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Abstract: We evaluate nucleon four-point functions in the framework of lattice QCD

in order to extract the first Mellin moment of double parton distributions (DPDs) in the

unpolarized proton. In this first study, we employ an nf = 2 + 1 ensemble with pseudoscalar

masses of mπ = 355 MeV and mK = 441 MeV. The results are converted to the scale

µ = 2 GeV. Our calculation includes all Wick contractions, and for almost all of them a

good statistical signal is obtained. We analyze the dependence of the DPD Mellin moments

on the quark flavor and the quark polarization. Furthermore, the validity of frequently used

factorization assumptions is investigated.
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1 Introduction

The high-luminosity upgrade of the LHC will substantially improve its potential for discov-

ering physics beyond the Standard Model. In parallel to the expected decrease of statistical

errors, theoretical uncertainties for standard model processes must be reduced as much as

possible to optimize the physics output. A particular challenge is the description of mul-

tiple hard scattering, which means that several hard parton-level interactions occur within

the same proton-proton collision. Contributions from multiple scattering generically increase

with the collision energy. They can be substantial for final states with high multiplicity.

Many discovery channels for new physics are of this type. In this work, we focus on double

parton scattering (DPS), which is the least complex and often most important representative

of multiple hard scattering.

The discussion of DPS started already in the late 1970s and produced a remarkable

amount of theoretical insight [1–7]. During the last decade, there has been a considerable

effort to develop a full description of DPS from first principles in QCD [8–19]. Experimental

searches for DPS contributions to various final states also started long ago [20, 21] and were

greatly intensified at the Tevatron and the LHC, see [22–26] and references therein. At LHC

energies, it is possible to study double Drell-Yan-type reactions, in particular like-sign W pair

production [26–31], which is particularly clean at the theoretical level. For a comprehensive

and recent overview of multiparton interactions, we refer to [32].

Whilst the two hard-scattering processes in DPS proceed independently of each other,

the partons that initiate them can be correlated. These correlations are quantified by dou-

ble parton distributions (DPDs), which extend the familiar concept of parton distribution

functions (PDFs) to the case of two partons extracted from one hadron. To date, little is

known about DPDs, apart from constraints from sum rules that reflect quark number and

momentum conservation [33–36] and from their behavior in the limit of small inter-parton

distances [9, 13, 37]. Beyond this, a considerable number of papers have investigated DPDs

in quark models [38–50].

A complementary approach is to study correlations inside a hadron using lattice QCD.

This has long been pursued at the level of two-current correlation functions, with a focus on

various physics aspects [51–62]. In the short-distance limit, such correlation functions can be

used to extract parton distributions, which has recently been done in [63].

As was observed in [9, 13], correlation functions of two currents in a hadron can also be

related to the Mellin moments of DPDs. This generalizes the well-known relation between

single-current matrix elements and the Mellin moments of PDFs, which has been extensively

exploited in lattice calculations as reviewed in [64–66]. We recently presented a corresponding

calculation for DPDs in the pion [67], using nf = 2 ensembles with a pion mass around

300 MeV. The results have rather high statistical precision, and they reveal a number of

interesting patterns. For unpolarized quarks, they agree rather well with the quark model

results in [47, 48]. Encouraged by these findings, we went on to study the DPDs in an

unpolarized proton, which are relevant to collider experiments. We report on this in the
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present work; preliminary results have been published in [68].

Our paper is organized as follows. In section 2, we review the different theoretical objects

relevant to our study and explain how they are related to each other. Details of the lattice

setup and ensembles we used are given in section 3, with more technical information being

collected in an appendix. Sections 4 and 5 contain the results of our calculation. In sec-

tion 4, the Mellin moments for different flavor and polarization combinations are presented,

while the results of various factorization tests are discussed in section 5. Such tests are espe-

cially important in view of the fact that many phenomenological models of DPS use similar

factorization assumptions. We summarize our findings in section 6.

2 Theory

In this section we review certain basics on double parton distributions (DPDs) and their

relevance in the context of double parton scattering.

2.1 Double parton distributions

The DPD of a given hadron parameterizes the joint probability of finding two partons with

certain polarization and momentum fractions xi at a given relative transverse distance y. For

the case of the unpolarized proton, DPDs of quarks and antiquarks are defined by a proton

matrix element of two operators:

Fa1a2(x1, x2,y) = 2p+

∫
dy−

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

×
∑′

λ

〈p, λ| Oa1(y, z1)Oa2(0, z2) |p, λ〉 , (2.1)

where
∑′ indicates the average over the proton helicity states. In (2.1) we use light-cone

coordinates v± = (v0± v3)/
√

2, v = (v1, v2) for a given four-vector vµ. Moreover, we work in

a frame where the transverse proton momentum vanishes, i.e. p = 0. The light-cone operators

appearing in (2.1) are defined as:

Oa(y, z) = q̄
(
y − 1

2z
)

Γa q
(
y + 1

2z
)∣∣∣
z+=y+=0, z=0

, (2.2)

where a specifies the quark flavor and polarization, which is determined by the spin projections

Γq = 1
2γ

+ , Γ∆q = 1
2γ

+γ5 , Γjδq = 1
2 iσ

j+γ5 (j = 1, 2) . (2.3)

In this notation, q refers to the sum over all quark polarizations. ∆q denotes the difference

between positive and negative helicity contributions and, therefore, corresponds to the longi-

tudinal quark polarization, whereas δq is the analogue for the case of transverse polarization.
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The expression of the light cone operators given in (2.2) is only valid in light cone gauge,

otherwise a Wilson line has to be inserted. Notice that the light cone operators have to be

renormalized. This leads to a scale dependence of the operators and, consequently, of the

DPDs. For brevity, we do not indicate the scale.

Because of momentum conservation, the momentum fractions can take only values satis-

fying |x1|+ |x2| ≤ 1. Negative momentum fractions are associated with antiquarks, i.e.:

Fa1a2(−x1, x2,y) = ηa1
C Fā1a2(x1, x2,y) , Fa1a2(x1,−x2,y) = ηa2

C Fa1ā2(x1, x2,y) , (2.4)

where

ηaC = −1 for a = q, δq , ηaC = +1 for a = ∆q . (2.5)

DPDs fulfill certain sum rules, which have been proposed in [33] and proven in [69, 70]. In

this paper, we consider the number sum rule. In position space this can be formulated as:

∫ 1−|x1|

−1+|x1|
dx2

∫ ∞

|y|>ycut

d2y Fqq′(x1, x2,y)

=
(
Nq′ + δqq̄′ − δqq′

)
fq(x1) +O(Λ2y2

cut) +O
(
αs
)
, (2.6)

where fq(x) is an ordinary PDF for an unpolarized quark with flavor q and satisfies fq̄(x) =

fq(−x). Nq′ is the number of valence quarks with flavor q′. The lower cutoff in the integral

over y is necessary, because DPDs have a singular 1/y2 behavior for y2 → 0. This is caused

by perturbative splitting processes, which are of O(αs(µ)). For more details see [71]. A

common choice for the lower cutoff is ycut = b0/µ, where µ is the renormalization scale and

b0 = 2e−γ ≈ 1.12 with the Euler-Mascheroni constant γ.

The double parton distributions defined in (2.1) are needed to compute double parton

scattering processes. The corresponding cross section can be written in terms of two DPDs,

integrated over the transverse parton distance:

∫
d2y Fa1a2(x1, x2,y)Fb1b2(x′1, x

′
2,y) . (2.7)

Hence, the dependence of DPDs on the transverse distance is not directly accessible in ex-

periments.

DPDs are often simplified and expressed in terms of single parton distributions within

certain factorization approaches. The first procedure in this context is based on the insertion

of a complete set of states between the operators in the matrix element in (2.1). Then it is

assumed that nucleon states dominate, such that all other states can be neglected. This leads

to an expression of DPDs in terms of impact parameter distributions fa(x, b):
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Fa1a2(x1, x2,y)
?
=

∫
d2b fa1(x1, b + y) fa2(x2, b) . (2.8)

This kind of factorization has been investigated on the lattice for the case of the pion. Sig-

nificant differences between the r.h.s. and l.h.s. of (2.8) have been found, while the orders of

magnitude are consistent with each other [67]. Similar observations have been made in quark

model studies [49]. We shall perform analogous investigations for the case of the nucleon in

section 5.

The other factorization approach frequently used assumes a complete factorization w.r.t.

all arguments:

Fa1a2(x1, x2,y)
?
= fa1(x1) fa2(x2)G(y) . (2.9)

This leads to the so-called ”pocket formula”, where the DPS cross section is written as a

product of two SPS cross sections [72]:

σDPS,ij =
1

C

σSPS,i σSPS,j

σeff
, (2.10)

where i and j indicate the final states of the two hard scattering processes. C is a combinatoric

factor, which is 2 if i = j and 1, otherwise. The effective cross section σeff is defined by

σ−1
eff =

∫
d2y[G(y)]2. The function G(y) must be independent of the quark flavor, which

leads to the prediction that σeff should be a universal constant. Since we are not able to

resolve the xi dependence of DPDs in lattice studies, we cannot investigate to what extent

factorization approaches w.r.t. the momentum fractions are valid. However, we shall perform

the evaluation of DPD Mellin moments for different quark flavor combinations, such that we

are able to check the universality of the function G(y).

2.2 Skewed double parton distributions

The DPDs defined in (2.1) can be extended by introducing an additional phase in the defi-

nition. This causes a difference between the momenta of the emitted and absorbed partons,

respectively. We call the resulting functions skewed DPDs, which additionally depend on the

skewness parameter ζ:

Fa1a2(x1, x2, ζ,y) = 2p+

∫
dy−e−iζy

−p+

∫
dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

×
∑′

λ

〈p, λ| Oa1(y, z1)Oa2(0, z2) |p, λ〉 . (2.11)

The partons have momentum fractions xi± 1
2ζ. The sign of the fractions determines whether

there is a quark (antiquark) in the proton wave function or an antiquark (quark) in its complex
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x1 − 1
2ζ x2 +

1
2ζ x2 − 1

2ζ x1 +
1
2ζ

Fud(x1, x2, ζ,y)

u d ud

|p, λ〉 〈p, λ|

Figure 1. Illustration of a skewed DPD of a u and a d quark for the case where all fractions xi± ζ/2
are positive.

(1
2
ζ, 1− 1

2
ζ)

(1− 1
2ζ,

1
2ζ)

dd̄|uū

d|duū

d̄|d̄uū

udd̄|uūdd̄|ū

ud|du

ud̄|d̄uūd̄|d̄ū

ūd|dū

x
1 +

x
2 =

1

0 ≤ ζ ≤ 1

(−1
2
ζ, 1 + 1

2
ζ)

(1 + 1
2ζ,−1

2ζ)

ūu|d̄d

ūud|d

ūud̄|d̄

u|d̄duū|d̄dū

ud|du

ud̄|d̄uūd̄|d̄ū

ūd|dū

x
1 +

x
2 =

1

−1 ≤ ζ ≤ 0x2 x2

x1 x1

Figure 2. Support regions of Fud(xi, ζ,y) w.r.t. the arguments xi and ζ. This is shown for positive

(left) and negative (right) skewness parameter ζ. For each sub-region we indicate the (anti-)quark

content of the wave function and its complex conjugate. The notation u|d̄du means that we have a

u-quark in the proton wave function and d̄du in its complex conjugate.

conjugate. An overview of the corresponding regions is given in figure 2. If all fractions are

positive, we have two quarks with momentum fractions x1 − 1
2ζ and x2 + 1

2ζ in the proton

wave function and two quarks with x1 + 1
2ζ, x2− 1

2ζ in its complex conjugate. This is sketched

in figure 1 for the case of a u and a d quark. Because of momentum conservation, the region

in the (x1, x2, ζ)-parameter space where the skewed DPDs are non-zero is restricted by

|xi ± 1
2ζ| ≤ 1 , |x1|+ |x2| ≤ 1 , |ζ| ≤ 1 . (2.12)

The corresponding support region is also indicated in Figure 2. From PT invariance it follows

that:
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Fa1a2(x1, x2, ζ,y) = ηa1
PT η

a2
PT Fa1a2(x1, x2,−ζ,−y) , (2.13)

with

ηaPT = −1 for a = ∆q, δq , ηaPT = +1 for a = q . (2.14)

Moreover, one can give a decomposition of the skewed DPDs in terms of functions that

are rotationally invariant in the transverse plane. Fq1q2 and F∆q1∆q2 have even parity and

are scalar quantities, therefore they are already rotationally invariant. By contrast F∆q1q2

and Fq1∆q2 are parity-odd, which implies that they have to vanish. From invariance under

time reflection, it also follows that the T -odd quantities F j1δq1∆q2
and F j2∆q1δq2

are zero. The

remaining DPDs can be decomposed in terms of transverse vectors as follows:

Fq1q2(x1, x2, ζ,y) = fq1q2(x1, x2, ζ, y
2) ,

F∆q1∆q2(x1, x2, ζ,y) = f∆q1∆q2(x1, x2, ζ, y
2) ,

F j1δq1q2(x1, x2, ζ,y) = εj1kykmfδq1q2(x1, x2, ζ, y
2) ,

F j2q1δq2(x1, x2, ζ,y) = εj2kykmfq1δq2(x1, x2, ζ, y
2) ,

F j1j2δq1δq2
(x1, x2, ζ,y) = δj1j2fδq1δq2(x1, x2, ζ, y

2)

+
(
2yj1yj2 − δj1j2y2

)
m2f tδq1δq2(x1, x2, ζ, y

2) , (2.15)

where m is the proton mass and εij is the antisymmetric tensor in two dimensions, with

ε12 = 1. Notice that y2 = yµyµ denotes the Lorentz invariant scalar product. In our case we

have y+ = 0, i.e. y2 = −y2. For ζ = 0 the functions on the r.h.s. of (2.15) have the following

physical interpretation:

• fq1q2 describes the probability of finding two quarks with momentum fractions x1 and

x2 at a transverse distance y. It contains a sum over all quark polarization states, i.e.

the quarks are unpolarized.

• f∆q1∆q2 describes the difference between the probabilities of finding the two quarks with

aligned or anti-aligned spins in the longitudinal direction. This gives a measure for the

longitudinal quark polarization.

• fδq1δq2 is the analogue of f∆q1∆q2 for polarization in the transverse direction.

• fδq1q2 describes the correlation between the transverse polarization of the first quark

and the transverse distance y between the two quarks. fq1δq2 can be interpreted in

analogy, where the second quark is polarized and the first unpolarized.
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• f tδq1δq2 gives the correlation between the transverse distance y of the quarks and their

transverse polarizations.

The functions fδq1q2 , fq1δq2 , and f tδq1δq2 describe spin-orbit correlations, whereas fδq1δq2 and

f∆q1∆q2 quantify spin-spin correlations. Combining (2.15) and (2.13) we find:

fa1a2(x1, x2, ζ, y
2) = fa1a2(x1, x2,−ζ, y2) . (2.16)

The matrix elements in the definitions (2.1) and (2.11) are not directly accessible on a Eu-

clidean lattice, since they involve light-like distances. A way to circumvent this obstacle is to

consider Mellin moments of skewed DPDs. The lowest Mellin moment is defined as:

Ia1a2(ζ, y2) =

∫ 1

−1
dx1

∫ 1

−1
dx2 fa1a2(x1, x2, ζ, y

2)

=

∫ 1

0
dx1

∫ 1

0
dx2

[
fa1a2(x1, x2, ζ, y

2) + ηa1
C fā1a2(x1, x2, ζ, y

2)

+ηa2
C fa1ā2(x1, x2, ζ, y

2) + ηa1
C η

a2
C fā1ā2(x1, x2, ζ, y

2)
]
. (2.17)

The integrals over x1 and x2 in (2.17) together with the exponentials eixip
+z−i in (2.1) and

(2.11) set z−i to zero, which is what we intended. The resulting matrix elements involve only

local quark bilinears, which can be evaluated in lattice simulations.

2.3 Two-current matrix elements

We define two-current matrix elements of the proton with momentum p as:

Mµ1···µ2···
q1q2,i1i2

(p, y) :=
∑′

λ

〈p, λ| Jµ1···
q1,i1

(y) Jµ2···
q2,i2

(0) |p, λ〉 , (2.18)

where we take the average of the proton spin. The currents Jµ...q,i are local quark bilinear

operators. In this work we focus on three types of currents, which are defined as:

Jµq,V (y) = q̄(y)γµq(y) , Jµq,A(y) = q̄(y)γµγ5 q(y) , Jµνq,T (y) = q̄(y)σµν q(y) . (2.19)

These operators commute if the distance vector y is space-like, in particular for y0 = 0. A

consequence of this property is the relation:

Mµ1···µ2···
q1q2,i1i2

(p, y) = Mµ2···µ1···
q2q1,i2i1

(p,−y) . (2.20)

Moreover, the currents have definite transformation behavior under charge conjugation and

the combination of parity and time reflection:
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Jµ···q,i (y)→
C
ηiC J

µ···
q,i (y) , Jµ···q,i (y) →

PT
ηiPT J

µ···
q,i (−y) , (2.21)

where in analogy to (2.5) and (2.14) the sign factors ηC and ηPT are defined as:

ηiC = −1 for i = V, T , ηiC = +1 for i = A (2.22)

and

ηiPT = −1 for i = A, T , ηiPT = +1 for i = V . (2.23)

The combined PT symmetry implies for the two-current matrix elements:

Mµ1···µ2···
q1q2,i1i2

(p, y) = ηi1PT η
i2
PTM

µ1···µ2···
q1q2,i1i2

(p,−y) . (2.24)

In the context of DPDs we have to consider the current combinations V V , AA, V T , TV , and

TT . The corresponding two-current matrix elements are by definition Lorentz tensors of a

certain rank, which is determined by the involved currents. Therefore, the matrix elements

can be decomposed in terms of Lorentz invariant functions and Lorentz tensors constructed

from the four-vectors p and y. In order to reduce the number of independent quantities, we

subtract trace contributions and consider symmetric combinations. For brevity we skip the

arguments y and p of the matrix elements M :

M
{µν}
q1q2,V V

− 1
4g
µνgαβM

αβ
q1q2,V V

= uµνV V,AAq1q2 + uµνV V,Bm
2Bq1q2 + uµνV V,C m

4Cq1q2 ,

Mµνρ
q1q2,TV

+ 2
3g
ρ[µ
M

ν]αβ
q1q2,TV

gαβ = uµνρTV,AmAδq1q2 + uµνρTV,Bm
3Bδq1q2 ,

1
2

[
Mµνρσ
q1q2,TT

+Mρσµν
q1q2,TT

]
= ũµνρσTT,AAδq1δq2 + ũµνρσTT,Bm

2Bδq1δq2 + ũµνρσTT,C m
2Cδq1δq2

+ ũµνρσTT,Dm
4Dδq1δq2 + uµνρσTT,Em

2 Ẽδq1δq2 . (2.25)

Here we write t{µν} = (tµν + tνµ)/2 and t[µν] = (tµν − tνµ)/2 for an arbitrary tensor tµν .

