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ABSTRACT: We present a novel benchmark application of a quantum algorithm to Feynman loop
integrals. The two on-shell states of a Feynman propagator are identified with the two states of a
qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop
Feynman diagrams. To identify such configurations, we exploit Grover’s algorithm for querying
multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical
algorithms when the number of solutions is much smaller than the number of possible configurations.
A suitable modification is introduced to deal with topologies in which the number of causal states to
be identified is nearly half of the total number of states. The output of the quantum algorithm in
IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the
loop-tree duality of representative multiloop topologies. The algorithm may also find application
and interest in graph theory to solve problems involving directed acyclic graphs.
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1 Introduction and motivation

Quantum algorithms [1] are a very promising avenue for solving specific problems that become
too complex or even intractable for classical computers because they scale either exponentially or
superpolynomially. They are particularly well suited to solve those problems for which the quantum
principles of superposition and entanglement can be exploited to gain a speed-up advantage over
the counterpart classical algorithms. These are, for example, the well-known cases of database
querying [2] and factoring integers into primes [3]. Other recent applications are related to the
enhanced capabilities of quantum systems for minimizing Hamiltonians [4, 5] which lead to a wide
range of applications in optimization problems. For instance, this framework has been used in
quantum chemistry [6], nuclear physics [7, 8], and also finance, such as portfolio optimization [9].
The stringent demands that high-energy physics will meet in the coming Run 3 of the CERN’s
Large Hadron Collider (LHC) [10], the posterior high-luminosity phase [11], and the planned
future colliders [12—15] motivate exploring new technologies. An interesting prospective avenue
is quantum algorithms, which have recently started to come under the spotlight of the particle
physics community. Recent applications include: the speed up of jet clustering algorithms [16—-18],
jet quenching [19], determination of parton densities [20], simulation of parton showers [21-23],
heavy-ion collisions [23], quantum machine learning [24—26] and lattice gauge theories [27-32].
One of the core bottlenecks in high-energy physics concerns the theoretical evaluation of
quantum fluctuations at higher orders in the perturbative expansion by means of multiloop Feynman
diagrams and the combination of all the ingredients contributing to a physical observable to provide



accurate theoretical predictions beyond the second order or next-to-leading order (NLO). Impressive
advances have been achieved in recent years in this field. For a very complete review of the
current available frameworks, we refer the interested reader to Ref. [33]. They involve analytical,
fully numerical and semi-analytical approaches for the evaluation of multiloop Feynman integrals,
including sector decomposition [34-37], Mellin-Barnes transformation [38—43], algebraic reduction
of integrands [44-51], integration-by-parts identities [52, 53], semi-numerical integration [54-56],
four-dimensional methods [33, 57, 58], contour deformation assisted by neural networks [59];
as well as the achievement of theoretical predictions at fourth order (N3LO) for specific cross-
sections [60-64]. All these methodologies may soon be challenged by the theoretical precision
required at high-energy colliders.

Despite recent proposals on quantum numerical evaluation of tree-level helicity amplitudes [65],
it is generally accepted that the perturbative description of hard scattering processes at high energies
is beyond the reach of quantum computers, since it would require a prohibitive number of qubits. In
this article, we present a proof-of-concept of a quantum algorithm applied to perturbative quantum
field theory and demonstrate that the unfolding of certain properties of Feynman loop integrals is
fully appropriate and amenable in a quantum computing approach.

The problem we address is the bootstrapping of the causal representation of multiloop Feynman
integrals in the loop-tree duality (LTD) formalism from the identification of all internal configurations
that fulfill causality among the N = 2" potential solutions, where n is the number of internal
Feynman propagators. As we will show, this is a satisfiability problem that can be solved with
Grover’s algorithm [2]. The archetypal situation in which this algorithm is employed consists in
finding a single and unique solution among a large unstructured set of N configurations. While a
classical algorithm requires testing the satisfiability condition for all cases, i.e. O(NN) iterations,
the quantum algorithm considers all the states in a uniform superposition and tests the satisfiability
condition at once. Ultimately, the complexity of the task goes from O(V) in the classical case to
O(V/N) in the quantum one. This constitutes a big motivation to explore the applicability of such
algorithms in the calculation of Feynman diagrams and integrals. Since its introduction in 1996,
Grover’s algorithm has been generalized [66, 67] and adapted for other applications, such as solving
the collision problem [68] or performing partial quantum searches [69]. In this article, we introduce
a suitable modification of the original Grover’s algorithm for querying of multiple solutions [70] to
identify all the causal states of a multiloop Feynman diagram.

