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Abstract: We find the leading electro-weak corrections to the HQET/NRQCD Lagrangian.

These corrections appear in the Wilson coefficients of the two and four quark operators and

are considered here up to O(1/m3) at one-loop order. The two quark operators up to

this order will include new CP-violating terms, which we derived analogously to the CP

preserving QCD result at one-loop order.
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1 Introduction

This paper is mainly concerned with extending heavy quark effective theory (HQET), and

non-relativistic QCD (NRQCD) from pure QCD to the full Standard Model (SM). Orig-

inally, EFTs were developed to take advantage of the fact that the masses of the heavy

quarks (top, bottom and charm) are much larger than the remaining dynamical scales be-

ing considered. More specifically, HQET has mainly been employed to study systems with

one heavy quark, [1–3]. In these studies, when considering heavy-light systems, the au-

thors reduce the problem down to one with two dynamical scales; the heavy quark mass,

m, and the rest which is chosen to be the quark confinement scale, ΛQCD, the scale of all

processes in pure QCD - i.e. independent of quark mass. One then constructs the HQET

Lagrangian as a power series in the inverse heavy quark pole mass. One can then estimate

the size of each term by assigning the scale ΛQCD to every parameter present other than

the heavy quark mass. One is then left with operators exhibiting two distinct structures;

terms containing light degrees of freedom describing gluons and light quarks; or terms that

are bi-linear in the heavy quark fields.

On the other hand, we have NRQCD which is mostly employed to study systems with

a heavy quark and anti-quark, QQ̄, bound state [4, 5]. In NRQCD one usually takes into

account two additional dynamical scales, the relative momentum, q ∼ mv ∼ ΛQCD, such

that v is the relative velocity of the QQ̄ combination, and binding energy, E ∼ mv2, of the

QQ̄ bound state. These extra scales add increased complexity to the power counting rules.

Thus the size of each term in the NRQCD Lagrangian is no longer unique but dependent

on the system under consideration. One can, however, still provide reasonable estimates of

the leading size of each term is estimable with velocity counting rules [4, 6]. The difference

between HQET and NRQCD is immediately clear by considering the first two bi-linear

terms in the effective Lagrangian,

L = Q̄

(

iD0 +
D2

2m

)

Q. (1.1)

To compare the two theories, one can note that the first term and second term is O(ΛQCD)

O(Λ2
QCD/m), respectively, in HQET while both terms are of order mv2 ∼ O(Λ2

QCD/m).

Thus one can immediately note that the heavy quark propagator in HQET is i/(k0 + iǫ)

and in NRQCD it is i/(k0 − k2/2m + iǫ). The NRQCD Lagrangian mimics the HQET

Lagrangian in that it consists of terms in a power series expansion in heavy quark mass.

It contains two and four fermion operators, i.e. terms bi-linear in the heavy (anti)-quark

fields and terms bi-linear in both heavy quark and anti-quark fields, respectively.

Our work is focused on calculating the primary building block of an effective theory,

the EFT Lagrangian and its matching to the full theory Lagrangian. The matching process

is achievable by making sure that the full theory and EFT S-matrix elements are equal.

Both the NRQCD and HQET matching conditions are computed in the same way, and

the Lagrangians are thus identical [7]. The parameters that are modified by the matching

procedure are called the matching (or Wilson) coefficients, which factor each operator in

the EFT. The matching in NRQCD is then achieved order by order in the strong coupling,

αs, and inverse heavy quark mass [8].
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This study will focus on extending the NRQCD Lagrangian and considering the lead-

ing electro-weak (EW) corrections to one loop order with terms up to and including

O(ααs/m
3, α2/m2), for the two and four fermion operators of NRQCD. Although the Wil-

son coefficients are known in the EFT up to O(α2
s/m

4), the EW corrections have not yet

been considered. They must be incorporated since at leading order they start altering

the matching coefficients at the same order as the higher-order QCD terms. Whence, we

study the effect at leading order of incorporating the EW contributions and noticing how

the matching coefficients are improved. Moreover, the Lagrangian itself must be extended

to include CP-violating operators for the matching procedure to hold with the SM as CP

symmetry holds for QCD but not the full SM. The utility of our efforts lies in the prolific

use of heavy quark effective theories for high precision observable predictions at threshold

energies which would be the primary purpose of a future collider [9]. For instance, with

regards to the top quark mass determination, which is crucial for understanding the stabil-

ity of the EW vacuum [10]. Many so-called threshold quark mass definitions [11–13] have

arisen from the HQ EFT frameworks and we know that the EW sector plays a crucial role

in determining the MS mass of the top quark [14, 15] thus it stands to reason that the same

is true for the threshold mass definitions.

2 The Lagrangian

The continuum NRQCD Lagrangian up to the same order we are considering have previously

been computed [7, 8] using dimensional regularisation for the IR and UV divergences taking

the external states to be on shell. To express the NRQCD effective Lagrangian, one must

consider heavy fermions and anti-fermions coupled to non-Abelian gauge fields. Enforcing

Hermicity, parity, time-reversal and rotational invariance. One can further perform heavy

field re-definitions to eliminate time derivatives acting on the heavy fermions at higher

orders in 1/m, this is known as the canonical form of the heavy particle Lagrangian [16].

