |{p, f, c, c}2) in Eq. (151) is a color singlet,
flavor singlet, qq̄ state with p1 + p2 = Q. The results
are the same with any quark flavor choice and there is
only one possible color state. The state is normalized to

(1|{p, f, c, c}2) = 1. The operator S [2]
Y (µ2; ν) is calculated

using the exact Deductor splitting functions according
to Eq. (78). We use the exact definition of thrust to cal-
culate τ in O(ν), Eq. (40). The calculation is performed
with full color, not just leading color or the LC+ approx-

imation. The integrals over scale in 〈I [2]
n (ν)〉 are infrared

convergent so there is no need to impose a lower cutoff

on the shower scale µ2. Then the coefficients 〈I [2]
n (ν)〉

are independent of Q2.

We plot 〈I [2]
2 (ν)〉 versus log(ν) as the solid red curve in

Fig. 1. We first note that 〈I [2]
2 (ν)〉 is small. For instance,

log(ν) = 8 corresponds roughly to τ = e−8 ≈ 3 × 10−4

in the thrust distribution. For log(ν) < 8, we find

|〈I [2]
2 (ν)〉| <∼ 1. Then if we take αs ≈ 0.1, we have

[αs/(2π)]2|〈I [2]
2 (ν)〉| <∼ 0.0003. The function I [2](ν) ap-

pears in the exponent of the Laplace transform of the
thrust distribution, but for such a small value of I [2](ν),
one would not have needed to exponentiate it.

Our primary concern is the behavior of 〈I [2]
2 (ν)〉 for

very large log(ν).6 Our analytical results indicate that

〈I [2]
2 (ν)〉 should be a straight line for large log(ν). The

numerical result supports this conclusion. We also evalu-

ate the integrand for d〈I [2]
2 (ν)〉/d log(ν) analytically and

then integrate this expression numerically and display the
result as the dashed blue curve in Fig. 1. The analytical

6 The function τ({p}m) is a complicated function of the parton
momenta. Evaluation of this function becomes numerically un-
stable for parton states {p}m that give very small τ . For this
reason, in this and later figures, we limit log(ν) to log(ν) < 16,
although in some cases the numerical results appear to be reliable
for larger values of log(ν).
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FIG. 1. Plot of 〈I [2]
2 (ν)〉, Eqs. (151) and (152), versus log(ν)

(solid red curve). For large log(ν) the graph is approximately
a straight line, corresponding to only one factor of log(ν), in-

dicating that the shower generates 〈I [2]
2 (ν)〉 at NLL accuracy.

The dashed blue curve is d〈I [2]
2 (ν)〉/d log(ν). The dotted red

curve shows an approximate version of 〈I [2]
2 (ν)〉 described in

the text.

result implies that d〈I [2]
2 (ν)〉/d log(ν) should approach a

constant for large log(ν) and the numerical result sup-
ports this conclusion.

In our analysis, we argued that τ̂ − τ = y should be a
good approximation in the second splitting for the pur-
pose of determining how many powers of log(ν) can ap-

pear in 〈I [2]
2 (ν)〉. We tried calculating 〈I [2]

2 (ν)〉 with
this approximation. The result is shown as the dot-
ted red line in Fig. 1. This curve is, as expected, a
straight line for large log(ν) and has the same slope as

the curve for the exact 〈I [2]
2 (ν)〉. We were a bit surprised

to find that 〈I [2]
2 (ν)〉 with the exact τ̂ − τ differs by a

noticeable amount from the result with the approximate
thrust value. The difference is in the direction of making

|〈I [2]
2 (ν)〉| smaller. We do not have an analytical expla-

nation for this behavior.

We also calculated 〈I [2]
3 (ν)〉 as a numerical integral.

We plot 〈I [2]
3 (ν)〉 versus log(ν) as the solid red curve in

Fig. 2. We note first that [αs/(2π)]3|〈I [2]
3 (ν)〉| is small

for log(ν) < 8 if we take αs ≈ 0.1. Our analytical results
indicate that for large ν the highest power of log(ν) in

〈I [2]
3 (ν)〉 should be log2(ν). This implies that for large ν

the highest power of log(ν) in d〈I [2]
3 (ν)〉/d log(ν) should

be log1(ν). The numerical result, graphed as the dashed
blue line in Fig. 2, supports this conclusion.
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FIG. 2. Plot of 〈I [2]
3 (ν)〉, Eqs. (151) and (152), versus log(ν)

(solid red curve). The dashed blue curve is d〈I [2]
3 (ν)〉/d log(ν).

For large log(ν) the graph of d〈I [2]
3 (ν)〉/d log(ν) is approxi-

mately a straight line, indicating that the shower generates

〈I [2]
3 (ν)〉 at NLL accuracy.

XIV. NUMERICAL BEHAVIOR OF THE
THRUST DISTRIBUTION

We have seen that the operator SY(µ2; ν) directly gen-
erates the Laplace transform g̃(ν) of the thrust distri-
bution according to Eq. (134). The first order term

S [1]
Y (µ2; ν) in this operator is obtained from the shower

splitting function for a first order Λ-ordered parton
shower. We have further seen that this term generates
the known [18] summation of logarithms of τ at the NLL
level as long as the shower splitting function is suitably

defined. Furthermore, the higher order terms S [k]
Y (µ2; ν)

obtained from this first order shower splitting function
generate only contributions beyond the NLL level.

According to Eq. (130), same result for g̃(ν) as in
Eq. (134) is obtained by running the Λ-ordered shower
and measuring the Laplace transform of the thrust dis-
tribution. However, we do not need to take the Laplace
transform. We can simply run the Λ-ordered shower and
measure the thrust distribution g(τ), as in Eq. (37). Will
this give the same result as the NLL analytical result
listed in Eqs. (124) and (125)?

In this section, we try this experiment. It is not use-
ful to set Q2 = M2

Z, which would be relevant for LEP
(Large Electron Positron) experiments because a parton
shower needs an infrared cutoff. We can take the cut-
offs on allowed shower splittings to be Λ > 1 GeV and
kT > 1 GeV, but then there is not much range between



19

(1 GeV)2 and the starting scale Q2 of the shower. The
result is that there is not a wide range in τ in which
we can examine the dependence of g(τ) on log(1/τ) free
of the effects of the infrared cutoffs. Instead, we retain
(1 GeV)2 cutoffs but set Q2 = (10 TeV)2. We then run
the Λ-ordered Deductor shower with the LC+ approx-
imation for color [8]. We turn off the top quark, so that
the shower is based on 5-flavor QCD.

We compare τg(τ) according to Deductor with τg(τ)
according to the NLL formula, Eqs. (124) and (125), in
Fig. 3. We see that the Deductor curve is a bit higher
than the NLL curve around τ = 0.01 and a bit lower at
the smallest values of τ . Generally, the results agree to
within about 0.01.

Do these results agree within the expected errors?

• The Deductor shower produces contributions be-
yond the NLL level. If we look at τ = 0.01 so that
log(1/τ) = 4.6, NNLL terms lack a factor 4.6 compared
to NLL terms. A simple calculation shows that the
NLL terms contribute approximately −0.03 to τg(τ) at
τ = 0.01. Thus we might expect that the NNLL terms
in Deductor would contribute ±0.03/4.6 ≈ ±0.007
to τg(τ). This gives us an error estimate from terms
in Deductor beyond NLL of ±0.007.

• There are typically about 20 parton splittings between
the 10 TeV scale at which the shower starts and the 1
GeV scale at which it ends. We cannot be confident
that there are not 0.1% errors for each splitting result-
ing from approximations within the Deductor code,
so we cannot rule out a 2% systematic error in g(τ) re-
sulting from these approximations. A 2% error on the
value τg(τ) ≈ 0.2 at τ = 0.01 amounts to an error of
±0.004 in τg(τ).

• The infrared cutoffs have some effect. The most im-
portant effect comes from the limit on the transverse
momentum in a splitting, which we set to kT > 1 GeV.
To test for sensitivity to this cutoff, we change the cut
to kT > 3 GeV. In the range 0.0005 < τ < 0.2, we find
that this change in cutoff produces a change in τg(τ)
that is generally smaller than 0.003. Thus we estimate
an error of ±0.003 in τg(τ) due to the influence of the
infrared cutoff.

• The Deductor splitting kernel omits the β1 term in
Eq. (119) for evaluating the dependence of αs((1 −
z)yQ2) on (1 − z). This changes the Deductor re-
sult at the NLL level. We examine this effect below.

• The LC+ approximation used by default in Deductor
is not the same as exact color. This introduces spurious
terms of order 1/N2

c times logarithms of 1/τ into the
LC+ Deductor result, where Nc = 3 is the number
of colors. We examine this effect below.

We examine the effects of missing NLL terms and of
color in Fig. 4. Here the NLL curve is copied from Fig. 3
and the Deductor curve from Fig. 3 is displayed as a

dashed (black) line. The remaining two curves are mod-
ified versions of the curves in Fig. 3.