The quantities A, B,... are Lorentz invariant functions, i.e. they only depend on py = pµyµ
and y2 = yµyµ. The decomposition of Mµν

q1q2,AA
, which is not explicitly given in (2.25),

has the same form as the one for Mµν
q1q2,V V

and introduces the functions A∆q1∆q2 , B∆q1∆q2 ,

and C∆q1∆q2 . Decomposing Mµνρ
q1q2,V T

works in analogy to Mµνρ
q1q2,TV

with the Lorentz indices

interchanged appropriately. The basis tensors are given by:
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uµνV V,A = 2pµpν − 1
2 g

µνp2 ,

uµνV V,B = 2p{µyν} − 1
2 g

µνpy ,

uµνV V,C = 2yµyν − 1
2 g

µνy2 ,

uµνρTV,A = 4y[µpν]pρ + 4
3 g

ρ[µyν]p2 − 4
3 g

ρ[µpν]py ,

uµνρTV,B = 4y[µpν]yρ + 4
3 g

ρ[µyν]py − 4
3 g

ρ[µpν]y2 ,

ũµνρσTT,A = −8p[νgµ][ρpσ] ,

ũµνρσTT,B = −y2 uµνρσTT,A − 16y[µpν]y[ρpσ] ,

ũµνρσTT,C = −4p[νgµ][ρyσ] − 4y[νgµ][ρpσ] ,

ũµνρσTT,D = −8y[νgµ][ρyσ] ,

uµνρσTT,E = 2gµ[ρgσ]ν . (2.26)

Notice that the tensors ũTT,A . . . ũTT,D are not trace-subtracted, which is in contrast to the

analogous tensors uTT,A . . . uTT,D defined in [67]. For this reason, the last term in (2.25),

which is proportional to the trace, involves a modified invariant function Ẽδq1δq2 rather than

the original function Eδq1δq2 . The remaining functions Aδq1δq2 . . . Dδq1δq2 are the same as in

[67]. Using the decomposition (2.15), we can relate the two-current matrix elements (2.18)

to the DPD Mellin moments (2.17):

∫ ∞

−∞
dy− e−iζy

−p+
M++
q1q2,V V

(p, y)
∣∣∣
y+=0,p=0

= 2p+Iq1q2(ζ, y2) ,

∫ ∞

−∞
dy−e−iζy

−p+
M++
q1q2,AA

(p, y)
∣∣∣
y+=0,p=0

= 2p+I∆q1∆q2(ζ, y2) ,

∫ ∞

−∞
dy−e−iζy

−p+
Mk1++
q1q2,TV

(p, y)
∣∣∣
y+=0,p=0

= 2p+yk1mIδq1q2(ζ, y2) ,

∫ ∞

−∞
dy−e−iζy

−p+
M+k2+
q1q2,V T

(p, y)
∣∣∣
y+=0,p=0

= 2p+yk2mIq1δq2(ζ, y2) ,

∫ ∞

−∞
dy−e−iζy

−p+
Mk1+k2+
q1q2,TT

(p, y)
∣∣∣
y+=0,p=0

= 2p+
[
δk1k2 Iδq1δq2(ζ, y2)−

(
2yk1yk2 − δk1k2y2

)
m2Itδq1δq2(ζ, y2)

]
. (2.27)

Notice that the Dirac structure in the local tensor operator Jµνq,T differs from that in the spin

projection Γjδq by an extra γ5, see (2.3) and (2.19). This corresponds to a rotation by 90° in

the transverse plane, which follows from the relation iσj+γ5 = εjkσk+ and has been taken

into account in (2.27).

Comparing (2.27) with (2.25) we find the following relations between the DPD Mellin

moments and the invariant functions:
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Ia1a2(ζ, y2) =

∫ ∞

−∞
d(py) e−iζpy Aa1a2(py, y2) ,

Itδqδq′(ζ, y
2) =

∫ ∞

−∞
d(py) e−iζpy Bδqδq′(py, y

2) , (2.28)

i.e. the Mellin moments are Fourier transforms of the invariant functions Aa1a2 and Bδqδq′ .

We refer to this subset of invariant functions as twist-two functions throughout this paper.

Since the Mellin moments are symmetric in ζ, which follows from (2.13), the inverse Fourier

transform at py = 0 can be written as:

Aa1a2(py = 0, y2) =
1

π

∫ 1

0
dζ Ia1a2(ζ, y2) . (2.29)

We define even ζ-moments of the Mellin moments:

〈ζ2m〉a1a2
(y2) =

∫ 1
−1 dζ ζ2m Ia1a2(ζ, y2)
∫ 1
−1 dζ Ia1a2(ζ, y2)

=

[
(−1)m

Aa1a2(py, y2)

∂2mAa1a2(py, y2)

(∂py)2m

]

py=0

, (2.30)

whereas odd ζ-moments vanish because of parity. The last expression in (2.30) follows from

inserting (2.28) and performing an integration by parts. Hence, the 2m-th moment in ζ

is directly related to the 2m-th derivative in py of the corresponding twist-two function at

py = 0.

3 Two-current matrix elements on the lattice

In order to perform lattice simulations, we switch to Euclidean spacetime in this section.

The corresponding time component of a four vector xµ is denoted by x4 instead of x0. In

Euclidean spacetime, the matrix elements given in (2.18) can be directly calculated in lattice

QCD if the distance between the two insertion operators is purely spatial, i.e. y4 = y0 = 0. In

this section we describe the relation between the matrix elements and the lattice four-point

functions defined below for the case of the nucleon and explain the techniques we use for the

evaluation of the latter.

3.1 Four-point functions and matrix elements

Definition: We define the proton four-point function Cij,~p4pt as the correlator of a proton

creation operator P (source), the corresponding annihilation operator P (sink), and the two

local currents Ji defined in (2.19):

Cij,~p4pt (~y , t, τ) := a6
∑

~z ′,~z

e−i~p(~z ′−~z )
〈

tr
{
P+P(~z ′, t) Ji(~y , τ) Jj(~0 , τ) P(~z , 0)

}〉
, (3.1)
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where the sum over ~z , ~z ′ combined with the exponential injects a total proton momentum,

and the operator

P+ =
1

2
(1 + γ4) (3.2)

projects onto positive parity. The proton creation and annihilation operators, which we also

refer to as interpolators, are given by tri-quark operators matching the proton’s spin J = 1/2

and isospin I = 1/2:

P(~x, t) := εabc
[
ūa(x) Cγ5 d̄

T
b (x)

]
ūc(x)

∣∣
x4=t

,

P(~x, t) := εabc ua(x)
[
uTb (x) Cγ5 dc(x)

]∣∣
x4=t

, (3.3)

where C is the charge conjugation matrix in spinor space, and [.] indicates a scalar quantity

w.r.t. spinor indices. The traces in (3.1) are taken w.r.t. the open spinor indices introduced

by the quark fields ua and ūc, respectively. Furthermore, we define the two-point function:

C~p2pt(t) := a6
∑

~z ′,~z

e−i~p(~z ′−~z )
〈
tr
{
P+P(~z ′, t) P(~z , 0)

}〉
. (3.4)

We denote the separation in Euclidean time direction between the source and the current

insertions by τ , and the separation between the source and the sink by t.

Wick contractions: The evaluation of the correlation functions (3.1) and (3.4) leads to a

definite set of Wick contractions. While there are only two contractions arising from permuta-

tions of uū-pairs in the two-point function, there is a multitude of possible contractions in the

case of the four-point functions, which can be grouped into five types. Following the notation

of [62] we call them C1, C2, S1, S2 and D. They can be represented by the graphs illustrated

in figure 3. S1, S2 and D are disconnected contractions involving the sub-graphs G3pt and

G2pt, as well as the loops L1 and L2. Explicit expressions are given in appendix A.2. The

explicit contribution of a given type depends on the flavor content of the inserted operators

Jqq′,i, which in general can be flavor changing. In the case of the graph C1 this is indicated

by the four flavors q1 . . . q4 of the quark lines connected to the current insertions, where the

first two indices correspond to the flavor of the first operator Jq1q2,i and the last two flavor

indices are those of the second operator Jq3q4,j . For the proton there are three independent

contributions called C1,uuuu, C1,uudd and C1,uddu, where the latter is not considered in this

work, since we restrict ourselves to flavor conserving currents Jqq,i = Jq,i, see definition (2.19).

If all considered quarks have the same mass, the graphs C2,q and S1,q depend only on the

flavor q of the two propagators connecting the source or sink with one of the current inser-

tions. Therefore, in the case of proton-proton matrix elements there are two possibilities for

each contraction: C2,u, C2,d, S1,u, S1,d. For each of the contractions S2 and D there is only
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Cij
1,q1...q4

=

Jq1q2,i

Jq3q4,j

Cij
2,q =

Jq′q,j

Jqq′,i

Dij =

Ji

Jj

G2pt

Li
1

Lj
1

Sij
1,q =

Jqq,i

Jj

Gi
3pt,q

Lj
1

Sij
2 =

Ji

Jj

G2pt

Lij
2

Figure 3. Illustration of the five kinds of Wick contractions (graphs) contributing to a four-point

function of a baryon. The explicit contributions for the graphs C1, C2 and S1 depend on the quark

flavor of the current insertions (red points). In the case where all quark flavors have the same mass,

C2 only depends on the flavors of the two propagators connected to the source or the sink. These

flavors have to be the same for proton-proton matrix elements. For the graphs S1, S2 and D we also

indicate the parts connected to the proton source and sink, i.e. G3pt and G2pt (blue), as well as the

disconnected loops L1 and L2 (orange).

one contribution, which is flavor independent. Notice that we define the quantities C1,uuuu,

C1,uudd, C1,uddu, C2,u, C2,d, S1,u, S1,d, S2, and D as a sum of all quark permutations that share

the same quark line topology. In particular, this includes permutations of the two u-quarks

of the proton itself (see the definitions in (A.13), (A.15), and (A.16)).

In addition to the desired nucleon ground state, the interpolators P and P also create

and annihilate excited states. In order to relate the four-point functions to physical matrix

elements of the nucleon ground state, we have to ensure that these excited states are suffi-

ciently suppressed. This can be achieved by taking large Euclidean time separations t and

t− τ . In this context we define:

Cij,~p4pt (~y ) := 2V
√
m2 + ~p2

Cij,~p4pt (~y , t, τ)

C~p2pt(t)

∣∣∣∣∣
0�τ�t

, (3.5)
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where V = L3a3 denotes the spatial volume. The factor 2V
√
m2 + ~p2 on the r.h.s. of (3.5)

ensures the correct normalization of states. In a similar manner, we define:

Cij,~p1,uudd(~y ) = 2V
√
m2 + ~p2

Cij,~p1,uudd(~y , t, τ)

C~p2pt(t)

∣∣∣∣∣
0�τ�t

, (3.6)

and likewise for the other contractions C1,uuuu, C2,u, . . . that contribute to C4pt(~y , t, τ).

Let us now point out some properties of these contractions: Using (A.7) and (A.11) and

PT invariance, as well as invariance under translations in the time direction we are able to

deduce the relations

Gij,~p(~y ) = ηijPT G
ij,~p(−~y ) for G = C1,uudd, C1,uuuu, S1,u, S1,d, S2, D ,

Gij,~p(~y ) = ηijPT G
ji,~p(~y ) for G = C2,u, C2,d , (3.7)

where ηijPT is defined in (2.23). Notice that strictly speaking (3.7) is exactly fulfilled only

if τ = t/2. In the limit of large Euclidean time separations 0 � τ � t we consider Gij,~p

to be constant w.r.t. τ so that the PT relations can also be applied to the ratio (3.5).

Invariance under CP transformations, together with the relations (A.7) and (A.10), implies

for all contractions:

[
Gij,~p(~y )

]∗
= ηij4 η

ij
PT G

ij,~p(−~y ) , (3.8)

with

ηi4 = +1 for i = V, T , ηi4 = −1 for i = A , ηij4 = ηi4η
j
4 . (3.9)

If ηij4 = 1, which is the case for the matrix elements we consider in this work, the relations

(3.7) and (3.8) imply that C1,uudd, C1,uuuu, S1,u, S1,d, S2, D are real-valued, whereas C2,u, C2,d

can have non-vanishing imaginary parts. For these contractions we find

2 Re
{
Cij,~p2,q (~y )

}
= Cij,~p2,q (~y ) + Cji,~p2,q (−~y ) ,

2i Im
{
Cij,~p2,q (~y )

}
= Cij,~p2,q (~y )− Cji,~p2,q (−~y ) . (3.10)

Moreover, translational invariance implies that

Gij,~p(~y ) = Gji,~p(−~y ) for G = S2, D . (3.11)
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Contribution to physical matrix elements: Inserting a complete set of states between

the interpolators and the current insertions and taking the limit 0 � τ � t (see (3.5)), we

find:

Cij,~p4pt (~y ) =

∑
λλ′ ū

λ′(p)P+u
λ(p) 〈p, λ| Ji(y) Jj(0) |p, λ′〉∑
λ ū

λ(p)P+uλ(p)

∣∣∣∣∣
y0=0

, (3.12)

where uλ(p) is the usual spinor solution of the Dirac equation for the nucleon. Again we

note that we set y0 = y4 = 0 so that the translation to Minkowski spacetime is trivial. By

writing y0 instead of y4 on the r.h.s. of (3.12) we refer to the matrix elements in Minkowski

spacetime, which we are actually interested in. For the parity projection P+ defined in (3.2)

the r.h.s. of (3.12) turns into the desired spin averaged proton matrix element. Considering

the currents defined in (2.19) (we omit Lorentz indices for brevity), we can write:

Cij,~p4pt (~y ) = Mq1q2,i1i2(p, y)
∣∣∣
y0=0

, (3.13)

where Mq1q2,i1i2 is the two-current matrix element (2.18) to be investigated. For the currents

containing only the light quarks u and d, we find for the proton matrix elements:

Mud,ij(p, y)|y0=0 = Cij,~p1,uudd(~y ) + Sij,~p1,u (~y ) + Sji,~p1,d (−~y ) +Dij,~p(~y ) ,

Muu,ij(p, y)|y0=0 = Cij,~p1,uuuu(~y ) + Cij,~p2,u (~y ) + Cji,~p2,u (−~y ) + Sij,~p1,u (~y ) + Sji,~p1,u (−~y )

+ Sij,~p2 (~y ) +Dij,~p(~y ) ,

Mdd,ij(p, y)|y0=0 = Cij,~p2,d (~y ) + Cji,~p2,d (−~y ) + Sij,~p1,d (~y ) + Sji,~p1,d (−~y )

+ Sij,~p2 (~y ) +Dij,~p(~y ) . (3.14)

According to (3.10), we can identify the combination Cij,~p2,q (~y ) + Cji,~p2,q (−~y ) in (3.14) with

the real part 2 Re{C ij,~p2,q (y)}. Since we consider the u and d quarks to have the same mass,

the quantities we calculate exhibit an exact isospin symmetry. Therefore, we can relate our

results for the proton matrix elements to those of the neutron:

Mdu,ij |n = Mud,ij |p , Mdd,ij |n = Muu,ij |p , Muu,ij |n = Mdd,ij |p . (3.15)

Renormalization: The operators Ji(y) have to be renormalized multiplicatively, i.e. :

JMS
i (y) = ZiJ

latt
i (y) , (3.16)
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ZV ZA ZT
0.7128 0.7525 0.8335

Table 1. Renormalization constants for the local currents JV , JA and JT for β = 3.4 and the

renormalization scale µ = 2 GeV [73] (table X therein).

where J latt
i (y) are the bare lattice operators. The renormalization factors ZA and ZV for the

axial and vector currents do not depend on the renormalization scale, because the associated

anomalous dimensions vanish. By contrast, ZT refers to the scale

µ = 2 GeV . (3.17)

The renormalization constants Zi specific to our lattice setup with β = 3.4 have been deter-

mined in [73] (see table X therein) using the RI′-MOM scheme. They include the conversion

to the MS-scheme at 3-loop accuracy. We summarize the corresponding values in table 1.

The matrix elements we are interested in contain two local operators. Hence, the two-

current matrix element renormalized in the MS scheme is given by:

MMS
q1q2,i1i2 = Zi1Zi2M

latt
q1q2,i1i2 . (3.18)

In other words, the product of renormalized operators JMS
i (y) JMS

j (0) requires no additional

renormalization, because we always consider a finite spacelike distance y between the two

currents.

3.2 Technical details on Wick contractions

In the following, we discuss the technical details regarding the evaluation of each Wick con-

traction we have previously defined. A technical sketch of all graphs is shown in figure 4.

Each contraction is calculated on a smeared quark point source SΦ,~p
z = Φ~pSz. It is a di-

agonal spinor-color matrix located at position z, i.e. (Sz)
ab
αβ(y) = δzyδαβδab, where z4 is the

nucleon source timeslice. Notice that here and in the following spinor indices are denoted by

Greek letters α, β, . . . , whereas Latin letters a, b, . . . denote color indices of the fundamental

representation. More details and explanations on the notation can be found in appendix A.1

Smearing: As already mentioned above, we apply a smearing function Φ~p to the corre-

sponding sources and propagators, in order to increase the overlap of the proton interpolators

with the proton ground state. Φ~p includes a phase injecting a momentum b~p to each of the

quarks, where ~p denotes the proton momentum. The method is known as momentum smear-

ing [74], which is based on the Wuppertal smearing technique [75]. Explicitly, the smearing

function Φ~p reads:
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C1

0 τ t

×
×

C2 ×
×

0

S1 ×
×

0

S2 D(pt× st)

×
×

D(st× st)

×
×

×
×

point source / propagator

stochastic source / propagator

propagator with HPE

×

sequential source / propagator

Figure 4. Sketch of all Wick contractions including the techniques used for the evaluation of each

piece on the lattice. We use one color for each involved quark source, i.e. if two or more pieces within

a graph share the same color, they involve the same quark source. Colors have no meaning regarding

the evaluation technique. There are two versions of the D graph: In the first we use two stochastic

loops (bottom right), whereas in the second (bottom center) one stochastic loop is replaced by a point

source loop.

(Φ~p0 )(x|y) =
1

1 + 6ε


δx,y + ε

3∑

j=1

(
δx+̂,yU

sm
j (x) eib~p̂ + δy+̂,xU

sm,†
j (y) e−ib~p̂

)

 , (3.19)

where we set ε = 0.25 and b = 0.45, in order to obtain a maximal overlap with the ground

state. The value of the latter parameter is specific to our setup. The smearing function is

applied n times, which is denoted by Φ = Φn
0 . The gauge links U sm appearing in (3.19)

are obtained from the original gauge links by applying spatial APE-smearing [76], which

reduces unphysical short-distance fluctuations. MΦ,~p
z (y) denotes the source-smeared point-

to-all quark propagator, which is obtained by solving:

DMΦ,~p
z = SΦ,~p

z := Φ~pSz , (3.20)
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where D is the Dirac operator. This propagator is used for the construction of each of the

contractions relevant for the four-point function C4pt.

