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Geometrical approach to causality in multi-loop amplitudes

German F. R. Sborlini a∗
a Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D–15738 Zeuthen, Germany.

An impressive effort is being placed in order to develop new strategies that allow an efficient computation
of multi-loop multi-leg Feynman integrals and scattering amplitudes, with a particular emphasis on removing
spurious singularities and numerical instabilities. In this article, we describe an innovative geometric approach
based on graph theory to unveil the causal structure of any multi-loop multi-leg amplitude in Quantum Field
Theory. Our purely geometric construction reproduces faithfully the manifestly causal integrand-level behaviour
of the Loop-Tree Duality representation. We found that the causal structure is fully determined by the vertex ma-
trix, through a suitable definition of connected partitions of the underlying diagrams. Causal representations for
a given topological family are obtained by summing over subsets of all the possible causal entangled thresholds
that originate connected and oriented partitions of the underlying topology. These results are compatible with
Cutkosky rules. Moreover, we found that diagrams with the same number of vertices and multi-edges exhibit
similar causal structures, regardless of the number of loops.

I. INTRODUCTION

Nowadays, one of the most successful descriptions of Na-
ture is based on Quantum Field Theories (QFT). Impressive
calculations are being performed in order to extract highly-
precise theoretical predictions, which must be confronted with
the highly-accurate data collected from the current and fu-
ture experiments [1–8]. Any tiny discrepancy in the theory-
experiment comparison might open the path to huge discover-
ies regarding the fundamental building blocks of the Universe.
Moreover, the challenge to achieve further improvements in
the computational techniques behind QFT is originating sev-
eral profound discoveries about the underlying mathematical
structures of gauge theories.

Due to the high-complexity of gauge theories and QFT in
general, exact solutions are unknown for most of the experi-
mentally relevant observables. In the context of high-energy
physics, the perturbative approach turns out to be the most
suitable, since it allows to express experimentally accessible
quantities (such as cross-sections) in terms of power series:
to increase the precision of the results, higher-orders must be
included. These higher order contributions involve dealing
with vacuum quantum fluctuations which are encoded through
complicated multi-loop multi-leg Feynman diagrams.

In the last twenty years, there was an enormous progress
towards more efficient loop calculations. Several techniques
were developed, such as sector decomposition [9–12], Mellin-
Barnes transformations [13–18], algebraic reduction of inte-
grands [19–26], integration-by-parts [27, 28], semi-numerical
integration [29–31], among other highly creative and powerful
ideas [32–34]. In this direction, the Loop-Tree Duality (LTD)
[35–38] constitutes a novel strategy to tackle higher-order cal-
culations by opening loops into trees, thus recasting the vir-
tual states into configurations that resemble real-radiation pro-
cesses.

The purpose of LTD is twofold. On one side, express-
ing the virtual and real-radiation contributions on similar in-
tegration spaces allows to infer a natural way to combine
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them at integrand-level. This unified formalism produces an
integrand-level representation of physical observables which
is locally free of infrared singularities [39–42]. On the other
hand, there are tremendous simplifications in the description
of the causal and singular structure of multi-loop Feynman in-
tegrals and scattering amplitudes, that leads to a more compact
and numerically stable representation of the loop integrands in
the Euclidean space of the loop three-momenta [43–45]. Sev-
eral studies that took advantage of a simplified treatment of
singularities within LTD were carried out [46–50]. Regarding
the causal structure of scattering amplitudes, there are previ-
ous studies using different techniques [51–53]. Very recently,
LTD was applied to remove unphysical threshold singulari-
ties and obtain a manifestly causal integrand-level definition
of multi-loop scattering amplitudes [54–61]. All these LTD-
based techniques were implemented in an automatized frame-
work [62].

It is known that geometry and graph theory can be used
to re-interpret the physical meaning of scattering amplitudes.
Moreover, Cutkosky rules [63, 64] and Steinmann relations
[65–67] establish a deep connection among geometrical prop-
erties of Feynman diagrams (cuts or partitions) and the struc-
ture of discontinuities of the underlying amplitude. Inspired
by these ideas, we investigated similar ideas with the purpose
of reconstructing the whole amplitude at integrand-level us-
ing a manifestly causal representation. Even more, in a recent
article, we explored the application of novel quantum algo-
rithms to efficiently detect causal configurations in multi-loop
diagrams, by identifying acyclic graphs with Grover’s algo-
rithm [68].

The outline of this article is the following. In Sec. II,
we briefly recall the basic ideas behind the Loop-Tree Du-
ality theorem, and we introduce its connection with the
causal structures in multi-loop multi-leg scattering ampli-
tudes. Then, in Sec. III, we establish the geometrical concepts
required to describe Feynman integrals and multi-loop ampli-
tudes. Introducing the concepts of multi-edges, vertices and
the vertex matrix, we explain how to generate all the possible
causal propagators involved in their causal representations in
Sec. III A. After that, in Sec. IV, we describe a set of geo-
metrical rules to unveil the causal structure of any amplitude.
These rules explain how to combine compatible causal prop-
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agators, associated to different thresholds, leading to the con-
cept of compatible causal entangled thresholds. We present a
detailed example based on four-vertex topologies in Sec. V.
A discussion about more complicated configurations, includ-
ing the causal structure of N -vertex topologies at one-loop,
is given in Sec. VI. Finally, the conclusions and outlook are
presented in Sec. VII.

II. LOOP-TREE DUALITY AND CAUSALITY

In order to provide a proper description of multi-loop multi-
leg scattering amplitudes, it is mandatory to identify and clas-
sify the kinematical variables involved. So, let’s consider a
generic L-loop N -point amplitude. In first place, we define L
primitive loop momenta {`i}i=1,...,L which correspond to the
integration variables.