We first address the fact that Deductor omits the
β1 term for evaluating the dependence of αs((1− z)yQ2)
on (1 − z). This means that in the summation of log-
arithms of log(1/τ), Deductor is missing the term
−(β1/β0) log((1 − λ2)/(1 − 2λ)) in f2(λ) in Eq. (128).
In order to see the effect of this term, we calculate the
ratio

r(τ) =
gNLL(τ)

gmod
NLL(τ)

, (153)

where gmod
NLL(τ) is obtained by omitting the term

−(β1/β0) log((1−λ2)/(1−2λ)) in the calculation of g(τ).
Then we correct the Deductor result for g(τ) by mul-
tiplying it by r(τ). We plot the corrected Deductor
curve in Fig. 4. We see that the corrected Deductor
curve is quite close to the uncorrected curve. However
the difference is visible in Fig. 4 and acts in the direc-
tion of reducing the discrepancy between the analytical
summation of logarithms and the numerical Deductor
result.7

We next address the fact that in Fig. 3 we used
the default color approximation in Deductor, the
LC+ approximation [8]. This approximation is an im-
provement over the leading color approximation, but
it is far from being exact. In the LC+ approxima-
tion, we replace the exact first order splitting function
S(µ2) = S [1,0](µ2)+S [0,1](µ2) by an approximate version

SLC+(µ2) = S [1,0]
LC+(µ2) + S [0,1]

LC+(µ2). Deductor has the

option of expanding in powers of S(µ2)− SLC+(µ2) and
keeping terms up to and including [S(µ2)− SLC+(µ2)]n,
where n can be chosen by the user [22]. In order to
assess what difference a more exact treatment of color
could make, we plot in Fig. 3 the result of calculating the
thrust distribution at 10 TeV with n = 2. We have cor-
rected this result using the factor r(τ) from Eq. (153). Of
course, using n = 2 slows the calculation down, increas-
ing the statistical errors. Within the statistical errors,
we find that improving the color treatment makes no dif-
ference.

In summary, we have made a numerical comparison of
the expected NLL result for the thrust distribution and a
direct calculation using a Λ-ordered parton shower with
a global momentum mapping, setting Q2 to (10 TeV)2

so as to allow log(1/τ ) to be adequately large to provide
a real test. We have found good agreement within the
estimated errors.

7 In a future version of Deductor, we may add this contribution
to the splitting kernel, although its practical effect is quite small.
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FIG. 3. Plot of (τ/σh) dσ/dτ according to Deductor with
Λ ordering at Q2 = (10 TeV)2 compared to the NLL expec-
tation, Eqs. (124) and (125). In Deductor, we use a cutoff
for splittings: kT > 1 GeV and Λ > 1 GeV. The Deductor
curve is higher than the NLL curve at τ ≈ 0.01 and lower for
small τ .
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ordering at Q2 = (10 TeV)2. The black dashed curve is the
Deductor curve from Fig. 3. The blue solid curve is the NLL
formula from Fig. 3. The red solid curve is the Deductor
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evolution. The purple solid curve, with noticeable statistical
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of extra color beyond the LC+ approximation.
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FIG. 5. Plot of 〈I [2]
2 (ν)〉 versus log(ν), as in Fig. 1, for

the Deductor shower algorithm with kT ordering. The blue

dashed curve is d〈I [2]
2 (ν)〉/d log(ν).

XV. kT ORDERING

The default ordering variable in Deductor is Λ,
Eq. (1). However, there is an option to use kT ordering.8

We can define I [2](ν) with kT ordering using Eqs. (78)
and (151). We simply set the scale parameters to µ2 = k2

T
for the first splitting and µ̄2 = k̄2

T for the second splitting.
Then kT ordering means that k̄2

T < k2
T in Eq. (78).

With kT ordering, the reasoning supporting NLL accu-
racy of the Λ-ordered shower from Sec. XI and Appendix
A is lost. However, it appears that we can still get can-

cellation of log(ν) factors in I [2]
2 (ν) at the NLL level.

That is, the integral has contributions proportional to
log4(ν) at large log(ν), but after these contributions are
summed, only terms proportional to log1(ν) and log0(ν)
remain. The mechanism is that the contributions from
the two terms specified by the [· · ·]1−P operation in the
last line of Eq. (78), representing real emissions and vir-
tual emissions, cancel each other. A complete proof is
beyond the scope of this paper, but we present an argu-
ment that makes this conclusion plausible in Appendix
B.

We can check the effect of the choice of ordering vari-
able on the summation of log(ν) factors in the thrust dis-

tribution by calculating 〈I [2]
2 (ν)〉 numerically using the

8 For kT ordering, k2
T = −k2

⊥ where the vector k⊥ is orthogonal
to the momentum pl of the emitting parton and to Q, rather
than being orthogonal to pl and the momentum pk of the dipole
partner parton.
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Deductor shower algorithm with kT ordering. The re-
sult is shown as the solid red curve in Fig. 5. We see that

〈I [2]
2 (ν)〉 is quite small, |〈I [2]

2 (ν)〉| < 2 for log(ν) < 8.
For NLL accuracy, this curve should be linear for large
log(ν). To quite good, but not perfect, accuracy, it is.

We have also checked the behavior of 〈I [2]
3 (ν)〉 as a

function of log(ν). The results are shown in Fig. 6. For

large ν the highest power of log(ν) in 〈I [2]
3 (ν)〉 should be

log2(ν). This implies that for large ν the highest power of

log(ν) in d〈I [2]
3 (ν)〉/d log(ν) should be log1(ν). The nu-

merical result, graphed as the dashed blue line in Fig. 6,
supports this conclusion.

We have investigated only 〈I [2]
2 (ν)〉 and 〈I [2]

3 (ν)〉. We
have found results consistent with NLL accuracy for the
Deductor shower with kT ordering, but there could still

be inconsistencies with NLL accuracy for 〈I [k]
n (ν)〉 for

other values of k and n. A promising approach to inves-
tigating this issue would be to automate the calculation

of 〈I [k]
n (ν)〉 so that these functions could be calculated

numerically for any not-too-large values of k and n. We
leave this approach to future work.

We can also look directly at (τ/σh) dσ/dτ with Q2 =
(10 TeV)2. We use either Deductor with its default
Λ ordering or Deductor with kT ordering. The result
with Λ ordering, from Fig. 4, includes the correction fac-
tor r(τ) from Eq. (153). The result with kT ordering
needs no correction factor because k2

T in αs(λRk
2
T) in the

Deductor splitting function is the same as the order-
ing variable. We do not include hadronization. Thus
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FIG. 7. Plot of (τ/σh) dσ/dτ with Λ ordering and kT or-
dering at Q2 = (10 TeV)2. Both are compared to the NLL
expectation, Eqs. (124) and (125). We use a cutoff on the
transverse momentum in splittings: kT > 1 GeV.

we examine only perturbative effects and the effects of
the shower cutoff. With Λ ordering, the shower stops at
Λ = 1 GeV and there is also a cut that prevents the kT

in any splitting from being smaller than 1 GeV. With
kT ordering, the shower stops at kT = 1 GeV. The re-
sult is shown in Fig. 7. We see that the shower ordering
does make a difference. Although (τ/σh) dσ/dτ calcu-
lated with kT ordering is similar to the NLL expectation
τg(τ) from Eqs. (124) and (125), the difference between
these two results is greater than the expected uncertain-
ties discussed for Λ ordering in Sec. XIV.

As an alternative, we can follow the method of Ref. [3]
and calculate (τ/σh) dσ/dτ for various values of Q2, and
thus for various values of αs(Q

2). We choose Q2 =
(1 TeV)2, (10 TeV)2, and (100 TeV)2, corresponding to
αs(Q

2) = 0.087, 0.069, and 0.058.9 For each value of Q2,
we calculate the expected NLL function τg(τ), Eqs. (124)
and (125). Then we plot the ratio

R(τ,Q2) =
(τ/σh) dσ/dτ

τg(τ)
. (154)

The results are displayed in Fig. 8. In the case Q2 =
(100 TeV)2, there are typically around 100 partons pro-
duced in each event. This causes Deductor to operate

9 Ref. [3] considers αs(Q2) as small as 0.005, corresponding to
Q2 ≈ (1070 GeV)2 but Deductor is not capable of working
with values of Q2 as large as this.
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FIG. 8. Ratio of (τ/σh) dσ/dτ with kT ordering to the
NLL expectation, τg(τ), Eqs. (124) and (125). The ratio is
calculated at Q2 = (1 TeV)2, Q2 = (10 TeV)2, and Q2 =
(100 TeV)2. We use a cutoff on the transverse momentum in
splittings: kT > 1 GeV in each case.

very slowly, which leads to substantial statistical fluctu-
ations that are visible in the plot.

If the log summation is working at the NLL level, the
ratio plotted should be close to 1 and should get closer
to 1 as Q2 increases. We note two features of the results.
First, for any fixed value of Q2, τg(τ) fails to match the
parton shower result for sufficiently small τ . The value
of τ at which this failure sets in decreases as Q2 grows.
For larger values of τ , but still with τ < 0.1, R(τ,Q2) is
approximately constant:

R(τ,Q2) ≈ R0(Q2) . (155)

These values (R0 = 1.190, 1.112, 1.070) are shown as
dashed lines in Fig. 8. Second, we note that R(τ,Q2)
is fairly close to 1 and gets closer to 1 as Q2 increases.
In fact, to within about 10%,

R0(Q2)− 1 ≈ 23α2
s (Q2) . (156)

This is consistent with the expectation that R0(Q2)→ 0
as αs(Q

2) → 0. We tentatively conclude from these re-
sults that the kT-ordered Deductor shower is correctly
summing thrust logarithms at the NLL level, even though
the difference between the shower result and the NLL an-
alytical result is larger for kT ordering than for Λ order-
ing.