Stochastic propagators and improvements: The all-to-all propagators required for the

evaluation of most of the four-point graphs are estimated by use of time-local stochastic

sources η
(`)
t . In this context the spatial unit matrix is approximated in the following way:

1

Nst

Nst∑

`

η
(`)
t ⊗ η

†(`)
t

Nst→∞−−−−−→ 1t . (3.21)

In the present study we employ Z2⊗Z2 wall sources defined for a specific timeslice t, i.e. the

entries can take the values

(
η

(`)
t

)
αa

(x) =
1√
2

(±1± i) δx4t . (3.22)

The propagated stochastic source ψ
(`)
t , which we call ”stochastic propagator” in the remainder

of this work, is obtained by solving:

Dψ(`)
t = η

(`)
t . (3.23)

It describes the propagation from any spatial position on timeslice t to any other site on the

lattice.

The off-diagonal components in (3.21) are pure noise. This noise is particularly large

for near-diagonal terms, where the propagator takes large values. Quantities involving these

terms can be improved by a method that has also been used in [77], where one exploits ultra-

locality of the action. The method consists of applying the hopping parameter expansion

(HPE), where the Dirac operator is rewritten as D = (1 − H)/(2aκ). Subsequently, the

corresponding propagator can be expanded in terms of powers Hn using the geometric series.

Depending on the situation there exists a maximal order N in the series, up to which the

corresponding terms vanish exactly in the stochastic limit or, equivalently, for the exact

solution of the propagator. This enables us to rewrite the propagator as:

D−1 = 2aκ

∞∑

n=0

Hn = 2aκ

N−1∑

n=0

Hn + 2aκ

∞∑

n=N

Hn

→ 0 + 2aκ
∞∑

n=N

Hn = HN2aκ
∞∑

n=0

Hn = HND−1 . (3.24)

The replacement D−1 → HND−1 removes the first N terms in the expansion.

– 18 –



Γ V µ Aµ Tµν

N 3 4 1

Table 2. Number N of omitted hopping terms in the L1 contraction for each considered operator

insertion type.

In the context of our calculations this method is used in two different places. The first

one is a propagator connecting two sites on the same timeslice, which is needed for the

calculation of the C2 graph. Since the hopping term H connects only nearest neighbors, we

set aN(~y ) = |y1| + |y2| + |y3|. Taking into account the periodicity of the lattice, the exact

definition of N(~y ) is:

N(~y ) =

3∑

i=1

min

( |yi|
a
, L− |yi|

a

)
. (3.25)

In the expression of the graph to be evaluated, we then have to replace ψ
(`)
τ by

ξ(`),N
τ = HNψ(`)

τ . (3.26)

If the propagator is contracted with a Dirac matrix, e.g. in loops containing only one current,

there is also a certain number of terms in the hopping parameter expansion that cancel. The

number of terms that vanish depends on the Dirac matrix, see table 2.

Interpolator kernels: Before we continue to define the expressions to be evaluated, we

introduce the compact notation:

(Ea)bcβγ := εabc (Cγ5)βγ ,

E~p(x) := e−i~x~p . (3.27)

We then define the annihilation operator kernel:

σOabcαβγ = (P+)σα (Ea)bcβγ . (3.28)

Contracting with the quark field operators, this yields the baryon annihilation operator (3.3)

itself. In analogy, the baryon creation operator kernel is defined as:

σOabcαβγ = (Ec)abαβ (P+)γσ . (3.29)

In both cases, the index σ corresponds to the open fermion index, which is consistent with

the fermionic nature of baryons. P+ again denotes the parity projection operator (3.2).
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The two point function C2pt: The proton two-point function involves two Wick contrac-

tions arising from permutations of the two u-quarks. In terms of the smeared point-to-all

propagator (3.20) evaluated at the source at position z, the total contribution for momentum

~p is given by:

G~p2pt(z, z
′) = E~p(z′ − z)

[(
P+Φ~pMΦ,~p

z (z′)
)ab
αα

tr

{(
Φ~pMΦ,~p

z (z′)Eb
)T

EaΦ~pMΦ,~p
z (z′)

}

+
(
P+Φ~pMΦ,~p

z (z′)
)ab
βγ

[(
Φ~pMΦ,~p

z (z′)Eb
)T

EaΦ~pMΦ,~p
z (z′)

]cc

γβ

]
, (3.30)

where z′ denotes the sink position. Together with the phase introduced by the factor E~p(z′−z),

a sum over z′ at the sink timeslice projects onto the proton momentum ~p . The two-point

function itself is defined as the average over all gauge fields, which is indicated by the 〈.〉-
notation:

C~p2pt(t) =
〈
G̃~p2pt(t)

〉
, G̃~p2pt(t) = a3V

∑

~z ′

G~p2pt(z, z
′)
∣∣∣
(z′)4=z4+t

, (3.31)

where t is the source-sink separation in the time direction. A momentum projecting sum at

the source is not necessary because of translational invariance, i.e. there is no dependence

on the source position. In the second expression in (3.31), the omitted sum over z has been

compensated for by a factor V .

As previously discussed, the two-point function C2pt is needed to normalize the two-

current matrix element, see (3.5). Furthermore, the expression G̃2pt is part of the contractions

S2 and D, which will be discussed later.

Graph C1: The evaluation procedure of the C1 graph is shown in figure 5. In total, this

contraction involves five propagators, where three of them correspond to the smeared point-

to-all propagator (3.20), which we refer to as forward propagator in the following. The two

propagators connecting the current insertions and the sink are calculated from sources placed

at the sink. Both propagators have to be Hermitian conjugated and multiplied by γ5 on

both sides in order to obtain the desired propagator in the forward direction. For these

two propagators, we use two different methods: The first propagator is obtained from an

inversion on a stochastic wall source η
(`)
t , which is placed at the sink timeslice, see (3.23).

This stochastic propagator is denoted by ψ
(`)
t . From the smeared stochastic source, i.e.

Φ~pγ5η
(`)
t (the γ5 is needed to reverse the propagator), and the smeared forward propagator

Φ~pMΦ,~p
z , both contracted with the baryon annihilation kernel (3.28), we create a sequential

source S~p,(`)t , where:

S~p,(`)t (z′) = E~p(z′) S(`)(z′) δz′4t . (3.32)
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σ

[
S(`)
t (z′)

]
b̄a′

β̄α′ = σ

[
X†(`)(x)γ5

]
b̄a
β̄α

= σ

[
Y

(`)
i (x)

]
b̄a
β̄α

=

=
(
D−1S†(`)t

)†
(x)γ5 = = X†(`)(x)γ5ΓiM(x) =

b̄β̄

z′ = (t,~z ′)

σ

×(`)

a′α′ c

a

b

x
aα

b̄β̄

σ

×(`)

c
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Figure 5. Detailed illustration of the different parts involved in the evaluation of the C1 graph. The

symbols have the same meaning as in figure 4. For clarity, we also write down the spinor, color and

stochastic indices and spacetime arguments. We also indicate the quark lines a, b or c, which are

defined at the bottom. Upper panels: Left: The sequential source St at timeslice t, which is a sum of

the expressions defined in (A.18). The sequential source already incorporates parts of each quark line.

The light blue dot indicates the open spinor and color indices that are used for the inversion of the

Dirac operator. Center: Sequential propagator X†γ5 including Hermitian conjugation. Right: The

combination of the sequential propagator, the current insertion Γi, and the forward propagator M ,

which defines the quantity Y . Lower panels: Left: A linear combination of the contractions (A.19),

which is called q1. This is constructed from the quantity Y . The open baryon spinor index σ of the

sink is contracted with the baryon spinor index of the source, which is why it does not appear anymore

in q1. Center: A part of the stochastic quark line b, which is called q2. Right: The complete C1 graph,

which is constructed from q1,i and q2,j (or in some cases q1,j and q2,i)

The exact contraction with the annihilation kernel, i.e. which index is contracted with which

part, depends on the baryon type and the quark flavor of the local currents. This is discussed

in detail in appendix A.3, where all possible expressions for S(`) are listed, see (A.18).

An inversion on the momentum smeared sequential source yields a sequential propagator

X
~p,(`)
t :
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DXΦ,~p,(`)
t = Φ~pS†,~p,(`)t . (3.33)

The sequential source technique has been invented in [78]. The sequential propagator is

connected to the second current insertion. In this technical context, the three quark lines

between the proton source and sink can be distinguished w.r.t. the evaluation method of the

involved propagators. We shall use the following labels:

a forward propagator connecting the baryon operators

b quark line with the stochastic source, the stochastic propagator, and one current inser-

tion

c quark line with the sequential propagator and the other current insertion.

Furthermore, we define:

Y
~p,(`)
t,j (y) := X

†,Φ,~p,(`)
t (y) γ5Γj M

Φ,~p
z (y) , (3.34)

which represents the quark lines a and c and the stochastic source η
(`)
t belonging to quark line

b. The contraction of Y
~p,(`)
t,j (y) with the baryon creation operator kernel (3.29) is denoted by

q
(`)
1,j(y). Like for the sequential source S†,~p,(`)t , there are multiple possibilities to contract Y

with the creation kernel, which again depend on the flavor. All possible terms are summarized

in (A.19). The remaining part of quark line b is given by the quantity q
(`)
2,i :

(
q
~p,(`)
2,t,i

)a
α

(y) :=
[
ψ
†,(`)
t (y) γ5Γi M

Φ,~p
z (y)

]a
α
. (3.35)

The γ5 in (3.34) and (3.35) again appears from reversing the sequential or stochastic propa-

gator, respectively. The C1 graph itself is obtained by calculating

Cij,~p1 (~y , t, τ) =
a3

Nst

∑

~x

Nst∑

`

〈[
q
T,~p,(`)
2,t,i (x+ y) q

~p,(`)
1,t,j (x)

]〉∣∣∣∣∣
x4=τ,y4=0

. (3.36)

Here x is the position of the operator Oj . In order to increase statistics, we perform a

sum over all spatial positions at the insertion timeslice (volume average), exploiting spatial

translational invariance.

Depending on the quark flavors of the baryon and the insertion operators, there are several

terms that have to be summed up to obtain the full C1 contribution. This is explained in

detail in appendix A.4 for the proton case and the operators Ou,iOd,j and, Ou,iOu,j i.e. the

graphs Cij1,uudd and Cij1,uuuu.
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Loops L1 and L2: We implement two methods to calculate the loop L1, which is needed for

the evaluation of the S1 and D graphs. The first method involves the stochastic wall source

η
(`)
τ at the insertion timeslice τ and the corresponding propagator. Fluctuations introduced

by the stochastic noise vectors are reduced by employing the hopping parameter expansion

trick, which we have discussed previously. The number of omitted terms N depends on the

inserted Dirac structure Γi, see table 2. With the accordingly improved stochastic propagator

ξ
(`),N
τ (see (3.26)), we define:

Lj1,st(~y , τ) :=
1

Nst

Nst∑

`

[
η†(`)τ (y) Γj ξ

(`),N
τ (y)

]∣∣∣∣∣
y4=τ

. (3.37)

Alternatively, we compute the loop for fixed spatial positions using point sources. A disad-

vantage is that the calculation has to be repeated for each loop position we want to consider.

This version is only employed for one of the two loops in the D graph:

Lj1,pt(~y , τ) := tr {Γj My(y)}|y4=τ . (3.38)

Furthermore, we define the volume average:

〈〈
Lj1(τ)

〉〉
:=

a3

V

∑

~y

〈
Lj1(~y , τ)

〉
. (3.39)

The second kind of loop, L2, appears in the S2 graph. It contains the two spatially separated

current insertions, which are connected by two propagators. Using stochastic noise vectors is

not feasible in this case. Thus, the loop is calculated from point-to-all propagators only:

Lij2 (~y , τ) = tr
{
γ5 M

†
x(x+ y) γ5Γi Mx(x+ y) Γj

}∣∣∣
x4=τ,y4=0

. (3.40)

Statistics can be enhanced by averaging over several spatial positions ~x . For each position

the calculation has to be repeated.

Graphs C2 and S1: The C2 and S1 graphs are both constructed from a sequential source.

For this we use the same source as for usual three-point functions, see (A.20). The corre-

sponding sequential propagator Xt is obtained by inverting:

DXΦ,~p
t,3pt = Φ~pγ5S

†,~p
t,3pt , (3.41)

where again
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S~pt,3pt(z
′) = E~p(z′) S~p3pt(z

′) δz′4t . (3.42)

In the case of the C2 contraction, the sequential propagator is connected to one current

insertion. The other current insertion is contracted with the forward propagator. Both

current insertions are connected by a stochastic propagator, which is improved by the HPE

trick we have discussed earlier. Explicitly, we find for the C2 graph:

Cij,~p2 (~y , t, τ) =
a3

Nst
E−~p(z)

Nst∑

`

∑

~x

〈[
X†,Φ,~pt,3pt (~x + ~y , τ) γ5Γi ξ

(`),n(~y )
τ (~x + ~y , τ)

]

×
[
η†(`)(~x, τ) Γj M

Φ,~p
z (~x, τ)

]〉∣∣∣
z4=0

. (3.43)

The S1 graph consists of two disconnected pieces. The first one has the same structure as a

usual three-point function calculated from a sequential source:

Gi,~p3pt(~x, τ, t) = E−~p(z)
[
X†,Φ,~pt,3pt (~x, τ) γ5Γi M

Φ,~p
z (~x, τ)

]∣∣∣
z4=0

. (3.44)

The second part is given by the previously defined loop L1. If the quantum numbers permit,

there are disconnected contributions from the vacuum expectation values of G3pt and L1.

These must be subtracted, in order to obtain the S1 contribution we wish to calculate:

Sij,~p1 (~y , t, τ) = −a3
∑

~x

〈
Gi,~p3pt(~x + ~y , τ, t) Lj1(~x, τ)

〉

+ a3
∑

~x

〈
Gi,~p3pt(~x, τ, t)

〉〈〈
Lj1(τ)

〉〉
. (3.45)

Notice that the global sign corresponds to the permutation sign of the Wick contraction.

Graphs S2 and D: The graph S2 consists of a two-point contraction and the loop L2,

whereas D consists of a two-point contraction and two L1 loops. As for the S1 graph, we

have to consider vacuum contributions of the disconnected parts, which have to be subtracted.

Notice that we defined the loop L2 at a fixed spatial position. Hence, we are not able to

perform a volume average like in the previous cases:

Sij,~p2 (~y , t, τ) = −
〈
G̃~p2pt(t) L

ij
2 (~y , τ)

〉
+
〈
G̃~p2pt(t)

〉〈
Lij2 (~y , τ)

〉
. (3.46)

We use two methods to evaluate the D graph: The first employs two stochastic loops L1,st,

which allows us to perform a volume average. In the second method, we replace one stochastic

loop by a loop attached to a point source L1,pt. This might reduce the stochastic noise but

– 24 –



id β a[fm] L3 × T κl κs mπ,K [MeV] mπLa configs

H102 3.4 0.0856 323 × 96 0.136865 0.136549339 355, 441 4.9 2037

Table 3. Details of the CLS ensemble which we use for the evaluation of the two-current matrix

elements. Our simulation includes 990 configurations.

precludes the possibility to perform a volume average. For the doubly stochastic case, the D

graph reads:

Dij,~p(~y , t, τ) = a3
∑

~x

{〈
G̃~p2pt(t) L

i
1,st(~x + ~y , τ) Lj1,st(~x, τ)

〉

−
〈
G̃~p2pt(t)

〉〈
Li1,st(~x + ~y , τ) Lj1,st(~x, τ)

〉

−
〈
G̃~p2pt(t) L

i
1,st(~x, τ)

〉〈〈
Lj1,st(τ)

〉〉

−
〈
G̃~p2pt(t) L

j
1,st(~x, τ)

〉〈〈
Li1,st(τ)

〉〉}

+ 2
〈
G̃~p2pt(t)

〉〈〈
Li1,st(τ)

〉〉〈〈
Lj1,st(τ)

〉〉
. (3.47)

Note that we use two different sets of stochastic sources for the two disconnected loops.

Equation (3.47) is valid for the first method. For the second method L1,st has to be replaced

by L1,pt. Furthermore, one has to replace the sum a3
∑

~x by a volume factor V .

3.3 Lattice setup

The simulation is performed on the gauge ensemble H102 of the CLS collaboration [79]. It

includes nf = 2 + 1 dynamical Sheikholeslami-Wohlert fermions and the tree-level improved

Lüscher-Weisz gauge action. The extension is 323× 96 with open boundary conditions in the

time direction. The pseudoscalar masses are mπ = 355 MeV and mK = 441 MeV, and the

lattice spacing is a = 0.0856 fm, which corresponds to the inverse lattice coupling β = 3.4.

More information can be found in table 3. From this ensemble we use 990 configurations.

For the calculation of the ratio (3.5) we need to know the value of the nucleon energy E~p =√
m2 + ~p2 in the given lattice setup. We obtain the corresponding value from an exponential

fit to the two-point function data for each momentum. Moreover, the proton mass is needed

in the decompositions (2.25) and (2.27). From our fits, we obtain m = 1.1296(75) GeV.

Our analysis requires a wide range of proton momenta. Explicitly, calculations are per-

formed for the momenta

~p =
2π~P

La
(3.48)

with ~P = (0, 0, 0), (−1,−1,−1), (−2,−2,−2), (2, 2,−2), (2,−2, 2), (−2, 2, 2). Thus, the

largest momentum has the absolute value |~p | ≈ 1.57 GeV.
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~p C1 C2 S1(st) S2 D(st, st) D(st, pt) 3pt 2pt

Nsrc = ~0 1 2 4 25 25 25 4 25

6= ~0 1 1 1 21 21 21 1 21

Nst/pt all 2 96 120 480 16(60, 60) 4(120, 120) - -

vol. average all y y y n y n y n

Table 4. Overview of the statistics of our simulation for each Wick contraction. If the contractions

involve the loop L1, we indicate by (st) or (pt) which version is employed. Nsrc refers to the number

of proton sources for which each graph is evaluated. Nst/pt is the number of stochastic sources used

for the calculation of the stochastic propagators. For the graphs involving loops where multiple point

sources are used (S2 and D(st, pt)), Nst/pt refers to the corresponding number of point sources. In

the last line we indicate whether volume averaging is possible.

To avoid artifacts possibly caused by the open boundary conditions, we place the source

at tsrc = T/2 = 48a. The spatial position is chosen randomly for each configuration. The

distance to the sink in time direction is t = tsnk − tsrc = 12a for the case ~p = ~0 and t = 10a

otherwise. We evaluate the C1 graph for all intermediate insertion times 0 < τ < t. A value

for C1(~y ) is then given by a fit w.r.t. τ to a constant including a certain region around t/2,

where excited states are seen to be sufficiently small. The remaining graphs are calculated

for τ = t/2, i.e. τ = 6a for ~p = ~0 and τ = 5a for ~p 6= ~0. The disconnected parts 〈L2(τ)〉 and

〈L1(τ)L1(τ)〉 do not depend on the proton momentum. Hence, the corresponding calculations

can be combined, which increases statistics. Consequently, the average insertion time for the

contractions S2 and D is slightly different from t/2, which should not be a problem as long

as excited state contributions are small.

