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Another option to circumvent these limits for s-wave DM annihilations is a resonantly enhanced cross-
section at freeze-out [21].



AN

A different signature at Belle involving a dark Higgs boson has been studied in [29].
This implies that 1, and ©¥gr couple to the scalar field ¢ in the same way.









In principle rather small mixing angles of the dark Higgs can be constrained by BelleIl, which are
insufficient to keep up the thermal equilibrium between the dark and visible sectors until DM freeze-out.
For this region in parameter space the calculation of the DM abundance is more involved [36]. For the
signature we are interested in, however, a sizeable value of ¢ will always guarantee thermal equilibrium and
applicability of the standard thermal freeze-out prescription.

As micrOMEGAs does not account for hadronisation and naively calculates the annihilation cross section
into light quarks, we modify these annihilation channels by hand making use of the experimentally inferred
ratio R(s) as described in [26]. For most of our parameter space this turns out to be completely irrelevant
however as the annihilation cross section is dominated by x x — h h .
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See Ref. [19] for another production mechanism of inelastic DM leading to large couplings.






Figure 1: Feynman diagrams depicting the leading search channels for inelastic DM: A’
production in association with a single photon (left) and A’ production in association with
a dark Higgs h' (right) with subsequent decays into both visible and dark sector states.
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Figure 2: Schematic view of the BelleIl detector (zy-plane) and example displaced sig-
nature.

3.1 The Bellell experiment

The BelleII experiment at the SuperKEKB accelerator is a next generation B-factory [54]
that started physics data taking in 2019. SuperKEKB is a circular asymmetric ete™
collider with a nominal collision energy of /s = 10.58 GeV and a design instantaneous
luminosity of 8 x 10% em—2 s~ 1.

The Belle Il detector is a large-solid-angle magnetic spectrometer. Particularly relevant
for the searches described in this paper are the following sub-detectors: a tracking system
that consists of six layers of vertex detectors (VXD), including two inner layers of silicon
pixel detectors (PXD) and four outer layers of silicon vertex detectors (SVD), and a 56-

layer central drift chamber (CDC) which covers a polar angle region of (17 — 150)°. The

"In the current work we improve the description of the total y2 decay width as described in the appendix.
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Figure 3: Expected sensitivities of the different searches at BelleIl in the e—m 4 parameter
plane for integrated luminosities of 100 fb—! (solid lines) and 50 ab—! (dashed lines). Left
plot is for ap = 0.1, right plot for ap = 0.5.

lines). The other parameters are fixed as indicated in the figures. We show 90% C.L. limits
for all signatures analysed in this work, i.e. for the monophoton as well as the two displaced
signatures at BelleII. Existing bounds come from electroweak precision tests (EWPT) [41]
and from HERA measurements [42] as well as from the BaBar monophoton search [54].
As described in [26] we run Monte Carlo scans to take into account the fact that only a
fraction of the events will pass the monophoton selection criteria, resulting in a significantly
weaker bound from BaBar for the given parameters. For the rather large value of A and
€ almost all yo particles will decay within the detector and the remaining limit from the
monophoton signature is due to the non-zero probability that the particles produced in the
2 decay travel in the direction of the beam pipe such that they will not be reconstructed.

The sensitivity of BelleIl towards the monophoton signature (green) is significantly
improved compared to BaBar due to a more hermetic calorimeter. To obtain the monopho-
ton sensitivity for 100 fb~! and 50 ab—! we rescale the published sensitivity for 20 fb—! using
that the expected sensitivity S(e) oc vL.® We then perform a second rescaling as above
using Monte Carlo runs to account for vy decays and corresponding acceptances within the
detector. We observe that for small values of m s the sensitivity is as good as for the usual
monophoton search as basically all y2 particles decay outside the detector. For larger m 4
this is no longer true and we observe a significant weakening (which is delayed for larger
luminosities due to the smaller values of € and therefore larger y2 decay lengths).

In orange we show the sensitivity due to the signature with a single photon and a

®The assumptions under which such a rescaling is valid are discussed in detail in [26].
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Figure 4: Expected sensitivities of the different searches at BelleII in the #—mys parameter
plane for integrated luminosities of 100 fb~! (solid lines) and 50 ab—! (dashed lines). We
also show current limits from DarkSide [60], LHCh, CHARM and E949.

displaced pair of charged particles (denoted by ‘displaced+’ in the figure legend). We
observe that there is very good sensitivity towards large dark photon masses m and
rather small values of €. In violet we show the corresponding sensitivity for the signature
with two pairs of charged particles, where we require at least one of those to have a non-zero
displacement (denoted by ‘displaced’ in the figure legend). While the typical sensitivity is
very similar to the ‘displaced++’ signature, it extends to large values of € which are not
covered by any other signature. The reason is that we can allow for prompt ys decay in
this case as the decay products of the dark Higgs h' are basically always displaced. We
further note that the constraints extend significantly into the off-shell regime with dark
photon masses m 4 < 12 GeV for my, = 1 GeV.