Note that when employing the NRQCD Lagrangian which we define below, NRQCD has a

UV cut-off, νNR = {νp, νs}, where mv ≪ νNR ≪ m, which corresponds to integrating out

the hard modes of QCD to obtain NRQCD [17]. More specifically, νp is the UV cut-off of

the relative three momentum between the heavy quark and anti-quark while νs is the UV

cut-off of the three-momentum of the gluons and light quarks. The NRQCD Lagrangian

including light fermions reads (up to field redefinitions) is [5, 18, 19],

L = (Lψ + Lχ + Lψχ) + Lg + Ll, (2.1)

such that ψ and χ are the Pauli spinors that annihilate a fermion and create an anti-fermion,

respectively. We are mainly interested in the bracketed parts of the Lagrangian as these

terms will attain the leading EW corrections to their matching coefficients. More explicitly,

the Lagrangian for heavy quarks of masses m1,2 ≫ Λqcd and velocity, v, in a frame where
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v = (1,0) has bi-linear terms (up to the order we are considering) [5, 7, 20],

Lψ,χ =ψ†

{

ic0Dt + c2
D2

2m
+ c4

D4

8m3
+ cFgs

σ ·B

2m
+ cDgs

[D ·E]

8m2
+ icSgs

σ · (D ×E −E ×D)

8m2

+cW1
gs
{D2,σ ·B}

8m3
− 2cW2

gs
Diσ ·BDi

8m3
+ cqgs

σ ·DB ·D +D ·Bσ ·D

8m3

+icMgs
D · [D ×B] + [D ×B] ·D

8m3

}

ψ + (h.c, ψ ↔ χ) +O(1/m4, g2s/m
3), (2.2)

and four quark operators given by [21],

Lψχ =
dss

m1m2
ψ†
1ψ1χ

†
2χ2 +

dsv
m1m2

ψ†
1σψ1χ

†
2σχ2

+
dvs

m1m2
ψ†
1T

aψ1χ
†
2T

aχ2 +
dvv

m1m2
ψ†
1T

aσψ1χ
†
2T

aσχ2, (2.3)

The terms in this Lagrangian require some unpacking; the covariant derivative is Dµ =

∂µ + igsA
µ
aT a ≡ (D0,−D) defined in the usual way, iDt = i∂t − gsA0 and iD = i∂ + gsA,

with combinations thereof, Bi = i
2gs

ǫijk[Dj ,Dk] and E = − i
gs
[Dt,D]. Moreover, covariant

derivatives in square brackets act only on the fields within the brackets. The subscripts F,S

and D on the Wilson coefficients stand for Fermi, spin-orbit and Darwin, respectively. We

use the common summation convention, XiY i ≡
∑3

i=1 X
iY i, and define [X,Y ] ≡ XY −Y X,

{X,Y } ≡ XY +Y X to denote commutators and anti-commutators, respectively. The QCD

analogues of the electric and magnetic fields are defined as usual by E = −[∂tA] − [∂A0]

and B = [∂ ×A]. The most general term we obtained in (2.2) and (2.3) are constructed

from all possible rotationally invariant, Hermitian combinations of iDt, D, E, iB, iσ, with

parity requiring even numbers of factors of D and E.

On the other hand, the four quark operators in the Lagrangian represented by 2.3 have

sub-indices, {1, 2}, which distinguishes for the case of distinct heavy quarks with unequal

masses. Moreover, one can re-write these terms by applying a Fiertz transformation,

Lψχ =
dcss

m1m2
ψ†
1χ2χ

†
2ψ1 +

dcsv
m1m2

ψ†
1σχ2χ

†
2σψ1

+
dcvs

m1m2
ψ†
1T

aχ2χ
†
2T

aψ1 +
dcvs

m1m2
ψ†
1T

aσχ2χ
†
2T

aσψ1, (2.4)

where one can transform between the two bases with the relations,

dss = −
dcss
2Nc

−
3dcsv
2Nc

−
N2

c − 1

4N2
c

dcvs − 3
N2

c − 1

4N2
c

dcvv ,

dsv = −
dcss
2Nc

+
dcsv
2Nc

−
N2

c − 1

4N2
c

dcvs +
N2

c − 1

4N2
c

dcvv ,

dvs = −dcss − 3dcsv +
dcvs
2Nc

+
3dcvv
2Nc

,

dvv = −dcss + dcsv +
dccs
2Nc

−
dcvv
2Nc

. (2.5)

Both versions of Lψχ are employed, the Lagrangian in 2.4 is more convenient for matching,

when one is studying the equal mass case with annihilation processes. On the other hand,
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2.3 is preferable when considering a bound state calculation. We employ 2.3 for matching

in the unequal mass case.

