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The quasi-PDF approach provides a path to computing parton distribution functions (PDFs) using
lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon
at high momentum and one generically expects discretization effects starting at first order in the
lattice spacing a. Therefore, it is important to demonstrate that the continuum limit can be reliably
taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation
of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson
twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings.
Our results show a significant dependence on a, and the continuum extrapolation produces a better
agreement with phenomenology. The latter is particularly true for the antiquark distribution at
small momentum fraction x, where the extrapolation changes its sign.

I. INTRODUCTION

The calculation of parton distribution functions (PDFs) using lattice QCD has seen renewed interest in recent
years [1–4], driven in part by the introduction of the quasi-PDF method [5, 6]. This method requires nucleon
matrix elements of a nonlocal operator containing a Wilson line, which must be computed on the lattice. Previous
calculations of quasi-PDFs and related observables using the same operator by ETMC are given in Refs. [7–15] and
by other collaborations in Refs. [16–44].

The presence of a Wilson line in the nonlocal operator introduces a power divergence. This divergence must be
exactly removed by the renormalization procedure so that a finite continuum limit can be obtained. Furthermore, in
contrast to the case of local operators, the use of a lattice action with exact chiral symmetry or at maximal twist does
not eliminate all discretization effects linear in the lattice spacing a [45–47]. This means that in a lattice setup where
most observables have only O(a2) lattice artifacts, quasi-PDFs can nevertheless have O(a) contributions. For both of
these reasons, it is important to numerically study the approach to the continuum limit so that future calculations
will be better equipped to control all sources of systematic uncertainty.

There exist some previous studies using more than one lattice spacing. Ref. [45] includes an early analysis using
two of the three lattice spacings used in this work. Nonperturbative renormalization was studied using two lattice
spacings in Ref. [30], and the same two lattice spacings were used for studying pion PDFs in Ref. [42]. After the first
version of this paper was submitted, two more works appeared. Ref. [48] presents a study of nucleon PDFs using
three lattice spacings and three different pion masses, in which the lowest two pion masses were each studied using a
single lattice spacing and the highest pion mass was studied using two lattice spacings. Finally, zero-momentum pion
matrix elements were computed in Ref. [49] using multiple actions and up to four lattice spacings per action.

In this paper, we present a study of the approach to the continuum limit of isovector nucleon unpolarized and
helicity parton distributions using three lattice ensembles, each having a different lattice spacing but with otherwise
similar parameters. Section II describes the ensembles and the observables we compute. A dedicated study on one
ensemble of systematic effects from excited-state contamination is reported in Section III. Renormalization factors are
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Name β aµl size a (fm) mπ (MeV) pzL/(2π) pz (GeV) ts/a ts (fm) Nconf Nsamp

A60 1.90 0.0060 243 × 48 0.0934(13)(35) 365 3 1.66 10 0.934 1260 40320

B55 1.95 0.0055 323 × 64 0.0820(10)(36) 373 4 1.89 12 0.984 1829 58528

D45 2.10 0.0045 323 × 64 0.0644(07)(25) 371 3 1.80 15 0.966 1259 40288

TABLE I. Parameters of the three Nf = 2+1+1 lattice ensembles: gauge coupling β, bare light quark mass aµl, and size. The
pion mass mπ and lattice spacing a (determined via the nucleon mass) are taken from Ref. [50]. Nucleon three-point functions
are computed with momentum ~p = (0, 0, pz) and source-sink time separation ts. The total number of gauge configurations is
given by Nconf; on each one, we use an evenly-spaced grid of 32 source positions, with a random overall displacement, yielding
Nsamp = 32Nconf samples.

obtained using two different methods in Section IV; in addition, we study a ratio of matrix elements that cancels the
renormalization. In Section V, we take the continuum limit, both for position-space matrix elements and for PDFs.
Finally, conclusions are given in Section VI.

II. LATTICE SETUP

We use three lattice ensembles that differ primarily in their lattice spacings a = 0.0644, 0.0820, and 0.0934 fm.
These have dynamical degenerate up and down quarks with pion mass approximately 370 MeV and dynamical strange
and charm quarks with near-physical masses, i.e. Nf = 2+1+1. The gauge action is Iwasaki [51, 52] and the fermions
use Wilson twisted mass tuned to maximal twist. These ensembles were generated by ETMC [53]; parameters for
the three used in this work are given in Table I. The ensemble with intermediate lattice spacing, B55, was previously
used by some of us for studying quasi-PDFs in Refs. [7–9].

Isovector quasi-PDFs are obtained from nucleon matrix elements of the nonlocal operator

OΓ(x, z) = ψ̄(x + zẑ)Γτ3W (x + zẑ,x)ψ(x), (1)

where bold symbols denote Euclidean four-vectors, ψ is the doublet of light quarks, W is a Wilson line, τ3 selects
the isovector u− d flavor combination, and we have chosen to extend the operator in the third spatial direction. We
employ five steps of stout smearing [54] in the definition of W . The operator’s nucleon matrix elements can be written
as

〈p, s′|OΓ(0, z;µ)|p, s〉 = hΓ(pz, z;µ)ū(p, s′)Γu(p, s), (2)

where µ represents the scale at which O is renormalized. Taking the Fourier transform, we obtain the unpolarized
and helicity quasi-PDFs,

q̃(x, pz;µ) =
pz
2π

∫
dz e−ixpzzhγ0(pz, z;µ),

∆q̃(x, pz;µ) =
pz
2π

∫
dz e−ixpzzhγ3γ5(pz, z;µ).

(3)

These are related to physical PDFs through factorization,

q̃(x, pz;µ) =

∫
dξ

|ξ|C
(
ξ,
µ

pz

)
q

(
x

ξ
;µ

)
+O

(
m2
N

p2
z

,
Λ2

QCD

p2
z

)
, (4)

and a similar expression applies to the helicity case.

The details of our calculation are similar to Ref. [12], although we use nucleon momenta only in the +ẑ direction
and do not improve statistics by averaging over equivalent directions. The proton interpolating operator is defined
using Wuppertal-momentum-smeared quark fields [55, 56], with the smearing performed using APE-smeared gauge
links [57].