We perform the calculations for multiple proton sources located at different source posi-

tions, which further enhances statistics. The number of proton sources, as well as the number

of stochastic noise vectors being used for each contraction is summarized in table 4. The

propagators are smeared at the proton source and sink by n = 250 smearing iterations (3.19).

3.4 Data quality

In the following we want to consider the matrix elements 〈V 0V 0〉 and 〈A0A0〉 and discuss a

number of artifacts. For the remainder of this paper we shall use the following notation for

absolute values of 3-vectors:

p := |~p | , P := |~P | , y := |~y | . (3.49)

Nevertheless, we denote the usual 4-vector scalar product by y2 = yµyµ. Since y0 = 0, one

has |~y |2 = −y2. To avoid confusion, the n-th power of y = |~y | is denoted by
√
−y2

n
. For

details on our notation, see appendix A.1. At the moment, we consider the data for single

contractions instead of the complete four-point functions and, moreover, we restrict ourselves

– 26 –



(a) τ -dependence, 〈V 0V 0〉 (b) τ -dependence, 〈A0A0〉

Figure 6. τ -dependence of the C1 contraction for the two flavor combinations uu and ud. This is

plotted for 〈V 0V 0〉 (a) and 〈A0A0〉 (b) for fixed �y = (−3, 4, 3) at momentum �p = �0.

to zero momentum, i.e. p = 0 or, equivalently, P = 0. In our study, we are interested in

the dependence on the current distance y. For the C1 graph we are able to investigate the

dependence on the insertion time τ , which is plotted in figure 6 for 〈V 0V 0〉 and 〈A0A0〉 at

�y = (−3, 4, 3). We observe a reasonable quality of the data and plateaus around t/2. The

values for C1(�y ) are obtained by a fit to a constant w.r.t. the insertion time τ , where we

take into account the timeslices τ ∈ [t/2− 3a, t/2+ 3a]. The corresponding fit bands are also

plotted in figure 6. For all remaining contractions, the insertion time is fixed at τ = t/2 in

our simulation, as discussed in the previous section.

For the remainder of this paper, we concentrate on the contributions C1, C2, S1 and

S2. For both versions of 〈L1L1〉 we have presented in section 3.2, and consequently for the D

graph itself, we obtain statistical errors that are much larger than the signals of the remaining

graphs. In contrast to our study [62] for the pion, this is already the case before carrying

out the vacuum subtraction. As a consequence, we shall not consider contributions of the D

graph in subsequent analysis steps.

In order to investigate possible anisotropy effects, we distinguish three sets of data points

characterized by the angle θ between the distance vector y and the nearest lattice space

diagonal:

• cos θ =
√
1/3: data points placed on one of the lattice axes

• cos θ > 0.9: data points in the vicinity of one lattice space diagonal

•
√
1/3 < cos θ < 0.9: all other data points1

In figure 7 we show some selected results. The first kind of anisotropy effects observed in the

lattice data is caused by mirror charges originating from the periodic boundary conditions in

1A vector with cos θ = 0.9 does not exist in our lattice setup.
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(a) anisotropy, 〈V 0
u V

0
u 〉, C1 (b) anisotropy, 〈V 0

u V
0
u 〉, C2

(c) anisotropy, 〈V 0
d V

0
d 〉, C2 (d) anisotropy, 〈V 0

q V
0
q 〉, S2

Figure 7. Visualization of anisotropies found in the four-point data. The data points are separated

w.r.t. to the angle θ between the distance vector �y and the next nearest space diagonal (see the text).

These plots show the results for the C1 contribution to 〈V 0
u V

0
u 〉 (a), the C2 contribution to 〈V 0

u V
0
u 〉 for

small y (b) and 〈V 0
d V

0
d 〉 for intermediate y (c), as well as the S2 graph for small y (d).

the spatial directions, which is explained in detail in [58]. These are stronger along the lattice

axes, since the mirror charges lie closer together in this case. This artifact can be observed

in figure 7(a) at distances y > 12a, where the data with cos θ < 0.9 clearly lie above the data

for y close to the lattice diagonals. The resulting ”saw-tooth” pattern can be seen in each

channel in the C1 data.

Another anisotropy effect is caused by the anisotropy of the lattice propagator and is

present in all contractions involving at least one propagator directly connecting the two

currents, i.e. the graphs C2 and S2. Examples are plotted figure 7(b) and 7(c) for the C2

graph and in 7(d) for S2. In these plots, we see a significantly different behavior of the data

close to the lattice space diagonals and the remaining data points.

The lattice propagator anisotropy has been studied in detail, e.g. in [80, 81], where it
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was found that lattice artifacts are most pronounced along the lattice axes, whereas they are

moderate close to the lattice diagonals.

4 Mellin moments of DPDs

4.1 Extraction of twist-two functions

According to (2.25), the two-current matrix elements we obtain in our lattice simulation can

be decomposed in terms of Lorentz invariant functions. The twist-two components, which

are relevant in the DPD context, are parameterized by a certain subset of these invariant

functions. We refer to these functions as twist-two functions. Explicitly, the twist-two func-

tions are Aqq′ , A∆q∆q′ , Aδqq′ , Aqδq′ , Aδqδq′ , and Bδqδq′ . Since our calculation includes only

light-quark operators, we can extract the twist-two functions for qq′ = uu, ud, dd. For proton

DPDs, which we consider in this paper, the latter probes at least one sea quark.

The twist-two functions are obtained by solving the overdetermined system of equations

given by (2.25). This we do by χ2 minimization. Before we go into physics interpretation,

we discuss possible lattice artifacts seen in the data. If Lorentz invariance were intact, the

extracted data points of the invariant functions would be boost- and rotationally invariant,

i.e. for a given py they would be independent of the momentum ~p and the direction of ~y .

In order to check this, the system of equations is solved separately for each graph and for

each accessible direction of the distance vector ~y , i.e. we obtain one data point for each y2,

py and θ, where θ is the angle between ~y and the nearest space diagonal on the lattice.

We use the same classification of the data points w.r.t. θ as in section 3.4. Figure 8 shows

the data obtained for the twist-two functions separated according to this scheme for some

selected channels. As in the data of the bare two-current matrix elements, we observe the

saw-tooth pattern in the C1 data for large distances, which originates from mirror charges due

to the periodic spatial boundary conditions in our lattice setup. This is plotted in figure 8(a)

for ~P = ~0 and in figure 8(b) for ~P = −(1, 1, 1) and py = 1.6. The data corresponding to

distance vectors along one of the lattice diagonals are less affected by mirror charges. In

figure 8(d) and 8(c) we again observe the anisotropy of the lattice propagators in the data of

the C2 graph. As discussed in the previous section, the propagator is less affected by this for

distance vectors close to one lattice diagonal.

Beside the patterns already discussed, we find an anisotropic behavior of the twist-two

function Bδuδd for ~P = ~0, which can be seen for all regions in y. The data points along a

lattice axis have a significantly larger value than those corresponding to distance vectors in

the vicinity of a space diagonal. This is shown in figure 8(e) and figure 8(f), where we compare

these data with those for ~P = −(1, 1, 1). The data for non-zero momentum are consistent

with the data for zero momentum if again ~y is close to a space diagonal. Therefore, we regard

those data points as more reliable.

Based on this discussion, we will keep only data corresponding to distances ~y that satisfy
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(a) anisotropy, Aud, C1, �P = �0, py = 0 (b) anisotropy, Auu, C1, �P = −(1, 1, 1), py = 1.6

(c) anisotropy, Auu, C2, �P = �0, py = 0 (d) anisotropy, Auu, C2, �P = �0, py = 0

(e) anisotropy, Bδuδd, C1, py = 0 (f) anisotropy, Bδuδu, C1, py = 0

Figure 8. Visualization of anisotropies in the data of twist-two functions. We separate the data

points w.r.t. the angle between �y and the nearest diagonal in the same manner as in figure 7. This

figure shows the corresponding results for the C1 contributions to Aud (a) and Auu (b), as well as the

C2 contribution to Auu for small y (c) and large y (d). In panel (b) we plot the data for non-zero

momentum and py = 1.6, whereas in the remaining plots �P = �0. In panels (e) and (f) we show the

data for Bδuδd and Bδuδd, respectively, where we distinguish only between cos θ < 0.9 and cos θ > 0.9.

This is compared to the data for P =
√
3 at py = 0.
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cos θ > 0.9 , (4.1)

when discussing physical results. As a further check of the reliability of our data, we compare

the twist-two functions obtained for different proton momenta at py = 0. Because of Lorentz

invariance, these should yield the same result within statistical errors. In figure 9 we compare

the twist-two data obtained for the momenta P = 0, P =
√

3 and P = 2
√

3. For each value of

P , y2 and py the data are extracted separately, taking into account all distances ~y satisfying

(4.1) and all contributing momenta ~P .

In the case of C1, see e.g. figure 9(a), we observe consistency with Lorentz symmetry.

In some cases small deviations are visible, as for Aδdu shown in figure 9(b). In this case,

the difference occurs between the data for P = 0 and P 6= 0. Notice that we used different

source-sink separations for these two cases, hence, the discrepancy might be caused by excited

state contributions.

At large distances y, Lorentz symmetry is also intact for the C2 graph, as can be seen in

figure 9 (c)-(e). However, once we go to smaller y, Lorentz invariance is clearly broken. The

most extreme example for this is given by Aδuu, which is plotted in panel (d). Deviations

start to show up for y < 5a and become large for y < 4a.

The situation is even worse for the S2 graph at y < 7a, where in the most extreme cases

the data for P = 0 and P 6= 0 show different signs. As an example we show the corresponding

data of Aqq in figure 10(a). For larger y, consistency with Lorentz invariance can be observed

in all channels; an example is given in figure 10(b).

– 31 –



(a) Lorentz invariance, Aud, C1, py = 0 (b) Lorentz invariance, Aδdu, C1, py = 0

(c) Lorentz invariance, Auu, C2, py = 0 (d) Lorentz invariance, Aδuu, C2, py = 0

(e) Lorentz invariance, Add, C2, py = 0

Figure 9. Comparison of the twist-two data for P = 0 (red), P =
√
3 (green) and P = 2

√
3 (blue).

This is shown for the C1 contributions to Aud (a) and Aδdu (b), the C2 contributions to Auu (c), Aδuu

(d) and Add (e). In the latter case we leave out the data for P =
√
3 for clarity, since they have large

statistical errors.
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(a) Lorentz invariance, Aqq, S2, py = 0 (b) Lorentz invariance, Aqq, S2, py = 0

Figure 10. The same as figure 9 for the S2 contribution to Aqq. This is shown for small distances

(a), where breaking of Lorentz invariance is observed, and for large y (b).

4.2 Physical results for py = 0

In the following, we consider the data of twist-two functions extracted for each single graph.

For the moment we restrict ourselves to �P = �0. Again we take into account only the data

points fulfilling (4.1) and solve the system of equations (2.25) for each value of y2 and py = 0,

i.e. data points for equal y = |�y | are combined. In figure 11(a) and (b) we show the results

for Aqq′ and Aδqq′ , where we compare the contributions of C1, C2 and S2 for a specific flavor

combination. Panels (c) and (d) show the same comparison for C1 and S1.

It is observed that the most dominant contributions are those of the two connected graphs

C1 and C2. The C2 data strongly increase towards small y, whereas C1 is relatively large at

all distances and shows a slow decay with increasing y. S2 is smaller by orders of magnitude

than the other contractions for y > 6a but very steeply increasing towards small y. Remember

that in this region the S2 graph strongly violates Lorentz invariance, as we have seen in the

previous section. The S1 contribution has rather large errors and is consistent with zero in

all regions of y. For Aqq′ we see a significant offset in the S1 contribution. This offset is very

small compared to the size of the connected contractions, except for very large distances,

where the size of the offset and the decreasing signals of the connected contractions become

comparable.

In the following discussion, we take into account only the C1 and C2 contributions, since

all the other contractions are small compared to the connected graphs or, in the S2 case,

are not reliable due to violation of Lorentz symmetry. For our final result for the twist-

two functions, we add up all considered contractions according to (3.14), before solving the

system of equations (2.25). Furthermore, we include the data for all considered momenta, see

section 3.3.

Let us first look at the flavor dependence of the twist-two functions at py = 0. Since the

spin-orbit correlations Aδqq′ or Bδqδq′ are multiplied by terms proportional to my or m2|y2|
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(a) graph comparison, Aqq′ , �P = �0, C1, C2, S2 (b) graph comparison, Aδqq′ , �P = �0, C1, C2, S2

(c) graph comparison, Aqq′ , �P = �0, C1, S1 (d) graph comparison, Aδqq′ , �P = �0, C1, S1

Figure 11. Comparison between the contributions of each Wick contraction to the twist-two functions

for �P = �0 and Aqq′ (left) and Aδqq′ (right). Panels (a,b) show the data for C1, C2 and S2, whereas in

(c,d) we compare the data for C1 and S1.

in the decomposition (2.25), we always consider myAδqq′ and m2|y2|Bδqδq′ in the following

discussion. The same applies to the corresponding DPD Mellin moments, see (2.27). In

figure 12 we show the results for the twist-two functions Aqq′ (a) and Aδqq′ (b) for the different

flavor combinations. Notice that for Aδqq′ we have the four combinations uu, ud, du, and dd,

whereas in all other cases the functions for ud and du are equal by permutation symmetry

between the two partons. At large distances we have comparably large signals for uu, ud

and du, while the ones for dd are much smaller. This changes for smaller y, where both uu

and dd strongly increase. The size of dd becomes comparable to that of ud and du around

y = 4a = 0.342 fm.

A very interesting aspect is the dependence on the quark polarization. We compare the

corresponding channels in figure 13 for ud (a), uu (b) and dd (c). In all cases Aqq′ is observed

to be the channel with the largest signal. Polarization effects are significant in the case of ud,
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(a) flavor comparison, Aqq′ , py = 0 (b) flavor comparison, Aδqq′ , py = 0

Figure 12. Twist-two functions Aqq′ (a) and Aδqq′ (b) for py = 0. In each panel we compare

the results for all independent flavor combinations. For Aqq′ these are uu, ud, and dd, whereas for

Aδqq′ we additionally have to consider the combination du. Here and in the following plots, only the

contributions from the graphs C1 and C2 are included.

especially Aδud and Aδdu are very large. The signal in the remaining channels is smaller but

clearly different from zero. In the case of uu and dd, polarization effects are suppressed. The

largest polarized contribution is again Aδqq in both cases.

4.3 Parameterization of the y2 dependence

Further analysis steps require a parameterization of the results obtained for the twist-two

functions. In the following, we adapt the approach we developed in [67]. For the description

of the y2-dependence at py = 0 a sum of two exponentials is found to be suitable in most

cases. For Aud and Aδuδd it appears that this ansatz has to be slightly modified. As a general

ansatz we write:

A(py = 0, y2) = (η1y)
δA1 e−η1(y−y0) + (η2y)

δA2 e−η2(y−y0) , (4.2)

where the fits are preformed for fixed δ. In the cases of Aud and Aδuδd it turns out that

δ = 1.2 is a suitable choice. In all other channels, a pure double exponential, i.e. δ = 0, is

sufficient.

For most of the fits we take into account each point in the region 4a ≤ y ≤ 16a. Thus,

we ensure that the data points entering the fit are only mildly affected by the lattice artifacts

that result in anisotropy effects or the breaking of boost invariance. For stability reasons the

fit range is slightly modified in some channels. In all cases where the fit range is adjusted,

we carefully checked that the data points within the modified fit range do not include such

artifacts. An overview is given in table 5, where also the corresponding fixed value of δ is

shown. In order to achieve that the parameters Ai describe the relative weight of the two
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(a) polarization dependence, ud, py = 0 (b) polarization dependence, uu, py = 0

(c) polarization dependence, dd, py = 0

Figure 13. Comparison of the results for different quark polarizations for the flavor combinations ud

(a), uu (b) and dd (c) at py = 0.

channel fit range δ

Aud [1a, 16a] 1.2

Add [3.5a, 16a] 0

A∆d∆d [3.5a, 15a] 0

Aδuδd [3a, 16a] 1.2

Aδdδd [3.5a, 15a] 0

Bδdδd [4a, 15a] 0

else [4a, 16a] 0

Table 5. Fit ranges in y used for the fit of each twist-two function for the double exponential (4.2).

We also give the fixed parameter δ. In all cases, y0 = 4a.
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(a) double-exponential fit for Aud(py = 0, y2) (b) double-exponential fit for Auu(py = 0, y2)

(c) double-exponential fit for Aδdu(py = 0, y2) (d) double-exponential fit for Aδuu(py = 0, y2)

Figure 14. Data points for the twist-two functions compared to the corresponding curve resulting

from a fit to the form (4.2). Each plot has a logarithmic scale for the vertical axis.

exponentials at the lower fit boundary, we introduce a shift y0 = 4a = 0.342 fm in the

exponent. In the fits we neglect correlations between the data points.

The data points of the twist-two functions at py = 0 are plotted together with the curve

resulting from the fit in figure 14. We take a logarithmic scale on the vertical axis to emphasize

the double-exponential shape. As can be observed in the plots, the fitted curves describe the

twist-two data reasonably well. The values obtained for the fit parameters Ai and ηi are listed

in table 6, as well as the values of χ2 per degree of freedom. The corresponding errors are

computed using the Jackknife procedure.
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channel A1[fm−2] η1[fm−1] A2[fm−2] η2[fm−1] χ2/dof

Auu 0.026(17) 39(20) 0.1920(99) 2.89(15) 0.37

Aud 0.00037(35) 17.5(3.1) 0.0530(28) 3.52(12) 0.07

Add 0.010(12) 46(47) 0.0573(64) 3.66(36) 0.48

A∆u∆u −0.62(57) 13.7(3.8) 0.61(58) 12.3(2.3) 0.63

A∆u∆d −0.0190(39) 4.86(46) 0.0026(24) 1.30(73) 0.30

A∆d∆d −0.029(61) 14(15) 0.010(61) 4.6(8.2) 0.61

Aδuu 0.0208(46) 21.8(6.9) 0.0211(31) 3.45(25) 0.49

Aδdu −0.0059(27) 6.80(37) 0.0228(23) 3.40(15) 0.20

Aδud −0.0085(27) 6.85(23) 0.0258(26) 3.43(16) 0.25

Aδdd 0.0144(36) 17.7(7.7) 0.0036(26) 3.6(1.1) 0.64

Aδuδu −0.193(99) 9.5(1.3) 0.196(98) 7.5(1.3) 0.74

Aδuδd −0.000033(88) 21(13) −0.00835(65) 3.57(24) 0.16

Aδdδd −0.0027(82) 18(35) 0.0073(81) 3.0(2.3) 1.01

Bδuδu −0.72(99) 15.8(2.9) 0.72(99) 15.7(3.0) 1.01

Bδuδd −0.00074(71) 7.9(2.1) 0.00253(56) 4.13(23) 0.07

Bδdδd 0.73(41) 16.9(1.5) −0.73(41) 17.0(1.5) 0.72

Table 6. Results of the fit (4.2) to the twist-two functions at py = 0. The corresponding χ2/dof is

listed in the rightmost column.