3 Form Factors and Matching

Any loop diagram in an integrable QFT can be written as a function, F ({p}, {m}, µ, ǫ),

such that {p} are the external momenta, {m}, the external and internal masses, µ the

scale parameter in dimensional regularisation where the calculation is done in d = 4 − 2ǫ

dimensions. Let us then consider, for instance, the radiative corrections to the quark-gluon

three point vertex. This vertex can be expressed fully in terms of two form factors in QCD,

F1,2(q
2), defined by the irreducible three point function,

ΓQCD

3 = −igsT
aū(p′)

[

F1(q
2)γµ + iF2(q

2)
σµνqν
2m

]

Aa
µ(q)u(p), (3.1)

where q = p′ − p, m is the mass of the heavy quark, σµν = − i
4 [γ

µ, γν ]. We only have two

form factors as {γµ, σ
µνqν} are the only Lorentz structures that appear in QCD due to the

non-chiral nature of the theory. On the other hand, if one considers Γ3 in the full SM, two

additional chiral Lorentz structures emerge, and their corresponding form factors have the

following form,

ΓSM
3 = ΓQCD

3 − igsT
aū(p′)

[

F3(q
2)γµγ5 + F4(q

2)
qµγ5
2m

]

Aa
µ(q)u(p) (3.2)

Employing dimensional regularisation on the diagrams one finds that the form factors
F1,3(q

2) are UV and IR divergent [7]. We can always expand our two form factors, Fi(q
2/m2, µ/m, ǫ),

as a power series in q2/m2 at fixed ǫ, then take the limit ǫ → 0 to obtain an expression of
the form,

Fi =Fi(0)

(

A0

ǫUV

+
B0

ǫIR

+ (A0 +B0) log
µ

m
+D0

)

+

q2∂q2Fi(0)

(

A1

ǫUV

+
B1

ǫIR

+ (A1 +B1) log
µ

m
+D1

)

, (3.3)

Conventionally, we label ǫ with the subscripts, ǫUV and ǫIR to indicate whether the divergence

is ultraviolet or infrared, respectively. UV divergences are cancelled by renormalisation

counter-terms while IR divergences cancel when a physical observable is considered. The

coefficients of the effective Lagrangian are determinable from the difference between the

form factors in the full theory versus the effective theory of interest. More specifically,

the non-analytic terms in the form factors cancel in the difference while the analytic ones

determine the Wilson coefficients of the Lagrangian. By inspection of the terms in the

effective Lagrangian in (2.2), all terms contain at least one power of Aµ, the gauge field.

Thus all form factors at one-loop are attainable by computing the three-point on-shell

scattering amplitude, which have been previously calculated [22].

To find the relationship between the full theory form factors and the Wilson coefficients

for a low-momentum heavy quark scattering off a background vector potential, we expand

(3.2) in the non-relativistic (NR) limit and multiply by a factor of
√

m/E for both the
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incoming and outgoing quark. If we take p and p′ to be the three-momentum of the

incoming and outgoing quark, respectively, then q = p′ − p is the transfer momentum of

the background vector potential. We are then left with the following effective interaction

operator,

− igsT
au†NR(p

′)[Aa
0j

0 −Aa · j]uNR(p), (3.4)

which can then be compared to the scattering amplitude in the effective theory Lagrangian

to relate the Wilson coefficients to the form factors. We re-computed the NR expansion of

(3.4) in QCD and confirmed the previous result [7, 20], i.e. we found for the time component

of the current,

j0 =F1(q
2)

{

1−
1

8m2
q2 +

i

4m2
σ · (p′ × p)

}

+ F2(q
2)

{

−
1

4m2
q2 +

1

2m2
σ · (p′ × p)

}

(3.5)

and the spatial component of the current,

j =F1(q
2)

{

1

2m
(p+ p′) +

i

2m
σ × q −

i

8m3
(p2 + p′2)σ × q −

1

16m3
(p′2 − p2)q

−
i

16m3
(p2 − p′2)σ × (p+ p′)−

1

8m3
(p′2 + p2)(p′ + p)

}

+ F2(q
2)

{

i

2m
σ × q −

i

16m3
q2σ × q −

1

16m3
q2(p + p′)−

1

16m3
(p′2 − p2)q

−
i

8m3
(p′2 − p2)σ × (p′ + p) +

i

8m3
σ(p′ + p)(p′ × p)

}

. (3.6)

This can then be compared to the relevant subset of the Hamiltonian of (2.2),

Hψ,χ ⊃ ψ†
{

gsA
0 − c2

gs
2m

A · (p′ + p)− icF

gs
2m

A · (σ × q)− cD

gs
16m3

q ·A

+icS

gs
4m2

σ · (p′ × p)A0 + icS

gs
16m3

(p′2 − p2)A · σ × (p′ + p)

+i(cW1
− cW2

)
gs
8m3

(p′2 + p2)A · (σ × q) + icW2

gs
8m3

q2A · (σ × q)

−icq
gs
8m3

σ · (p′ + p)A · (p′ × p)− cM

gs
8m3

(p′2 − p2)A · q

+cM

gs
8m3

q2A · (p′ + p)
}

ψ + (h.c, ψ ↔ χ) (3.7a)