Then, we group the momenta of the internal lines, I , as-
sociated to a Feynman diagram (or topology) into n sets, ac-
cording to their dependence on the primitive variables. In this
way, the set s contains all the internal momenta of the form

qis =
∑
j

βsj `j + kis , (1)

where kis represents a linear combination of external mo-
menta {pr}r=1,...,N and βsj ∈ {−1, 0, 1}. The linear com-
bination of primitive momenta βsj `j remains fixed for each
is ∈ s. Here, external momenta are considered outgoing and
the short-hand notation qi ≡ i is used when there is only one
element per set (i.e. #s = 1 for every s).
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FIG. 1. General examples of MLT (a), NMLT (b) and N2MLT (c)
topologies. We indicate with a single line each of the the sets defined
by Eq. (1). As explained in the text, we can attach an arbitrary num-
ber of external particles to each line, which corresponds to enlarging
the sets s by adding more propagators on them.

At this point, we introduce the concept of Maximal Loop
Topology (MLT), which describes those diagrams or families
of diagrams with the minimal number of sets for a given num-
ber of loops; i.e. n−L = 1. This naturally defines a topolog-
ical classification of diagrams through the so-called topologi-
cal complexity, k̃ ≡ n − L, as previously discussed in Refs.
[57, 58, 60, 69]. In this way, MLT corresponds to k̃ = 1; the
Next-to-Maximal Loop Topology (NMLT) to k̃ = 2, and so
on. In Fig. 1, we show generic examples of MLT (left), NMLT
(center) and N2MLT (right) diagrams. It is worth appreciat-
ing that the lines drawn in the diagrams represent sets, which
might contain several external particles attached to them.

Once the notation has been established, we can use it to
write any L-loop N -point diagram in the Feynman represen-
tation as

A(L)
N =

∫
`1,...,`L

N
(
{`i}L , {pj}N

)
×GF (1, . . . , n) ,

where n = L + k̃ is the total number of momentum sets, k̃
is the corresponding topological complexity of the diagram
and N represents a generic numerator that depends on all the
kinematical variables, i.e. any possible scalar product involv-
ing {pj} and {`i}. In this expression,∫

`

≡ −ı µ4−d
∫

dd`

(2π)d
, (2)

corresponds to the standard d-dimensional loop integration
measure. The product of Feynman propagators is given by

GF (1, . . . , n) =
∏

i∈1∪···∪n
(GF (qi))

αi , (3)

where αi ∈ N. Individually, each Feynman propagator is ex-
pressed according to

GF (q) =
1

(q0 − q(+)
0 )(q0 + q

(+)
0 )

, (4)

where q = (q0, ~q) is the momentum carried by the particle
and q(+)

0 =
√

(~q)2 +m2 − ı0 is the associated positive on-
shell energy. This emphasizes that any internal line of a loop
amplitude can be interpreted as the quantum superposition of
two off-shell states flowing forward and backward in time, re-
spectively. We will recall this interpretation later in Sec. IV.

The LTD representation of Eq. (2) is obtained by integrat-
ing out one degree of freedom per loop through the Cauchy
residue theorem. The application of the nested residues leads
to a collection of diagrams with as many on-shell cuts as
loops, in such a way that each loop diagram is open into a
sum of non-disjoint trees. After adding together all the dual
terms, the final result only involves same-sign combinations of
on-shell energies in the denominator: these are the so-called
causal propagators [57, 58, 60, 69]. The causal propaga-
tors are associated to threshold discontinuities or singularities,
as those predicted by the optical theorem and reconstructed
through Cutkosky’s rules [63].

As already investigated in previous articles, the LTD offers
an excellent opportunity to disentangle the causal structure of
scattering amplitudes. In particular, starting from Eq. (2) and
computing the nested residues, we claim that [57, 58, 60, 70]

A(L)
N =

∑
σ∈Σ

∫
~̀
1,··· ,~̀L

Nσ({q(+)
r,0 }, {pj,0})
xn

×
k∏
i=1

1

−λσ(i)
+ (σ ↔ σ̄) , (5)

fully describes the causal structure of any multi-loop multi-leg
Feynman diagram of order k. The order of a diagram is given
by

k = I − L , (6)
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namely, the number of remaining off-shell propagators after
opening the loops into trees through L iterated cuts. In Eq.
(5), the causal propagators have the generic form

λ±j ≡
∑
i∈oj

q
(+)
i,0 ± kj , (7)

where kj denotes a sum of external momenta and oj rep-
resents the internal lines that are on-shell in the associated
threshold singularity. The set Σ contains all the subsets of
products of k causal propagators, σ, which fulfill certain com-
patibility criteria. Also, σ̄ is obtained from σ through the re-
placement λ±j ↔ λ∓j , namely by reversing simultaneously
the momenta flow of all the internal lines. Additionally, we
introduce the short-hand definitions∫

~̀
≡ µd−4

∫
dd−1`

(2π)d−1
, xn =

∏
i∈1∪...∪n

2q
(+)
i,0 , (8)

which encode, respectively, the Euclidean dual integration
measure and the normalization factor coming from the iter-
ated application of Cauchy’s residue theorem. Regarding the
numerator, Nσ is given by the application of an operator de-
pending on the subset σ (whose explicit form might be ob-
tained from a direct calculation of the residues) and only in-
volves on-shell energies of the internal lines and the energies
for external particles. It is worth appreciating that, for scalar
integrals, we obtain Nσ ≡ 1 for all σ ∈ Σ. Thus, a possi-
ble path to recover Eq. (5) consists in performing a reduction
to scalar integrals and then computing their causal representa-
tions [62, 70].

III. GEOMETRICAL DESCRIPTION OF MULTI-LOOP
AMPLITUDES

Multi-loop multi-leg scattering amplitudes are built from
Feynman diagrams, i.e. geometrical structures described by
graphs made of vertices and lines. The lines are understood as
propagators that carry momenta and connect the different ver-
tices. The vertices describe interactions among particles and
impose momentum conservation involving internal and/or ex-
ternal particles. Propagators connect exactly two vertices, and
there could be more than one propagator connecting two ver-
tices. In that case, we substitute the sum of all the momenta
flowing through propagators connecting to two vertices by a
single multi-edge; thus a multi-edge corresponds to a bunch
of lines, with the same origin and end, which are merged to-
gether. The set of all the multi-edges defines a basis Q, which
is extended to include external momenta as well.