4.4 Parameterization of the py dependence

A parameterization of the twist-two functions is in particular mandatory for the evaluation of

the py-integral in (2.28). The reason is that one has to extrapolate in py, since the accessible

range is restricted by the largest proton momentum:

|py| ≤
y0=0

|~p ||~y | ≤ 2π
√

12 y

La
≤ 6π ≈ 18.85 . (4.3)

In order to make an ansatz for the py-dependence, we consider the constraints on the ζ-

dependence of the skewed DPDs. These are the symmetry relation (2.16) and the constraints

(2.12) restricting the support region in ζ. Furthermore, we assume that the Mellin moment

I(ζ, y2) can be Taylor expanded around ζ = 0. Combining everything, we make the ansatz

that the Mellin moment I(ζ, y2) can be approximated by an even polynomial in ζ within the

region |ζ| ≤ 1:

I(ζ, y2) = π

N∑

n=0

an(y2) ζ2n Θ(1− ζ2) . (4.4)
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This implies for the twist-two functions, which are related to the Mellin moments by a Fourier

transform:

A(py, y2) =

N∑

n=0

an(y2) hn(py) , (4.5)

where the functions hn are defined as:

hn(x) :=
1

2

∫ 1

−1
dζ eixζ ζ2n = sin(x) sn(x) + cos(x) cn(x) (4.6)

with

sn(x) =
n∑

m=0

(2n)! (−1)m

(2n− 2m)!x1+2m
, cn(x) =

n−1∑

m=0

(2n)! (−1)m

(2n− 2m− 1)!x2+2m
. (4.7)

It is easy to check that the functions hn(x) fulfill the following relations:

hn(0) =
1

1 + 2n
,

d2hn(x)

dx2
= −hn+1(x) . (4.8)

We recall that A(py = 0, y2) is already completely described by the double exponential ansatz

in (4.2). Therefore, in the analysis of the py dependence, we consider the normalized twist-two

function

Â(py, y2) :=
A(py, y2)

A(0, y2)
=

N∑

n=0

ân(y2) hn(py) , (4.9)

with the normalized coefficients

ân(y2) =
an(y2)

A(0, y2)
. (4.10)

A useful quantity to investigate in the context of the py-analysis is the 2m-th moment in ζ

of the DPD Mellin moment, which can be written as:

〈ζ2m〉(y2) :=

∫ 1
−1 dζ ζ2mI(ζ, y2)
∫ 1
−1 dζ I(ζ, y2)

= (−1)m
∂2mÂ(py, y2)

∂(py)2m

∣∣∣∣∣
py=0

. (4.11)
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If we insert our ansatz (4.5) combined with (4.9) and replace the 2m-th derivative of Â

according to (4.8), we find that 〈ζ2m〉 can be expressed as:

〈ζ2m〉(y2) =

N∑

n=0

Tmnân(y2) , (4.12)

where we defined the (N + 1)× (N + 1)-matrix T

Tmn = (1 + 2n+ 2m)−1 . (4.13)

Equation (4.12) can be inverted, so that we are able to express the coefficients ân in terms of

the ζ-moments:

ân(y2) =

N∑

m=0

(
T−1

)
nm
〈ζ2m〉(y2) , (4.14)

and hence

Â(py, y2) =
N∑

n,m=0

(
T−1

)
nm
〈ζ2m〉(y2) hn(py) . (4.15)

One has 〈ζ0〉(y2) ≡ 1 by definition. Thus, the first non-trivial term in (4.15) is the one with

m = 1. For each value of y2 we can perform a fit with the functional form (4.15) with N fit

parameters. These kind of fits are referred to as ”local” fits in the following. Furthermore,

we parameterize the moments of ζ in terms of powers of the distance y =
√
−y2, i.e. we write

〈ζ2m〉(y2) =
K∑

k=0

cmk
√
−y2

k
, (4.16)

such that we obtain a global parameterization describing both the y2 and py-dependence:

Â(py, y2) =

N∑

n,m=0

K∑

k=0

(
T−1

)
nm

cmk
√
−y2

k
hn(py) . (4.17)

Since c0k = δ0k by definition, there are N(K + 1) parameters to be determined in a ”global”

fit to the parameterization (4.17).
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(a) local fit on Âud at yfit = 10a = 0.856 fm (b) local fit on Âud at yfit = 12a = 1.027 fm

(c) local fit on Âuu at yfit = 10a = 0.856 fm (d) local fit on Âδdu at yfit = 10a = 0.856 fm

Figure 15. py dependence of the twist-two function data and the corresponding local fits with

N = 2, 3. This is shown for the functions Âud at yfit = 10a (a) and yfit = 12a (b), as well as for

Âuu (c) and Âδdu (d) both at yfit = 10a. We plot all data points included by the fits for a given yfit,

i.e. all data points in the range yfit ± 0.5a (see the text).

Local py-fits: The results obtained for the y2-fit are used to calculate the normalized func-

tion Â(py, y2), which is then fitted to the functional form (4.15) for certain values of y2. We

perform two sets of fits using N = 2 or N = 3, i.e. there are two or three free fit parameters,

respectively. The free fit parameters are the moments in ζ, i.e. 〈ζ2m〉 with m = 1, . . . , N . For

each accessible value of y2, there is a number of available data points that can be used to

fit the py-dependence. This number strongly varies with y2. In order to avoid fluctuations

caused by this circumstance we do not only consider the data points with y = yfit, but take

into account all data points in a band yfit − 0.5a ≤ y ≤ yfit + 0.5a. The fit is carried out for

yfit = νa, where ν ∈ [4, 16] is an integer.

In figure 15 we show for selected channels the data points of Â(py, y2) entering the fit

for a given y2 in comparison to the resulting fit bands for N = 2 and N = 3. We observe
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(a) 〈ζ2〉 for Iud, N = 2 (b) 〈ζ4〉 for Iud, N = 2

(c) 〈ζ2〉 for Iud, N = 3 (d) 〈ζ4〉 for Iud, N = 3

Figure 16. Results for 〈ζ2m〉 obtained from the local fit (red points) compared to the global fits

(bands). For N = 2 (top) we performed fits for K = 0 (dark blue), as well as K = 1 (light blue),

whereas for N = 3 (bottom) we fixed K = 0. The results are shown for the second (a,c) and the

fourth moment in ζ (b,d) of the Mellin moment Iud.

that the Â data are reasonably described and the two fits are consistent within the statistical

error. For N = 3 the fit tends to be sensitive to the data points at large py, which causes

visible deviations relative to the fit with N = 2.

There are channels where the data of Â are compatible with zero, which leads to a

dominance of fluctuations. In these cases a reliable fit of the py-dependence is not feasible.

We refer to these channels as the ”bad” channels. Explicitly, they are given by the functions

Â∆q∆q′ and B̂δuδu, as well as all polarized channels for the flavor combination dd. These

channels will not be considered in the subsequent physics discussions.

The resulting values of 〈ζ2m〉 are plotted in figures 16 and 17 (red data points). It appears

that the moments are rather small (〈ζ2m〉 < 0.25) and in almost all cases these show a linear

dependence on the distance y. In most cases they are nearly constant. Deviations from
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(a) 〈ζ2〉 for Iuu, N = 2 (b) 〈ζ4〉 for Iuu, N = 2

(c) 〈ζ2〉 for Iδdu, N = 2 (d) 〈ζ4〉 for Iδdu, N = 2

(e) 〈ζ2〉 for Itδuδd, N = 2 (f) 〈ζ4〉 for Itδuδd, N = 2

Figure 17. The same as figure 16 for the second (left) and fourth (right) moment of ζ in Iuu, Iδdu,

and Itδuδd, where only results for N = 2 are shown.
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that behavior are seen for uu at small y, where the data tend to increase. However, this is

the region where the violation of Lorentz invariance starts to show up in the corresponding

channels, as we have discussed earlier. This might skew the py-dependence. The results that

are not shown in the plots look very similar. An exception to this are the data for Âδuδu,

which carry large statistical errors.

The results for the ζ-moments are quite different from those we obtained for the pion

[67], where we found a clear linear rise with increasing y. In that case, for y > 1 fm, values

of 〈ζ2〉 > 0.5 were observed.

Global py-fits: In order to reduce the number of parameters entering our analysis, we

perform a global fit on the Â data using the functional form given in (4.17). This is again

carried out for N = 2, 3. We have seen in the previous discussion that a linear dependence

on y is sufficient to describe the 〈ζ2m〉 behavior. Therefore, we take K = 0, 1 for the global

fits. For N = 3 we restrict ourselves to K = 0, i.e. a constant, since for K = 1 we find that

the data are overfitted. In total we have three fits, where we use (N,K) = (2, 0), (2, 1), (3, 0)

with 2, 4 or 3 free fit parameters, respectively. In each fit we take into account all data points

for which 4a < y < 16a. The resulting curves for K = 0 are plotted in figure 18, where again

we show the py-dependence for fixed values of y2. As for the local fits, the two possibilities

N = 2 and N = 3 yield comparable results; small deviations are found for large py.

In general, the value of χ2/dof differs only weakly between different fits of the same

channel. In most channels, the differences are marginal (. 0.01). Hence, we consider the fit

with (N,M) = (2, 0) as reliable; the other two fits might already overfit the data. Exceptions

are given by Bδuδd (see the discussion below), and Aδdu, Aδud, where discrepancies up to 0.11

in χ2/dof are found. This can also be observed in the slightly different behavior of the fit

bands for large py, see figure 18(d). In the last two cases, fits with N = 3 yield the smallest

value for χ2/dof.

The 〈ζ2m〉 curves resulting from the global fits are also shown in figures 16 and 17 (blue

and light blue bands). The results for the fit parameters cmk are listed in table 7 to 11, where

for completeness also the results of the ”bad” channels (see the discussion above) are shown.

In most cases, the linear fit barely differs from the fit to a constant. For a few exceptions, there

is a better overlap with the data if the linear term is included. The most extreme example is

given by Itδuδd, which is shown in figure 17(e) and 17(f). The corresponding χ2, see table 11,

is slightly smaller. However, the linear fit must be considered with some caution, since there

is a wide region in y where the moments 〈ζ2m〉 become negative. For even moments this is

mathematically inconsistent. The constant fit still covers the data points sufficiently well.
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(a) global fit on Âud at y = 10a ≈ 0.86 fm, K = 0 (b) global fit on Âud at y = 12a ≈ 1.03 fm, K = 0

(c) global fit on Âuu at y = 10a ≈ 0.86 fm, K = 0 (d) global fit on Âδdu at y = 10a ≈ 0.86 fm, K = 0

Figure 18. The same as figure 15 for slices of the global py-fit with K = 0.
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof

Auu 2 0 0.093(55) - 0.032(53) - - 0.96

1 0.102(98) −0.00(12) 0.11(12) −0.08(14) - 0.95

3 0 0.104(66) - 0.056(76) - 0.059(88) 0.96

Aud 2 0 0.097(51) - 0.058(49) - - 0.47

1 0.067(77) 0.036(84) 0.06(11) 0.006(97) - 0.46

3 0 0.092(58) - 0.046(63) - 0.038(69) 0.46

Add 2 0 −0.029(99) - −0.13(12) - - 0.93

1 −0.03(27) 0.02(34) −0.03(34) −0.10(42) - 0.93

3 0 0.05(10) - 0.03(13) - 0.10(17) 0.92

Table 7. Fit results for the parameters cmk of our global fit ansatz (4.17) obtained for the unpolarized

channels Auu, Aud and Add. We take into account (N,K) = (2, 0), (2, 1), (3, 0).

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof

A∆u∆u 2 0 −0.36(87) - −0.8(1.3) - - 0.24

1 −0.3(3.2) 0.4(6.8) 1.6(4.6) −3.6(9.2) - 0.24

3 0 0.21(90) - 0.9(1.7) - 2.4(3.3) 0.24

A∆u∆d 2 0 0.15(42) - 0.07(62) - - 0.17

1 0.26(96) −0.2(1.5) 0.2(1.2) −0.2(1.5) - 0.17

3 0 0.09(49) - −0.10(84) - −0.2(1.2) 0.17

A∆d∆d 2 0 0.4(1.3) - 0.2(1.5) - - 0.12

1 1.3(2.6) −1.4(5.1) 1.7(4.0) −2.0(6.4) - 0.12

3 0 0.6(1.2) - 0.7(2.0) - 0.8(3.0) 0.12

Table 8. The same as table 7, but for the twist-two function A∆q∆q′ .
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof

Aδuu 2 0 0.126(82) - 0.080(84) - - 0.98

1 −0.14(24) 0.29(24) −0.25(31) 0.36(31) - 0.97

3 0 0.137(85) - 0.102(97) - 0.11(11) 0.98

Aδdu 2 0 0.044(49) - 0.002(48) - - 1.02

1 0.14(11) −0.09(11) 0.23(14) −0.21(13) - 0.95

3 0 0.017(54) - −0.056(60) - −0.086(67) 0.91

Aδud 2 0 0.106(49) - 0.048(49) - - 1.06

1 0.013(99) 0.099(96) −0.02(11) 0.077(99) - 1.03

3 0 0.123(54) - 0.085(60) - 0.095(66) 1.01

Aδdd 2 0 −0.36(26) - −0.51(28) - - 0.76

1 −0.70(61) 0.49(67) −0.52(83) 0.15(85) - 0.75

3 0 −0.31(31) - −0.42(42) - −0.38(53) 0.76

Table 9. The same as table 7, but for the twist-two function Aδqq′ .

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof

Aδuδu 2 0 0.18(29) - 0.37(33) - - 0.58

1 −0.2(1.1) 0.6(1.7) 0.2(1.5) 0.4(2.2) - 0.58

3 0 0.45(38) - 1.01(68) - 1.5(1.0) 0.58

Aδuδd 2 0 0.057(87) - 0.024(95) - - 0.80

1 0.04(19) 0.01(21) −0.15(22) 0.15(22) - 0.78

3 0 0.085(93) - 0.08(11) - 0.12(13) 0.78

Aδdδd 2 0 0.38(49) - 0.35(56) - - 0.47

1 −0.1(1.5) 0.7(1.8) 0.1(1.9) 0.4(2.2) - 0.47

3 0 0.69(62) - 0.96(95) - 1.2(1.3) 0.46

Table 10. The same as table 7, but for the twist-two function Aδqδq′ .

– 47 –



N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof

Bδuδu 2 0 0.5(1.0) - 0.5(1.5) - - 0.25

1 5.2(4.4) −7.7(7.8) 11.4(8.1) −18(14) - 0.25

3 0 1.6(1.3) - 3.9(2.6) - 6.9(4.6) 0.25

Bδuδd 2 0 0.068(78) - −0.012(72) - - 0.71

1 −0.30(19) 0.37(20) −0.45(27) 0.42(26) - 0.66

3 0 0.080(92) - 0.01(10) - 0.01(12) 0.70

Bδdδd 2 0 −0.4(1.3) - −0.7(2.0) - - 0.20

1 6(12) −11(23) 13(20) −23(35) - 0.20

3 0 1.3(1.6) - 4.3(5.4) - 9(11) 0.20

Table 11. The same as table 7, but for the twist-two function Bδqδq′ .

4.5 Results for Mellin moments

From the fits described in the previous section, we are able to reconstruct the Mellin moments

I(ζ, y2). Combining (4.17), (4.2), (4.9) and executing the Fourier transform (2.28) we arrive

at:

Iqq′(ζ, y
2) = π

∑

i=1,2

Aie
−ηi(y−y0)

N∑

n,m=0

K∑

k=0

ζ2n
(
T−1

)
nm

cmk
√
−y2

k+δ
ηδi Θ(1− ζ2) . (4.18)

In the following we discuss the corresponding results and physics implications. We take into

account every channel except for those we characterized as ”bad” channels in section 4.4.

Fit dependence: Figure 19 shows the results for the Mellin moments I(ζ = 0, y2) for

selected channels. We compare the bands obtained from the three different fits in order to

estimate the systematic error introduced by the extrapolation in py. In each channel we

observe consistency between the different fits, i.e. the three curves coincide within the error

bands. The situation is the same for the channels which are not shown in the plots. Notice

that also the bands for Itδuδd match within the statistical error, despite the fact that a linear

dependence of the moments 〈ζ2m〉 on y seemed to give a better description.

The agreement of the results for different fits also holds for ζ . 0.6 in most of the

channels that we have not excluded. As an example we show the results for Iud, I
t
δuδd and

Iuu in figure 20 (a-c). An exception is found for Iδdu plotted in figure 20 (d), where clear

deviations between the fits with N = 3 and N = 2 are found for ζ > 0.2. Notice that in

this channel we found the largest variations between the values of χ2/dof of the different fits.

At this point, we emphasize again that the ansatz (4.4) for the functional form of the DPD

Mellin moments represents an expansion around ζ = 0. Consequently, the more terms of

this expansion are taken into account, the more sensitive the results for large ζ become to

fluctuations of the corresponding coefficients.
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(a) fit comparison Iud(ζ = 0, y2) (b) fit comparison Itδuδd(ζ = 0, y2)

(c) fit comparison Iuu(ζ = 0, y2) (d) fit comparison Iδuu(ζ = 0, y2)

Figure 19. Results for selected DPD Mellin moments, where we compare the curves obtained from

the fits with (N,K) = (2, 0), (2, 1), (3, 0).

Since the fit for (N,K) = (2, 0) yields already a consistent description of the data, we

will base our physics discussion on the corresponding results.

Flavor comparison: We compare the results for the DPD Mellin moments w.r.t. the quark

flavor in figure 21, using a logarithmic scale on the vertical axes. The results for Iδqq′ are

multiplied by my, which follows from the decomposition (2.27). Like for the twist-two func-

tions, we observe that in the case of two unpolarized quarks (see panel (a)) the dd signal is

much smaller than that of ud and uu for large distances. At small y, the Mellin moments for

uu and dd show a steeper slope than Iud. The same behavior is observed for Iδqq′ in panel

(b), where we compare only uu, ud and du, since we have classified dd as a ”bad” channel.

A very interesting result is the different behavior of the Mellin moments Iud and Iuu.

In factorization assumptions as they are made in the pocket formula (see section 2.1) it is

required that the dependence of DPDs on the transverse quark distance is independent of the
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(a) fit comparison Iud(ζ, y = 10a) (b) fit comparison Itδuδd(ζ, y = 10a)

(c) fit comparison Iuu(ζ, y = 10a) (d) fit comparison Iδdu(ζ, y = 10a)

Figure 20. ζ dependence of selected DPD Mellin moments, where we compare the curves obtained

from the fits with (N,K) = (2, 0), (2, 1), (3, 0). This is shown for y = 10a.