≡ gsψ
†{A0j0 −A · j}ψ + (h.c, ψ ↔ χ) (3.7b)

and matching the Lorentz structures provides one with the following relations between the
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Wilson coefficients and form factors,

c0 = c2 = c4 = F1, (3.8a)

cF = F1 + F2, (3.8b)

cD = F1 + 2F2 + 8F ′
1, (3.8c)

cS = F1 + 2F2, (3.8d)

cW1
= F1 +

1

2
F2 + 4F ′

1 + 4F ′
2, (3.8e)

cW2
=

1

2
F2 + 4F ′

1 + 4F ′
2, (3.8f)

cq = F2, (3.8g)

cM =
1

2
F2 + 4F ′

1, (3.8h)

such that,

Fi = Fi(0) and F ′
i =

dFi

d(q2/m2)

∣

∣

∣

∣

q2=0

. (3.9)

These relations between the form factors and Wilson coefficients remain unchanged by the

allowance of further interactions from the standard model. This can be seen by taking the

NR limit of (3.2), the 4-current j 7→ j+ j′ where j′ includes the new form factors and their

expanded Lorentz structures, for the time component of the current one obtains,

j′0 = F3(q
2)

{

1

2m
σ · (p′ + p)−

1

8m3
(σ · p′p′2 + σ · pp2)−

1

16m3
σ · (p′

+ p)(p′2 + p2)

}

+ F4(q
2)

{

−
1

4m3
σ · q(p′2 − p2)

}

(3.10)

and the spatial component of the current,

j′ = F3(q
2)

{

σ −
1

4m2
σ(p′2 + p2) +

1

8m2
σq2 +

1

4m2
(σ · pp′ + σ · p′p)−

i

4m2
p′ × p

}

+ F4(q
2)

{

−
1

4m2
qσ · q

}

. (3.11)

By comparison, one can see that F3,4 are factors of entirely different Lorentz structures. In

fact, one can count nine independent structures and thus one requires nine new linearly

independent terms in the effective Lagrangian that result in the same Lorentz structures

upon inspection of the Hamiltonian. Due to the fact that the SM is chiral and exhibits

less symmetry than QCD there is more freedom in selecting the possible terms to include

in the effective Lagrangian, we thus select a set that provides us with the correct Lorentz
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structures without claiming uniqueness,

LCh =ψ†(p′)
{

b0iσ ·D − ib1
gs
2m

σ · Ẽ + ib2
gs
8m2

(D ·B +B ·D)

+b3
gs
8m2

σ · (D ×B +B ×D) + ib4
1

2m2
{σ · ∂,D2}+ ib5

1

4m2
[D2σ ·D]

+b6
gs
2m2

[Dt,σ ·E] + ib7
gs

16m3
{D2,σ · Ẽ}+ ib8

gs
8m3

Diσ · ẼDi

+ib9
gs
8m3

(σ ·DẼ ·D +D · Ẽσ ·D)
}

ψ(p) + (h.c, ψ ↔ χ) +O(1/m4, g2s/m
3),

(3.12)

with the operator, Ẽ = − i
gs
{Dt,D}. Upon employing the free field Schrodinger equation

(up to O(1/m)),

i
∂ψ

∂t
+

∇2ψ

2m
= 0, ψ(t,x) = eip·x ⇒ {∂tψ = −ip0ψ,∂ψ = ipψ} (3.13)

and similarly for the vector field, A(xµ). Therefore, after Legendre transforming the La-

grangian in (3.12) to its Hamiltonian one can then match the relevant terms by inspection

of Lorentz structures. This can then be compared to the chiral Hamiltonian and the Lorentz

structures matched to provide the following relations between the new Wilson coefficients

and form factors,

b0 = b1 = b2 = b4 = b9 = −F3, (3.14a)

b3 = F3 + 2F4, (3.14b)

b5 = 4F ′
3 + F4, (3.14c)

b6 = −F4, (3.14d)

b7 = 8F ′
3, (3.14e)

b8 = F3 − 8F3. (3.14f)

Note that we have written HQET Lagrangians in the special frame, v = (1,0), and the

notation of [20] was employed. However, one can re-write (2.2) in an arbitrary frame as

follows,

Lv =Q̄v

{

c0iD · v − c2
D2

⊥

2m
+ c4

D4
⊥

8m3
− gscF

σµνG
µν

4m
− gscD

vµ[Dν
⊥Gµν ]

8m2

+igscS

vλσµν{D
µ
⊥, G

νλ}

8m2
+ gscW1

{D2
⊥, σµνG

µν}

16m3
− gscW2

Dλ
⊥σµνG

µνD⊥λ

8m3

+gscq

σµν(Dλ
⊥GλµD⊥ν +D⊥νGλµD

λ
⊥ −Dλ

⊥GµνD⊥λ)