Because the relic density depends primarily on the process y1xy1 — k'R, the thermal
relic target does not depend on = or 6.

In Fig. 4 we show the limits in the # — my, parameter plane. Here general searches
for dark scalars mixing with the SM Higgs boson are relevant and we show results from
LHCb, CHARM and E949 as given in [43]. We also show limits from direct dark matter
searches, taking into account the fact that for the regions in parameter space where yy
does not make up all the DM (to the left of the ‘thermal relic’ line), the limits have to be
rescaled with a factor €, h?/0.12.

Regarding future sensitivities we show estimates for NA62 (as given in [16]), SHiP (as
given in [43]) and a possible BelleII search for the rare decay B —+ K h' [17]. For the given
set of parameters the monophoton as well as the ‘displaced+’ searches are not sensitive.
The signature associated with the dark Higgs however is sensitive down to very small values
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Figure 5: Expected sensitivities of the different searches at BelleIl in the (left) mp —mar
plane and in the (right) my, — a; plane for integrated luminosities of 100 fb~! (=olid lines)
and 50 ab~! (dashed lines).

of the mixing angle #. This remarkable sensitivity can be understood from the fact that
the production cross section is large and does not depend on #. The lower boundary of
the sensitivity is therefore just given by the maximal &' decay length which still allows for
2.3 events to decay within the sensitive region of the detector. The maximal decay length
which BelleII can be sensitive to corresponds to more than 10°m.

In Fig. 5 we show the sensitivities of the different BelleIl searches in the mp — mar
plane (left) and in the my, — a; plane (right). Note that we assume that in the parameter
region around mp ~ 0.5 GeV the search does not have any sensitivity due to large Kg
backgrounds (see the selection cuts in Tab 4), explaining the gap in our sensitivity. In
Fig. 6 we show the same planes as in Fig. 5 but restrict ourselves to the case of 100fb—! to
show more details of how the sensitivity region depends on the assumption of the presence
of a displaced vertex trigger. We see that a displaced vertex trigger could significantly
extend the reach in some regions of parameter space while in others there is only a mild
improvement. Experimentally, a displaced vertex track trigger would be orthogonal to the
calorimeter triggers and will hence provide a way to measure the trigger efficiency.

5 Conclusion

In this work we studied possible signatures at Bellell of a simple model for light thermal
inelastic dark matter which is fully consistent with all cosmological probes as well as direct
and indirect dark matter detection. We extend previous studies of inelastic dark matter
by carefully analysing the effects of a dark Higgs boson k', which is naturally present in
the low energy particle spectrum to explain the mass splitting A between the DM state y1

— 16 —
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Figure 6: Expected sensitivities of the displaced search at BelleIl in the mp — mar
plane (left) and in the my — oy plane (right) for integrated luminosity of 100 fb—1. The
filled regions correspond to the sensitivity without invoking a displaced vertex trigger. In
addition we show the region in which the 77 region contributes to the overall sensitivity.

and its heavier twin y2 as well as the mass of the dark photon m4:. One straightforward
consequence of the presence of the dark Higgs h' is that elastic scattering between yi
and nuclei is possible even at tree-level (making the term inelastic DM something of a
misnomer). Nevertheless, the resulting scattering cross section is still rather small due to
the small couplings involved and typically not competitive with limits from colliders.

A prominent signature at BelleII which arises from dark Higgs particles i’ produced
in association with dark matter y; consists of two pairs of (displaced) charged particles
together with missing momentum. We find that the sensitivity of BelleII to the underlying
model parameters is highly complementary to that from monophoton searches, while an
independent signature with a single photon, one pair of charged particles and missing
momentum as studied in [26] gives very similar sensitivity in large regions of parameter
space. The signature involving a dark Higgs however provides sensitivity also to large values
of € which are not covered by any other signature. Owerall it appears not unlikely that
both signatures may be discovered almost simultaneously at BelleIl, providing a unique
signature correlation for this scenario. We also point out that some regions of parameter
space will not be covered with the current experimental configuration and that a displaced
vertex trigger would be highly beneficial to increase the sensitivity to this scenario.
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The numerical factors in Eq. (A.10) are related to spin averaging.
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