III. EXCITED-STATE EFFECTS

On ensemble A60, we performed a dedicated study of excited-state effects by varying the source-sink separation ts/a
from 4 to 10. The nucleon effective energy on this ensemble is shown in Fig. 1; although momentum smearing yields



3

ts/a Nconf Nsrc Nsamp

{4, 5, 6, 7} 315 4 1260

8 315 8 2520

9 315 16 5040

10 1260 32 40320

TABLE II. Statistics used for excited-state study on ensemble A60.
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FIG. 1. Nucleon effective energy on ensemble A60 with momentum pz = 3(2π/L). The horizontal line indicates the predicted
energy using the nucleon mass from Ref. [50] and the continuum dispersion relation.

a good signal at moderate source-sink separations, the statistical uncertainty still grows rapidly at large separations.
Therefore, we use much larger statistics for the larger separations, as given in Table II.

Matrix elements are obtained from two-point and three-point correlation functions C2pt(ts) and CΓ,z
3pt(τ, ts), where

ts is the Euclidean time separation between the source and the sink and τ is the Euclidean time separation between
the source and OΓ(z). We consider two estimators for the matrix element hΓ(z):

hratio
Γ,eff (z; ts) ≡

CΓ,z
3pt( ts2 , ts)

C2pt(ts)

= hΓ(z) +O
(
e−∆Ets/2

)
,

hsumm
Γ,eff (z; ts) ≡

SΓ,z(ts + a)− SΓ,z(ts)

a

= hΓ(z) +O
(
e−∆Ets

)
,

(5)

where SΓ,z(ts) ≡ a
ts/a−1∑
τ/a=1

CΓ,z
3pt(τ, ts)

C2pt(ts)
(6)

and ∆E is the energy gap to the lowest excited state.

Results are shown for the unpolarized and helicity matrix elements in Figs. 2 and 3. For both observables the excited-
state effects are similar. In the real part at small z, the dependence on ts is weak, especially for the unpolarized case
where hγ0(0) is a conserved charge. For z > 6a, heff dips below zero at small ts and this negative part is substantially
reduced when ts is increased. In the imaginary part, the negative peak around z = 3a is reduced in magnitude when
ts is increased.

For most values of z, hratio
eff (z) with ts = 10a is consistent with the value for ts = 8a and 9a and also with hsumm

eff (z)
for ts = 5a and 6a. Therefore we conclude that excited-state effects are reasonably under control using the ratio
method with the largest time separation, and we choose to use similar separations for the two other ensembles.
However, the analysis in the rest of this paper differs slightly from the excited-state study: instead of simply taking

the midpoint τ = ts/2 in CΓ,z
3pt(τ, ts), we average over several central values of τ to reduce the statistical uncertainty.

The resulting bare matrix elements for all three ensembles are shown in Fig. 4.

One risk of studying excited-state effects using just one ensemble is that insufficiently controlled excited-state con-
tributions on the other ensembles could be mistakenly interpreted as discretization effects. To reduce this possibility,
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FIG. 2. Effective hγ0 versus z: real part (top) and imaginary part (bottom). For each z, the ratio-midpoint results are shown
using seven source-sink separations, increasing from left to right (red), and the summation-method results are shown using the
shortest three source-sink separations (blue).
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FIG. 3. Effective hγ3γ5 versus z. See the caption of Fig. 2.
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FIG. 4. Bare matrix elements: real part (top) and imaginary part (bottom) for the unpolarized (left) and helicity (right)
operators.

ts was chosen to be slightly larger on the two ensembles that lack an excited-states study. Furthermore, our findings in
Section IV C, that accounting for the leading effect of small differences in pz improves the approach to the continuum,
and in Section V, that the dependence on a is typically monotonic, are both consistent with discretization effects and
not excited-state effects playing the dominant role in this study.

IV. RENORMALIZATION

Renormalization of the nonlocal operator O(z) was a stumbling block in rigorously calculating quasi-PDFs and
was absent in the earliest lattice QCD calculations [7, 8, 16, 17]. In contrast with local quark bilinears that diverge
logarithmically, O(z) contains a Wilson line that introduces a power divergence. In order to obtain a continuum
limit, it is essential that this divergence be removed exactly, meaning that lattice perturbation theory is inadequate.
Nonperturbative renormalization prescriptions [9, 19, 45], introduced more than three years after the first lattice
quasi-PDF calculations, are necessary.

We employ two different methods for nonperturbative renormalization, both of which involve imposing renormaliza-
tion conditions on Green’s functions evaluated on Landau-gauge-fixed lattices1. For this, we use the Nf = 4 twisted
mass ensembles from Ref. [59] listed in Table III. These have the same action and bare coupling as the ensembles used
for computing nucleon matrix elements. However, because of the difficulty in reaching maximal twist with four de-
generate light fermions, we instead average over pairs of ensembles with opposite PCAC masses. After renormalizing
OΓ(z) in a nonperturbative intermediate scheme, perturbation theory is used to convert first to the MS scheme and
then to a modified MS (MMS) scheme [12]. The latter cancels a log(z2) divergence in the MS-renormalized matrix
element at short distance and enables a matching between quasi-PDF and PDF that conserves charge.

The first method is the whole operator approach, where renormalization conditions are imposed independently on
OΓ(z) for each z, producing a separate renormalization factor for each z. The procedure is very similar to methods
commonly used for local quark bilinears, and the nonperturbative intermediate scheme is RI′-MOM.

The second method is the auxiliary field approach, where the nonlocal operator is rewritten as a pair of local
operators in an extended theory. Renormalization conditions are imposed on those local operators and on the action
of the extended theory, producing a minimal set of renormalization parameters. The nonperturbative intermediate
scheme, RI-xMOM, uses a mixture of momentum space and position space.

When z = 0, it is a special case where OΓ(z) is a local operator, namely a vector or axial current. For this point,
we use the renormalization factor for the corresponding local operator determined in Ref. [59].

1 A hybrid approach that incorporates elements of both methods was recently proposed in Ref. [58].
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aµ κ aµsea
PCAC aMPS lattice size used in

β = 1.90, a = 0.0934 fm

0.0080 0.162689 +0.0275(4) 0.280(1) 243 × 48 A

0.163476 −0.0273(2) 0.227(1)

0.0080 0.162876 +0.0398(1) 0.279(2) 243 × 48 A,B

0.163206 −0.0390(1) 0.241(1)

β = 1.95, a = 0.0820 fm

0.0020 0.160524 +0.0363(1) 243 × 48 A,B

0.161585 −0.0363(1)

0.0085 0.160826 +0.0191(2) 0.277(2) 243 × 48 A

0.161229 −0.0209(2) 0.259(1)

β = 2.10, a = 0.0644 fm

0.0030 0.156042 +0.0042(1) 0.127(2) 323 × 64 B

0.156157 −0.0040(1) 0.129(3)

0.0046 0.156017 +0.0056(1) 0.150(2) 323 × 64 A

0.156209 −0.0059(1) 0.160(4)

0.0064 0.155983 +0.0069(1) 0.171(1) 323 × 64 A

0.156250 −0.0068(1) 0.180(4)

TABLE III. Simulation parameters for the Nf = 4 ensembles [59] used in the calculation of the renormalization. The last column
indicates which ensembles were used in Sections IV A (for the whole-operator renormalization) and IV B (for the auxiliary-field
renormalization).