XVI. EFFECT OF THE MOMENTUM
MAPPING FOR Λ ORDERING

Recall from Sec. VIII that in a splitting pl → p̂l+ p̂m+1,
we always have pl 6= p̂l + p̂m+1. In order to conserve
momentum, we need to map the momenta pi into new
momenta p̂i such that

m+1∑
i=1

p̂i =
m∑
i=1

pi . (157)

In the Deductor algorithm, this is accomplished by us-
ing a Lorentz transformation [5]

p̂µi = Λµν p
ν
i , i /∈ {l,m+1} . (158)

The Lorentz transformation is defined to be a boost in the
plane of pl and Q. We have found in Sec. VIII that the
boost angle ω is small, of order y, and that the effect of
this small Lorentz transformation on the thrust is small
compared to the order y effect produced by the splitting
itself.

For any parton shower, one will need a momentum
mapping that preserves the total momentum. The global
mapping produced by a Lorentz transformation is not
the only possibility. A more widely used local choice is
provided by the Catani-Seymour dipole splitting formal-
ism [23] or the local mapping in Pythia [24]. For the
Catani-Seymour choice, we start with the parton l that
splits and its dipole partner k, with momenta pl and pk.
After the splitting, we have a new parton m+ 1 and new
momenta p̂i, p̂m+1 and p̂k. The definition is

p̂m+1 = (1− z) pl + zy pk + k⊥ ,

p̂l = zpl + (1− z) y pk − k⊥ ,
p̂k = (1− y) pk ,

(159)

with k⊥ ·pj = k⊥ ·pk = 0. Here z, y, and k⊥ are different
from z, y and k⊥ defined for Deductor kinematics. The
momenta of the other partons is unchanged:

p̂i = pi i /∈ {l, k,m+1} . (160)

With this definition,

pl + pk = p̂l + p̂m+1 + p̂k . (161)

Thus the total momentum is conserved. We have p̂m+1 +
p̂l = pl + y pk so

y =
p̂l · p̂m+1

pl · pk
. (162)

From p̂2
m+1 = 0 we derive

− k2
⊥ = z(1− z)y 2pl · pk . (163)

Note that if we start with a two parton state, m =
2, and let one of the two partons, l, split to produce
parton m+1, then there is precisely one parton i with
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FIG. 9. Plot of 〈I [2]
2 (ν)〉, as in Fig. 1, for the Deductor

splitting functions with the Catani-Seymour local momentum

mapping [23]. 〈I [2]
2 (ν)〉 is approximately quadratic in log(ν),

indicating that I [2]
2 (ν) that changes the NLL result.

i /∈ {l,m+1} in Eq. (158) and this is the same as parton
k in Eq. (159). That is, the global and local mappings

are the same for S [1]
Y (µ2; ν) for m = 2. The operators

S [k]
Y (µ2; ν), with k real or virtual splittings, do depend

on the choice of momentum mapping for k ≥ 2 .

The local momentum mapping has a feature for thrust
that one might regard as peculiar. Suppose that parton l
is in the right thrust hemisphere, l ∈ R. Then for a small
angle splitting, the daughter partons l and m+1 will also
be in the right hemisphere. In the case that k ∈ R,
we split a dipole that is entirely in R. Then Eqs. (160)
and (161) imply that both τR and τL in Eq. (27) are
unchanged by the splitting, so that τ = τR + τL is un-
changed. Since, in this class of choices for the dipole that
splits, the thrust is not changed, the real-virtual cance-
lation between S [1,0](µ2) and S [0,1](µ2) simply removes
contributions of these dipoles from the calculation of the
thrust distribution.

With Λ ordering and a local momentum mapping, the
argument in Sec. XI that the shower sums logarithms
of thrust at LL level still works, but the argument in
Appendix A for cancellations at the NLL level fails. Thus
we cannot expect a Λ-ordered parton shower that uses a
local momentum mapping following Eqs. (160) and (161)
to properly sum the logarithms of ν at NLL accuracy.

We can check what happens numerically by calculat-

ing 〈I [2]
2 (ν)〉, Eq. (151), using the Λ-ordered Deductor

parton shower algorithm but with the Catani-Seymour
momentum mapping substituted for the global momen-

tum mapping. The result is shown as the solid red
curve in Fig. 9. We note immediately that this result
is completely different from the result in Fig. 1: in the

range log(ν) < 8, |〈I [2]
2 (ν)〉| with the global momentum

mapping is less than 1 while with the local mapping it
reaches values greater than 30. Leaving aside the mag-

nitude of 〈I [2]
2 (ν)〉, if the parton shower algorithm with

a local momentum mapping produced NLL accuracy for

summing log(ν) factors, the graph of 〈I [2]
2 (ν)〉 would be

a straight line, but it is not. The dashed blue curve

is d〈I [2]
2 (ν)〉/d log(ν). This curve is not a constant but

rather a straight line. This implies that at large log(ν),

〈I [2]
2 (ν)〉 is has contributions up to log2(ν).

We conclude from the combination of the analytical
argument and the numerical results that using a local
momentum mapping destroys the NLL accuracy of the
result from a Λ-ordered parton shower, although LL ac-
curacy is maintained.

XVII. LOCAL MOMENTUM MAPPING WITH
OTHER ORDERINGS

As we have seen in Sec. XVI, a parton shower algorithm
needs to conserve momentum while accommodating the
approximation that a parton that splits to two partons
was on shell before the splitting. Deductor uses a
global recoil strategy that spreads the needed momen-
tum over all of the other partons in the event. With a lo-
cal momentum mapping in the style of Catani-Seymour,
Eq. (159), the recoil momentum is taken up by a single
parton, possibly a very soft parton. For this reason the
global recoil strategy seems less likely to lead to problems
than the local recoil strategy.

Nevertheless, a local momentummapping can certainly
work. Indeed, we present an argument in Appendix B

that I [2]
2 (ν) in Deductor with kT ordering is well be-

haved. In this construction, the local and global momen-
tum mappings were equivalent in the limits considered.

Thus I [2]
2 (ν) with kT ordering and a local momentum

mapping should be well behaved.

We can investigate this issue by calculating 〈I [2]
2 (ν)〉

using two shower algorithms with a local momentum
mapping following Eq. (159). The algorithms we use
follow closely the PanLocal shower of Ref. [3]. In the
first algorithm that we use, the parameter β that defines
the ordering variable in the PanLocal algorithm is set to
β = 0. That corresponds to kT ordering. In the second
algorithm, we choose β = 0.5. Roughly, that is half way
between kT ordering and Λ ordering. Ref. [3] claims that
these PanLocal showers sum the trust distribution at
NLL accuracy at leading color.

The results are shown in Figs. 10 and 11. In each case,

in the range log(ν) < 8, |〈I [2]
2 (ν)〉| reaches values greater

than 10, while for Deductor with Λ ordering this same
quantity is less than 1. Nevertheless, in each case, we
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FIG. 10. Plot of 〈I [2]
2 (ν)〉, as in Fig. 1, for a shower with kT

(β = 0.0) ordering and the Catani-Seymour local momentum
mapping [23] according to an algorithm based on the Pan-

Local dipole shower of Ref. [3]. For large log(ν), 〈I[2]
2 (ν)〉 is

approximately linear in log(ν), indicating that I [2]
2 (ν) leaves

the NLL result intact.
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FIG. 11. Plot of 〈I [2]
2 (ν)〉, as in Fig. 1, versus log(ν), for a

shower with β = 0.5 ordering and the Catani-Seymour local
momentum mapping [23] according to an algorithm based on
the PanLocal dipole shower of Ref. [3]. For large log(ν),

〈I [2]
2 (ν)〉 is approximately linear in log(ν), indicating that

I [2]
2 (ν) leaves the NLL result intact.
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FIG. 12. Plot of 〈I [2]
3 (ν)〉, as in Fig. 2, for a shower with

kT (β = 0.0) ordering and the Catani-Seymour local momen-
tum mapping [23] according to an algorithm based on the
PanLocal dipole shower of Ref. [3].
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FIG. 13. Plot of 〈I[2]
3 (ν)〉, as in Fig. 2, versus log(ν) for a

shower with β = 0.5 ordering and the Catani-Seymour local
momentum mapping [23] according to an algorithm based on
the PanLocal dipole shower of Ref. [3].
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see that 〈I [2]
2 (ν)〉 is, to a good approximation, a linear

function of log(ν) for large log(ν). This is consistent
with NLL accuracy for summing logarithms of ν.

In Figs. 12 and 13, we plot 〈I [2]
3 (ν)〉 for the two Pan-

Local shower algorithms. To be consistent with NLL ac-

curacy 〈I [2]
3 (ν)〉 at large log(ν) should not contain terms

logj(ν) for j = 3 or higher. The numerical results are
consistent with this NLL expectation. In fact, in each
case the highest power of log(ν) numerically is log1(ν).
The coefficient of log2(ν) vanishes to a good approxima-
tion. This tells us that the average value of the scale of
the coupling inside the integrations is about Q2/ν.

XVIII. CONCLUSIONS

We have explored how to gain direct access to how a
parton shower sums large logarithms, following the gen-
eral program outlined in Ref. [4]. In this paper, we have
limited ourselves to electron-positron annihilation and to
just one observable, the thrust distribution. We have,
however, looked at results for more than one shower al-
gorithm.

The method that we propose works with the appropri-
ate integral transform of the distribution of interest. In
this case, we need the Laplace transform g̃(ν), Eq. (29),
of the thrust distribution. We seek to find how g̃(ν) be-
haves for large ν.