Let’s consider a multi-loop Feynman diagram with N ex-
ternal particles, L loops and V interaction vertices. These
vertices are connected through I propagators, which can be
reduced to M multi-edges by merging those connecting the
same vertices. Thus, the same Feynman diagram can be de-
scribed in two equivalent ways:

• Standard Feynman diagram: a graph with L loops, I
propagators (lines) and V vertices satisfying

V − 1 = I − L , (9)

i.e. Euler’s formula.

• Reduced Feynman diagram: a graph with V vertices
connected by M multi-edges, which satisfies an analo-
gous conservation equation,

V − 1 = M − L̃ , (10)

with L̃ the number of graphical loops.

Whilst in the standard representation each loop is associated to
a loop integration, the graphical loops only designate a topo-
logical characteristic of the reduced Feynman graph [71]. In
order to clarify these concepts, we sketch the distinction be-
tween them in Fig. 2 for a four-vertex topology. In the left
side, we show the standard Feynman graph with L = 8 and
I = 11. By merging lines into multi-edges, we obtain the re-
duced graph in the right side, which is composed by M = 5
multi-edges and L̃ = 2 graphical loops. Additionally, if the
multi-edge e1 is the result of merging the lines {i1, . . . , ir},
the associated energy is

qe1,0 ≡
r∑
j=1

qij ,0 , (11)

and the corresponding on-shell energy is given by

q
(+)
e1,0
≡

r∑
j=1

q
(+)
ij ,0

. (12)

The last definition is supported by the behaviour of the LTD
representation of MLT-like insertions in multi-loop Feynman
diagrams. As rigorously proven in Ref. [69], when several
lines connect two vertices, they can be replaced by an equiv-
alent propagator whose equivalent on-shell energy is the sum
of the on-shell energies of each individual line [72].

In general, we notice that combining Eq. (6) with Eqs. (9)-
(10), we obtain

k = V − 1 , (13)

which indicates that the order of a diagram is directly related
to the number of vertices. It turns out that the reduced Feyn-
man diagrams are more suitable to infer the causal structure of
Feynman integrals (or amplitudes), as we will explain in the
rest of the article. This assertion is also supported by similar
studies based on algebraic properties of multi-loop Feynman
diagrams constructed from vertices and multi-edges [70].

Moving forward with the formulation of the geometrical
framework, we define the basis of multi-edges and external
momenta Q. For a given reduced Feynman diagram, we
choose the ordering

Q = {Q1, . . . , QM ; p1, . . . , pN−1} , (14)

where we implicitly impose
∑
pi = 0 due to momentum con-

servation. For each vertex, we have a unique momentum con-
servation equation: momentum is conventionally considered
positive (negative) if it is outgoing (incoming). In this way, a
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FIG. 2. Comparison between the standard Feynman (left) and the re-
duced graph (right), for a four-vertex topology. Vertices are labelled
with bold numbers. Whilst the diagram in a has 11 propagators and
8 loops, the reduced one in b has only 5 multi-edges and 2 graphi-
cal loops. Multi-edges 1 and 4 are the result of collapsing 3 lines;
multi-edges 2 and 3 originate from 2 propagators; and multi-edge 5
is composed by a single line in the standard graph.

vertex v ∈ V is spanned over the basis Q, as a linear combi-
nation of multi-edge momenta with coefficients {±1, 0}. For
instance, given the vertex v with multi-edges Q1 and Q2 out-
going, Q4 incoming and the external outgoing momentum p2

attached to it, we introduce the representation

v = (1+, 2+, 4−; 2̂+)

≡ (1, 1, 0,−1, . . . , 0; 0, 1, . . . , 0) , (15)

with the short-hand notation ĵ = pj . The vertex v corresponds
to the momentum conservation equation

v :−→ Q1 +Q2 −Q4 + p2 = 0 . (16)

Then, we define the vertex matrix V as the V × (M +N − 1)
rectangular matrix whose rows corresponds to the coordinates
of all the vertices spanned on the basis Q. For example, if the
first vertex is the one given in Eq. (15), the generic structure
of V would be

V =

1 1 0 −1 . . .
0 −1 1 0 . . .

. . .

0 1 0 . . .
0 0 1 . . .

. . .

 , (17)

where the vertical line separates internal (left) and external
(right) momenta.

All the kinematic information encoded in V is enough to
unveil the causal structure of the underlying diagram as we
will explain in the following. Global momentum conservation
implies that

Rank(V) = V − 1 = k , (18)

since the information of the momenta entering (exiting) to
(from) a given vertex is constrained by the whole system. We
can make two direct observations. First, the rank of the ver-
tex matrix agrees with the order of the diagram, by virtue
of Eq. (13). Second, we can implement a practical crite-
rion to identify linear combinations of multi-edge momenta
that are compatible with momentum conservation. Explic-
itly, given q =

∑
aiQi we have a unique coordinate repre-

sentation in the Q basis and we can attach the correspond-
ing row to the vertex matrix: if the extended matrix fulfils

Rank(V∗) ≤ V − 1, then q ≡ 0 because of momentum con-
servation. This last property is useful to test the compatibility
rules that define all the possible entangled thresholds.

A. Generation of causal propagators

Here, we explain how the causal propagators are generated
using concepts from graph theory. To do so, we consider re-
duced Feynman diagrams, i.e. we only rely on the information
concerning vertices and multi-edges. Then, we define a binary
partition of the reduced graph as a non-trivial partition of the
set of vertices V = {v1, v2, . . .} with two components: since
one is the complement of the other, we identify each partition
with the smaller subset of vertices. In general, we have

PV = {{1}, {2}, . . . , {1, 2}, {1, 3}, . . .} , (19)

with the notation j ≡ vj . PV is the quotient set of all the
possible subsets of V , constrained by the equivalence relation
r ≡ rc where rc = V/r.

Since Feynman diagrams fulfill momentum conservation
(and reduced graphs inherit this property), a physical parti-
tion must also fulfil it. This means that vertices inside each
element of the partition must be connected through oriented
multi-edges in a consistent way. We can encode this infor-
mation by looking into the vertices contained in each element
of PV and its complement. By definition, a single vertex is
self-connected. A set of vertices is connected if there exist
multi-edges joining them two-by-two; since multi-edges con-
verge into a vertex and they have a given orientation, this im-
plies a consistent momentum flow in each vertex belonging
to the partition. Thus, we define a connected partition PCV as
the subset of elements of p ∈ PV such that p and pc are con-
nected. The connection is defined by the existence of at least
one path that allows to go from one vertex to any other inside
the partition.