In the next two subsections we discuss each method and their sources of systematic uncertainty. In a third subsection,
we form a ratio of nucleon matrix elements to cancel the renormalization of OΓ(z) and study the continuum limit of
the ratio.

A. Whole operator approach and RI′-MOM scheme

The Rome-Southampton approach [60] and its RI(′)-MOM schemes are commonly used to determine renormalization
factors of local operators. Our prescription for the nonlocal operator OΓ(z) closely follows Refs. [9, 61] and the
improvements from Ref. [12] for controlling systematic uncertainties; we refer the reader to those references for a more
detailed discussion.

In Landau gauge and in momentum space, we compute the fermion propagator Sq [Eq. (13)] and the amputated
vertex function VO, with the operator O inserted at zero momentum transfer. We impose the conditions

ZRI
O (z, µ0,mπ)

ZRI
q (µ0,mπ)

1

12
Tr
[
VO(z,p,mπ)

(
VBorn
O (z,p)

)−1
]∣∣∣
p2=µ2

0

=1 , (7)

ZRI
q (µ0,mπ) =

1

12
Tr
[
(Sq(p,mπ))−1 SBorn

q (p)
]∣∣∣
p2=µ2

0

, (8)

at each value of z, where XBorn is the tree-level value of X. As a shorthand, we write ZV for the renormalization of
the unpolarized operator Oγ0 and ZA for the helicity operator Oγ3γ5 . We choose the RI′ renormalization scale, µ0,
so that the vertex momentum p has the same components in all spatial directions, that is, ap = 2π

Ls
(nt + 1

4 , n, n, n)

with integer n and nt. More precisely, we choose momenta with P4 ≡ (
∑
i p

4
i )/(

∑
i p

2
i )

2 ≤ 0.32, in order to suppress
finite-a effects that break rotational symmetry [59, 62].

The renormalization factors are calculated on the Nf = 4 ensembles given in Table III; these have the same bare
coupling β as the Nf = 2 + 1 + 1 ensembles used for the bare matrix elements. The renormalization procedure can
be summarized in the following steps:
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FIG. 5. Real part (top) and imaginary part (bottom) of the renormalization factors for the unpolarized (left) and helicity
(right) operators in the MMS scheme at 2 GeV, determined using the whole-operator approach via the RI′-MOM intermediate
scheme. Data at β = 2.10, β = 1.95 and β = 1.90 are shown with green diamonds, orange circles, and blue squares, respectively.

1. Calculation of ZO for each ensemble of Table III, and for several values of the renormalization scale µ0. We
use nt ∈ [3, 9], n ∈ [2, 4] for the 243 × 48 ensembles, and nt ∈ [3, 10], n ∈ [3, 5] for the 323 × 64 ensembles, and
restrict to the momenta satisfying P4 ≤ 0.3. The range of values for (aµ0)2 is [1, 5] and [1, 4], for 243 × 48 and
323 × 64, respectively.

2. Averaging of the two ensembles at opposite aµseaPCAC values followed by chiral extrapolation of the form Z0 +
(aµ)Z1 (or quadratic in amπ) for each lattice spacing. For β = 1.90 we take the average of the four ensembles,
as there is only one aµ value available. For all three β values, we find a very mild dependence on the pion mass,
similarly to what was found for other ensembles [12].

3. Conversion to the MS scheme and simultaneous evolution to the scale 2 GeV, using the expressions from Ref. [61].

4. Elimination of residual dependence on the RI′ scale by fitting to extrapolate (aµ0)2 → 0. An extensive study on
the choice of the renormalization scale and the corresponding systematic uncertainties can be found in Ref. [12].
The optimal fit range for all β values is (aµ0)2 ∈ [1, 3].

5. Conversion to the MMS scheme, which is necessary in order to apply a matching formula that satisfies particle
number conservation.

The final estimates for renormalization factors are shown in Fig. 5. For the real part, the results with β = 1.90 and
1.95 are very similar, but the latter has a smaller imaginary part. The finest lattice spacing, β = 2.10, has a larger
real part. The renormalized matrix elements from the three lattice spacings are shown in Fig. 11 and their approach
to the continuum limit is discussed in Section V A.

B. Auxiliary field approach and RI-xMOM scheme

The auxiliary field approach [45, 63–65] introduces a new field ζ(z) whose propagator is a Wilson line along the
ẑ direction. This allows the nonlocal operator in QCD to be represented using the local operator φ ≡ ζ̄ψ in the
extended theory:

OΓ(x, z) =
〈
φ̄(x + zẑ)Γτ3φ(x)

〉
ζ
. (9)

The problem becomes that of renormalizing the action for ζ and the composite operator φ; one finds that three
parameters are sufficient to renormalize all operators OΓ(z) [45]:

ORΓ (z) = Z2
φe
−m|z| [OΓ(z) + sgn(z)rmixO{γz,Γ} + r2

mixOγzΓγz

]
, (10)
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FIG. 6. Renormalized Eζ(z) versus z. Filled blue squares, orange circles, and green diamonds show the data with stout-smeared
links on the coarse, medium, and fine lattice spacings, respectively. Diamonds with black outlines show the data on the fine
lattice spacing without smearing. Note that a hypercubic rotation has been used to orient the Wilson line in the temporal
direction to reduce finite-volume effects at large z. The curve shows the perturbative result based on the analytic three-loop
calculation [66, 67], the analytic partial four-loop calculations [68–74], and the numerical full four-loop calculation [72]; its error
band indicates the size of the O(α4

s) contribution.

where m is linearly divergent, Zφ is logarithmically divergent, and rmix is finite and associated with chiral symmetry
breaking on the lattice. For our choices of Γ, the anticommutator vanishes and the expression simplifies to

ORΓ (z) = Z2
φ(1− r2

mix)e−m|z|OΓ(z). (11)