8m3

−igscM

D⊥µ[D⊥νG
µν ] + [D⊥νG

µν ]D⊥µ

8m3

}

Qv, (3.15)

such that,

Dµ
⊥ = Dµ − vµv ·D, (3.16)
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and σµν = − i
4 [γ

µ, γν ] and Gµν = 1
igs

[Dµ,Dν ]. We can also write the chiral Lagrangian in

(3.12) in the same covariant form,

LCh
v =Q̄v

{

−2b0γ5v
µσµνD

ν + ib1
1

m
γ5{v

µDµ, v
νσνλD

λ} − b2
gs
4m2

γ5vµσ
µν [Dλ, Gνλ]

−b3
gs

16m2
γ5{σµν , γλ}{D

µ, Gνλ}+ b4
1

m2
γ5{v

µσµν∂
ν ,D2

⊥}

+b5
1

2m2
γ5[v

µσµνD
νD2

⊥] + ib6
gs
2m2

γ5[v
µDµ, σνλG

νλ]

+ib7
1

8m3
γ5{D

2
⊥, {v

µDµ, v
νσνλD

λ}}+ ib8
1

4m3
γ5D

α
⊥{v

µDµ, v
νσνλD

λ}D⊥α

+ib9
1

4m3
γ5(v

µσµνD
ν{vλDλ,D

α
⊥}D⊥α +D⊥α{v

λDλ,D
α
⊥}v

µσµνD
ν)

}

Qv, (3.17)

in which the chirality is made explicit by the appearance of γ5 factoring each term.

4 Two Quark Matching

The self energy contributions which contribute to the wave function renormalisation (WFR),

represented in figure 1, can be split into left/right and scalar components, respectively,

Σ(p) = ΣL +ΣR − ΣS/2 (4.1)

= PLωL + PRωR − ΣS/2, (4.2)

such that PR/L = 1
2(1 ± γ5) are the usual left/right chiral projection operators, from this

expression one can obtain the on-shell wave-function renormalisation correction,

δZ = δZL + δZR, (4.3)

such that,

δZL/R = −{ΣL/R +m2(Σ′
L +Σ′

R − 2Σ′
S)}|q2=m2 , (4.4)

and therefore,

δZ = −{[ωL + ωR + 2m2(ω′
L + ω′

R +Σ′
S)]− γ5[ωR − ωL + 2m2(ω′

R − ω′
L)]}|q2=m2 (4.5)

= δZ1 + γ5δZ3. (4.6)

The total on-shell form factors at one loop can then be calculated from the amplitudes

γ, Z,W H, φ

Figure 1: Self-energy diagrams contributing to the one-loop WFRC.
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present in figure 2. We present the result in the large external on-shell quark mass, m ≡ m1,

limit and small new internal mass appearing from flavour changing, m2, along with small

transfer momentum, q,

F1 = 1− δZ1 + F
(a)
1 + F

(b)
1 = 1 +

αs

π

q2

m2
1

[(

−
1

8
+

1

3
log

m1

µ

)

CF +

(

−
1

16
+

5

24
log

m1

µ

)

CA

]

+
α

π

q2

m2
1

[

4

27
log

mZ

µ
+

(

−
13

288
+

17

216
log

m1

mZ

)

cW +

(

−
5

96
+

3

64
yH1

−
1

192
yW1

+
1

192
yH

−
1

8
yH log

m1

mH

+
1

24
yW1

log
m2

mH

+ 2 log
m2

m1
+ log

m2

mZ

−
iπ

48

(

1 +
1

3
yW1

))

sW

]

, (4.7)

F2 = F
(a)
2 + F

(b)
2 =

αs

π

[

1

2
CF +

(

1

2
−

1

2
log

m1

µ

)

CF

]

+
αs

π

q2

m2
1

[

1

12
CF +

(

1

12
−

1

2
log

m1

µ

)

CA

]

+
α

π

[(

35

144
−

1

8
log

m1

mZ

)

cW +

(

7

16
+

1

16
yW1

−
1

8
yH1

−
3

8
yH log

m1

mH

−
1

8
log

m1

mZ

)

sW

]

+
α

π

q2

m2
1

[

11

432
cW +

(

1

48
+

1

96
yW1

−
1

32
yH1

−
1

32
yH +

1

24
yW1

log
m1

m2
+

1

8
yH log

m1

mH

+
iπ

48
yW1

)

sW

]

,

(4.8)

F3 = 1− δZ3 + F
(a)
3 + F

(b)
3 = 1+

α

π

[(

5

16
−

5

24
log

m1

mZ

)

cW +

(

−
7

16
+

1

16
yW1

+
1

4
log

m1

mW

+
1

8
log

m1

mZ

+
iπ

8

)

sW

]

+
α

π

q2

m2
1

[(

−
35

576
+

5

48
log

m1

mZ

)

cW +

(

9

64
+

1

64
yW1

−
1

24
yW1

log
m1

m2

−
1

24
log

m2

mZ

−
1

48
log

m1

mZ

+
iπ

48
(1− yW1

)

)

sW

]

, (4.9)