We rearrange the cross section calculation so as to
write g̃(ν) in the form from Eq. (134),

g̃(ν) = exp
((

1
∣∣I(ν)

∣∣{p, f, c, c}2)) . (164)

Here |{p, f, c, c}2) is a color and flavor singlet qq̄ basis
state with p1 + p2 = Q and the operator I(ν) is an inte-
gral,

I(ν) =

∫ Q2

µ2
f

dµ̄2

µ̄2
SY(µ̄2; ν) . (165)

We expand I(ν) in powers of the shower evolution oper-
ator S(µ2). Then the coefficients I [k](ν), proportional to
k powers of S(µ2), can be further expanded as

I [k](ν) =
∞∑
n=k

[
αs(Q

2/ν)

2π

]n
I [k]
n (ν) , (166)

in which the strong coupling is evaluated at a fixed scale
Q2/ν. Thus the shower result is quite directly expressed
in exponentiated form in terms of an operator I(ν) with
a known perturbative expansion.

For the Deductor shower algorithm with either Λ
or kT ordering, I [1](ν) provides the standard NLL sum-
mation of log(ν) factors.10 In order for the contributions

10 The current Deductor code with Λ ordering, as distinct from

I [k]
n (ν) for k ≥ 2 to not spoil the NLL summation, I [k]

n (ν)
should not contain more than n− 1 powers of log(ν).

For the Deductor shower algorithm with its default

Λ ordering, we find analytically that I [k]
n (ν) does not con-

tain more than n− 1 powers of log(ν).
We have no such result for Deductor with kT or-

dering, but we outline an argument in Appendix B that

real-virtual cancellations in I [2]
2 (ν) reduce its large ν be-

havior from log4(ν) to log1(ν).

We evaluate I [2]
2 (ν) numerically. In order not to spoil

NLL summation, its large ν behavior should be no more
than log1(ν). For the Deductor algorithm with Λ or-
dering but with a local momentum mapping instead of
the global momentum mapping used in Deductor, we
find log2(ν) behavior, implying a failure of NLL accu-
racy (Fig. 9). In other cases, we find log1(ν) behavior,
consistently with NLL accuracy. These cases include De-
ductor-Λ (Fig. 1), Deductor-kT (Fig. 5), PanLocal-
(β=0) (Fig. 10), and PanLocal-(β=0.5) (Fig. 11).

We also evaluate I [2]
3 (ν) numerically for the shower al-

gorithms Deductor-Λ (Fig. 2), Deductor-kT (Fig. 6),
PanLocal-(β=0) (Fig. 12), and PanLocal-(β=0.5)
(Fig. 13). In each case, we find large log(ν) behavior
with no more than 2 powers of log(ν), consistently with
NLL accuracy.

We emphasize in this paper writing the appropriate
integral transform of the distribution of interest, such as
the thrust distribution, as an exponential and examining
the exponent I(ν). However, it is also possible to sim-
ply look directly at the distribution of interest as it is
generated by a given parton shower. For this, one needs
to simulate collisions at large values of Q2. We have not
pushed this method to nearly as large a value of Q2 as
in Ref. [3]. However, we find that, at least for electron-
positron annihilation, this direct method can be useful.

Specifically, we examine directly the thrust distribu-
tion τg(τ) for Deductor with Λ and kT ordering, us-
ing Q2 = (10 TeV)2. With Λ ordering, this works well
(Figs. 3 and 4). With kT ordering (Fig. 7), the agreement
with the analytic NLL expectation is not as good. How-
ever, when we compare τg(τ) to the NLL expectation at
a sequence of values of Q2, we find what appears to be
convergence to the NLL result as Q2 increases (Fig. 8).

There are several avenues available for future research
that extends the results of this paper.

First, the method of this paper applies to several ob-
servables in electron-positron annihilation. We have tried
variations on the shower algorithm examined, but have
looked at only one observable, the thrust distribution. It
is certainly worthwhile to see what patterns emerge if we
look at other observables.

the algorithm that it is based on, lacks the term with coefficient
β1 needed to evaluate the dependence of αs((1−z)yQ2) on (1−z).
This changes the Deductor result at the NLL level.
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Second, the method developed in Ref. [4] applies to
observables in hadron-hadron collisions as well as in
electron-positron collisions. It is of interest to see how
this method works in practice for some hadron-hadron
observables, starting with the kT distribution in the
Drell-Yan process.

Third, we construct numerical implementations of

I [2]
2 (ν) and I [2]

3 (ν) for the particular observable exam-
ined and for several shower algorithms. This allows one

to test numerically if the large ν behaviors of I [2]
2 (ν) and

I [2]
3 (ν) are consistent with NLL summation. When we

find for a certain shower algorithm that NLL summation

fails at the level of I [2]
2 (ν) or I [2]

3 (ν), then NLL sum-
mation fails for that shower algorithm and observable.

However, if NLL summation is not spoiled by I [2]
2 (ν) or

I [2]
3 (ν), it could still fail in I [k]

n (ν) for some larger values
of k and n. Thus it would be valuable to have numerical
implementations of I [k]

n (ν) for some larger values of k and
n. Then one would have more stringent numerical tests
of NLL summation for a given shower algorithm and a
given observable.

Fourth, it would be helpful to have analytical insight
into the behavior of the operators I [k](ν) for k ≥ 3 in
cases that are similar to the thrust distribution using a
kT-ordered shower.

We close with the observation that it is expecting a lot
to expect that a first order shower algorithm will sum log-
arithms at the LL or NLL level. If we had a parton shower
based on splitting functions at order αNs [4, 14], then we
could expect to correctly produce contributions to I(ν)

of order αns logj(ν) with n ≤ N , j ≤ n+1. We might not

correctly produce contributions of order αns logj(ν) with
n > N , j ≤ n + 1 because we lack the order αns contri-
butions to the shower splitting functions. However, con-
tributions of order αns logj(ν) with j > n+ 1 should van-
ish because these contributions can never be provided by
αns contributions to the shower splitting functions. Cur-
rently, all that we have (in several variations) is a first or-
der shower, N = 1. Thus we can expect to correctly pro-
duce contributions of order α1

s log2(ν) and α1
s log1(ν). We

can also expect to obtain exponentiation of logarithms of
ν: contributions of order αns logj(ν) with j > n+1 should
vanish. With care, we can hope to have LL or NLL sum-
mation of log(ν) factors, but this relies on incorporating
the most important parts of higher order splitting oper-
ators into the first order operator S.
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Appendix A: Structure of SY at NLL accuracy

We examine S [k]
Y (xQ2/µ) for x of order 1 and k ≥ 2.

We prove that this operator has at most n− 1 factors of
log(ν) at order αns (Q2/ν).

Recall from Sec. XI that Y [k](xQ2/µ) for x of order
1 and k ≥ 2 has at most n factors of log(ν) at order
αns (Q2/ν).

We also note that S [1,0]
l (xQ2/ν) for x of order 1 has

one power of log(ν) at order αs(Q
2/ν), where the log(ν)

factor arises from an integration d(1−z)/(1−z) down to
a lower limit proportional to 1/ν, as in Eq. (118). Thus

S [1,0]
l (xQ2/ν) for x of order 1 has at most n powers of

log(ν) at order αns (Q2/ν).

To proceed, we prove that S [k]
Y (xQ2/µ) with k =

2 contains at most n − 1 factors of log(ν) at order
αns (Q2/ν) and we prove that if this property holds for
k = 2, 3, . . . , N , then it holds for k = N + 1.

Consider Eq. (148) for S [k+1]
Y (xQ2/ν; ν) for k ≥ 2. In

the first term, at order αk+1
s (Q2/ν), there are k powers of

log(ν) from Y [k] and one power from S [1,0]
l . In the second

term (if k ≥ 3) at order αk+1
s (Q2/ν) there are there are

k+1− j powers of log(ν) from Y [k+1−j] and j−1 powers

from S [j]
Y , for a total of just k powers of log(ν). That is,

this contribution is NNLL. In the third term, at order

αk+1
s (Q2/ν) there is one power of log(ν) from S [1,0]

l and

k−1 powers of log(ν) from S [k]
Y , for a total of k powers of

log(ν). That is, this contribution is NNLL. If we expand
the NNLL contributions to higher order in αs(Q

2/ν), we
add just one power of log(ν) per αs, so the contributions
remain NNLL. This gives us

S [k+1]
Y (xQ2/ν; ν)

=
∑
l

[
Y [k](xQ2/ν; ν)

[
S [1,0]
l (xQ2/ν)

]
1−P

]
Pe
−ξop

l x

+ NNLL . (A1)

This leaves us with an NLL contribution if the NLL con-
tribution does not cancel. This result does not include
S [2]
Y . For S [2]

Y , Eq. (142) gives us 2 powers of log(ν) at

order α2
s (Q2). This is an NLL contribution if the NLL

contribution does not cancel.
If we use Eq. (A1), then we need information on Y [k].

We can use Eq. (150) for Y [k+1](xQ2/ν; ν) for k ≥ 1. In
the first term at order αk+1

s (Q2/ν) there are k powers

of log(ν) from Y [k] and one power of log(ν) from S [1,0]
l ,

giving us a total of k+1 powers of log(ν). This is an NLL
contribution. In the second term (for k ≥ 2) at order
αk+1

s (Q2/ν) there are k + 1 − j powers of log(ν) from

Y [k+1−j] and j−1 powers of log(ν) from S [j]
Y , giving us a

total of k powers of log(ν). This is an NNLL contribution.
In the third term at order αk+1

s (Q2/ν) there are k powers

of log(ν) from S [k+1]
Y . This is an NNLL contribution.