We follow the approach in Refs. [45, 47] to determine m and Z2
φ(1 − r2

mix), using the RI-xMOM intermediate

scheme and converting to MS. Calculations are performed using the most chiral Nf = 4 twisted mass ensembles from
Ref. [59], averaging over pairs of ensembles with opposite PCAC masses rather than directly working at maximal
twist. In addition to the operator with stout-smeared links used for the bare nucleon matrix elements, we also employ
unsmeared links, which are expected to have reduced discretization effects, in some intermediate steps. After fixing
to Landau gauge, we compute the position-space ζ propagator

Sζ(z) ≡ 〈ζ(zẑ)ζ̄(0)〉QCD+ζ = 〈W (zẑ,0)〉QCD; (12)

the momentum-space quark propagator,

Sq(p) ≡
∫
d4xe−ip·x〈χ(x)χ̄(0)〉, (13)

where χ is a quark field in the twisted basis; and the mixed-space Green’s function for φ,

Gφ(z,p) ≡
∫
d4xeip·x〈ζ(zẑ)φ(0)χ̄(x)〉QCD+ζ . (14)

These renormalize as

SRζ (z) = Zζe
−m|z|Sζ(z), (15)

SRq (p) = ZqSq(p), (16)

GRφ (z,p) = Zφ
√
ZζZqe

−m|z|Gφ(z,p). (17)

To fix m, we evaluate the effective energy of the ζ propagator,

Eζ(z) ≡ −
d

dz
log TrSζ(z), (18)

which is renormalized by adding m. We use the nearest-neighbor lattice derivative. The relative matching among
the three lattice spacings is done at z ≈ 0.61 fm. The absolute value of m is determined using unsmeared links
on the finest lattice spacing, which is expected to produce the smallest discretization effects, and matching to the
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FIG. 7. Renormalization factor Z2
φ(1 − r2mix) determined using unsmeared links in the RI-xMOM scheme, matched to MS,

and evolved to scale 2 GeV. A hypercubic rotation has been used to orient the Wilson line and the quark momentum in the
temporal direction. The multiple points at the same µ2 have different values of the RI-xMOM scheme parameter y. The lines
with error bands give the extrapolation to a2µ2 = 0 and the darker part of each error band indicates the fit range.

β am Z2
φ(1− r2mix)

1.90 −0.392(1)(57) 0.986(25)

1.95 −0.373(1)(50) 0.908(20)

2.10 −0.305(1)(37) 0.907(11)

TABLE IV. Renormalization parameters from the auxiliary-field approach, determined via the RI-xMOM intermediate scheme.
The second uncertainty for the auxiliary field mass comes from the absolute matching onto perturbation theory and is fully
correlated across the three ensembles.

perturbative results for the static quark propagator known to O(α4
s) [47, 66–74]. The results are shown in Fig. 6.

Except at short distance where discretization effects are significant, the three lattice spacings are in good agreement
for the renormalized effective energy.

The other renormalization factors are determined using conditions designed to eliminate dependence on m:

−i
12p2ZRI

q

Tr
[
S−1
q (p)/p

]
= 1, (19)

ZRI
ζ

3

[TrSζ(z)]
2

TrSζ(2z)
= 1, (20)

1

12

ZRI
φ (1± rmix)√
ZRI
ζ ZRI

q

<Tr
[
(1± γz)S−1

ζ (z)Gφ(z,p)S−1
q (p)

]
= 1. (21)

These are evaluated at the scale µ2 = p2, choosing p = pzẑ. This defines a family of renormalization schemes that
depend on the dimensionless quantity y ≡ pzz. From the above, we extract the relevant overall renormalization
factor, Z2

φ(1− r2
mix), at fixed kinematics. We then convert Zφ to the MS scheme using the one-loop expression from

Refs. [45, 47] and evolve to the scale 2 GeV using the two-loop anomalous dimension of the static-light current [75, 76].

The determination of Z2
φ(1−r2

mix) is shown in Fig. 7. As this is done at relatively high scales where the perturbative

matching and evolution are applicable, we do this using unsmeared gauge links. Except at low µ2, the statistical
uncertainty is negligible compared with systematics. At each µ2, we estimate the latter such that the spread of
results for different scheme parameters y is covered. For each lattice spacing, we extrapolate a2µ2 to zero assuming a
linear dependence; the systematic uncertainty is propagated assuming a 50% correlation between every pair of points.
Following the approach used in Ref. [45], we match between unsmeared and smeared links in the infrared regime at
large z and small p2.

Final parameters for operators with stout-smeared links are given in Table IV. The large uncertainty for the mass
parameter is caused by the absolute matching onto perturbation theory. At each z, this absolute matching produces
an overall factor applied to hΓ(z) at all three lattice spacings. Therefore it can be ignored when studying the approach
to the continuum limit. However, this uncertainty must be included when comparing continuum-limit results against
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Ensemble Nconf Nsamp

A60 79 316

B55 54 216

D45 65 260

TABLE V. Statistics used for the nucleon matrix elements at zero momentum.

other renormalization approaches.

An additional perturbative conversion [12] yields results in the MMS scheme; this cancels a log(z2) divergence in
the MS-renormalized matrix element at short distance. However, this conversion has only been computed at one-
loop order, meaning that the cancellation may be inexact and some part of the divergence may still remain. The
renormalized nucleon matrix elements for the three lattice spacings are shown in Fig. 10.

C. Ratio with zero-momentum matrix element

The simplest way to cancel ultraviolet divergences is to compute matrix elements of the same operator in different
hadronic states and then take their ratio. Here we choose to take the ratio of matrix elements in a nucleon at nonzero
momentum (i.e. those used throughout this paper) with the same in a nucleon at rest,

RΓ(pz, z) ≡
hΓ(pz, z;µ)

hΓ(0, z;µ)
. (22)

As the signal-to-noise problem is much milder in a nucleon at rest, this requires a relatively inexpensive additional
calculation: see Table V.

This ratio is similar to the reduced Ioffe-time distribution used in the pseudo-PDF approach for parton distribu-
tions [77]. Although it is a different observable than the MMS-renormalized matrix elements used for quasi-PDFs,
it provides the opportunity to study the approach to the continuum limit in a clean, controlled setting. As such,
this section can be seen as a preview of the continuum extrapolations of the renormalized matrix element hΓ in
Section V A.

We consider variations of the continuum extrapolation in two different ways. First: precisely which points should
be used to obtain RΓ(pz, z) at zero lattice spacing? One option is to ignore small differences in pz among the three
ensembles, interpolate the lattice data to a common value of z in physical units, and then perform the extrapolation.
Alternatively, noting that parameter x of quasi-PDFs is Fourier-conjugate to the product zpz, we can choose to
interpolate to a common value of zpz before extrapolating; this could be more reliable because it accounts at leading
order for the small differences in pz.