F4 = F
(a)
4 + F

(b)
4 =

α

π

[(

−
35

144
+

5

12
log

m1

mZ

)

cW +

(

9

16
+

1

16
yW1

−
1

6
yW1

log
m1

mZ

−
1

6
log

m2

mZ

−
1

12
log

m1

mZ

+
iπ

12
(1− yW1

)

)

sW

]

+
α

π

q2

m2
1

[(

−
7

96
+

5

72
log

m1

mZ

)

cW +

(

17

96
−

1

60
yW1

m2
1

m2
2

+
19

480
yW1

+
1

60
yW2

+
1

60

m2
1

m2
2

−
7

120
yW1

log
m1

m2
−

1

24
log

m1

mZ

−
1

10
log

m1

m2
−

iπ

20
−

7iπ

240
yW1

)

sW

]

,

(4.10)

(a) (b)

Figure 2: Diagrams that contribute to three-point matching coefficients in the SM. The

Abelian and non-Abelian contributions are given by diagrams (a) and (b), respectively.
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where yW1,2
≡

m2

1,2

m2

W

, yH ≡
m2

H

m2

W

and yH1,2
≡

πm1,2mH

m2

W

, we fix the Yukawa coupling to the EW

coupling, α, and quark masses in the standard way [23]. We also define the square inverse

of mixing angles, sW = 1/ sin2 θW and cW = 1−1/sW. Moreover, we leave out IR divergences,

ǫIR, to reduce the size of the expressions and they are conventionally not included in the

matching coefficients. Although the form factors in the limit presented above provides

an adequate approximation for m1 ≫ mW,Z,mH ≫ m2, q
2, in the SM the correct limit is

m1 ∼ mW,Z,mH ≫ m2, q
2 and thus we recommend the latter for precision calculations.

We leave a limit comparison to future numerical studies and the full expression with no

approximations is included with an ancillary file.

5 Four Quark Matching

To achieve the matching we follow the procedure originally outlined in [8] reproducing there

results and extending them. One begins by expanding the dimensionally regulated matrix

elements about zero residual momentum. This expansion is done to zeroth order since there

are no derivative terms in the four fermion portion of our effective Lagrangian, by inspection

of (2.3) and (2.4) - i.e. we solely require the matrix elements for the four heavy quarks at

rest. Diagrammatically, this means the amputated legs in a given diagram can be multiplied

by a projector, P+ and P−, to the particle and anti-particle sub-spaces, respectively. The

kinematic factor which relates the relativistic and non-relativistic expansions,
√

m/E may

also be set to unity WLOG.

The calculation of such matrix elements in QCD and HQET have been achieved in

previous studies [8, 24, 25]. In the S-matrix elements of such heavy-heavy systems, one can

see a unique IR behaviour appearing, which gives rise to the Coulomb pole and hence to

the standard non-relativistic weak coupling bound states. This behaviour in the IR appears

expectantly in both the effective and full theory. Expanding the dimensionally regulated

matrix elements of QCD about the residual momentum, one would expect an IR singularity

- reflecting the Coulomb pole - to emerge. This odd power-like IR divergence is set to zero

in dimensional regularisation; the EFT has identical IR behaviour which is consistently

put to zero by dimensional regularisation. Crucially, we are taking into account all the

non-analytic behaviour in the heavy quark masses coming from high momenta such as in

QCD logarithms, for instance.

The MS scheme is employed throughout for both UV and IR divergences. As was

done previously, we avoid on-shell wave-function renormalisation (WFR) and stick to MS

[8]. The scheme is followed to avoid identifying the UV divergences in the on-shell (OS)

scheme which correspond to a WFR constant and subtracting them accordingly, this is

less straightforward than employing MS throughout. The price to be paid for this choice

is that the heavy quark fields cease to be adequately normalised - hence one requires the

proper wave function renormalisation (WFR) factor, Z, to be included when calculating

the on-shell matrix elements, for instance, in QCD one has,

ZQCD = 1 + CF
αs

π

(

3

4
log

m2

µ2
− 1

)

+O(α2
s), ZNRQCD = 1. (5.1)
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To be clear, Z only contribute at one loop order in the equal mass case, the amplitudes

of which are illustrated in figure 4. Lastly, we note that in our calculation, the Wilson

coefficients in (2.3) and (2.4) are invariant under local field re-definitions as discussed in

detail previously [7].