Let us use the reduced graph in Fig. 2 to illustrate the con-
cept of connection. The set of all the possible binary partitions
is given by

PV = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}} , (20)

but not all of them are connected. This is the case of p =
{1, 3}, which includes the vertices 1 and 3 connected through
the multi-edge 5. However, its complement, pc = {2, 4}, in-
volves disconnected vertices: there is not a multi-edge joining
2 and 4. In consequence, p = {1, 3} 6∈ PCV . Also, with this
definition, all the remaining binary partitions in Eq. (20) are
connected.

The connected binary partitions originated from a reduced
graph are important since they codify the threshold structure
of the corresponding Feynman amplitude. Then, we need to
establish the relation among partitions and causal denomina-
tors. In order to do this, given p ∈ PCV , we define its conju-
gated causal propagator as the sum of all the energies of the
associated multi-edge momenta connecting the vertices inside
the partition. If βj ∈ {±1, 0} and γj ∈ {1, 0}, a generic
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conjugated causal propagator is given by

λ̄p =
∑
j

βj Qj,0 +
N−1∑
i=1

γi pi,0 , (21)

where the coefficients βj reflects the freedom to choose the
propagator momenta flow in the Feynman representation and
λ̄p = 0 when momentum conservation is fulfilled in all the
vertices associated to the partition p. External particles are al-
ways labelled as outgoing, even if they carry negative energy
(which is equivalent to say that they are actually incoming
particles). It is worth appreciating that this definition is con-
sistent, i.e. we recover the same expression for λ̄pc (i.e. by
considering pc), because of global momentum conservation.
Also, we notice that λ̄p has a strong physical meaning: it is
the total momenta flowing from (or to) a given binary parti-
tion of a reduced Feynman diagram.

Once the conjugated causal propagators are defined, we
can generate all the possible causal propagators. They orig-
inate from the overlap of momentum conservation and the
nested application of Cauchy’s residue theorem, leading to
causal same-sign combinations of on-shell energies. Explic-
itly, we introduce the transformation

λ̄p → ±λ±p = ±
∑
j

|βj |Q(+)
j,0 +

N−1∑
i=1

γi pi,0 , (22)

which is equivalent to fix a partition, evaluate the nested
residues (i.e. replace loop energy components by positive on-
shell energies, Q(+)

i,0 ) and consistently align all the momenta
involved.

To conclude this Section, we shall recall the discussion
given in Eq. (4): propagators involve the superposition of
two off-shell modes, which implies that they can be aligned
in two possible directions once they become on-shell. Then,
we appreciate that λ±p is determined modulo a global sign.
Besides that, we use the convention in Eq. (22) since it im-
plies λ+ = λ− in the absence of external momenta attached
to some vertices, thus simplifying the expressions. Finally,
we will equivalently denote the causal propagators by the ver-
tices involved in the associated connected binary partition, i.e.
λp ≡ {vi1 , . . . , vir}.

IV. CAUSALITY AND COMPATIBILITY CONDITIONS

As mentioned before, the connected binary partitions of a
reduced Feynman diagram and all the associated causal prop-
agators are in strict correspondence. Each causal propaga-
tor corresponds to a different physical threshold, as discussed
in Refs. [54, 57]. On the other hand, multi-loop multi-leg
Feynman diagrams involve a superposition of several thresh-
olds, that might occur when different combinations of inter-
nal states become on-shell. Thus, from a geometrical point
of view, the threshold or causal structure of a given Feynman
diagram is determined by a set of specific combinations of
connected binary partitions. Each possible term in a represen-
tation like Eq. (5) corresponds to entangled causal thresholds,

using the concepts defined in Ref. [60]. So, in this Section,
we explain how to determine all the allowed entangled causal
thresholds imposing geometrical selection rules to combine
the different causal propagators.

In first place, we notice that:

1. Each possible entangled combination of causal denom-
inators involves the on-shell energies of all the propa-
gators.

This condition is related to the fact that we are cutting the di-
agram into trees, and classifying these trees according to their
threshold structure. At one-loop, this agrees with the original
Cutkosky’s rules [63]. Beyond one-loop, there are more pos-
sibilities to decompose the topologies into trees, but the idea
remains the same: identify all the causal compatible tree-level
structures inside a diagram. Here, two tree-level blocks are
causal compatible if they fulfill momenta conservation and if
they can be combined in such a way that the momenta exiting
one block consistently enter into the other.

With the previous ideas, we can re-interpret the generaliza-
tion of Cutkosky’s rules in terms of vertices and causal prop-
agators. We claim that the fundamental objects to build the
causal representation are the elements of PCV , since they con-
tain information about the momenta flow and the propagators
that can be simultaneously set on-shell in each contribution.
Each λp is associated to a connected binary partition of the
original reduced Feynman diagram in which internal lines are
all entering or exiting the partition. Thus, we motivate the
following two compatibility criteria:

2. Absence of crossing: Two compatible causal propaga-
tors λp and λq must fulfill that the associated connected
sets of vertices are disjoint or one is totally included in
the other. Explicitly, if p is smaller than q, then p ⊂ q
or p ⊂ qc.

3. Consistent multi-edge momenta orientation: A set of
causal propagators is compatible if the associated λ̄p
can be consistently oriented, i.e. if all the multi-edges
contribute to the entangled cuts with the same orienta-
tion.

Regarding the last criterion, let’s remember that a causal prop-
agator λ±p corresponds to a binary partition which splits the
reduced diagram into two connected pieces. At this point,
the causal denominators can be thought as aligned contribu-
tions obtained from λ̄p by selecting either negative or positive
energy modes. Then, this criterion implies that all the multi-
edges crossing the cut must have the same direction, i.e. they
are all entering or exiting the partition. In order to achieve
this, we might have to reverse some multi-edges. If a diagram
involves several cuts or causal thresholds, we have to look for
a consistent orientation of all the multi-edges of the reduced
diagram. In consequence, it could happen that when com-
bining several λp, some multi-edges can not be consistently
aligned (for instance, because qj ≡ −qj is required).