Again, if we expand the NNLL contributions to higher
order in αs(Q

2/ν), we add just one power of log(ν) per
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αs, so the contributions remain NNLL. This leaves us
with

Y [k+1](xQ2/ν; ν)

= −
∑
l

∫ x

0

dx1

x1
Y [k](x1Q

2/ν; ν)
[
S [1,0]
l (x1Q

2/ν)
]
P

× (1− e−ξ
op
l x1)

+ NNLL . (A2)

This derivation does not include Y [1]. For Y [1] we can use
Eq. (140), which gives us just Eq. (A2) with Y [0] replaced
by 1 and no NNLL additional contribution.

Eq. (A2) gives us a recursion relation that we can solve
to NLL accuracy in the form

Y [k](xQ2/ν; ν)

= (−1)k
∑
l1...lk

∫ x

0

dx1

x1

∫ x1

0

dx2

x2
· · ·
∫ xk−1

0

dxk
xk

×
[
S [1,0]
lk

(xkQ
2/ν)

]
P(1− e−ξ

op
lk
xk)

× · · ·

×
[
S [1,0]
l2

(x2Q
2/ν)

]
P(1− e−ξ

op
l2
x2)

×
[
S [1,0]
l1

(x1Q
2/ν)

]
P(1− e−ξ

op
l1
x1)

+ NNLL . (A3)

We can substitute this solution for Y [k] into Eq. (A1) to
give us

S [k+1]
Y (x0Q

2/ν; ν)

= (−1)k
∑
l0...lk

∫ x0

0

dx1

x1

∫ x1

0

dx2

x2
· · ·
∫ xk−1

0

dxk
xk

×
[[
S [1,0]
lk

(xkQ
2/ν)

]
P(1− e−ξ

op
ln
xk)

× · · ·

×
[
S [1,0]
l2

(x2Q
2/ν)

]
P(1− e−ξ

op
l2
x2)

×
[
S [1,0]
l1

(x1Q
2/ν)

]
P(1− e−ξ

op
l1
x1)

×
[
S [1,0]
l0

(x0Q
2/ν)

]
1−P

]
P e
−ξop

l0
x0

+ NNLL . (A4)

The explicit exponential exponential factors restrict the
xi integrations to xi of order 1 (as we have already seen).
We now want to find how many factors of log(ν) are con-

tained in the operators S [1,0]
l (xQ2/ν). Since log(x/ν) is

equivalent for this purpose to log(1/ν) when x is of order
1, we can replace all of the xi factors in the arguments

of S [1,0]
l (xQ2/ν) by 1.

In Eq. (A4), we have factors exp(−ξ̂op
l xi). The param-

eters ξl, are defined in Eq. (107). They are close to 1:
ξl − 1 is proportional to [1 − cos(θ(l, ~nT))]. It is a good
approximation to take the thrust axis ~nT to be the di-
rection of either the quark or the antiquark in the q-q̄
state at the start of the shower. Then the angle between

~pl at a later stage of the shower and ~n is determined by
the emission angles at the intervening stages. But in or-
der to accumulate the maximal number of log(ν) factors
in these splittings, all of these emission angles must be
small. That is, if we expand exp(−ξlxi) in powers of
[1 − cos(θ)], where θ is one of the splitting angles, then
a factor [1 − cos(θ)] will eliminate a log(ν) factor in an
integration d cos(θ)/[1− cos(θ)] with limits analogous to
the limits in Eq. (17). We conclude that for the purpose
of our present NLL calculation we can set all of the ξop

l
factors in Eqs. (A4) to 1.

These changes gives us

S [k+1]
Y (x0Q

2/ν; ν)
∣∣{p, f, c, c′}m)

= (−1)k
∑
l0...lk

∫ x0

0

dx1

x1

∫ x1

0

dx2

x2
· · ·
∫ xk−1

0

dxk
xk

×
[[
S [1,0]
lk

(Q2/ν)
]
P(1− e−xk)

× · · ·

×
[
S [1,0]
l2

(Q2/ν)
]
P(1− e−x2)

×
[
S [1,0]
l1

(Q2/ν)
]
P(1− e−x1)

×
[
S [1,0]
l0

(Q2/ν)
]
1−P

]
P e
−x0

×
∣∣{p, f, c, c′}m)

+ NNLL . (A5)

The first S [1,0]
l (Q2/ν) factor in Eq. (A5) is[

S [1,0]
l0

(Q2/ν)
]
1−P = S [1,0]

l0
(Q2/ν)− [S [1,0]

l0
(Q2/ν)]P .

The contribution from [S [1,0]
l0

(Q2/ν)]P is rather simple
and we will consider it later.

We begin by considering the contribution from

S [1,0]
l0

(Q2/ν). This operator, acting on the state

|{p, f, c, c′}m), produces a linear combination of states

with m+ 1 partons, |{p̂, f̂ , ĉ, ĉ′}m+1),

m∑
l0=1

S [1,0]
l0

(Q2/ν)e−x0
∣∣{p, f, c, c′}m)

≈ −
m∑
l0=1

m∑
k0=1
k0 6=l0

C0(l0, k0)
∣∣{c, c′}m)

×
∫
dφ0

2π

∫
dz0

1− z0

αs

(
λR(1− z0)Q2/(νal0)

)
2π

×Θ

(
al0

ν ϑ(l0, k0)
< 1− z0 < 1

)
× e−x0

∣∣{p̂, f̂}m+1

)
.

(A6)

Here we use the approximate form of S [1,0](Q2/ν) given
in Eq. (12). We split parton l0 with dipole partner parton
k0, creating a new parton m+1, which we consider to be
a gluon. The color operator is

C0(l0, k0) = Tl0 ⊗ T
†
k0

+ Tk0 ⊗ T
†
l0
, (A7)
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as defined below Eq. (12). We have specified a scale argu-
ment based on the transverse momentum for the splitting
for αs. The new momentum p̂m+1 and the new momen-
tum p̂l are given by the splitting variables y = 1/ν, z0

and φ0. The new momenta p̂i for i 6= l0,m+1 are slightly
different from the starting momenta, as specified by the
momentum mapping.

Let us consider what the one of the operators,

[S [1,0]
li

(Q2/ν)]P, in Eq. (A5) does to this state. We con-
sider the quantity

∣∣Ai) =
m+1∑
li=1

[
S [1,0]
li

(Q2/ν)
]
P(1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A8)
Again, we use the approximate form of S [1,0](Q2/ν) given
in Eq. (12), so that

∣∣Ai) ≈ − m+1∑
l=1

m+1∑
k=1
k 6=l

C(l, k)

×
∫
dφ

2π

∫
dz

1− z
αs

(
λR(1− z)Q2/(νâl)

)
2π

×Θ

(
1

ν ϑ̂(l, k)
<

1− z
âl

<
1

âl

)
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A9)

Here the hats in ϑ̂(l, k) and âl indicate that these quan-

tities are based on the momenta in |{p̂, f̂}m+1). In
Eq. (A9), we split parton l with dipole partner parton
k, creating a new parton m+ 2, which we consider to be
a gluon.11 However, the [· · ·]P operation, Eqs. (60) and
(61), returns us to the starting momentum and flavor

state |{p̂, f̂}m+1). With the [· · ·]P operation, the color
operator is

C(l, k) =
[
Tl ⊗ T †k + Tk ⊗ T †l

]
P

= Tl ·Tk ⊗ 1 + 1⊗ Tl ·Tk .
(A10)

In the first term in the second line, the operator Tl ·Tk
operates on the ket color state and leaves the number
of partons in the color state unchanged. The operator
inserts a color matrix T a with gluon color index a on line
l and another T a on line k. The dot in Tk ·Tl indicates
a sum over a. In the second term, the same operator is
applied to the bra state.

There is an integration over the splitting variables φ
and z. It will prove helpful to define a function L(w, u)
given by performing this integration,

L(w, u) =

∫ 2π

0

dφ

2π

∫ 1/u

1/w

dx

x

αs(λRxQ
2/ν)

2π
. (A11)

11 We omit splittings g → qq̄ since these splittings lack a soft sin-
gularity. For a q → qg or q̄ → q̄g splitting from an m+ 1 parton
state, the daughter gluon is labelled m+ 2.