(a) flavor comparison, Iqq′(ζ = 0, y2),

N = 2, K = 0

(b) flavor comparison, Iδqq′(ζ = 0, y2),

N = 2, K = 0

Figure 21. Results for the Mellin moments Iqq′ (a) and Iδqq′ (b) obtained from fits with (N,K) =

(2, 0). In each panel we compare contributions for different flavor combinations using a logarithmic

scale on the vertical axis.
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quark flavor, see (2.9). Our results clearly exclude this.

Polarization effects: In figure 22 we show the dependence of the Mellin moments on the

quark polarization for ud (c) and uu (a). Again we only show the results for N = 2 and

K = 0. As in the discussion of the twist-2 functions, we multiply the DPD Mellin moments

Iδqq′ or Itδqδq′ by my or m2|y2|, respectively, which follows from the decomposition (2.27).

The polarization dependence of the Mellin moments is very similar to that of the twist-two

functions, which we already gave in figure 13. These are again shown in panel (d) and (b). We

see that the unpolarized channels are clearly dominant for both flavor combinations. However,

in the case of ud, there are visible polarization effects. They are especially large for Iδud and

Iδdu, whereas Mellin moments Iδuδd and Itδuδd are smaller but still significantly different from

zero. At this point, we want to compare with the situation for ud̄ in the π+, which was

calculated in [67]. The corresponding results are also plotted in figure 22. Remarkably, the

behavior of the Mellin moments (e), as well as the twist-two functions (f), for ud̄ in a π+ is

comparable to the one for ud in a nucleon.

In the case of uu in the proton, polarization effects appear to be less important. Notice

that in the corresponding plots we only show the results for Iδuu and Iδuδu, since the remaining

functions belong to ”bad” channels, as we have discussed before. The largest polarized Mellin

moment is again Iδuu. Iδuδu is clearly non-zero for small distances, but the corresponding

statistical error is quite large (> 50%). The sign of Iδuδu indicates that the quark spins are

more aligned than anti-aligned, which agrees with expectations from SU(6) symmetric valence

quark wave functions [13]. However, the ratios I∆u∆d/Iud = −2/3 or I∆u∆u/Iuu = +1/3

predicted by this model are clearly not observed in our results. The same conclusion can be

drawn from the corresponding data of the twist-two functions.

4.6 The number sum rule

We consider the DPD number sum rule, which we have already stated in (2.6) in position

space. We look at the flavor combination ud. The remaining two flavor combinations uu and

dd cannot be investigated, since the corresponding expressions include sea quark contributions

that would lead to diverging integrals over x1. In the considered case of one u and one d

quark, splitting contributions are at least of second order in αs. Inserting the sum rule for

ordinary PDFs in (2.6) we can write:

∫ 1

−1
dx1

∫ 1

−1
dx2

∫

b0/µ
d2y Fud(x1, x2,y;µ) = 2 +O(α2

s(µ)) +O((Λ/µ)2) . (4.19)

By executing the integrals over x1 and x2, we can identify the DPD Mellin moments for ζ = 0.

The Fourier transform in py (2.28) then yields up to corrections of order Λ2/µ2 and α2
s:

2π

∫ ∞

b0/µ
dy y

∫ ∞

−∞
d(py) Aud(py, y

2) = 2 . (4.20)
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(a) polarization dependence, uu, ζ = 0,

fit with N = 2, K = 0

(b) polarization dependence, uu,

twist-two function at py = 0

(c) polarization dependence, ud, ζ = 0,

fit with N = 2, K = 0

(d) polarization dependence, ud,

twist-two function at py = 0

(e) polarization dependence, ud̄ in π+, ζ = 0,

fit with N = 2, K = 0
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polarization comparison, 𝐶1, 𝑝2 = 0 (𝐿 = 40)

(f) polarization dependence, ud̄ in π+,

twist-two function at py = 0

Figure 22. Comparison between different quark polarizations for the flavor combinations uu (a,b)

and ud (c,d). The left panels show the results for the Mellin moments obtained from the fit with

(N,K) = (2, 0). In the right panels we again show the data for the corresponding twist-two functions,

which was already plotted in figure 13. Panels (e) and (f) show the results for ud̄ in the π+, which

were calculated in [67].
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The verification that this equations holds for the results we presented in the previous sections

can be seen as a consistency check of our lattice calculations and our fitting ansatz. We

evaluate the expression on the l.h.s. of (4.20) by inserting the parameters obtained from the

y2 fit and each of the three global py fits. The corresponding values are summarized in

table 12.

N K χ2/dof integral

2 0 0.47 1.93(23)

3 0 0.46 2.07(51)

2 1 0.46 1.98(24)

Table 12. Results for the integral on the l.h.s. of (4.20) obtained for the fits with (N,K) =

(2, 0), (3, 0), (2, 1). In the center column we again list the values of χ2/dof for the fit.

Each of the obtained results is very close to the value predicted by the sum rule with a

largest absolute deviation of the mean of 0.07. The statistical error varies between 12% and

25%, i.e. it is larger than the systematic error which is introduced by the extrapolation in

py. Evaluating the integral (4.20) implicitly includes an extrapolation for y > 16a. In order

to estimate the corresponding systematic error, we decrease the upper integration boundary

of the y integral to 16a = 1.37 fm. We obtain values which are at most 16% smaller. Thus,

the systematic error from the extrapolation in y is at most of the size of the statistical error.

Notice that there is no extrapolation to the lower boundary b0/µ ≈ 1.29a, since the lower

boundary of the fit range is 1a in the unpolarized ud case.

5 Factorization Tests

A crucial aspect to be studied in the context of DPDs is the strength of parton-parton

correlations. These are neglected in factorization assumptions like (2.8). In the following we

want to check to what extent this factorization ansatz is valid.

5.1 Derivation

Equation (2.8) can be derived by inserting a complete set of states in the two-current matrix

element appearing in (2.1) or (2.11) and then assuming that the intermediate nucleon states

dominate, i.e. omitting all remaining contributions:

∑

λ

〈p, λ| Oa1(y, z1) Oa2(0, z2) |p, λ〉 ?
=

?
=
∑

λ,λ′

∫
dp′+d2p′

2p′+(2π)3
e−iy(p′−p) 〈p, λ| Oa1(0, z1) |p′, λ′〉 〈p′, λ′| Oa2(0, z2) |p, λ〉 . (5.1)
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1
2
ζ x2 − 1

2
ζ

d du u

1 1
fλλ′
dfλ′λ

u
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Figure 23. Illustration of the approximation of a DPD in terms of GPD matrix elements fλλ
′

for

the flavor combination ud. Panel (a) shows the factorization ansatz to be used for the case ζ > 0,

whereas (b) depicts the variant that we employ if ζ < 0.

By writing
?
=, we emphasize that (5.1) is an assumption; its validity is investigated in this

section. For the remaining derivation steps, we substitute the intermediate momentum p′ by:

p′+ = (1− ζ)p+ , p′ = p− r . (5.2)

Furthermore, we set p = 0 and identify:

x̄i =
xi

1− ζ
2

, ξ =
ζ

2− ζ , t(ζ, r2) = −ζ
2m2 + r2

1− ζ . (5.3)

This enables us to write a factorized expression of the skewed DPD defined in (2.11) in terms

of GPD matrix elements fλ
′λ(x̄, ξ,p′,p):

Fa1a2(x1, x2, ζ,y)
?
=

1

2(1− ζ)

∫
d2r

(2π)2
e−iry


 ∏

i=1,2

∫
dz−i
2π

eixip
+z−i




×
∑

λλ′

〈p, λ| Oa1(0, z1) |(1− ζ)p+,−r, λ′〉 〈(1− ζ)p+,−r, λ′| Oa2(0, z2) |p, λ〉

=
1

2(1− ζ)

∫
d2r

(2π)2
e−iry

∑

λλ′

fλλ
′

a1
(x̄1,−ξ,0,−r) fλ

′λ
a2

(x̄2, ξ,−r,0) (5.4)

with

fλ
′λ

a (x̄, ξ,p′,p) :=

∫
dz−

2π
eix̄(p′+p)+z−/2 〈p′, λ′| Oa(0, z) |p, λ〉 , (5.5)

where ξ = (p − p′)+/(p + p′)+. This factorization is shown pictorially in figure 23(a) for

the flavor combination ud. In the following we concentrate on the case of two unpolarized

quarks or two longitudinally polarized quarks. In these cases, the GPD matrix elements can
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be decomposed in terms of the GPDs H and E or H̃ and Ẽ, respectively. For details we refer

to equation (14) in [82]. The polarization sum in (5.4) can be replaced by:

1

2

∑

λλ′

fλλ
′

q (x̄1,−ξ,0,−r) fλ
′λ

q′ (x̄2, ξ,−r,0) = (1− ξ2) Hq(x̄1,−ξ, t) Hq′(x̄2, ξ, t)

− ξ2Hq(x̄1,−ξ, t) Eq′(x̄2, ξ, t)− ξ2Eq(x̄1,−ξ, t) Hq′(x̄2, ξ, t)

+

(
ξ4

1− ξ2
+

1 + ξ

1− ξ
r2

4m2

)
Eq(x̄1,−ξ, t) Eq′(x̄2, ξ, t) , (5.6)

1

2

∑

λλ′

fλλ
′

∆q (x̄1,−ξ,0,−r) fλ
′λ

∆q′(x̄2, ξ,−r,0) = (1− ξ2) H̃q(x̄1,−ξ, t) H̃q′(x̄2, ξ, t)

− ξ2H̃q(x̄1,−ξ, t) Ẽq′(x̄2, ξ, t)− ξ2Ẽq(x̄1,−ξ, t) H̃q′(x̄2, ξ, t)

+

(
ξ4

1− ξ2
+

1 + ξ

1− ξ ξ
2 r2

4m2

)
Ẽq(x̄1,−ξ, t) Ẽq′(x̄2, ξ, t) , (5.7)

with t = t(ζ, r2) from (5.3). Notice that for ξ = 0 the cross terms between H and E in (5.6),

as well as the last three terms in (5.7) vanish. This is the case if the skewness parameter ζ is

zero. For that case, the expressions in (5.6) and (5.7) have already been derived in [13], see

equations (4.48) and (4.49) therein.

Before we continue, we have to discuss an issue regarding the support region w.r.t. xi and

ζ, which is different on the two sides of (5.4). On the r.h.s. the support region is constrained

by −1 + ζ/2 < xi < 1 − ζ/2, whereas on the l.h.s. it is given by (2.12). Except for the

case where ζ = 1, the two regions are distinct. Their mismatch is even more pronounced if

ζ < 0. For this reason, we derive an alternative factorization formula by commuting the two

operators in the two-current matrix element. Following the same steps as in the derivation

of (5.4), we obtain:

Fa1a2(x1, x2, ζ,y)
?
=

1

2(1 + ζ)

∫
d2r

(2π)2
e−iry

∑

λλ′

fλλ
′

a2
(x̄′2,−ξ′,0,−r) fλ

′λ
a1

(x̄′1, ξ
′,−r,0) ,

x̄′i =
xi

1 + ζ
2

, ξ′ = − ζ

2 + ζ
. (5.8)

The corresponding support regions show the same relative behavior as for (5.4) and ζ > 0.

Hence, we shall use (5.4) for ζ > 0 and (5.8) if ζ < 0 for the following calculations. A graphical

representation of (5.8) can be found in figure 23(b). Taking the first Mellin moments on both

sides in (5.4), we find

Ia1a2(ζ,−y2)
?
=

(1− ζ
2)2

2(1− ζ)

∫
d2r

(2π)2
e−iry

∫
dx1

∫
dx2

×
∑

λλ′

fλλ
′

a1
(x1,−ξ,0,−r) fλ

′λ
a2

(x2, ξ,−r,0) . (5.9)
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and an analogous expression for (5.8). The integrals over xi of the corresponding GPD matrix

elements can be expressed in terms of the Pauli and Dirac form factors F1 and F2 (for fq)

or the axial and pseudoscalar2 form factors gA and gP (for f∆q), which are the lowest Mellin

moments of the GPDs H and E or H̃ and Ẽ, respectively. Since the GPDs are invariant

under rotations in the transverse plane, we can evaluate the angular part of the r-integral.

Considering Iqq′ or I∆q∆q′ and inserting ζ = 0 we can write:

Iqq′(ζ = 0,−y2)
?
=

∫
dr

2π
rJ0(ry)

[
F q1 (−r2) F q

′

1 (−r2) +
r2

4m2
F q2 (−r2) F q

′

2 (−r2)

]
, (5.10)

I∆q∆q′(ζ = 0,−y2)
?
=

∫
dr

2π
rJ0(ry) gqA(−r2) gq

′

A (−r2) (5.11)

with the Bessel function J0. The validity of the equations (5.10) and (5.11) is one subject to be

investigated in this section. Another relation can be derived by using (2.29) and performing

the angular part of the r-integral in (5.9). This yields:

Aa1a2(py = 0,−y2)
?
=

1

2π2

∫ 1

0
dζ

(1− ζ
2)2

2(1− ζ)

∫
dr rJ0(yr)

×
∫

dx1

∫
dx2

∑

λλ′

fλλ
′

a1
(x1,−ξ,0,−r) fλ

′λ
a2

(x2, ξ,−r,0) . (5.12)

Considering Aqq and A∆q∆q′ and replacing the integrals over xi of the GPD matrix elements

by F1, FF2 , gA, or gP , we arrive at:

Aqq′(py = 0,−y2)
?
=

1

2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr rJ0(yr)

[
K1(ζ) F q1 (t) F q

′

1 (t)

−K2(ζ)
(
F q1 (t) F q

′

2 (t) + F q
′

1 (t) F q2 (t)
)

+

(
K3(ζ) +K4(ζ)

r2

4m2

)
F q2 (t) F q

′

2 (t)

]
, (5.13)

A∆q∆q′(py = 0,−y2)
?
=

1

2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr rJ0(yr)

[
K1(ζ) gqA(t) gq

′

A (t)

−K2(ζ)
(
gqA(t) gq

′

P (t) + gq
′

A (t) gqP (t)
)

+

(
K3(ζ) +K5(ζ)

r2

4m2

)
gqP (t) gq

′

P (t)

]
, (5.14)

where t is a function of ζ and r2 as defined in (5.3), and

K1(ζ) := 1−K2(ζ) , K2(ζ) :=
ζ2

(2− ζ)2
, K3(ζ) :=

(K2(ζ))2

K1(ζ)
,

K4(ζ) :=
1

1− ζ , K5(ζ) := K2(ζ) K4(ζ) . (5.15)

2This is also called the induced pseudoscalar form factor.
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In our lattice study we obtained data for the l.h.s. of (5.13), (5.14), (5.10), and (5.11). In the

remainder of this section we investigate differences relative to the corresponding factorized

expressions given on the r.h.s.. These can be calculated form the nucleon form factors, which

can be evaluated in lattice studies.

5.2 The nucleon form factor

As already mentioned, the nucleon form factors as functions of the virtuality t can be obtained

from lattice calculations. In this study we use the form factor data [83] which has been

generated in the simulation described in [84]. In that work various gauge ensembles have

been investigated; we take the form factor data for gauge ensemble H102, which is the same

ensemble that is used in our DPD study. The form factor analysis carefully takes account of

excited state contributions. The absolute value of the largest initial proton momentum that

has been used is |~p | =
√

6 · 2π/(La) ≈ 1.11 GeV. Notice that the final momentum is set to

~p ′ = 0. In this setup, the largest available virtuality is t = −∆2 ≈ 1.02 GeV2.

In order to evaluate the integrals (5.13), (5.14), (5.10), and (5.11), we need to extrapolate

the lattice results in t. To this end, we fit the form factor data to a power law of the form

F (t) =
F (0)(

1− t
M2

)n , (5.16)

which is frequently used for parameterization of form factors. For each channel we perform

two different fits with fixed values for the exponent, n = 2 and n = 3, whereas F (0) and M

enter the fit as free fit parameters. The fits are performed employing the complete covariance

matrix, i.e. taking into account correlations between the data points. The resulting curves are

shown together with the form factor data in figure 24 for n = 3. The corresponding values of

the fit parameters and of the χ2/dof are summarized in table 13 (vector current) and table 14

(axial current), respectively. In order to analyze the quality of the fit, we plot for each fit the

ratio of the data and the fit value. This is shown in figure 25.

From most of the fits we obtain a sufficiently good description of the form factor data.

The only exception is found for F d1 and n = 2, where we observe a relatively large discrepancy

between the data and the resulting curve, see figure 25(a). Consequently, the corresponding

χ2/dof has the very large value of 7.15. Hence, we perform an alternative fit using n = 4,

which again yields a reasonable result. For the remainder of this section we discard the fit

for F d1 with n = 2 and instead use the fit for n = 4 in this channel.

5.3 Results

Before comparing the two sides of the factorization formulae (5.13), (5.14), (5.10), and (5.11),

let us investigate the different terms on their r.h.s.. In figure 26 we compare the size of the

integrals over these terms. Notice that the shown results are based on the form factor fits

with the smallest χ2. In the unpolarized channels the F1F1-term is found to be dominant,

whereas the remaining contributions are very small. As an example we show Aud (a) and Add
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(a) form factor fit, vector current, n = 3 (b) form factor fit, axial vector current, n = 3

Figure 24. t-dependence of the form factor data points and the corresponding curves obtained from

a fit to the ansatz (5.16) with n = 3. This is shown for the Pauli and Dirac form factors in panel (a),

as well as for the axial and pseudoscalar form factors (b).

(a) data/fit ratio for F1 (b) data/fit ratio for F2

(c) data/fit ratio for gA (d) data/fit ratio for gP

Figure 25. t-dependence of the ratio of the form factor data and the corresponding fit, where we

compare results for different values of the exponent n. For better distinguishability data points for

different fits are shifted with different offsets. The results are shown for F1 (a), F2 (b), gA (c) and gP
(d) for each flavor.
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form factor F (0) M2[GeV2] n(fixed) χ2/dof

F u1 1.977(12) 1.063(19) 2 1.09

1.936(11) 1.747(29) 3 1.79

F u2 1.764(38) 0.982(44) 2 1.63

1.711(34) 1.674(68) 3 0.52

F d1 1.0421(70) 0.766(13) 2 7.15

1.0035(60) 1.300(19) 3 2.06

0.9860(57) 1.837(26) 4 0.94

F d2 −1.744(23) 0.834(19) 2 2.51

−1.658(20) 1.456(29) 3 1.30

Table 13. Results for the fit parameters F (0) and M2 obtained from a fit on the data of the Pauli

and Dirac form factors using the ansatz (5.16) with fixed n. The corresponding χ2/dof, which takes

into account the complete covariance matrix, is also listed.

form factor F (0) M2[GeV2] n(fixed) χ2/dof

guA 0.8999(82) 1.971(64) 2 1.61

0.8920(78) 3.161(97) 3 0.82

guP 29.84(94) 0.327(11) 2 0.30

24.73(62) 0.688(17) 3 1.03

gdA −0.2930(41) 1.800(81) 2 1.05

−0.2896(39) 2.90(12) 3 0.93

gdP −9.62(77) 0.305(27) 2 0.13

−7.88(49) 0.638(44) 3 0.60

Table 14. The same as table 13 for the axial and pseudoscalar form factors.