From a purely mathematical perspective causal solutions correspond in graph theory to directed
acyclic graphs [71], which have a broad scope of applications in other sciences, including the char-
acterization of quantum networks [72]. In classical computation, there exist performant algorithms
that identify closed directed loops in connected graphs based on searches on tree representations,
such as the well known depth-first search method [73]. We apply a different strategy, exploiting the
structure of graphs that are relevant in higher-order perturbative calculations, in order to ease the
identification of causal solutions.

The LTD, initially proposed in Ref. [74—76], has undergone significant development in recent
years [77-104]. One of its most outstanding properties is the existence of a manifestly causal
representation, which was conjectured for the first time in Ref. [93] and further developed in
Refs. [95-99, 101, 102]. A Wolfram Mathematica package, Lotty [103], has recently been
released to automate calculations in this formalism. The cancellation of noncausal singularities



among different contributions of the LTD representation of Feynman loop integrals was first observed
at one loop in Ref. [77, 79] and at higher-orders in Refs. [85, 88, 90]. Noncausal singularities are
unavoidable in the Feynman representation of loop integrals, although they do not have any physical
effect. Even if they cancel explicitly in LTD among different terms, they lead to significant numerical
instabilities. Remarkably, noncausal singularities are absent in the causal LTD representation
resulting in more stable integrands (see e.g. Ref. [96]). Therefore, the main motivation of this article
is to exploit and combine the most recent developments in LTD with the exploration of quantum
algorithms in perturbative quantum field theory.

The outline of the paper is the following. In Sec. 2, we present a brief introduction to the
loop-tree duality (LTD), with special emphasis in the causal structure. In Sec. 3, we describe
how to efficiently obtain causal configurations by using geometrical arguments. In particular, we
motivate the importance of identifying all the configurations with a consistent causal flow of internal
momenta, which are equivalent to directed acyclic graphs. Then, we describe the quantum algorithm
and its implementation in Sec. 4. We present explicit examples up to four eloops in Sec. 5, where
we compare with results already obtained with a classical computation [93, 95, 96]. In Sec. 5.5 we
explain the counting of states fulfilling the causality conditions, and how this makes the problem
suitable for applying a quantum querying algorithm. Finally, we present our conclusions and
comment on possible future research directions in Sec. 6.

2 Causality and the loop-tree duality

Loop integrals and scattering amplitudes in the Feynman representation are defined as integrals in
the Minkowski space of L loop momenta

AP = Nty {pite) [[ Grla) @.1)
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where the momentum ¢; of each Feynman propagator, Gr(g;), is a linear combination of the
primitive loop momenta, /5 with s € {1,..., L}, and external momenta, p; with j € {1,..., P}.
The numerator N is determined by the interaction vertices in the given theory and the kind of
particles that propagate, i.e. scalars, fermions or vector bosons. Its specific form is not relevant for
the following application. The integration measure in dimensional regularization [105, 106] is given
by

/ =t / d'es/(2m)?, (2.2)
éS

where d is the number of space-time dimensions and g is an arbitrary energy scale. Rewriting the
Feynman propagators in momentum space in the unconventional form
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with qz-(;g) = \/qz2 + m? — 10 (where q; are the spatial components of ¢; and m; is the mass of the

propagating particle), one clearly observes that the integrand in Eq. (2.1) becomes singular when the
energy component g; o takes one of the two values :l:qz%). This corresponds to setting on shell the



Feynman propagator with either positive or negative energy. If we always label ¢; as flowing in the
same direction, the corresponding time ordered diagram describes particles propagating forward or
backward in time, respectively. If we are allowed to modify the momentum flow, the negative energy
state represents an on-shell particle propagating in the opposite direction as the positive energy
one. Regardless of our physical interpretation, the two on-shell states of a Feynman propagator are
naturally encoded in a qubit and if all the propagators get on shell simultaneously there are N = 2"
potential singular configurations.