It turns out that imposing criterion 3 leads to a reduced
Feynman diagram without cycles, i.e. an acyclic oriented
graph. We call causal orientation of the multi-edges to a con-
figuration of momenta flow which converts the reduced graph
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into an acyclic oriented graph. Thus, given a reduced graph,
we can first find all the causal orientations and then look for
those combinations of λp which fulfil criteria 1-3. This prob-
lem can be tackled by studying the eigenvalues of the adja-
cency matrix, which is build from the vertex matrix introduced
in Eq. (17) [73].

FIG. 3. (Left) Example of two incompatible causal propagators with
non-disjoint sets of vertices. (Right) Example of a forbidden combi-
nation of causal propagators due to incompatible momenta orienta-
tion.

To illustrate the application of criteria 1-3, let’s consider a
typical 3-loop Mercedes-Benz diagram as shown in Fig. 3.
We assume that there is only one line per multi-edge, in such
a way that the reduced and the standard Feynman diagram are
the same. First, we define

λ1 ≡ {1, 3} , λ2 ≡ {1} , λ3 ≡ {3} , λ6 ≡ {1, 4} , (23)

which corresponds to the identification among partitions of
vertices and conjugated causal propagators. On the left graph,
{1, 3} 6⊂ {1, 4} and {1, 3} 6⊂ {2, 3} = {1, 4}c since these are
non-disjoint sets of vertices: criterion 2 is not fulfilled here.
On the right graph, the entangled threshold corresponding to
(λ1 λ2 λ3) is considered. If we fix the orientation of the lines
exiting the partition {1, 3} ≡ λ1, the multi-edge connecting
the vertices 1 and 3 can not be consistently oriented. Thus,
this combination of causal thresholds is forbidden from the
causal representation by virtue of criterion 3.

After applying criterion 3 and ordering the multi-edges to
represent acyclic directed graphs, we need to keep the infor-
mation about those multi-edges that were reversed, i.e. the
causal orientations. This is important to apply the transfor-
mation given in Eq. (22) and properly determine whether it
corresponds to select λ+

p or λ−p . In fact, we have the follow-
ing rule:

4. Causal propagator orientation: Given a connected bi-
nary partition in a causally oriented reduced graph, if
the external momenta and the oriented multi-edges are
both outgoing, then λ̄p → λ+

p . Otherwise, λ̄p → λ−p .

Summarizing the procedure described up to now and applying
the criteria 1-4 to any reduced Feynman graph, we can obtain
the set of all the allowed entangled causal thresholds describ-
ing that diagram. We will denote this set as Σ̄.

However, some of the entangled thresholds defined by cri-
teria 1-4 might be degenerated due to global momentum con-
servation. This is true when the number of multi-edges is

not enough to fully constrain the flow of the different cuts
involved in an entangled threshold. Equivalently, the degener-
ation takes place if the number of multi-edges is not maximal
for the associated topology. This observation motivates the
following definition: a reduced Feynman diagram is a maxi-
mally connected graph (MCG) if all the vertices are connected
to each other. In other words, the associated adjacency matrix
can be transformed into an upper-triangular #V ×#V matrix
with all the entries equal to 1. After exploring several topolo-
gies, we find the last rule:

5. Removing the threshold degeneration: Given a non-
maximally connected graph, we select a pair of dis-
connected vertices, i and j, and force the condition
pi = −pj ≡ qM+1. We repeat the procedure for
all the disconnected vertices, till we generate a max-
imally connected graph. Then, we force the valid-
ity of criterion 3 including the fictitious multi-edges
{qM+1, . . . , qM+R−1}.

This criterion determines the set Σ ⊂ Σ̄ in Eq. (5) and
fixes a causal representation of the diagram. Of course, this
also shows that there might be several equivalent causal rep-
resentations for a given Feynman graph, being all of them
related due to momentum conservation. Only when the re-
duced Feynman graph is maximally connected, we have Σ =
Σ̄. This condition is also true when the diagram is next-to-
maximally connected, in the sense that only two vertices are
disconnected. For more general cases, criterion 5 might take
a more complicated explicit form; we defer for future studies
these configurations and the exploration of their correspond-
ing geometrical properties.

V. APPLICATION TO FOUR-VERTEX TOPOLOGIES

After presenting the abstract geometrical formalism in the
previous Sections, we will provide a concrete application. But
first, we want to recall that all the information about the causal
structure of any Feynman diagram is encoded within the ver-
tex matrix. Independently of the number of loops and external
legs, the computational complexity of a Feynman diagram is
given by the number of vertices and how they are connected.
Rephrasing a bit the last two sentences, all the selection crite-
ria described in Sec. IV can be implemented through opera-
tions performed on V .

R�

Q4Q4 Q3 Q3

Q1 Q1 Q2Q2

R1R1

R2R2

R3R3

R4R4

R5

R5

Q4 Q3

Q1

R1

R2

R3

R4

Q2

1 2

34

1 2

34

1 2

34

FIG. 4. Four-vertex topologies with 4, 5 and 6 multi-edges, respec-
tively. These topologies involve four external particles.

So, let us illustrate our framework for the case of the scalar
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four-vertex topologies. We start with the case with 4 multi-
edges depicted in Fig. 4 (left), i.e. a one-loop four-point func-
tion. For the sake of simplicity, we consider that each multi-
edge is composed by a single propagator (i.e. the reduced and
standard Feynman graphs are equal), whose associated mo-
menta are

q1 = `1 , q2 = `1 − p1 , q3 = `1 − p1 − p2 ,

q4 = `1 − p1 − p2 − p3 , (24)

and {pi}i=1,...,4 are the external momenta fulfilling Σpi = 0.
The basic set of momenta is

Q = {1, 2, 3, 4; 1̂, 2̂, 3̂} , (25)

and 4̂ = −1̂− 2̂− 3̂ because of global momentum conserva-
tion. The vertices are

v1 = (1−, 2+; 1̂+) , v2 = (2−, 3+; 2̂+) ,

v3 = (3−, 4+; 3̂+) , v4 = (4−, 1+; 4̂+) , (26)

which leads to the vertex matrix

V =

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

1 0 0
0 1 0
0 0 1
−1 −1 −1

 . (27)

By looking into the connected partitions of vertices, we find

PCV = {{1}, {2}, {3}, {4}, {1, 2}, {1, 4}} , (28)

where we only keep the equivalence classes determined by
p ≡ pc. We notice that {1, 3} ≡ {2, 4} 6∈ PCV because both
of them involve non-adjacent vertices which can not be con-
nected. Associated to each element of PCV , we have the corre-
sponding conjugated causal propagator, i.e.