This function is to be expanded in powers of
αs(Q

2/ν). At lowest order, this integration gives sim-
ply [αs/(2π)] log(w/u). At higher orders in an expansion
in powers of αs(Q

2/ν) the result is more complicated.
With this notation,

∣∣Ai) ≈ − m+1∑
l=1

m+1∑
k=1
k 6=l

C(l, k)L
(
ν ϑ̂(l, k), âl

)
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A12)

We break up the sums in the form

∣∣Ai) ≈ −{ m∑
l=1
l 6=l0

m+1∑
k=1
k 6=l

C(l, k)L
(
ν ϑ̂(l, k), âl

)

+

m∑
k=1
k 6=l0

C(l0, k)L
(
ν ϑ̂2(l0, k), âl0

)
(A13)

+
m∑
k=1
k 6=l0

C(m+ 1, k)L
(
ν ϑ̂2(m+ 1, k), âm+1

)
+ C(l0,m+ 1)L

(
ν ϑ̂2(l0,m+ 1), âl0

)
+ C(m+ 1, l0)L

(
ν ϑ̂(m+ 1, l0), âm+1

)}
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

Now, as long as neither l nor k equals m + 1, the angle

variable ϑ̂(l, k) is very close to the corresponding angle
variable ϑ(l, k) in the state |{p, f, c, c′}m) before the first

splitting. The angle variable ϑ̂(m+1, k) for k 6= l0 is very
close to ϑ(l0, k) in the state before the first splitting, since
partons l0 and m+ 1 are nearly collinear in the integra-
tion region that can lead to a log(ν) factor in the first
splitting. Thus we regard these angles as fixed when cal-

culating S [k+1]
Y (x0Q

2/ν; ν)|{p, f, c, c′}m). On the other

hand, ϑ̂(l0,m+ 1) is the angle variable for the first split-
ting and is thus an integration variable in this calcula-
tion. Integrating over this variable can produce a log(ν)

factor. Thus we treat ϑ̂(l0,m + 1) as potentially small
in Eq. (A13), but we treat the other angle variables as
being finite. For the purpose of finding log(ν) factors, we
simply replace these finite angle variables by 1. These
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substitutions give us

∣∣Ai) ≈ −{ m∑
l=1
l 6=l0

m+1∑
k=1
k 6=l

C(l, k)L
(
ν, âl

)

+
m∑
k=1
k 6=l0

C(l0, k)L
(
ν, âl0

)

+
m∑
k=1
k 6=l0

C(m+ 1, k)L
(
ν, âm+1

)
+ C(l0,m+ 1)L

(
ν ϑ̂(l0,m+ 1), âl0

)
+ C(l0,m+ 1)L

(
ν ϑ̂(l0,m+ 1), âm+1

)}
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A14)

In two of the terms in Eq. (A14), the parameter âm+1

appears. This parameter is large when the momentum
fraction 1 − z0 of parton m + 1 in the first splitting is
small:

âm+1 ≈
al0

1− z0
. (A15)

We also note that the angle variable ϑ̂(l0,m+1) is pro-
portional to 1/(1− z0) according to Eq. (16). We have

ϑ̂(l0,m+1) ≈ al0
ν(1− z0)

. (A16)

Combining these equations gives us

âm+1 ≈ νϑ̂(l0,m+1) . (A17)

With this replacement, the function L, Eq. (A11), in the
last term in Eq. (A14) is approximately

L
(
ν ϑ̂(l0,m+ 1), âm+1

)
≈ L(âm+1, âm+1) = 0 . (A18)

In the fourth term in Eq. (A14), we use this replacement

to eliminate ϑ̂(l0,m + 1) in favor of âm+1. With these
substitutions, we have

∣∣Ai) ≈ −{ m∑
l=1
l 6=l0

m+1∑
k=1
k 6=l

C(l, k)L
(
ν, âl

)

+
m∑
k=1
k 6=l0

C(l0, k)L
(
ν, âl0

)

+
m∑
k=1
k 6=l0

C(m+ 1, k)L
(
ν, âm+1

)

+ C(l0,m+ 1)L
(
âm+1, âl0

)}
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A19)

Using the definition (A11) of L(w, u), this function in
the last term can be written as

L
(
âm+1, âl0

)
= −L

(
ν, âm+1

)
+ L

(
ν, âl0

)
. (A20)

In the sum in the second term in Eq. (A19) we can add
and subtract a contribution from k = m+1. After adding
this contribution, the sum includes k = m + 1, so that
this sum can be combined with the sums in the first term.
Then in the first term we can include l = l0 in the sum
over l. In the third term in Eq. (A19) we can add and
subtract a contribution from k = l0, so that after adding
this contribution the sum includes k = l0. With these
changes, we have

∣∣Ai) ≈ −{ m∑
l=1

m+1∑
k=1
k 6=l

C(l, k)L
(
ν, âl

)

+
m∑
k=1

C(m+ 1, k)L
(
ν, âm+1

)
− 2C(l0,m+ 1)L

(
ν, âm+1

)}
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A21)

In the first term in Eq. (A21), we can use color con-
servation to write

m+1∑
k=1
k 6=l

C(l, k) =

m+1∑
k=1
k 6=l

[Tl ·Tk ⊗ 1 + 1⊗ Tl ·Tk]

= − [Tl ·Tl ⊗ 1 + 1⊗ Tl ·Tl]
= − 2Cl[1⊗ 1] ,

(A22)

where Cl = CA if parton l is a gluon and Cl = CF if
parton l is a quark or antiquark. The same applies to
the second term:

m∑
k=1

C(m+ 1, k) = −2CA[1⊗ 1] , (A23)

where we have used Cm+1 = CA since parton m+ 1 must
be a gluon in order to give a leading log(ν) contribution.
These substitutions give us

∣∣Ai) ≈ { m∑
l=1

2Cl[1⊗ 1]L
(
ν, âl

)
(A24)

+ 2
[
CA[1⊗ 1] + C(l0,m+ 1)

]
L
(
ν, âm+1

)}
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

Consider now the term in Eq. (A24) that contains a
color operator C(l0,m+1), defined in Eq. (A10). We ap-
ply this operator after the color operator for the initial
splitting, C0(l0, k0), defined in Eq. (A7). This gives us an
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operator with four terms,

Ci = (Tl0 ·Tm+1)Tl0⊗T
†
k0

+ Tl0⊗T
†
k0

(Tl0 ·Tm+1)

+ (Tl0 ·Tm+1)Tk0⊗T
†
l0

+ Tk0⊗T
†
l0

(Tl0 ·Tm+1) .

(A25)

There can be several factors of [S [1,0]
l (xQ2/ν)]P in

Eq. (A5) and in some of those factors we can select the
C(l0,m+1) term in Eq. (A24). Finally, there is a [· · ·]P
operation. This gives us a sum of color operators of the
form[
C
]
P =

[
(Tl0 ·Tm+1)A Tl0⊗T

†
k0

(Tl0 ·Tm+1)B

+ (Tl0 ·Tm+1)A Tk0
⊗T †l0 (Tl0 ·Tm+1)B

]
P .

(A26)

Using Eq. (61), this becomes[
C
]
P =

[
(Tl0 ·Tm+1)A+B Tl0⊗T

†
k0

+ Tk0
⊗T †l0 (Tl0 ·Tm+1)A+B

]
P .

(A27)

Now consider the color operator Tl0 ·Tm+1 T
a
l0

. In dia-
grams, parton l0 emits a gluon with label m+1, leaving
parton l0 in a new color state. Then a gluon is exchanged
between partons l0 and m+1. This gives us a color tri-
angle diagram,

Tl0 ·Tm+1 T
a
l0 = ifabcT

b
l0T

c
l0 . (A28)

Then we can use

ifabcT
b
l0T

c
l0 =

1

2
ifabc[T

b
l0 , T

c
l0 ] =

1

2
ifabcifbcdT

d
l0

= − CA

2
T al0 .

(A29)

Thus

Tl0 ·Tm+1 T
a
l0 = −CA

2
T al0 . (A30)

This gives us

(Tl0 ·Tm+1)A+B Tl0⊗T
†
k0

=

[
−CA

2

]A+B

Tl0⊗T
†
k0
. (A31)

The second term in Eq. (A27) gives the same result, so
that the net color operator defined in Eq. (A26) is

[
C
]
P =

[
−CA

2

]A+B[
Tl0 ⊗ T

†
k0

+ Tk0
⊗ T †l0

]
P .

(A32)

We conclude that when C(l0,m+1) in Eq. (A24) is part

of S [k+1]
Y (x0Q

2/ν; ν) in Eq. (A5), we get the same result

for S [k+1]
Y (x0Q

2/ν; ν) by making the replacement

C(l0,m+1)→ −CA[1⊗ 1] . (A33)

There is a factor 2 for each CA here because there are two
Tl0 ⊗ T

†
k0

terms and two Tk0 ⊗ T
†
l0

terms in Eq. (A25).

With this replacement, the terms in Eq. (A24) propor-
tional to L

(
ν, âm+1

)
cancel. Thus we get the same result

for S [k+1]
Y (x0Q

2/ν; ν) by making the replacement∣∣Ai)→ ∣∣Aeff
i

)
, (A34)

where

∣∣Aeff
i

)
≈

m∑
l=1

2Cl[1⊗ 1]L
(
ν, âl

)
× (1− e−xi)

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
.

(A35)

Note that
∣∣Aeff

i

)
is a number, which we may call λi, times

the starting state vector,∣∣Aeff
i

)
= λi

∣∣{p̂, f̂ , ĉ, ĉ′}m+1

)
. (A36)

Return now to Eq. (A5) for S [k+1]
Y (x0Q

2/ν; ν) applied

to the starting state
∣∣{p, f, c, c′}m). In the last factor, we

have dealt with the operator S [1,0]
l0

(Q2/ν), which creates a
new parton with label m+1. Now we turn to the remain-

ing operator, −
[
S [1,0]
l0

(Q2/ν)
]
P. This operator, acting on

the state
∣∣{p, f, c, c′}m), produces a linear combination

of states with m partons,
∣∣{p, f, ĉ, ĉ′}m). Here the mo-

mentum and flavors are the same as in the initial state,
but the colors change. More precisely,

m∑
l0=1

[
S [1,0]
l0

(Q2/ν)
]
Pe
−x0
∣∣{p, f, c, c′}m)

≈ −
m∑
l0=1

m∑
k0=1
k0 6=l0

[
C(l0, k0)

]
P

∣∣{p, f, c, c′}m)

×
∫
dφ0

2π

∫
dz0

1− z0

αs

(
λR(1− z0)Q2/(νal0)

)
2π

×Θ

(
al0

ν ϑ(l0, k0)
< 1− z0 < 1

)
× e−x0 .