(c), as well as Iud (d). In the longitudinally polarized case, the gAgA-term is also the most

relevant one, but the relative size of the other contributions is larger than in the unpolarized

cases. This can be observed e.g. in the result for A∆u∆d, which is plotted in figure 26(b). A

similar behavior is found in the other channels that are not shown in the plots.

In the following, we consider the complete results of the r.h.s. of (5.13), (5.14), (5.10),

and (5.11) obtained from the corresponding integrals over the form factors and compare

them to the l.h.s.. The observed difference can be interpreted as a measure of the strength

of the quark-quark correlations. If the values of the involved data points are large enough

compared to the statistical error, we also compute the ratio of both sides, in order to better

see similarities and differences. We start with (5.13), where the two sides, as well as the ratio

of both sides is shown in figure 27 for Aud and Auu. The result for Add (without the ratio,

since the signal is not sufficiently clean) is plotted in figure 28(a). For all flavor combinations,
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(a) Aud (b) A∆u∆d

(c) Auu (d) Iud, ζ = 0

Figure 26. Comparison between the different terms contributing to the factorized expressions for the

twist-two functions Aud, A∆u∆d, Auu, and for the Mellin moment Iud at zero skewness ζ. In the keys

we use the short notation K34 := K3(ζ) +K4(ζ) r
2/(4m2) and K35 := K3(ζ) +K5(ζ) r

2/(4m2).

the form factor result correctly reproduces the size of the two-current data. Deviations are

observed to be very small. From the ratio, we can read off the relative deviation, which is at

most ∼ 20% for ud. For uu, deviations are seen to be typically around ∼ 20%. Notice that

the F2F2-term and the mixed term play only a minor role in the integral formula, i.e. the

F1F1-term (blue curve) is almost equal to the complete result.

The size of the two results also matches in the longitudinally polarized channels, as can be

seen in figure 28 for A∆u∆d (b), A∆d∆d (c), and A∆u∆u (d). A remarkable observation is the

nearly perfect agreement within statistical errors in the case of A∆u∆d. Notice that the two-

current signal of A∆d∆d is consistent with zero. Hence, the agreement of the corresponding

curves and data points should be interpreted with some caution. In contrast to the unpolarized

case, taking the complete integral instead of only the gAgA-term is crucial. Evaluating the

integral over the gAgA-term only (the corresponding result is again shown by the blue curve)
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(a) Auu vs
∫
FuFu, py = 0 (b) Ratio

∫
FuFu/Auu, py = 0

(c) Aud vs
∫
FuFd, py = 0 (d) Ratio

∫
FuFd/Aud, py = 0

(e) Aud̄ vs
∫
FuFd̄ for π+, py = 0 (f) Ratio

∫
FuFd̄/Aud̄ for π+, py = 0

Figure 27. Left: Comparison of the twist-two functions Auu (a) and Aud (c) (green points) and the

factorization results obtained by the integral (5.13). The red curve is obtained from the form factor

fits with best χ2/dof. The orange band represents the envelope of the error bands of the different

fits. Right: Ratio of the form factor integral and the corresponding twist-two functions, again shown

for Auu (b) and Aud (d). In the panels (a) and (c) we also present the integration result taking into

account only the first term (5.13) (blue curve). In panel (e) and (f), we show the corresponding results

for the π+ obtained in [67] for two different fits.
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(a) Add vs
∫
FdFd, py = 0 (b) A∆u∆d vs

∫
gugd, py = 0

(c) A∆d∆d vs
∫
gdgd, py = 0 (d) A∆u∆u vs

∫
gugu, py = 0

Figure 28. The twist-two functions Add (a), A∆u∆d (b), A∆d∆d (c) and A∆u∆u (d) compared to the

corresponding form factor integral (5.13) or (5.14). The orange band again represents the envelope

of the error bands for the different fits. The blue curve shows again the integration result of the first

term in (5.13) or (5.14).

yields a significant difference between the two sides of (5.14). In figure 27(e) and 27(f) we

show again the factorization results for Aud̄ for the π+, which has been investigated in [67].

The results obtained there are comparable with those of Aud in the nucleon that we have

described above.

Finally, we want to consider the factorization for the Mellin moments Iqq′ at ζ = 0

according to (5.10). We shall not discuss (5.11), since we do not have results of sufficient

quality for I∆q∆q′ , as we have concluded in section 4.4. Figure 29 shows the two sides of

(5.10) (a), as well as the ratio (b) for quark flavor ud, while the analogous results for uu and

dd (the latter again without the ratio) are shown in (c), (d) and (e). The integral again yields

a consistent order of magnitude. However, the deviations of the two curves are found to be

larger than for the factorization ansatz of the twist-two functions. The relative deviations are
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(a) Iud vs
∫
FuFd, ζ = 0 (b) Ratio

∫
FuFd/Iud, ζ = 0

(c) Iuu vs
∫
FuFu, ζ = 0 (d) Ratio

∫
FuFu/Iuu, ζ = 0

(e) Idd vs
∫
FdFd, ζ = 0 (f) Iud̄ vs

∫
FuFd̄ for π+, ζ = 0

Figure 29. Mellin moment Iud at ζ = 0 compared to its factorized result obtained from the corre-

sponding integral (5.10) (a) and the ratio of the integral and the Mellin moment (b). The same is

plotted for Iuu (c,d) and Idd (e). For the latter the ratio is not shown. The orange curve shows the

envelope of the error bands for every fit. The result of a integral where only the first term in (5.10) is

taken into account is represented by the blue curve. Panel (f) shows the factorization result for Iud̄ in

the π+ obtained in [67] for the two form factor fits considered in that work.
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at most ∼ 40% for ud and ∼ 60% for uu. Again we compare with the situation for the π+,

which is shown in figure 29(f). Especially for small distances y, the factorization result of Iud̄
is closer to the two-current result for the Mellin moment in the pion case than it is observed

for ud in the proton.

Notice that regions where the integral gives a higher value than the two-current data, or

vice versa, are consistently the same for the twist-two functions and the Mellin moments. For

ud we observe the integral to be larger for y < 8a, while it is smaller if y > 8a. This means

that in a joint observation of an u and a d quark, we find the two quarks farther apart than

we would if they were uncorrelated. This is similar to ud̄ in the π+ described in [67]. For two

quarks of the same flavor, the integration results are generally larger than the two-current

data. An exception is given by the region y < 5a, where at least the twist-two function results

indicate a sign change in the absolute difference.

6 Conclusions

This paper presents the first lattice calculation that provides information about double par-

ton distributions in the proton. The distributions in the neutron are readily obtained from

isospin symmetry. Our simulations are done on a 323 × 96 lattice with spacing a ≈ 0.086 fm

and a pion mass of mπ = 355 MeV. We compute the correlation functions (2.18) of two

spatially separated currents in the proton and project out their twist-two parts. Our primary

observables are the invariant functions A and B associated with that projection, see (2.25).

They depend on the distance yµ between the two currents and on proton four-momentum pµ

via the scalar products y2 and py. We consider the vector, axial, and tensor current, whose

twist-two components respectively correspond to unpolarized, longitudinally polarized, and

transversely polarized quarks.

Lattice aspects. We evaluate all Wick contractions that contribute to the two-current

correlation functions, making heavy use of stochastic sources, sequential sources, and the

hopping parameter expansion. The statistical signal we obtain is in general very good for the

connected graphs C1 and C2 and the disconnected graph S2, and fair for the disconnected

graph S1 (see figure 3). Only for the doubly disconnected graph D are the errors so large that

we must exclude it from our analysis. Lattice artifacts manifest themselves in the invariant

functions as a breaking of rotation invariance (i.e. a dependence on direction of ~y ) and a

breaking of boost invariance (at given y = |~y | and py the functions must be independent of

pµ). We find a significant amount of anisotropy in the C1 data at large y and in the C2 and

S2 data at small y. These can be interpreted as a finite size effect in the first case and as due

to the anisotropy of the lattice propagator in the second case. We can largely remove these

effects by selecting points ~y close to the lattice diagonals and by imposing a lower cutoff on

y, which depending on the polarization channel is taken of order 4a ≈ 0.34 fm. After this

selection, the violation of boost invariance is at an acceptable level, except for graph S2, where

a momentum dependence is seen up to about y ∼ 7a. For larger y, the contribution of S2 to
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physical matrix elements is small compared with the one from C1 and C2. The contribution

of S1 is found to be small at the scale of C1 and C2, except for larger y, where the errors

on S1 prevent us from drawing strong conclusions. For our final physics analysis, we restrict

ourselves to the contributions of the connected graphs C1 and C2, where C2 is absent for the

parton combination ud and C1 is absent for dd.

Results. In a first stage, we analyze the invariant twist-two functions A and B at py = 0,

where the statistical signal is best and the data can be plotted as a function of the single

variable y. To connect these functions with DPDs, we slightly deform them by a skewness in

the parton momentum fractions that is parameterized by ζ (see figure 1). Twist-two functions

at py = 0 are then equal to the Mellin moments of skewed DPDs integrated over ζ. The size

of these functions is seen to be largest for Aqq′ and Aδqq′ , with the former corresponding to

unpolarized partons and the latter to the correlation between the transverse polarization of

one parton and the parton separation. Our results exhibit a clear flavor dependence, with

Aud and Aδud ≈ Aδdu decreasing more slowly with y than their counterparts for two u or

two d quarks (see figure 12). For unpolarized quarks, this finding is of particular importance,

because one of the assumptions made for deriving the pocket formula (2.10) for DPS cross

sections is a universal y dependence of DPDs for all flavor combinations. Interestingly, Auu
and Add have a rather similar y dependence, although the former receives a contribution from

C1 but the latter does not.

The signal for spin dependent functions other than Aδqq′ is best for the ud combination,

whereas for qq′ = uu and dd it is mostly consistent with zero (see figure 13). In the ud

channel, the invariant functions for two polarized quarks are significantly smaller than Aδud.

We see a clear difference between the spin-spin correlations A∆u∆d and Aδuδd for longitudinal

and transverse polarization, which shows the inadequacy of simple non-relativistic pictures

that predict them to be equal. Moreover, we find that the longitudinal polarization ratios

A∆u∆d/Aud and A∆u∆u/Auu are significantly smaller in size than the values −2/3 and +1/3

obtained with a static SU(6) invariant wave function for the three valence quarks in the proton

[13]. Interestingly, the pattern of polarization dependence for ud in the proton is quite similar

to the one we found for ud̄ in a π+ in our previous work [67].

In the second stage of our analysis, we assume a parametric form for the y and py

dependence of the twist-two functions (see (4.2) and (4.17)). We use this to fit our data and

to extrapolate it to the full range of py, which is needed to compute the Mellin moments

Iqq′ , Iδqq′ , . . . of DPDs at given skewness ζ. For flavor and polarization combinations with

sufficiently small statistical errors, the results of fits with different numbers of parameters

are consistent with each other for small to moderate ζ (see figures 19 and 20). This gives us

confidence in analyzing the corresponding Mellin moments at ζ = 0 and thus to make closer

contact with the physics of double parton scattering.

The flavor and polarization dependence of Mellin moments at ζ = 0 is very similar to the

one of the associated twist-two functions at py = 0, which corroborates the physics conclusions

discussed above (see figures 21 and 22). From the moment Iud, we can also evaluate the x
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integral of the number sum rule for DPDs [33, 70]. We find excellent agreement with the

predicted value of the sum rule (see table 12) and regard this as a strong check of our fitting

ansatz and analysis procedure.

Correlation effects. Many models for DPDs rest on the assumption that the two partons

are independent of each other. This assumption can be formalized and leads to factoriza-

tion formulae for the twist-two functions Aqq′ and A∆q∆q′ ((5.13) and (5.14)), and for the

associated Mellin moments ((5.10) and (5.11)). These functions are then expressed in terms

of the nucleon Dirac and Pauli form factors F1 and F2 for unpolarized quarks, and of the

axial and pseudoscalar form factors gA and gP for longitudinal quark polarization. We fit

these form factors to lattice data from the same ensemble used for computing the two-current

correlators, and then extrapolate the form factors in the momentum transfer. We find that

the factorization formula for unpolarized quarks is to a good approximation saturated by

the contribution from F1, whilst for longitudinal polarization it is important to include the

contributions from both gA and gP (see figure 26).

We find that the factorization assumption for Aud and Auu at py = 0 works remarkably

well, with deviations not larger than 20% in the y range considered (see figure 27). It works

rather well also for A∆u∆d, whereas for Add and A∆u∆u larger deviations from factorization

are observed (see figure 28). The factorization for the Mellin moments Iud and Iuu at ζ = 0

works rather well, albeit with deviations up to almost 60%, whereas for Idd the discrepancies

are again larger (see figure 29). In other channels, the errors in our data or fits are too large

for drawing solid conclusions.

Summary and outlook. In summary, we find that the calculation of two-current correla-

tors on the lattice can provide valuable physics insight into two-quark correlations inside the

proton, which are essential for understanding double parton scattering. Our main results are

as follows. (i) The dependence of two-parton distributions on the distance y is not the same

for different flavors. (ii) Spin-spin correlations between two quarks are remarkably small, in

contrast to spin-orbit correlations. (iii) The functions we studied approximately factorize into

separate functions for the individual partons.

Important challenges for future work are to perform simulations at smaller lattice spac-

ings, so as to extend the y range where lattice artifacts can be controlled, and to move closer

to the physical pion mass. Improvements that will allow the inclusion of disconnected graphs

in the physics analysis are also highly desired. The results obtained in the present study

strongly motivate us to make efforts in these directions.
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A Notation and lattice technicalities

In the following, we list expressions that are useful for the calculation of the baryon four-point

contractions introduced in section 3. This includes symmetry relations, as well as ingredients

that are used to evaluate the four-point contractions on the lattice. Furthermore, we give

details on the notation used in this paper.

A.1 Notation

In this work we use the following notation conventions:

• Indices: Lorentz indices are denoted by Greek letters µ, ν, . . . , spinor indices by α, β, . . . ,

and color indices (fundamental) by Latin letters a, b, c, . . . .

• Spacetime dependencies are indicated by an argument if it represents a degree of free-

dom. If the corresponding variable is fixed (e.g. the source position of a point-to-all

propagator) an index is used instead.

• Unless stated otherwise, traces and transpositions are taken w.r.t. spinor and color

indices.

• For a given 4-vector yµ we denote the spatial components by ~y (identical in Minkowski

and Euclidean spacetime). The spatial distance is denoted by y := |~y |. If y0 = 0, we

have |~y |2 = −y2 := −yµyµ. In order to avoid confusion with the usual Minkowski scalar

product y2, we explicitly write
√
−y2

n
for the n-th power of y = |~y |.

For better readability, spinor and color indices, as well as spacetime arguments are not always

explicitly written in section 3.2. This applies if the considered objects have matrix or vector

character w.r.t. these indices or arguments. We list some of the objects that are considered in

this work and display their explicit notation in table 15. Notice that each of the mentioned

expressions may have further dependencies which are not stated above. A product of these

quantities is considered to be a matrix-matrix or matrix-vector product. As an example we

rewrite (3.41) using the compact and the explicit notation, respectively:
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Object Symbol Degrees of freedom Explicit

Gauge link Uµ space× color2 (Uµ)ab (x)

Generic source S space× spinor2 × color2 Sabαβ(x)

Smearing function Φ space2 × color2 Φab(x|y)

Dirac operator D space2 × spin2 × color2 Dabαβ(x|y)

Propagator (x→ y) M space2 × spin2 × color2 Mab
αβ(y|x)

Point(x)-to-all(y) propagator Mx space× spinor2 × color2 (Mx)abαβ (y)

Stochastic source/propagator η, ψ space× spinor× color ηαa(x), ψαa(x)

Sequential propagator (at time t) Xt space× spinor2 × color2 (Xt)
ab
αβ (x)

Gamma matrices Γ spinor2 Γαβ

Table 15. Lattice objects and their degrees of freedom regarding spacetime (for brevity, we write

”space” in the table), spinor and color indices. Notice that Lorentz indices, e.g. of the gauge link Uµ,

are always written explicitly.

DXΦ,~p
t,3pt = Φ~pγ5S

†,~p
t,3pt

⇔
∑

y,β,b

Dabαβ(x|y)
(
XΦ,~p
t,3pt(y)

)bc
βγ

=
∑

y,β,b

(
Φ~p(x|y)

)ab
(γ5)αβ

[(
S~pt,3pt(y)

)cb
γβ

]∗
. (A.1)

Each of the two sides carries the (implicit) indices or arguments x, α, γ, a, and c, i.e. :

[
DXΦ,~p

t,3pt(x)
]ac
αγ

,
[
Φ~pγ5S

†,~p
t,3pt(x)

]ac
αγ

. (A.2)

In some cases where spinor and color indices are written explicitly, we make use of the Einstein

summation convention, i.e. indices that appear twice are to be summed over.

A.2 Explicit expressions for four-point Wick contractions

The baryons are created and annihilated by the interpolators (3.3). Referring to this equation,

we assign the following integer numbers to the quark fields:

ūa → 1̄ , d̄Tb → 2̄ , ūc → 3̄ ,

uTb → 1 , dc → 2 , ua → 3 . (A.3)

These numbers are also shown in the upper left panel of figure 30 and are used in the following

to indicate the permutation of the annihilator fields w.r.t. the creator fields. The connected

part of a generic baryon Wick contraction can be written in terms of the expressions (traces

and transpositions are taken w.r.t. to spinor indices only):
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G123[X,Y, Z] := εabc εa
′b′c′ tr

{(
ΓB
)T
Xa′a ΓB Y T

b′b

}
tr
{
Zc′c ΓA

}
,

G213[X,Y, Z] := −εabc εa′b′c′ tr
{

ΓB Xb′a ΓB Y T
a′b

}
tr
{
Zc′c ΓA

}
,

G321[X,Y, Z] := −εabc εa′b′c′ tr
{

ΓA Xc′a ΓB Y T
b′b

(
ΓB
)T
Za′c

}
,

G132[X,Y, Z] := −εabc εa′b′c′ tr
{(

ΓB
)T
XT
a′a ΓB Zb′c ΓA Yc′b

}
,

G231[X,Y, Z] := εabc εa
′b′c′ tr

{(
ΓB Xb′a ΓB

)T
Za′c ΓA Yc′b

}
,

G312[X,Y, Z] := εabc εa
′b′c′ tr

{
ΓA Xc′a ΓB Y T

a′b ΓB Zb′c
}
. (A.4)

For the nucleon we have ΓB = Cγ5 and ΓA = P+, where C is the charge conjugation matrix

and P+ selects positive parity. As a consequence, we can relate:

G321[X,Y, Z] = G132[Y,X,Z] , G312[X,Y, Z] = G231[Y,X,Z] . (A.5)

X, Y and Z can be either a propagator M(z′|z) connecting the source at z and the sink at

z′ or one of the following terms:

Ki
1(z′|y|z) := M(z′|y) Γi M(y|z) ,

Kji
2 (z′|y|z) := M(z′|y) Γi M(y|0) Γj M(0|z) ,

K
ij
2 (z′|y|z) := M(z′|0) Γj M(0|y) Γi M(y|z) = Kij

2 (z′| − y|z) . (A.6)

Each of the expressions Gijk, K1, K2 and K2 is pictorially represented in figure 30. The

second identity in the last line of (A.6) is a consequence of translational invariance. We

now consider the effects of PT transformations and the combination of complex conjugation

and CP transformation on the previously defined expressions. The following relations are

understood to be valid after integrating over the gauge fields:

X
PT−−→ S−1 [UPT (X)]T S X∗

CP−−→ A−1 UCP (X) A , (A.7)

where

UPT (M(z′|z)) := M(−z| − z′) ,
UCP (M(z′|z)) := M(z̃′|z̃) ,

UPT (Ki
1(z′|y|z)) := ηiPT η

i
4 K

i
1(−z| − y| − z′) ,

UCP (Ki
1(z′|y|z)) := ηiPT K

i
1(z̃′|ỹ|z̃) ,

UPT (Kji
2 (z′|y|z)) := ηijPT η

ij
4 Kij

2 (−z|y| − z′) ,
UCP (Kji

2 (z′|y|z)) := ηijPT K
ji
2 (z̃′|ỹ|z̃) , (A.8)
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G123[X,Y , Z] G312[X,Y , Z] G231[X,Y , Z]

I(1̄)
J(2̄)
I(3̄)

J (1)
I (2)
I (3)

.
I
J
I

J
I
I

.
I
J
I

J
I
I

.