Second: what fit form should be used? As we have three lattice spacings, we restrict ourselves to two-parameter
fits. At z = 0, the operator O is local, namely a vector or axial current; since we work at maximal twist, this
calculation benefits from automatic O(a) improvement [78, 79] and we extrapolate using an affine function of a2.
For z 6= 0 (i.e. for the bulk of our data), O is nonlocal and there can be O(a) contributions that are not eliminated
by automatic improvement [47]. In practice, it is not clear whether we are in the regime where O(a) contributions
dominate; therefore, we extrapolate using both affine functions of a and of a2.

The ratio data and their extrapolations are shown in Figs. 8 and 9. When plotted versus z in physical units, clear
discrepancies between the three ensembles are visible and for most of the parameter space, the lattice data from
the coarsest ensemble are more than one standard deviation away from the extrapolations. These discrepancies are
reduced when plotting the data versus zpz, although they remain significant for the unpolarized data at large z.

From this study, it appears that performing the extrapolation at fixed values of zpz is a better approach. For the
unpolarized matrix elements with zpz < 5 and for the helicity matrix elements, lattice artifacts have a modest effect
and are well under control, with the O(a) and O(a2) extrapolations in good agreement. For the unpolarized matrix
elements with zpz > 5, there is a stronger dependence on a and worse agreement between the two extrapolations; this
suggests that at longer distances the lattice artifacts are less well controlled.
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FIG. 8. Real part (top) and imaginary part (bottom) of the ratio of unpolarized matrix elements Rγ0 versus z in physical
units (left) and versus zpz (right). The curves with error bands depict the results from the continuum extrapolations assuming
leading artifacts linear in a (red) and quadratic in a (blue).

0.00 0.25 0.50 0.75 1.00
z (fm)−0.5

0.0

0.5

1.0

ℜ
R

γ
3γ

5

−1.0

−0.5

0.0

ℑ
R

γ
3γ

5

D45
B55
A60

0 2 4 6 8 10
zpz

−0.5

0.0

0.5

1.0
ℜ

R
γ

3γ
5

−1.0

−0.5

0.0

ℑ
R

γ
3γ

5

O(a)

O(a2)

FIG. 9. Ratio of helicity matrix elements Rγ3γ5 . See the caption of Fig. 8.

V. CONTINUUM LIMIT

A. Renormalized matrix elements

Based on our study of the ratios of matrix elements in the previous section, we choose to linearly interpolate our
MMS-scheme renormalized matrix elements to common values of zpz and then perform continuum extrapolations at
each interpolated point. We again extrapolate in two ways, assuming lattice artifacts are either linear or quadratic in
the lattice spacing.

Figure 10 shows the matrix elements renormalized using the auxiliary field approach and their continuum extrap-
olations. For most values of zpz, there is a large dependence on the lattice spacing and the extrapolated values are
far from those of the individual ensembles. The extrapolations tend to reduce the magnitude of the matrix element,
except for the unpolarized case at large zpz, where both the real and imaginary parts are positive and growing. For
the unpolarized matrix element, the O(a) and O(a2) extrapolations are not in good agreement, particularly in the
real part at small zpz and the imaginary part at medium zpz.
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the MMS scheme at scale 2 GeV. The curves with error bands depict the results from the continuum extrapolations assuming
leading artifacts linear in a (red) and quadratic in a (blue). The outer error bars (without endcaps) and outer error bands
include the uncertainty from the absolute matching of the auxiliary field mass onto perturbation theory, which is fully correlated
among the three ensembles.
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FIG. 11. Matrix elements renormalized using the whole operator approach via matching from the intermediate RI′-MOM
scheme: real part (top) and imaginary part (bottom) of the unpolarized (left) and helicity (right) matrix elements, converted to
the MMS scheme at scale 2 GeV. The curves with error bands depict the results from the continuum extrapolations assuming
leading artifacts linear in a (red) and quadratic in a (blue).

Matrix elements renormalized using the whole-operator approach are shown in Fig. 11, along with their continuum
extrapolations. Qualitatively, the picture is similar to the auxiliary-field renormalization approach, except that at
small zpz, the real part of the matrix elements from the three lattice spacings are in better agreement, producing a
milder effect from the continuum extrapolation and a better agreement between the two extrapolations. The latter
is especially true for the unpolarized matrix element. Details of these continuum extrapolations for selected values of
zpz are shown in Figs. 12 and 13. Clearly, our lever arm in a is limited, which makes it difficult to detect a preference
for either of the two fits; this also produces a large uncertainty for the O(a) extrapolations.

Results from the two renormalization approaches are compared in Fig. 14. The whole operator approach tends
to produce a smaller central value and a smaller uncertainty than the auxiliary field method. For the imaginary
part of the matrix elements, the O(a2) auxiliary-field extrapolation is in significant disagreement with both of the
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FIG. 13. Continuum extrapolation of helicity matrix elements renormalized using the whole operator approach. See the caption
of Fig. 12.

whole-operator extrapolations. In contrast, the O(a) result using the auxiliary field method is largely compatible with
both whole-operator extrapolations, for low to medium values of zpz. This suggests that there may be significant
O(a) lattice artifacts in the determination of the auxiliary field renormalization parameters and that it is necessary
to account for them when taking the continuum limit.

Since renormalization in the auxiliary field approach is determined by just two parameters, one might ask whether
there exist parameters that produce results compatible with the whole operator method. Figure 15 shows the effect
of reducing the magnitude of the auxiliary-field mass renormalization parameter by δm = 0.4 GeV. Although this
adjustment is hard to justify from the analysis in Section IV B, in Ref. [58] it was shown that its effect on quasi-PDFs
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FIG. 15. Comparison of continuum-extrapolated matrix elements, after reducing the magnitude of the auxiliary-field mass
renormalization by 0.4 GeV. See the caption of Fig. 14.

is suppressed by the factor δm/pz at large momentum. This change produces good agreement for the imaginary part
of the matrix elements. However, some discrepancies remain for the real part, particularly in the unpolarized case at
small zpz, where the slope of the auxiliary-field result is considerably steeper than the whole-operator data.

In the rest of this paper where we examine the effect on parton distributions, we will focus on the more precise data
renormalized using the whole-operator method. However, we will continue to compare O(a) and O(a2) extrapolations
since they are not in complete agreement and we have no a priori reason to prefer one over the other.