(A37)

Let us consider what the one of the operators,[
S [1,0]
li

(Q2/ν)
]
P, in Eq. (A5) does to this state. We con-

sider the quantity

∣∣Bi) =
m+1∑
li=1

[
S [1,0]
li

(Q2/ν)
]
P(1− e−xi)

∣∣{p, f, ĉ, ĉ′}m) .
(A38)

With an analysis similar to but simpler than our previous
analysis, we obtain

∣∣Bi) ≈ m∑
l=1

2Cl[1⊗ 1]L
(
ν, âl

)
× (1− e−xi)

∣∣{p, f, ĉ, ĉ′}m) . (A39)
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This gives us ∣∣Bi) = λi
∣∣{p, f, ĉ, ĉ′}m) , (A40)

where the eigenvalue λi is exactly the λi in Eq. (A36).
We can substitute Eqs. (A40) and (A36) into Eq. (A5)

to obtain

S [k+1]
Y (x0Q

2/ν; ν)
∣∣{p, f, c, c′}m)

= (−1)n
∫ x0

0

dx1

x1

∫ x1

0

dx2

x2
· · ·
∫ xk−1

0

dxk
xk

× λk · · ·λ2 λ1

×
∑
l0

[[
S [1,0]
l0

(Q2/ν)
]
1−P

]
P

× e−x0
∣∣{p, f, c, c′}m)

+ NNLL .

(A41)

However[[
S [1,0]
l0

(Q2/ν)
]
1−P

]
P

=
[
S [1,0]
l0

(Q2/ν)−
[
S [1,0]
l0

(Q2/ν)
]
P

]
P

=
[
S [1,0]
l0

(Q2/ν)
]
P −

[
S [1,0]
l0

(Q2/ν)
]
P

= 0 .

(A42)

Thus the NLL contributions to S [k+1]
Y (x0Q

2/ν; ν) vanish:

S [k+1]
Y (x0Q

2/ν; ν)
∣∣{p, f, c, c′}m) = NNLL . (A43)

Appendix B: Cancellation with kT ordering

In this appendix, we explore the cancellation of large

log(ν) factors in I [2]
2 (ν) with kT ordering. We can write

(1|I [2]
2 (ν)

∣∣{p̃, f̃ , c̃, c̃′}2) in the form(
1
∣∣I [2](ν)

∣∣{p̃, f̃ , c̃, c̃′}2)
=

∫ Q2

0

dk̃T

k̃T

∫
dη̃

∫
dφ̃

2π

∫ Q2

0

dkT
kT

∫
dη

∫
dφ

2π

×Θ(kT < k̃T)(1− eν(τ̂−τ))e−ντ

×
(
1
∣∣S [1,0](kT, η, φ)

×
{
S [1,0](k̃T, η̃, φ̃)−

[
S [1,0](k̃T, η̃, φ̃)

]
P

}
×
∣∣{p̃, f̃ , c̃, c̃′}2) .

(B1)

We begin with a qq̄ state with parton momenta p̃1 and
p̃2 aligned along the + and − z axis, respectively. Then
one of these two partons splits, producing parton 3. We
suppose that it is parton 1 that splits. After the splitting,
we have partons with momenta p1, p2, and p3. The value
of 1 − T in this state is τ and we suppose that τ � 1.
Then there is a second splitting, producing partons with
momenta p̂1, p̂2, p̂3, and p̂4 with a thrust variable τ̂ � 1.
We consider either the splitting of parton 3 with parton

2 as the dipole partner or the splitting of parton 2 with
parton 3 as dipole partner. Other splitting possibilities
are not as important and we omit consideration of them
here. We limit our consideration to the leading color
approximation.

We begin with the first splitting, which we describe
with splitting variables k̃T, η̃, φ̃ that relate p3 to p̃1 and
p̃2:

p3 = eη̃
k̃T

|Q|
p̃1 + e−η̃

k̃T

|Q|
p̃2 + k̃⊥ . (B2)

Here |Q| = [Q2]1/2 = [2p̃1 · p̃2]1/2 and k̃⊥ is a vector that
is orthogonal to p̃1 and p̃2:

k̃⊥ · p̃1 = k̃⊥ · p̃2 = 0 . (B3)

We have defined the scalar k̃T by

k̃T =
[
−k̃2
⊥

]1/2
. (B4)

This definition gives p2
3 = 0. The variable η̃ is the ra-

pidity of p3. We need one more splitting variable, the
azimuthal angle φ̃ of k̃⊥.

For emission from parton 1, the splitting function is
small for η̃ < 0. There is a maximum value of η̃ for
fixed k̃T, set by the condition for a maximally collinear
emission

eη̃
k̃T

|Q|
= 1 . (B5)

When η̃ is close to this upper bound, the splitting func-
tion tends to zero. Thus we integrate over the splitting
variables with measure dη̃ d log(k̃T/|Q|) over the range

0 <∼ η̃ <∼ − log(k̃T/|Q|). In this range, as long as η̃ is not
near either endpoint, the splitting function is approxi-
mately constant. For small k̃T, this is a large range. The
integration gives us a large logarithm, which comes from
integrating over the interior of the range, omitting the
regions near the endpoints:

0� η̃ � − log(k̃T/|Q|) . (B6)

We will assume that η̃ lies in this range in the analysis
that follows.

For an emission from parton 1, we define the momen-
tum of parton 1 after the emission to be

p1 =

[
1− eη̃ k̃T

|Q|

]
p̃1 +

k̃2
T/|Q|2

1− eη̃k̃T/|Q|
p̃2 − k̃⊥ . (B7)

With this definition, p2
1 = 0 and p1− p̃1 + p3 lies entirely

in the direction of p̃2:

p1 − p̃1 + p3 =
e−η̃k̃T/|Q|

1− eη̃k̃T/|Q|
p̃2 . (B8)

Finally, we need to define the momentum p2 of parton
2 after the splitting so that momentum is conserved: p1+
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p2+p3 = p̃1+p̃2. Using Eq. (B8) we obtain p2 by applying
a small boost in the z direction to p̃2:

p2 =

[
1− e−η̃k̃T/|Q|

1− eη̃k̃T/|Q|

]
p̃2 . (B9)

This is the exact relation. In the integration range (B6),
this relation becomes

p̃2 − p2 ≈ e−η̃ k̃T
|Q|

p̃2 . (B10)

We use Eqs. (26) and (27) to calculate the thrust for
the state after the first splitting:

τ =
1

Q−

(
p−1 + p−3 + p+2

)

=
1

Q−

(
p̃−2 − p−2 + p̃−1 + p+2

)
.

(B11)

We can use p̃−1 = p+2 = 0. Then we can use p̃−2 = Q−

and Eq. (B10) for p̃−2 − p−2 . This gives τ ≈ e−η̃ k̃T/|Q| or

ντ ≈ νe−η̃ k̃T
|Q|

. (B12)

This relation is significant because this emission is ac-
companied by a measurement function exp(−ντ). The
measurement function is approximately 1 for ντ � 1 but
approximately zero for 1 � ντ . Thus we effectively inte-
grate over the range

ντ < 1 . (B13)

In the analysis that follows, we will need a relation
between 2p3 ·Q and the values of η̃ and k̃T for the split-
ting. We can use Eq. (B2) with η � 0 together with
2p̃1 ·Q = Q2 to give

2p3 ·Q
Q2

= eη̃
k̃T
|Q|

. (B14)

We now turn to the second splitting. We will describe
the splitting using variables and a momentum mapping
that are slightly different from what is used in Deduc-
tor with kT ordering. In fact, we will use a local momen-
tum mapping. However, in the kinematic limit of inter-
est, the description used here reduces to the description
used in Deductor. The splitting kinematics are illus-
trated in Fig. 14. We describe the second splitting with
splitting variables kT, η, φ that relate p̂4 to p2 and p3:

p̂4 = A32 e
η kT
|Q|

p3 +A23 e
−η kT

|Q|
p2 + k⊥ , (B15)

where

A32 =

[
Q2

2p2 · p3
p2 ·Q
p3 ·Q

]1/2
,

A23 =

[
Q2

2p2 · p3
p3 ·Q
p2 ·Q

]1/2
.

(B16)

FIG. 14. Integration regions for second splitting.

Here k⊥ is a vector that is orthogonal to p2 and p3:

k⊥ · p3 = k⊥ · p2 = 0 . (B17)

As for the first splitting, we have defined the scalar kT =[
−k2⊥

]1/2
. This definition gives p̂24 = 0. The variable η

describes the rapidity of p̂4 with respect to the emitting
dipole, with a constant log(p2 ·Q/p3 ·Q)/2 added [3]. We
need one more splitting variable, the azimuthal angle φ
of k⊥ in the dipole c.m. frame.
There is a limit to how large η can be: ηmin < η <

ηmax. The limits are fixed by the requirements that the
components of p̂4 along p3 and p2 cannot be larger than
1:

ηmax = − log

(
kT
|Q|

)
− log (A32) ,

ηmin = log

(
kT
|Q|

)
+ log (A23) .