λ̄1 = (−1, 1, 0, 0; 1, 0, 0) ≡ {1} ,
λ̄2 = (0,−1, 1, 0; 0, 1, 0) ≡ {2} ,
λ̄3 = (0, 0,−1, 1; 0, 0, 1) ≡ {3} ,
λ̄4 = (1, 0, 0,−1;−1,−1,−1) ≡ {4} ,
λ̄5 = (−1, 0, 1, 0; 1, 1, 0) ≡ {1, 2} ,
λ̄6 = (0, 1, 0,−1; 0,−1,−1) ≡ {1, 4} , (29)

being the internal (external) coordinates located to the left
(right) of the semicolon. Applying the transformation de-
scribed in Eq. (22) to Eq. (29), we obtain all the causal prop-
agators for this topology. Explicitly, we have

λ±1 = q
(+)
1,0 + q

(+)
2,0 ± p1,0 ,

λ±2 = q
(+)
2,0 + q

(+)
3,0 ± p2,0 ,

λ±3 = q
(+)
3,0 + q

(+)
4,0 ± p3,0 ,

λ±4 = q
(+)
1,0 + q

(+)
4,0 ± (p1,0 + p2,0 + p3,0) ,

λ±5 = q
(+)
1,0 + q

(+)
3,0 ± (p1,0 + p2,0) ,

λ±6 = q
(+)
2,0 + q

(+)
4,0 ± (p2,0 + p3,0) , (30)

by replacing the energy component of each multi-edge with
the associated aligned positive on-shell energies, i.e. q(+)

i,0 .
Once we generated all the connected binary partitions, we

need to identify the allowed entangled thresholds. First, we
notice that the order of this diagram is k = 3, because it is a
four vertex topology and we apply Eq. (13). Since there are
6 causal propagators, the number of potential combinations of
thresholds is 20. The application of criteria 1 and 2 reduces
the possibilities to only 16. More combinations are discarded
after considering criteria 3-4, which involve a compatible or-
dering of the multi-edges. Thus, given an entangled threshold,
we test all the possible orderings of multi-edges that leads to
an acyclic graph; we retain only those configurations where
multi-edges are aligned when entering/exiting all the binary
partitions. This information allows to define an ordering ma-
trix that is used to distinguish between λ+

i and λ−i . Thus,
applying the transformation rules in Eq. (22), we obtain

Σ̄ = {(1+, 2−, 3+), (1+, 2−, 4+), (1+, 2−, 6−),

(1+, 3+, 4+), (1+, 3−, 5+), (1+, 3−, 6−), (1+, 4+, 5+),

(2+, 3−, 4−), (2+, 3−, 5+), (2+, 4+, 5+), (2+, 4+, 6+),

(3+, 4+, 6+)} , (31)

which is the set of all the compatible entangled thresholds.
Here, we use the short-hand notation i± ≡ λ±i . Notice that
#(Σ̄) = 12.

At this point, we appreciate that setting Σ = Σ̄ andNσ ≡ 1
for all σ ∈ Σ in Eq. (5) does not agree with the result of the
explicit nested residue calculation. This is because there are
degenerated entangled thresholds: in fact,

{(1, 2, 3), (1, 3, 4)} ≡ {(1, 2, 4), (2, 3, 4)} , (32)

because of momentum conservation. By including these con-
figurations we over-count the effect of some entangled thresh-
olds [74]. Thus, we need to break the degeneration by apply-
ing criterion 5. So, we can choose to close the loop by joining
vertices 1 and 3, or 2 and 4. In the first case, we obtain

Σ1 = {(1+, 2−, 4+), (1+, 2−, 6−), (1+, 3−, 5+),

(1+, 3−, 6−), (1+, 4+, 5+), (2+, 3−, 4−), (2+, 3−, 5+),

(2+, 4+, 5+), (2+, 4+, 6+), (3+, 4+, 6+)} , (33)

whilst in the second

Σ2 = {(1+, 2−, 3+), (1+, 2−, 6−), (1+, 3+, 4+),

(1+, 3−, 5+), (1+, 3−, 6−), (1+, 4+, 5+), (2+, 3−, 5+),

(2+, 4+, 5+), (2+, 4+, 6+), (3+, 4+, 6+)} , (34)

where both sets contain 10 elements. Following the functional
form presented in Eq. (5), causal representations of the scalar
one-loop four-vertex topology are given by

A(1-loop)
4-vertex =

∫
~̀
1

1

x4

∑
σ∈Σr

3∏
i=1

−1

λσ(i)
+ (λ+

i ↔ λ−i ) , (35)

with

x−1
4 = 16q

(+)
1,0 q

(+)
2,0 q

(+)
3,0 q

(+)
4,0 , (36)

using either r = 1 or r = 2, from Eqs. (33) and (34) respec-
tively.
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A. Maximally and next-to-maximally connected four-vertex
topologies

Then, let’s consider the remaining four-vertex topologies
with 5 and 6 multi-edges. Starting from the two-loop four-
vertex topology in Fig. 4 (center), we generate all the possible
connected binary partitions. We immediately realize that they
are the same as for the one-loop four-vertex case; i.e. the set
PCV is also given by Eq. (28). However, the functional form of
the corresponding causal propagators changes because of the
additional multi-edge. Explicitly, we have