G213[X,Y , Z] G132[X,Y , Z] G321[X,Y , Z]

I
J
I

J
I
I

.
I
J
I

J
I
I

.
I
J
I

J
I
I

.

Ki
1(z′|y|z) Kji

2 (z′|y|z) K
ij

2 (z′|y|z)

z z′
Γi

y
. z z′

Γiy

Γj
0

. z z′

Γiy

Γj
0

.

Figure 30. Depiction of expressions (A.4) and (A.6) used for the construction of each baryonic four-

point function graph. The blobs at the left (right) of each graph in the two first lines denote the baryon

source (sink). Each symbol I and J represents a quark field, where J means that the corresponding

spinor has to be transposed. The boxes denote the di-quark. For the three quark line types (bottom)

we also indicate the positions of the propagator end points and the indices of the current insertions.

with z̃ := (−~z , z4), and

S := γ4T , A := γ4Cγ5 . (A.9)

T is the time reflection matrix. We use a chiral basis for the Dirac matrices, where C = γ2γ4

and T = γ1γ3γ4. The sign factors ηPT, η4 are defined in (2.14) and (3.9), respectively.

Considering the generic connected baryon contractions (A.4) we find for the nucleon:

(
Gijk[X,Y, Z]

)∗ CP−−→ Gijk[UCP (X), UCP (Y ), UCP (Z)] , (A.10)

and moreover

Gijk[X,Y, Z]
PT−−→ Gijk[UPT (X), UPT (Y ), UPT (Z)] for (ijk) = (123), (213) ,

Gijk[X,Y, Z]
PT−−→ Gijk[UPT (Z), UPT (Y ), UPT (X)] for (ijk) = (321), (312) ,

Gijk[X,Y, Z]
PT−−→ Gijk[UPT (X), UPT (Z), UPT (Y )] for (ijk) = (132), (231) . (A.11)
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Notice the different orderings of X, Y , Z on the r.h.s. . Furthermore, we define the loops:

Li1(y) := tr {Γi M(y|y)} ,
Lij2 (y) := tr {Γi M(y|0) Γj M(0|y)} . (A.12)

As discussed in section 3.1, there are five types of Wick contractions, which can be represented

by the graphs depicted in figure 3. The explicit contributions depend on the quark flavors

of the inserted operators and the baryon, which in our case is always a proton. Since the

end points are always connected to the source at z and the sink at z′, we shall not write the

corresponding arguments of K1,2 and K2 in the following for brevity. For C1-type graphs we

define:

Cij1,uudd(z, z
′, y) :=

〈
G123[Ki

1(y),Kj
1(0),M ] +G321[Ki

1(y),Kj
1(0),M ]

+G321[M,Kj
1(0),Ki

1(y)] +G123[M,Kj
1(0),Ki

1(y)]
〉
,

Cij1,uuuu(z, z′, y) :=
〈
G123[Ki

1(y),M,Kj
1(0)] +G321[Ki

1(y),M,Kj
1(0)]

+G321[Kj
1(0),M,Ki

1(y)] +G123[Kj
1(0),M,Ki

1(y)]
〉
,

Cij1,uddu(z, z′, y) :=
〈
G213[Ki

1(y),Kj
1(0),M ] +G231[Ki

1(y),Kj
1(0),M ]

+G312[M,Kj
1(0),Ki

1(y)] +G132[M,Kj
1(0),Ki

1(y)]
〉

= Cij1,duud(z, z
′,−y) . (A.13)

The contribution for a certain proton momentum is obtained by a discrete Fourier transform:

Cij,~p1,uudd(~y , t, τ) := a6
∑

~z~z ′

e−i~p(~z ′−~z )Cij1,uudd(z, z
′, y)|y4=τ,z4=0,z′4=t , (A.14)

with analogous expressions for the remaining contractions, which shall be defined in the

following. The contributions for C2 and S1 can be written as:

Cij2,u(z, z′, y) :=
〈
G123[Kji

2 (y),M,M ] +G321[Kji
2 (y),M,M ]

+G321[M,M,Kji
2 (y)] +G123[M,M,Kji

2 (y)]
〉
,

Cij2,d(z, z
′, y) :=

〈
G123[M,Kji

2 (y),M ] +G321[M,Kji
2 (y),M ]

〉
,

Sij1,u(z, z′, y) := −
〈[
G123[Ki

1(y),M,M ] +G321[Ki
1(y),M,M ]

+G321[M,M,Ki
1(y)] +G123[M,M,Ki

1(y)]
]
Lj1(0)

〉
,

Sij1,d(z, z
′, y) := −

〈[
G123[M,Ki

1(y),M ] +G321[M,Ki
1(y),M ]

]
Lj1(0)

〉
. (A.15)
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The last two contractions we consider are purely disconnected and are defined as:

Sij2 (z, z′, y) := −
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Lij2 (y)

〉
,

Dij(z, z′, y) :=
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Li1(y)Lj1(0)

〉
. (A.16)

For completeness, we also give the expression for the two-point function:

C2pt(z, z
′) :=

〈
G123[M,M,M ] +G321[M,M,M ]

〉
. (A.17)

A.3 Baryon sources and sinks

In the following, we list the terms that are used to construct the sequential sources and con-

tractions needed for the evaluation of baryonic four-point graphs. Notice that each quantity

given in the following is based on a point-to-all propagator with point source at z. After cor-

recting the momentum phase by multiplying with E~p(z) and averaging over all gauge fields,

the complete contraction is independent of the source position. This is why on the l.h.s. in

(A.19) z is not written as argument or index.

C1-sink (sequential source): For the sequential source required by the C1 graph at the

baryon sink, we have six possibilities to attach the quark lines to the sink kernel (3.28).

Since each of the quark lines is evaluated in a technically different manner, there are also

six possible expressions that can appear in the construction of the sequential source from

which the sequential propagator of quark line c (3.33) is calculated. In terms of the forward

propagator M (quark line a) and the stochastic source η (quark line b), the sequential sources

are given by:

σ

(
S
~p,(`)
123

)b̄a′
β̄α′

(z′) := E~p(z′) (P+γ5)σα′

[(
Φ~pMΦ,~p

z (z′)
)T

Ea
′
Φ~pγ5η

(`)(z′)

]b̄

β̄

,

σ

(
S
~p,(`)
213

)c̄a′
γ̄α′

(z′) := E~p(z′) (P+γ5)σα′

[(
Φ~pη(`)(z′)

)T
γT5 E

a′Φ~pMΦ,~p
z (z′)

]c̄

γ̄

,

σ

(
S
~p,(`)
231

)c̄b′
γ̄β′

(z′) := E~p(z′)
(
P+Φ~pγ5η

(`)(z′)
)a
σ

[
γT5 E

aΦ~pMΦ,~p
z (z′)

]b′c̄
β′γ̄

,

σ

(
S
~p,(`)
132

)b̄c′
β̄γ′

(z′) := E~p(z′)
(
P+Φ~pγ5η

(`)(z′)
)a
σ

[(
Φ~pMΦ,~p

z (z′)
)T

Eaγ5

]b̄c′

β̄γ′
,

σ

(
S
~p,(`)
312

)āc′
ᾱγ′

(z′) := E~p(z′)
(
P+Φ~pMΦ,~p

z (z′)
)aā
σᾱ

[(
Φ~pη(`)(z′)

)T
γT5 E

aγ5

]c′

γ′
,

σ

(
S
~p,(`)
321

)āb′
ᾱβ′

(z′) := E~p(z′)
(
P+Φ~pMΦ,~p

z (z′)
)aā
σᾱ

[
γT5 E

aΦ~pγ5η
(`)(z′)

]b′
β′
. (A.18)
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The integer indices denote which quark line is connected to which part according to the

pattern n(a)n(b)n(c), where n(a) indicates the number of the quark field (see (A.3)) to which

the quark line a is connected, and similar for n(b), n(c). For instance, in case of the expression

S312 we have the forward quark line a attached to quark field (3), the stochastic quark line b

to quark field (1), and the sequential quark line c to quark field (2). A sequential source S
for a specific flavor combination is represented by a sum of a certain subset of terms given in

(A.18).

C1-source: Analogous combinatorics lead to the six possible expressions used to construct

the quantity q1 from the forward propagator M and the sequential propagator X. In terms

of the quantity Y defined in (3.34), the contractions read:

(
S
~p,(`)
123,t,j

)b
β

(y) := E−~p(z)
∑

σ

[
σY

T,~p,(`)
t,j (y)Ec

]cb
γβ

(P+)γσ ,

(
S
~p,(`)
213,t,j

)a
α

(y) := E−~p(z)
∑

σ

[
EcσY

~p,(`)
t,j (y)

]ac
αγ

(P+)γσ ,

(
S
~p,(`)
231,t,j

)c
γ

(y) := E−~p(z)
∑

σ

tr
{
σY

~p,(`)
t,j (y)Ec

}
(P+)γσ ,

(
S
~p,(`)
132,t,j

)c
γ

(y) := E−~p(z)
∑

σ

tr
{
EcσY

T,~p,(`)
t,j (y)

}
(P+)γσ ,

(
S
~p,(`)
312,t,j

)a
α

(y) := E−~p(z)
∑

σ

[
EcσY

T,~p,(`)
t,j (y)

]ac
αγ

(P+)γσ ,

(
S
~p,(`)
321,t,j

)b
β

(y) := E−~p(z)
∑

σ

[
σY

~p,(`)
t,j (y)Ec

]cb
γβ

(P+)γσ . (A.19)

Like for the sequential sources discussed before, q1 is obtained by summing over a subset of

these terms, which is specific to the flavor combinations. More details and the cases needed

for flavor conserving proton-proton matrix elements shall be discussed in appendix A.4.

Sequential sources for G3pt: For the disconnected three-point contractions we re-use the

sequential sources that appear in three-point functions. Depending on the flavor of the quark

line, they can be written as:3

(
S~p3pt,u

)ab
αβ

(z′) = E~p(z′)

[
P+Φ~pMΦ,~p

z (z′)Ea
(
EbΦ~pMΦ,~p

z (z′)
)T]cc

αβ

+ E~p(z′) (P+)αβ tr

{
Φ~pMΦ,~p

z (z′)Ea
(
EbΦ~pMΦ,~p

z (z′)
)T}

+ E~p(z′)

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T

Φ~pMΦ,~p
z (z′)P+

]cc

αβ

3In contrast to the sequential source (A.18) used for the C1 contraction, the three-point sources S~p3pt are

defined without γ5, which in this case is included in (3.41)
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+ E~p(z′)
(

Φ~pMΦ,~p
z (z′)P+

)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T]dc

αβ

,

(
S~p3pt,d

)ab
αβ

(z′) = E~p(z′)
(

Φ~pMΦ,~p
z (z′)P+

)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T]dc

αβ

− E~p(z′)
(
EbΦ~pMΦ,~p

z (z′)
)cd
βγ

(
P+Φ~pMΦ,~p

z (z′)Ea
)cd
γα

. (A.20)

A.4 C1 contractions

We now give explicit expressions for the sequential source S and the contraction q1 needed

for the calculation of the C1 graph. We start with the contributions to Ouui (y)Oddj (0). The

corresponding sub-graphs are illustrated in figure 31. If the last integer index of the sequential

A

S
132 S132

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄)

u(1)

d(2)

u(3)

a

c

b

a

c

b

(1, 5, 4, 3, 2) = +1

B

S
312 S312

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄) u(1)

d(2)

u(3)

b

c

a

b

c

a

(4, 5, 3, 1, 2) = +1

C

S
132 S312

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄)

u(1)

d(2)

u(3)

a

c

b

b

c

a

(3, 5, 4, 1, 2) = −1

D

S
312 S132

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄) u(1)

d(2)

u(3)

b

c

a

a

c

b

(4, 5, 1, 3, 2) = −1

Figure 31. Contributions of C1 type for the combination Ouui (y)Oddj (0) (C1,uudd). Depending on

the evaluation method, we use different symbols to depict the propagators: The forward propagator

Mz is represented by a simple line, the stochastic propagator ψ by a zigzag line, and the sequential

propagator X (without the incorporated forward propagator and the stochastic source) by a dashed

line. The colors indicate the quark lines: Red corresponds to a, orange to b, and blue to c. The

combination of the quark lines with the numbers (1), (2), (3) at the sink or (1̄), (2̄), (3̄) at the source

determines the sequential source type Sn(a)n(b)n(c) (see (A.18)) or the contraction Sn(a)n(b)n(c) (see

(A.19)), respectively. The resulting permutation is also given for each contraction. Moreover, at the

bottom line of each panel we give the permutation of quark fields represented by the propagator and

the corresponding sign, which enters the total contribution and hence the physical matrix elements.

sources (A.18) is equal for two or more contractions appearing in the flavor specific sum, the

corresponding sequential sources can be combined before the inversion. In the case considered,

we are able to combine A with C and B with D, which in both cases gives:
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S~p,(`)(z′) = S
~p,(`)
132 (z′)− S~p,(`)312 (z′) , (A.21)

up to a global sign. Inserting the source (A.21), we obtain the corresponding sequential

propagator X by an inversion of (3.33). The relative signs, which can be read off from

figure 31, correspond to the permutations of fermionic fields. The two contributions (A,C)

and (B,D) are then combined in the quantity q1 by calculating the sum:

q
~p,(`)
1,t,j (y) = S

~p,(`)
132,t,j(y)− S~p,(`)312,t,j(y) . (A.22)

The quantity Y appearing in the definition (A.19) of the contractions S is obtained from the

sequential propagator, one current insertion, and the forward propagator, see (3.34). The

total contribution to C1,uudd is then simply given by (3.36) with q1 as defined in (A.22).

We now turn to the C1 contribution for the flavor combination Ouui (y)Ouuj (0). The

corresponding sub-graphs are shown in figure 32. In this case, we only need the expression

A

S
213 S213

ū(1̄)

d̄(2̄)

ū(3̄)

(4)uū(4̄)

(5)uū(5̄)

u(1)

d(2)

u(3)

b

a

c

b

a

c

(4, 2, 5, 1, 3) = +1

B

S
231 S213

ū(1̄)

d̄(2̄)

ū(3̄)

(4)uū(4̄)

(5)uū(5̄)

u(1)

d(2)

u(3)

c

a

b

b

a

c

(4, 2, 5, 3, 1) = −1

C

S
231 S213

ū(1̄)

d̄(2̄)

ū(3̄)

(4)uū(4̄)

(5)uū(5̄)

u(1)

d(2)

u(3)

c

a

b

b

a

c

(5, 2, 4, 1, 3) = −1

D

S
213 S213

ū(1̄)

d̄(2̄)

ū(3̄)

(4)uū(4̄)

(5)uū(5̄)

u(1)

d(2)

u(3)

b

a

c

b

a

c

(5, 2, 4, 3, 1) = +1

Figure 32. The same as figure 31, but for the contributions to Ouui (y)Ouuj (0) with C1 topology

(C1,uuuu).

S213 for the construction of the sequential source, i.e. :

S~p,(`)(z′) = S
~p,(`)
213 (z′) . (A.23)
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Like for C1,uudd, we calculate the sequential propagator by inverting (3.33) with the source

(A.23), and calculate Y (see (3.34)), which is then contracted with the sources (A.19) accord-

ing to the permutation that can be read off in figure 32. It is possible to combine A with C

and B with D before doing the spatial correlation, since each current insertion is connected

to the same quark line within these pairs. In contrast to the C1,uudd case, we have two terms

contributing to C1,uuuu consisting of q1q2 products, where q1 and q2 are given by:

q
~p,(`)
1,AC,t,j(y) = S

~p,(`)
213,t,j(y)− S~p,(`)231,j(y) ,

q
~p,(`)
1,BD,t,i(y) = −S~p,(`)231,t,i(y) + S

~p,(`)
213,i(y) ,

q
~p,(`)
2,AC,t,i(x) = ψ

†,(`)
t (x) γ5Γi M

Φ,~p
z (x) ,

q
~p,(`)
2,BD,t,j(x) = ψ

†,(`)
t (x) γ5Γj M

Φ,~p
z (x) . (A.24)

Notice that in the BD case the current insertion indices i, j are exchanged compared to the

AC case. Putting everything together, the total C1,uuuu contribution reads:

Cij,~p1,uuuu(~y , t, τ) =
a3

Nst

∑

~x

Nst∑

`

〈[
q
T,~p,(`)
2,AC,t,i(x+ y) q

~p,(`)
1,AC,t,j(x)

]

+
[
q
T,~p,(`)
1,BD,t,i(x+ y) q

~p,(`)
2,BD,t,j(x)

]〉∣∣∣
x4=τ,y4=0

. (A.25)
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[9] M. Diehl and A. Schäfer, Theoretical considerations on multiparton interactions in QCD, Phys.

Lett. B 698 (2011) 389 [1102.3081].

[10] J.R. Gaunt and W.J. Stirling, Double Parton Scattering Singularity in One-Loop Integrals,

JHEP 06 (2011) 048 [1103.1888].

[11] M.G. Ryskin and A.M. Snigirev, A Fresh look at double parton scattering, Phys. Rev. D 83

(2011) 114047 [1103.3495].

[12] B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The Four jet production at LHC and

Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [1009.2714].
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