(B18)

The lines η = ηmax and η = ηmin are indicated in Fig. 14
as the lines labelled collinear. This is a large integration
range. We will assume in what follows that η is not near
to the endpoints of the integration range:

ηmin � η � ηmax . (B19)

For emission from parton 3, we let the momentum of
parton 3 after the emission be

p̂3 ≈
[
1−A32 e

η kT
|Q|

]
p3

+
k2T
Q2

Q2

2p3 · p2

[
1−A32 e

η kT
|Q|

]−1

p2 − k⊥ .

(B20)

With this definition, p̂23 = 0 and p̂3 − p3 + p̂4 lies entirely
in the direction of p2. Then we can maintain momentum
conservation, p̂1 + p̂2 + p̂3 + p̂4 = p1 + p2 + p3 by setting
p̂1 = p1 and obtaining p̂2 by performing a small boost on
p2:

p̂2 = e−ωp2 . (B21)
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With a few algebraic steps, we find

e−ω = 1−A23 e
−η kT

|Q|

[
1−A32 e

η kT

|Q|

]−1

. (B22)

These definitions have been exact for the kinematic
variables and momentum mapping chosen. We can now
make some approximations. Given our kinematic con-
ditions (B6) for the first emission, the momentum p3

has large rapidity. That is, it makes a small angle with
the z axis. The transverse momentum vector defined in
Eq. (B15) is orthogonal to p3 and p2 whereas the trans-
verse momentum vector in Deductor is orthogonal to
p3 and Q. However, since p3 makes a small angle with
the z axis, this is almost the same thing. In Deductor,
momentum is conserved by applying a boost in the plane
of p3 and Q. Since p3 makes a small angle with the z
axis, this boost is almost exactly along the z axis. The
boost is applied to both p2 and p1, but this difference
has only a tiny effect on the resulting thrust. Thus in
the limit considered, the Deductor kinematics and the
kinematics used here are equivalent.

We now examine the change in thrust produced by the
emission of parton 4 from parton 3. We assume that p4

is in the right thrust hemisphere. This is always the case
when η � 0. There is a region near η ≈ 0 in which this
assumption fails. With the kinematics that we are using,
the thrust axis is along −~p2. That is, it is the z axis.
Then we have

τ̂ − τ =
1

Q−
[
p̂−4 + p̂−3 − p

−
3 + p̂+

2 − p
+
2

]
=

1

Q−
[
p−2 − p̂

−
2 + p̂+

2 − p
+
2

]
.

(B23)

We have p+
2 = 0, p̂2 = e−ωp2 from Eq. (B21), and

p−2 /Q
− = 2p2 ·Q/Q2. This gives us

τ̂ − τ =
2p2 ·Q
Q2

[1− e−ω] . (B24)

Now the condition η � ηmax that we assume implies that
A32 e

ηkT/|Q| � 1. Thus in Eq. (B22), we can replace the
factor 1−A32 e

ηkT/|Q| in e−ω by just 1. Then

τ̂ − τ =
2p2 ·Q
Q2

A23 e
−η kT

|Q|
. (B25)

Since p3 makes a small angle with the z axis, we obtain
the approximations

2p2 · p3 ≈
2p2 ·Q 2p3 ·Q

Q2
,

A32 ≈
Q2

2p3 ·Q
,

A23 ≈
Q2

2p2 ·Q
.

(B26)

With these approximations, we have

ν(τ̂ − τ) ≈ νe−η kT

|Q|
. (B27)

With the same approximations, we obtain for the change
in thrust produced by an emission from parton 2 with
the dipole partner being parton 3,

ν(τ̂ − τ) ≈ νeη kT

|Q|
. (B28)

Again, this is for |η| � 0. For the soft emission region
near η = 0, there is the possibility that p4 is in the oppo-
site thrust hemisphere from the parton that emitted it,
so that the thrust calculation changes.

These relations are significant because the second emis-
sion is accompanied by a measurement function 1 −
exp(−ν(τ̂ − τ)). The measurement function is approx-
imately 1 for 1 � ν(τ̂ − τ) but approximately zero for
ν(τ̂−τ)� 1. Thus we effectively integrate over the range

ν(τ̂ − τ) > 1 . (B29)

The boundary of this integration region is indicated in
Fig. 14 as straight lines with the labels ν(τ̂ − τ) = 1.

There is one more restriction on the integration range
for the second splitting. We are analyzing a kT ordered
shower, so

kT < k̃T . (B30)

The line kT = k̃T is indicated in Fig. 14.
To analyze Eq. (B30), we will need to know the value

kT,? of kT at the point labelled with a star in Fig. 14.
We first note that the line for η > 0 labelled collinear in
Fig. 14 is given by η = ηmax in Eq. (B18), eηkT/|Q| =
1/A32. We can use Eqs. (B26) and (B14) for A32, giving

eη
kT

|Q|
≈ eη̃ k̃T

|Q|
, collinear . (B31)

Then using Eq. (B12) to eliminate η̃ and Eq. (B27) to
eliminate η we have

k2
T

Q2
≈ ν(τ̂ − τ)

ντ

k̃2
T

Q2
, collinear . (B32)

The point labelled with a star in Fig. 14 is the intersection
of the collinear line and the line ν(τ̂ − τ) = 1. Thus,

k2
T,?

Q2
≈ 1

ντ

k̃2
T

Q2
. (B33)

Since in the dominant integration region ντ < 1, we con-
clude that kT,? > k̃T. Thus the line kT = k̃T lies below
the point (η?, kT,?) in Fig. 14. This implies that the ef-
fective integration region for the second splitting is the
region shaded in yellow in Fig. 14. Inside this region, the
integrand is approximately 1.

Now consider the case in which the first splitting is
virtual. The corresponding contribution comes from the
term [S [1,0](k̃T, η̃, φ̃) e−ντ ]P in the last line of Eq. (B1).
We integrate over the splitting variables for the first split-
ting, including the measurement function e−ντ , but we
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start the second splitting from the qq̄ state with just par-
tons with momenta p̃1 and p̃2, but with the kT ordering
requirement kT < k̃T. Now the limits on η in Fig. 14,
indicated by the lines labelled collinear, are expanded
to the dotted lines in the figure. However, the effective
integration region for the second splitting is the region
shaded in yellow in Fig. 14. When we subtract the vir-
tual contribution from the real contribution, we get zero
within the approximations that we have used.

In Eq. (B33), we have equality, k̃T = kT,?, when the
value of τ for the first splitting is given by ντ = 1. The
value of k̃T in the first splitting can be less than kT,?, but

if k̃T is too small then the integration region in Fig. 14
disappears. From Eq. (B27) at η = 0, ν(τ̂ − τ) = 1 and

k̃T = kT, we see that this limits k̃T to

k̃T

|Q|
>

1

ν
. (B34)

Our analysis above has assumed that the first emis-
sion is at large rapidity, η̃ � 0. What happens when
η̃ ≈ 0? The approximations that we have used are not
adequate in this situation, so it might seem that there is
nothing that we can say. However, we can examine what
happens when η̃ is large enough that the approximations
are still valid, but η̃ becomes smaller and smaller. Start
with Eq. (B31) for the collinear line in Fig. 14 and use

Eq. (B12) to eliminate k̃T and Eq. (B27) to eliminate kT,
giving

e2η ≈ ντ

ν(τ̂ − τ)
e2η̃ , collinear . (B35)

The point labelled with a star in Fig. 14 is the intersection
of the collinear line and the line ν(τ̂ − τ) = 1. Thus,

e2η? ≈ ντ e2η̃ . (B36)

In the effective integration range for the first splitting,
we have ντ < 1. Thus

η? < η̃ . (B37)

This tells us that when the rapidity of the first split-
ting becomes small, η̃ → 0, we have η? → 0. In this

limit, the real-virtual cancellation in this region deteri-
orates, but this deterioration does not matter because
the allowed integration region for the second splitting in
Fig. 14 shrinks to zero.

The cancellation will fail on a certain surface in the
integration region. On this surface, the splitting variables
for the second emission are given by

(kT, η) ≈ (kT,?, η?) . (B38)

In this region, the second emission is collinear rather than
both soft and collinear, so that the emission probability
does not match the constant that appears in the region
in which the second emission is both soft and collinear.
However in the virtual subtraction the second emission is
both soft and collinear so that the emission probability
is this constant. Thus the emission probabilities do not
match between the real emission and the subtraction.

The surface of non-matching probabilities is specified
as follows. If kT = kT,?, then the line kT = k̃T in Fig. 14

must pass through (kT,?, η?), so that k̃T = kT,?. Then
Eq. (B33) implies that the value of τ for the fist emission
is given by ντ = 1. Then Eq. (B12) gives

η̃ ≈ log(ν) + log

(
k̃T

Q

)
. (B39)

The transverse momentum for the first emission varies in
the range

− log(ν)� log

(
k̃T

Q

)
� −1

2
log(ν) . (B40)

Here the lower limit is from Eq. (B34) and the upper
limit is from Eqs. (B6), (B12), and (B13). For the second
emission, (kT, η) ≈ (kT,?, η?):

η ≈ η̃ ,

log

(
kT

Q

)
≈ log

(
k̃T

Q

)
.

(B41)

Thus the integration region inside which cancellation fails
is one dimensional, so we are left with a contribution to

I [2]
2 proportional to log1(ν).
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