λ±1 = q
(+)
1,0 + q

(+)
2,0 + q

(+)
5,0 ± p1,0 ,

λ±2 = q
(+)
2,0 + q

(+)
3,0 ± p2,0 ,

λ±3 = q
(+)
3,0 + q

(+)
4,0 + q

(+)
5,0 ± p3,0 ,

λ±4 = q
(+)
1,0 + q

(+)
4,0 ± (p1,0 + p2,0 + p3,0) ,

λ±5 = q
(+)
1,0 + q

(+)
3,0 + q

(+)
5,0 ± (p1,0 + p2,0) ,

λ±6 = q
(+)
2,0 + q

(+)
4,0 + q

(+)
5,0 ± (p2,0 + p3,0) , (37)

Again, there are 20 potential candidates to be entangled
thresholds (6 causal propagators to be grouped in sets of k = 3
elements). Applying criteria 1-2, we discard 8 configurations.
When imposing criteria 3-4, we realize that the presence of
an additional multi-edge (w.r.t. the one-loop case) leads to
stricter constraints and 2 other configurations are eliminated.
Thus, we obtain

Σ̄ = {(1+, 2−, 4+), (1+, 2−, 6−), (1+, 3−, 5+),

(1+, 3−, 6−), (1+, 4+, 5+), (2+, 3−, 4−), (2+, 3−, 5+),

(2+, 4+, 5+), (2+, 4+, 6+), (3+, 4+, 6+)} , (38)

which is the same set Σ1 presented in Eq. (33). This is not
a coincidence: this two-loop topology is a next-to-maximally
connected graph (NMCG), and removing the multi-edge q5

leads to the one-loop box described in the previous discussion.
Thus, using Eq. (5), we get

A(2-loop)
4-vertex =

∫
~̀
1
~̀
2

1

x5

∑
σ∈Σ

3∏
i=1

−1

λσ(i)
+ (λ+

i ↔ λ−i ) ,

(39)

as a causal representation for the scalar two-loop four-vertex
topology, where

x−1
5 = 32q

(+)
1,0 q

(+)
2,0 q

(+)
3,0 q

(+)
4,0 q

(+)
5,0 , (40)

and Σ ≡ Σ̄ given by Eq. (38).
Finally, let’s consider the four-vertex topology with 6 multi-

edges, shown in Fig. 4 (right). This topology is straightfor-
wardly a maximally connected graph; all the vertices are con-
nected. Using the identification between conjugated causal
propagators and the elements of the connected binary parti-
tions PCV , we have

λ̄1 ≡ {1} , λ̄2 ≡ {2} , λ̄3 ≡ {3} , λ̄4 ≡ {4} ,
λ̄5 ≡ {1, 2} , λ̄6 ≡ {1, 4} , λ̄7 ≡ {1, 3} . (41)

Notice that {1, 3} ≡ {2, 4} was not a connected binary parti-
tion for the two previous topologies, but it contributes to this
one. The introduction of additional edges allows to define a
path connecting the vertices 1 and 3, as well as 2 and 4. Ex-
plicitly, the causal propagators are given by

λ±1 = q
(+)
1,0 + q

(+)
2,0 + q

(+)
5,0 ± p1,0 ,

λ±2 = q
(+)
2,0 + q

(+)
3,0 + q

(+)
6,0 ± p2,0 ,

λ±3 = q
(+)
3,0 + q

(+)
4,0 + q

(+)
5,0 ± p3,0 ,

λ±4 = q
(+)
1,0 + q

(+)
4,0 + q

(+)
6,0 ± (p1,0 + p2,0 + p3,0) ,

λ±5 = q
(+)
1,0 + q

(+)
3,0 + q

(+)
5,0 + q

(+)
6,0 ± (p1,0 + p2,0) ,

λ±6 = q
(+)
2,0 + q

(+)
4,0 + q

(+)
5,0 + q

(+)
6,0 ± (p2,0 + p3,0) ,

λ±7 = q
(+)
1,0 + q

(+)
2,0 + q

(+)
3,0 + q

(+)
4,0 ± (p1,0 + p3,0) (42)

Regarding possible causal representations for this topology,
we have 35 entangled thresholds (i.e. all the possible subsets
of 3 causal propagators taken from the 7 available ones). Im-
posing criteria 1-2 eliminates 19 combinations, and we further
reduce this set by requiring criteria 3-4 to be fulfilled. The re-
maining 12 allowed causal entangled thresholds are given by

Σ̄= {(1+, 2−, 6−), (1+, 2−, 7+), (1+, 3−, 5+),

(1+, 3−, 6−), (1+, 4+, 5+), (1+, 4+, 7+),

(2+, 3−, 5+), (2+, 3−, 7−), (2+, 4+, 5+),

(2+, 4+, 6+), (3+, 4+, 6+), (3+, 4+, 7+)} . (43)

Again, we notice that the causal structure of this scalar four-
vertex diagram is

A(3-loop)
4-vertex =

∫
~̀
1
~̀
2
~̀
3

1

x6

∑
σ∈Σ

3∏
i=1

−1

λσ(i)
+ (λ+

i ↔ λ−i ) ,

(44)

with

x−1
6 = 64q

(+)
1,0 q

(+)
2,0 q

(+)
3,0 q

(+)
4,0 q

(+)
5,0 q

(+)
6,0 , (45)

and Σ ≡ Σ̄ given by Eq. (43). As in the case of the two-
loop box, the set of causal entangled thresholds is not degener-
ated (i.e. criterion 5 is immediately fulfilled). For this reason,
we emphasize that it is the only possible causal representation
compatible with Eq. (5).

To conclude this Section, we highlight that the procedure
followed here is only based on geometrical concepts. In
the three examples reported, we compared the reconstructed
causal representations with the integrand-level result of the
LTD representation (which was obtained through the explicit
computation of the nested residues). A perfect agreement was
found in all the cases.

VI. CAUSAL STRUCTURE OF MULTI-VERTEX
DIAGRAMS

Taking a step forward in complexity, we consider the causal
structure of scalar N -vertex reduced diagrams. The possible
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number of multi-edges, M , fulfills

N ≤M ≤ (N − 1)N

2
, (46)

where the upper bound corresponds to the maximally con-
nected topologies. By direct computation, we explored sev-
eral examples and computed the possible causal entangled
thresholds.