5.1 Unequal Mass Case

In the unequal fermion mass case, annihilation diagrams do not contribute, and thus we

are left with the box diagrams present in figure 3. The aforementioned Coulomb singularity

and the mechanism by which it vanishes is identifiable. The upshot is that a suitable

dimensionful parameter - the relative momentum of the heavy quarks - is not present in the

calculation. Thus dimensional regularisation has no way to reproduce the Coulomb pole

which was pointed out and discussed in detail in Refs. [8, 24].
We re-calculate the following known QCD matching coefficients in the large m1,2 limit

and confirm the result of [8],

dss = −CF

(

CA

2
− CF

)

α2
s

m2
1 −m2

2

{

m2
1

(

log
m2

2

µ2
+

1

3

)

−m2
2

(

log
m2

1

µ2
+

1

3

)}

, (5.2a)

dsv = CF

(

CA

2
− CF

)

α2
s

m2
1 −m2

2

m1m2 log
m2

1

m2
2

, (5.2b)

dvs =

(

3

4
CA − 2CF

)

α2
s

m2
1 −m2

2

{

m2
1

(

log
m2

2

µ2
+

1

3

)

−m2
2

(

log
m2

1

µ2
+

1

3

)}

+
CAα

2
s

4(m2
1 −m2

2)m1m2

{

m4
1

(

log
m2

2

µ2
+

10

3

)

−m4
2

(

log
m2

1

µ2
+

10

3

)}

, (5.2c)

dvv =
2CFα

2
s

m2
1 −m2

2

m1m2 log
m2

1

m2
2

+
CAα

2
s

4(m2
1 −m2

2)

{

m2
1

(

log
m2

2

µ2
+

10

3

)

−m2
2

(

log
m2

1

µ2
+ 3

)

− 3m1m2 log
m2

1

m2
2

}

. (5.2d)

Note that imaginary parts appear in Wilson coefficients, this occurs often and are qualitatively

related to the inelastic cross sections which are unattainable with non-relativistic theory alone.

Moreover, the decay width of heavy quarkonium states into light hardons are also implicated in

the imaginary parts, which has been previously calculated [5], which agrees with our results. The

O(ααs) real EW corrections, which we define as d′ij , to these coefficients will be presented in the

following limit, m1 ≫ m2 ≫ mW,Z,H. We choose this limit for compactness mainly but the full result

up to O(α2) in the analogous limit to the QCD result is included as an ancillary file. We note that

at O(ααs), d
′

ss = d′sv = 0, and what remains to display are the following coefficients,

d′vs = ααs

{

1

24

(

1 + 3 log
m2

2

µ2
+ 12iπ − 4y12iπ − y12

yH

36

[

6 log
m2

2

µ2
+ 19

]

−yW2

[

9

4
+ 4iπ

]

−
1

2
yW1

iπ

)

sW +
5

216

(

3 log
m2

2

µ2
+ 1

)

cW

}

, (5.3a)

d′vv = ααs

{

5

72

(

11 + 3 log
m2

2

µ2
+

yH

36

[

6 log
m2

2

µ2
+ 11

]

+ yW2
log

m1

m2

)

sW

+
5

72

(

3 log
m2

2

µ2
+ 11

)

cW

}

. (5.3b)

Where y12 ≡ m1

m2

and the rest of the EW parameters present in this expression mimic the definitions

present in section 4.
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Figure 3: Relevant diagrams for the matching of the four-fermion operators at one-loop

order and O(1/m2) in the unequal mass case. The incoming and outcoming particles are

on-shell and exactly at rest.

5.2 Equal Mass Case

When considering the equal particle case more amplitudes are involved since annihilation processes

are now allowed and must be taken into account (see figure 4). The inclusion of annihilation

processes, most significantly, includes, at leading order, the tree level contributions. We confirm

the previously calculated matching coefficients in pure QCD,

dcss = α2
sCF

(

CA

2
− CF

)

(2− 2 log 2 + iπ), (5.4a)

dcsv = 0, (5.4b)

dcvs =
α2
s

2

(

−
3

2
CA + 4CF

)

(2− 2 log 2 + iπ), (5.4c)

dcvv = (−παs)

{

1 +
αs

π

[

Nf

6

(

log
m2

1

µ2
+ 2 log 2−

5

3

)

−
8

9
+

1

3
log

m2
1

µ2

]

+CA

[

−
11

12
log

m2
1

µ2
+

109

36

]

− 4CF

}

. (5.4d)

The O(α, ααs) EW corrections to these coefficients, defined as dc
′

ij , will be presented in the following

limit, m1 ≫ mW,Z,H ≫ m2. This limit is again chosen for compactness but the full result up to O(α2)

is included as an ancillary file,

dc
′

ss = α

{

αs

(

−
1

8
CF +

3

32
log

m2
1

µ2

)

cW −
1

4
πyW1

cW

+αs

(

−
1

8
CF +

3

32
log

m2
1

µ2
− 4CF yW1

+
25

8
CF yW1

log
m2

1

µ2

)

cW

}

, (5.5a)

dc
′

sv = ααs

{(

1

8
CF +

3

32
CF log

m2
1

µ2

)

sW +

(

25

72
CF +

25

96
CF log

m2
1

µ2

)

cW

}

, (5.5b)

dc
′

vs = α

{(

−
π

16
+ αs

[

1

4
−

15

16
CF +

19

32
log

m2
1

µ2
−

1

4
log 2

]

−
1

8
iπ

)

sW

+

(

−
25π

144
+ αs

[

25

36
−

125

48
CF +

475

288
log

m2
1

µ2
−

25

36
log 2

]