1. Comparison with phenomenology

Before transforming the position-space matrix elements to obtain PDFs and comparing directly with phenomenol-
ogy, we perform the reverse exercise. Starting with phenomenological parton distributions determined by NNPDF [80,
81], we invert the matching and the Fourier transform to determine the position-space matrix elements that yield
those PDFs, up to higher-order corrections in the matching. Figure 16 compares this with the continuum-extrapolated
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FIG. 16. Unpolarized (left) and helicity (right) matrix elements from continuum extrapolation of lattice data renormalized
using the whole operator approach via the RI′-MOM intermediate scheme (blue, red) and from the inverse Fourier transform
of the quasi-PDFs obtained by applying inverse matching to phenomenological PDFs from NNPDF [80, 81] (dark gray). Note
that in the lattice calculation, the pion mass is much larger than in nature, so that exact agreement should not be expected.

lattice matrix elements. Full agreement cannot be expected, since the lattice calculation was done at a heavy pion
mass and other systematics such as the dependence on pz and finite-volume effects have not been included in this
study.

The real part of the unpolarized matrix elements show reasonable agreement for zpz < 5; in the same range,
the helicity matrix elements from the lattice lie below those from phenomenology. The helicity case can be partly
understood by recalling that at heavy pion masses, the nucleon axial charge (i.e. the helicity matrix element at z = 0)
lies below its physical value. At short distances, the imaginary parts of the lattice data have larger (more negative)
slopes than phenomenology; the O(a) extrapolations are consistent with the latter at the 1σ level whereas the O(a2)
extrapolations are not. At nonzero lattice spacing, the slope is even larger and in worse agreement with NNPDF, so
that the continuum extrapolation produces results that lie closer to phenomenology.

At larger values of zpz, there is a qualitative difference: the phenomenological curves tend steadily toward zero,
whereas the lattice data do not. This is especially true for the unpolarized lattice matrix elements, of which both the
real and imaginary parts are positive and increasing at large distances. At the coarsest lattice spacing, the lattice data
lie well below zero (see Fig. 11), so it appears that the continuum extrapolation may be an overcorrection. Another
way to characterize the imaginary part is via the position of the minimum of the curve: in the lattice data, it lies at
a shorter distance than in phenomenology. This is consistent with the general expectation that correlation functions
are shorter ranged at heavier pion masses.

B. Parton distributions

In this section, we present the main results of this paper, namely the effect of the continuum extrapolation on
PDFs. However, we first discuss another source of systematic uncertainty: how to perform the Fourier transform
in the definition of the quasi-PDF using a finite set of position-space data. We illustrate this using data on the
finest ensemble, D45. Next, we perform the continuum extrapolation at fixed x, using the PDFs determined on each
ensemble, and compare the result with the PDF determined from the continuum-limit matrix elements obtained in
the previous section. Finally, we compare our continuum-limit PDFs with phenomenology.
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FIG. 17. Unpolarized (left) and helicity (right) quasi-PDFs (top panels) and PDFs (bottom panels) of the D45 ensemble for
different values of the cutoff zmax. The curves with cutoff at zmaxpz = {3.5, 4.7, 5.9} are depicted in green, blue and gray.

1. Reconstruction techniques

As given in Eq. (3), the quasi-PDF q̃(x) is obtained from a Fourier transform (FT) of the renormalized matrix
elements h(z). In practice, we obtain h(z) at intervals of the lattice spacing2, i.e. z/a ∈ Z. It is also necessary
to truncate the FT at |z| ≤ zmax, both because of the finite lattice size, which imposes zmax

<∼ L/2, and because
of growing statistical uncertainty at large |z|. Together, these have the effect of replacing the continuous FT by a
truncated discrete FT (DFT):

pz
2π

∫ ∞
−∞

dz e−ixpzz → pz
2π
a

zmax/a∑
z/a=−zmax/a

e−ixpzz. (23)

The discrete sampling makes the result formally periodic, so that it must be cut off at |x| ≤ π/(apz), which is at
least 4 in our setup. The truncation introduces an additional systematic uncertainty [12], as shown using ensemble
D45 in Fig. 17 for quasi-PDFs and PDFs. The latter are obtained by applying the matching procedure and nucleon
mass corrections [17]. For the quasi-PDF, the effect of truncation is that one obtains a convolution of the desired
result:

q̃DFT(x) =
apz
2π

∫ π/(apz)

−π/(apz)

dx′
sin((x− x′)pz(zmax + a/2))

sin((x− x′)pza/2)
q̃(x′)

a→0−−−→ 1

π

∫ ∞
−∞

dx′
sin((x− x′)zmaxpz)

(x− x′) q̃(x′),

(24)

so that any features narrower in x than (zmaxpz)
−1 are smeared out. This is clearly visible in Fig. 17, where smaller

values of zmaxpz are associated with broader quasi-distributions. The effect is reduced after applying the matching
to obtain PDFs: results with zmaxpz = 4.7 and 5.9 are very similar. However, for zmaxpz = 3.5, both the unpolarized
and helicity PDFs have qualitatively quite different behaviour, with a higher value for x between roughly −0.7 and
−0.1 and a larger slope for x less than −0.3 as well as a smaller slope at small positive x and a peak at larger x in
the positive region.

2 When analyzing the continuum-limit h(z) we sample it at intervals of the finest lattice spacing, which we simply denote a in this context.
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Since the Fourier transform introduces a systematic uncertainty, we supplement the näıve truncated FT with more
sophisticated reconstruction techniques [82, 83]. In these approaches, obtaining the Fourier transform from a finite
number of data points is seen as an ill-defined inverse problem. Its solution is not unique and one approach is to use
explicit models for the shape of the (quasi-)PDF. By contrast, we choose to use two approaches that do not contain an
explicit model: the Backus-Gilbert method, first applied for PDFs calculations in [82] and the Bayes-Gauss-Fourier
Transform (BGFT) [83]. These two procedures address the reconstruction problem as follows.