In first place, we studied the generation of all the possible
causal propagators λ±p starting from the sets of binary con-
nected partitions for different topologies. In particular, we
compared the results obtained with the geometric algorithm
with the expressions reported in Refs. [58, 60], finding com-
plete agreement.

Then, we center into the generation of the allowed causal
entangled thresholds for different topologies. In particular,
we studied the causal structure of scalar maximally and next-
to-maximally connected graphs. Based on explicit computa-
tional exploration, we conjecture that their causal structures
are given by

A(N)MCG
N-vertex =

∫
~̀
1...~̀L

1

xM

∑
σ∈Σ

N−1∏
i=1

−1

λσ(i)
+ (λ+

i ↔ λ−i ) ,

(47)

where Σ ≡ Σ̄, i.e. the set of allowed causal entangled thresh-
olds after applying criteria 1-4. It is worth appreciating that
the number of loops, L, only enters in this formula through
the integration measure and the explicit dependence of each
q

(+)
i,0 (with i ∈ {1, . . . ,M}). Thus, this supports the initial

claim that the causal structure is independent of the number
of loops and propagators (only depends of the vertices and
multi-edges, as also reported in Ref. [70]).

Finally, we explored the opposite limit, i.e. the possi-
ble causal representations of N -vertex diagrams at one-loop.
It might sound counter-intuitive that one-loop topologies are
more complicated to describe than multi-loop ones. The point
is that the geometrical reconstruction algorithm exploits the
restrictions imposed by the momentum flow among vertices.
Thus, maximally connected graphs are very constrained and
the criteria 1-4 lead to a set of causal entangled thresholds
that is not degenerated. One-loop N -point amplitudes are de-
scribed by minimally connected graphs, and there is an over-
counting of configurations. To remove the degeneration, we
need to apply criterion 5 and force global momentum conser-
vation. However, we found an alternative way to select a non-
degenerated set of causal thresholds. Explicitly, for one-loop
diagrams, we realized that a particular choice of the selections
rules dictated by criterion 5 is:

5. Removing the threshold degeneration (one-loop case):
Given an entangled threshold, we keep the ordering ma-
trix obtained after criteria 3-4 and apply it to the corre-
sponding conjugated causal propagators λ̄p. Then, we
adjust the direction of the multi-edges in such a way
that they are all outgoing from the associated partition.
If they were entering the partition, we reverse both of

their fluxes (qi → −qi) and the direction of the exter-
nal momenta attached to that partition. If the external
momenta are consistently aligned, we include the con-
figuration in Σ; otherwise, we exclude it.

Criterion 5 can be implemented by constructing a matrix
whose rows are the coordinates of λ̄p in the basis Q, and ap-
plying transformations on the rows and columns. Also, we
notice that this modified version of criterion 5 implicitly uses
global momentum conservation, since the direction of the ex-
ternal momenta is fixed by the condition pN = −

∑
pi.

In this way, causal representations for scalar N -point one-
loop functions can be also described by Eq. (47) with M =
N , L = 1 and the set Σ determined with criteria 1-5. We
checked the validity of our claim with several scalar one-loop
N -point functions (N ≤ 9), finding a complete agreement
with the results computed through nested residues.

VII. CONCLUSIONS

In this article, we presented a geometrical study of the en-
tangled causal structure of multi-loop multi-leg Feynman in-
tegrals and amplitudes. We showed that all the information
concerning the causal decomposition of a topology is encoded
in the vertex matrix. Diagrams with different numbers of legs
and loops, but sharing the same number of vertices and multi-
edges, exhibit a similar causal structure. We exemplified this
situation studying the four-vertex topologies with 4, 5 and 6
multi-edges, respectively. Moreover, we introduced a classifi-
cation of the different topologies based on graph theory: the
order of the diagram is given by k = V − 1 (V number of
vertices) and it indicates the number of causal thresholds that
must be entangled.

In order to unveil the causal structure, we implemented an
algorithm to generate all the possible causal propagators as-
sociated to a given (reduced) Feynman diagram by inquiring
into a more fundamental object: the connected binary parti-
tions of vertices. Then, we developed 4 criteria to select all
the allowed causal entangled thresholds. We relied only on
combinatorics, geometry and graph theory. Specifically, we
imposed restrictions that allow to split the diagram into dis-
connected and non-overlapping tree-level graphs with a con-
sistent momentum flow through their multi-edges. To consis-
tently align the momentum flow of the multi-edges, we im-
plemented transformations in the vertex matrix to identify all
the possible acyclic directed graphs associated to the reduced
Feynman diagram.

For the case of maximally and next-to-maximally con-
nected graphs (i.e. those where all the vertices are connected
or only one multi-edge is missing), it turns out that criteria
1-4 lead to a set of entangled thresholds that seems to recon-
struct the causal structure conjectured in Eq. (5). However,
for topologies withM < (N−1)N/2, some causal entangled
thresholds are degenerated due to global momentum conser-
vation. In fact, criteria 1-4 only use information regarding the
vertices and how they are internally connected through multi-
edges. The momentum conservation associated to external
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particles can be understood as adding an additional vertex in
which all external momenta converge.

Thus, we introduced an additional selection criterion and
explored its consequences. In particular, we studied the case
of N -vertex one-loop diagrams (which we called minimally
connected graphs) and obtained a simplified recipe to elim-
inate the degeneration due to momentum conservation. Our
results were in complete agreement with the ones obtained
through the explicit calculation of nested residues.

The findings regarding our geometrical approach suggest
an strong connection with the algebraic framework proposed
in Ref. [70]. In that work, causal representations were ob-
tained from maximally connected graphs and applying alge-
braic reduction relations. Thus, it would be highly interesting
to understand the interplay between these two frameworks,
since they tackle the same problem with two very different
approaches.

Finally, the discoveries reported in this article establish an
interesting connection between geometry, algebra and causal-

ity in Quantum Field Theories. Moreover, the effects of
imposing global momentum conservation on scattering am-
plitudes deserve to be better understood, since they lead to
several equivalent causal representations. Inquiring more on
these findings might open new and more powerful paths to ex-
plore and compute higher-orders, breaking the precision fron-
tier and unveiling the hidden mathematical structures in QFT.
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