−
25

72
iπ

)

cW +
16

9
iπαs

}

, (5.5c)

dc
′

vv = ααs

{(

88

9
+

44

9
log

m2
1

µ2
−

152

9
log

m1

mZ

+
8πm1 cos θW

9mW

−
2πm1

9mW cos θW

)

+

(

−
361

72
−

89

36
log

m1

mZ

)

cW +

(

−
13

12
−

1

6
yW1

+
7

8
yH −

19

48
yH1

−
1

2

m2
1

m2
H

yH1
+

1

3

(

log 2−
7

4
iπ

)

−
1

3
yW1

(log 2 + 2iπ) +
1

12
yH (log 2 + 2iπ) +

1

16
yW1

log
m2

1

µ2
+ yW1

log
mH

mZ

−
1

2
yW1

log
m1

mZ

)

sW

}

(5.5d)
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(a) (b) (c)

(d) (e) (f)

+perm.

+perm.+perm.

Figure 4: Relevant diagrams to the matching for four-fermion operators at one-loop order

and O(1/m2) in the equal mass case. The incoming and outgoing particles are on-shell and

exactly at rest.

6 Discussion

To underline our discussion the full set of EW corrections to the two and four quark matching

coefficients is presented in tables 1 and 2, respectively. We avoid taking any limits and plug in

the latest SM parameters to compare with the known QCD result. The reason we choose the full

expression up to the order we are considering is to maximise accuracy and we focus on comparing

the real parts of the Wilson coefficients. For our comparison we choose for our renormalisation

scale, µ = mZ , m1 = mt(mZ), m2 = mb(mZ) and the coupling, αs = αs(mZ) and the parameters

were taken from the latest PDG review [26]. We will begin by considering the bi and ci Wilson

coefficients factoring the two quark operators.

Coeff. c0,2,4 cF cD cS cW1
cW2

cq cM
QCD 1 1.04 1.192 1.08 0.996 -0.004 0.04 0.076

EW corr. 0 0.0006 -0.1012 0.0012 -0.0639 -0.0629 0.0006 -0.0509

Coeff. b0,1,2 b3 b4 b5 b6 b7 b8 b9

EW corr. -1.002 1.001 -0.501 -0.04 0.02 -0.04 1.042 -1.002

Table 1: Three point matching coefficients with µ = mZ and SM parameters taken from

PDG.

By inspection of table 1, at the renormalisation scale we are inspecting, it is clear that the EW

corrections alter the Wilson coefficients significantly. Moreover, the size of these corrections varies

widely depending on the coefficient under consideration and this provides further credence to the

lack of reliability of naive order of magnitude estimates. As for the new CP violating operators,

they come equipped with non-negligible matching coefficients of similar order of magnitude to the

ones factoring the CP preserving operators. On the other hand, the matching coefficients of the

four quark operators vary even more strongly in both the QCD and EW sectors.
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Coeff. dss dsv dvs dvv dcss dcsv dcvs dcvv
QCD 0.02 0.0004 -2.269 -0.038 0.0018 0 0.003 -0.366

EW corr. 0.093 -0.077 -0.2734 2.145 -0.134 0.002 -0.014 -0.034

Table 2: Four point matching coefficients with the equal and unequal mass cases distin-

guished by the superscript, c, with µ = mZ and SM parameters taken from PDG.

If we now consider table 2, we may focus on the largest Wilson coefficients in QCD which are dvs
and dcvv in the unequal and equal mass cases, respectively. The EW corrections to these coefficients

are an order of magnitude smaller which align well with naive estimates, i.e. O(ααs). However,

the largest EW contributions which arise in dvv and dcss are of the same order as the largest QCD

coefficients and further justify the necessity of including them in precision calculations.

We end by noting that these results were achieved with the help of Mathematica accompanied

by the package, FeynCalc [27], to compute the necessary amplitudes and deal with the algebra. We

employed further sub-packages of FeynCalc such as FeynHelpers [28] which reduces and provides

explicit expressions for one-loop scalar integrals by connecting the reduction package, fire [29],

with the analytic scalar integrals program, Package-X [30]. Lastly, we employed the FeynOnium sub-

package, which comes equipped with functions for dealing with calculations in the non-relativistic

limit [31].

7 Conclusion

The matching coefficients of the NRQCD Lagrangian has been computed at one-loop up to and

including terms of order O(1/m3) with QCD as the full theory, confirming previous results. The

Lagrangian was then extended to include the leading QCD+EW and EW corrections at one loop,

of which various limits were presented and discussed. New CP violating operators were found to

be necessary for the two quark terms in the effective Lagrangian, and we showed them to be frame

independent. The new terms arose due to the SM being CP-violating and new Lorentz structures

emerged that are not present in the non-relativistic limit of QCD; thus, the matching coefficients

accompanying the CP-violating terms exhibited EW corrections purely. When studying the four

quark operators, we considered both the equal and unequal external heavy quark mass cases. We

rounded off by comparing all the matching coefficients for a particular renormalisation scale with

and without EW corrections and found the contributions from the EW regime to be relevant.

Therefore, we recommend that these contributions be included in future high precision studies that

employ heavy quark effective theories.
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