Backus-Gilbert (BG): The inverse problem is obtained by inverting Eq. (3) to write the real and imaginary parts
of the unpolarized matrix element in terms of the quasi-PDF:

<hγ0(pz, z;µ) =

∫ ∞
0

dx cos(xpzz) q̃+(x, pz;µ),

=hγ0(pz, z;µ) =

∫ ∞
0

dx sin(xpzz) q̃−(x, pz;µ),

(25)

where for x ≥ 0, q̃±(x) = q̃(x) ± q̃(−x), and likewise for the helicity case3. The reconstruction is applied
independently to q̃+ and q̃−, so for brevity we describe the procedure applied to q̃+. We also omit the labels pz
and µ. For each x, the solution is assumed to be a linear combination of the finite set of lattice data:

q̃BG
+ (x) =

zmax/a∑
z/a=0

a+(x, z)<hγ0(z), (26)

where a+ can be understood as an approximation to the inverse of the Fourier transform in Eq. (25). The
accuracy of this approximation is governed by the function

∆+(x, x′) =

zmax/a∑
z/a=0

a+(x, z) cos(x′pzz) (27)

that approximates δ(x− x′). Specifically, the result is an integral over the quasi-PDF:

q̃BG
+ (x) =

∫ ∞
0

dx′∆+(x, x′)q̃+(x′). (28)

The function a+ is determined by the Backus-Gilbert procedure [84], which minimizes the width of ∆+(x, x′).
For more details, see Refs. [40, 82].

Bayes-Gauss-Fourier Transform (BGFT): Rather than directly reconstructing q̃ from the lattice data, this pro-
cedure reconstructs a continuous form of the position-space matrix elements for all values of z:

h(z), z/a ∈ {0,±1,±2, . . . ,±zmax/a} −→ hGPR(z), z ∈ R. (29)

For this, we apply a nonparametric regression technique, based on Bayesian inference, called Gaussian process
regression (GPR) [85]. This allows us to incorporate into the prior distribution the asymptotic behavior of the
matrix elements (expected to decay to zero), as well as their smoothness properties. The result is continuous,
defined for all real z, and has a Fourier transform computable in closed form. Taking the FT of hGPR(z), we
refer to the result as q̃BGFT(x). More details are given in Ref. [83].

In Fig. 18, we compare results from the truncated discrete Fourier transform, Eq. (23), and the BG and BGFT
reconstruction methods described above, again using ensemble D45 as our reference data set. For a fair comparison,
in all cases we use zmaxpz = 4.7. We begin by discussing the quasi-PDFs (upper two panels). The most striking
difference is that the Backus-Gilbert result has a discontinuity at x = 0 that is not present in the other results. This is
because q̃BG

− (x) is not constrained to vanish at x = 0. Such a discontinuity could occur if =h(z) has a slowly decaying
tail ∼ 1/z. For x between −0.5 and 1.0, the DFT and BGFT results are similar, although the BGFT distribution
is slightly narrower. For larger values of |x|, the DFT produces stronger oscillations, which are suppressed by the

3 For the unpolarized case, this is not the same as the convention commonly used for PDFs, where q±(x) ≡ q(x) ± q̄(x) = q(x) ∓ q(−x).
For helicity, ∆q±(x) ≡ ∆q(x) ± ∆q̄(x) = ∆q(x) ± ∆q(−x).
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FIG. 18. Comparison of quasi-PDFs (top panels) and PDFs (bottom panels) of the D45 ensemble obtained from Bayes-Gauss-
Fourier Transform (BGFT), Backus-Gilbert (BG) and discrete FT (DFT) for the unpolarized (left) and helicity (right).

BGFT. The BG result is the outlier, being considerably smaller at small negative x and also having a smaller dip
below zero.

We next discuss the physically relevant parton distributions, obtained after matching and nucleon mass corrections
(lower two panels). For most values of x, the DFT and BGFT method produce very similar results, although for
BGFT the the dip below zero in the antiquark region occurs at smaller negative x and the magnitude is smaller at
x = −1 and +1. Again, the BG result is somewhat different: in the antiquark region at small negative x, the small
positive bump is gone and the result is either consistent with zero (unpolarized) or slightly negative (helicity). This
discrepancy at small x may be associated with a lack of data for the matrix element at large |z|; better data or a more
rigorous understanding of the large-|z| behavior could help to improve this situation. In the quark region for x greater
than about 0.5, the BG result has a much weaker downward trend than the other two methods. Given that the DFT
produces a result not substantially different from BGFT, we exclude the DFT from further analyses presented in the
next sections.

2. Continuum extrapolation

In what follows, we compare the distributions at finite lattice spacings with continuum extrapolations. In the
reconstruction of the quasi-PDFs we use the lattice data with |zpz| ≤ zmaxpz = 4.7, at which point either the real
part or the imaginary part of the continuum matrix element is compatible with zero, as shown in Fig. 11. Moreover,
we estimate the systematic uncertainty from this choice of the cutoff by varying zmax:

εcutoff(x) =
|qzmaxpz=5.9(x)− qzmaxpz=3.5(x)|

2
. (30)

Finally, we estimate the combined uncertainty as the quadrature sum of εcutoff(x) and the statistical uncertainty.

One approach for obtaining continuum-limit PDFs is to take the PDF determined on each ensemble and then
perform an O(a) or O(a2) extrapolation of the data at each x. This is shown in Fig. 19, for both unpolarized and
helicity PDFs determined using the BG and BGFT methods. In the quark region with x between roughly 0 and 0.7,
the PDFs decrease monotonically with the lattice spacing; at larger x, the D45 data (with the finest lattice spacing)
move relatively upward to lie between those of the other two ensembles. For all x > 0, the O(a2) extrapolation lies
below all of the individual lattice spacings and the O(a) extrapolation is even lower. Using the BGFT approach, both
of the extrapolations are consistent with the expected value of zero at x = 1, whereas for BG, this is true only of the
O(a) extrapolation. In the antiquark region, the extrapolated results lie above the PDFs determined at finite lattice
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FIG. 19. Matched unpolarized (left) and helicity (right) PDFs obtained using the gauge ensembles A60 (blue), B55 (orange),
D45 (green), whose lattice spacings are reported in Table I. The PDF in the continuum, after O(a) extrapolation (gray) and
O(a2) extrapolation (pink), is also shown.
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FIG. 20. Comparison between the results for the unpolarized (left) and helicity (right) PDFs in the continuum limit obtained
with the O(a) extrapolation at fixed x (gray; see Fig. 19) and at fixed zpz (pink, based on the continuum-limit data in Fig. 11).
The distributions has been obtained using the BG (top panels) and BGFT (bottom panels) reconstruction techniques.

spacing, except for the BGFT unpolarized distribution near x = −1. This produces a more prominent positive region
at small negative x, particularly in the unpolarized case. At larger negative x, the extrapolations are generally closer
to zero.

Another approach is to obtain PDFs from the continuum limit of h(z) as determined in Section V A by extrapolating
data at fixed zpz. By changing the order in which the continuum limit and the combination of the Fourier transform
and PDF matching are performed, we obtain results affected by different systematic effects. The comparison of the
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FIG. 21. Unpolarized (left) and helicity (right) distributions in the continuum, using BG (top) and BGFT (bottom) methods.
O(a) and O(a2) extrapolations are shown in gray and pink, respectively. PDFs extracted through global fits from the releases
NNPDF [80, 81] (dark gray) are included for qualitative comparison.

O(a) extrapolations from both approaches is shown in Fig. 20. They are consistent within uncertainties, except near
x = 1, where the fixed-x extrapolation is in all cases lower than the fixed-zpz extrapolation and only the former is
consistent with zero at x = 1.

For comparing with phenomenology in the next section, we take the fixed-x extrapolation as our central value and
add an additional systematic uncertainty in quadrature, namely half the difference with the fixed-zpz extrapolation.

3. Comparison with phenomenology

In Fig. 21, we compare the distributions obtained using O(a) and O(a2) extrapolations with those obtained from
phenomenology by NNPDF [80, 81]. This comparison is intended to be qualitative, since our calculation was not done
at the physical pion mass and does not include a study of other sources of systematic uncertainty such as finite-volume
effects or the dependence on pz.

In the antiquark region (x < 0), the NNPDF result is slightly positive for x > −0.25, particularly in the unpolarized
case. Focusing on the latter case, both of the extrapolations using both BG and BGFT methods reproduce this feature,
although the O(a) extrapolation (which has a larger uncertainty) prefers a wider and larger positive region. This
agreement with NNPDF is only present after the continuum extrapolation and does not appear in the analyses of any
of the individual ensembles. For larger negative x, the NNPDF distributions are close to zero. However, the BGFT
result is below zero, particularly when using an O(a2) extrapolation.

In the quark region (x > 0), the distributions obtained from our data tend to have smaller peaks at larger x than
phenomenology and fall off more slowly at large x. All of the analyses are consistent with zero at x = 1, except for the
O(a2)-extrapolated BG data. For small x, the lattice unpolarized distributions are consistent with phenomenology,
whereas the lattice helicity distributions have smaller slopes. In the unpolarized case, the agreement holds for a
wider range of x when using the BGFT approach, and this approach also produces less disagreement in the helicity
distribution.
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VI. CONCLUSIONS

In this work we performed a lattice QCD calculation of isovector parton distributions via the quasi-PDF approach,
using three twisted mass ensembles with different lattice spacings. This enabled a study of discretization effects,
which can first appear at linear order in the lattice spacing, and the approach to the continuum limit.

Although our data are unable to clearly distinguish O(a) from O(a2) contributions, we nevertheless observed
significant discretization effects, both in the position-space matrix elements and in the final parton distributions. In
the antiquark region, taking the continuum limit produces a reasonable agreement with phenomenology. Previous
calculations, such as the one at the physical pion mass in Ref. [12], have failed to reproduce the phenomenological
behaviour at small negative x; our work suggests that discretization effects contribute significantly to this discrepancy.
At larger negative x, the agreement is better when using the Backus-Gilbert method, although the uncertainty is also
larger. In the quark region, the continuum extrapolation also has a significant effect, although large disagreements with
phenomenology remain. The latter is unsurprising, as we have not controlled other sources of systematic uncertainty.

Going beyond the näıve truncated discrete Fourier transform, we have compared two reconstruction techniques for
obtaining quasi-PDFs from a finite set of lattice data. We found that the Bayes-Gauss-Fourier-Transform method
produces a somewhat better agreement with phenomenology in the quark region and worse agreement in the antiquark
region, although for the latter the Backus-Gilbert method has a larger uncertainty. Given the uncontrolled systematic
effects, these observations should be treated with caution.

We have also compared two different approaches for nonperturbative renormalization of the nonlocal operator
OΓ(z). The auxiliary-field approach tends to produce significantly larger renormalized matrix elements than the
whole-operator approach, particularly at large z. In this work we chose to study PDFs using the latter because
its results are more precise, but it will be important to continue studying different renormalization approaches to
understand their different systematics and whether they all produce the same continuum limit.

While we have demonstrated the importance of discretization effects, more work will be needed to understand the
relative importance of O(a) and O(a2) effects in typical calculations. This could be done by performing calculations
using a wider range of lattice spacings or by applying Symanzik improvement to remove O(a) effects [47].
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[74] R. Brüser, A. Grozin, J. M. Henn, and M. Stahlhofen, Matter dependence of the four-loop QCD cusp anomalous dimension:
from small angles to all angles, JHEP 2019 (05), 186, arXiv:1902.05076 [hep-ph].

[75] X. Ji and M. J. Musolf, Sub-leading logarithmic mass-dependence in heavy-meson form-factors, Phys. Lett. B 257, 409
(1991).

[76] D. J. Broadhurst and A. G. Grozin, Two-loop renormalization of the effective field theory of a static quark, Phys. Lett. B
267, 105 (1991), arXiv:hep-ph/9908362.

[77] A. V. Radyushkin, Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions,
Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488 [hep-ph].

[78] R. Frezzotti and G. C. Rossi, Chirally improving Wilson fermions 1. O(a) improvement, JHEP 2004 (08), 007, arXiv:hep-
lat/0306014.

[79] A. Shindler, Twisted mass lattice QCD, Phys. Rept. 461, 37 (2008), arXiv:0707.4093 [hep-lat].
[80] R. D. Ball et al. (NNPDF), Parton distributions from high-precision collider data, Eur. Phys. J. C 77, 663 (2017),

arXiv:1706.00428 [hep-ph].
[81] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo (NNPDF), A first unbiased global determination of polarized

PDFs and their uncertainties, Nucl. Phys. B 887, 276 (2014), arXiv:1406.5539 [hep-ph].
[82] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, Reconstructing parton distribution functions from Ioffe time

data: from Bayesian methods to Neural Networks, JHEP 2019 (04), 057, arXiv:1901.05408 [hep-lat].
[83] C. Alexandrou, G. Iannelli, K. Jansen, and F. Manigrasso (Extended Twisted Mass), Parton distribution functions from

lattice QCD using Bayes-Gauss-Fourier transforms, Phys. Rev. D 102, 094508 (2020), arXiv:2007.13800 [hep-lat].
[84] G. Backus and F. Gilbert, The resolving power of gross earth data, Geophys. J. Int. 16, 169 (1968).
[85] C. K. I. Williams and C. E. Rasmussen, Gaussian processes for machine learning , Vol. 2 (MIT Press, Cambridge, MA,

USA, 2006).
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