However, not all potential singular configurations of the integrand lead to physical singularities
of the integral. The well-known Cutkosky’s rules [107] provide a simple way to calculate the
discontinuities of scattering amplitudes that arise when particles in the loop are produced as real
particles, requiring that the momentum flow of the particles that are set on shell are aligned in certain
directions over the threshold cut. All other singularities are noncausal and should have no physical
effect on the integrated expression. However, they still manifest themselves as singularities of the

integrand.
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Figure 1: Graphical interpretation of the causal configurations encoded by /\(_1 n) (right). If the total
external momentum is outgoing, k(y )0 > 0, a threshold singularity arises when all the internal
momenta are on shell and their three-momenta flow towards the interaction vertex. The mirror
configuration encoded by )‘Erl,n) (left) generates a threshold singularity if &y )0 < 0.

In order to have a deeper understanding of the structures leading to the causal singularities, we
can exploit the most relevant features of the LTD formalism. The LTD representation of Eq. (2.1)
is obtained by integrating out one of the components of the loop momenta through the Cauchy’s
residue theorem, then reducing the dimensionality of the integration domain by one unit per loop.
The integration of the energy component is advantageous because the remaining integration domain,
defined by the loop three-momenta, is Euclidean. Nevertheless, the LTD theorem is valid in any
coordinate system [74, 93]. As a result, Feynman loop integrals or scattering amplitudes are recast
as a sum of nested residues, each term representing a contribution in which L internal particles have
been set on shell in such a way that the loop configuration is open to a connected tree. Explicitly,
after all the nested residues are summed up, noncausal contributions are analytically cancelled and
the loop integral in Eq. (2.1) takes the causal dual representation
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with z, = [],, 2q§i§) and [; = —p*~ [d¥1¢,/(2m)%! the integration measure in the loop

three-momentum space. The Feynman propagators from Eq. (2.1) are substituted in Eq. (2.4) by
causal propagators of the form 1/\*, where

A=Yy £k, (2.5)
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where p is a partition of the set of on-shell energies, and £y, o is a linear combination of the energy
components of the external momenta. Causal propagators may appear raised to a power if the
Feynman propagators in the original representation are raised to a power, for example due to self-
energy insertions. Each )\;,t is associated to a kinematic configuration in which the momentum flows
of all the propagators that belong to the partition p are aligned in the same direction. A graphical
interpretation is provided in Fig. 1. Any other configuration cannot be interpreted as causal and is
absent from Eq. (2.4). Depending on the sign of £y, o, either )\; or A\, becomes singular when all
the propagators in p are set on shell.

The set X in Eq. (2.4) contains all the combinations of causal denominators that are entangled,
i.e. whose momentum flows are compatible with each other and therefore represent causal thresholds
that can occur simultaneously. Each element in ¥ fixes the momentum flows of all propagators in
specific directions. Conversely, once the momentum flows of all propagators are fixed, the causal
representation in Eq. (2.4) can be bootstrapped. In the next section, we will explain in more details
the geometrical concepts that justify these results, establishing a connection with the formalism
presented in Refs. [101, 102].

The LTD causal representation has similarities with Cutkosky’s rules [107] and Steinmann’s
relations [101, 108-114] in that it only exhibits the physical or causal singularities but it is essentially
different in that it provides the full integral, and not solely the associated discontinuities.

3 Geometric interpretation of causal flows

Originated from the perturbative expansion of the path integral, multiloop scattering amplitudes
are described by Feynman diagrams made of vertices and lines connecting them. Whilst vertices
codify interactions among particles, lines are associated to virtual states propagating before/after
the interactions take place. These Feynman diagrams might contain closed paths or loops, which
symbolise quantum fluctuations involving the emission and subsequent absorption of a virtual
particle. As described in the previous section, the number of loops corresponds to the number of
free integration variables in Eq. (2.1).

However, the dual causal representations presented in Refs. [93, 95, 96] can be described by
relying on reduced Feynman graphs built from vertices and edges [101, 102] '. Considering a
number of propagators (lines) connecting a pair of interaction vertices, the only possible causal
configurations are those in which the momentum flow of all the propagators are aligned in the same
direction. As a result, and with the purpose of bootstrapping the causal configurations, a multiloop
bunch of propagators can be replaced by a single edge representing the common momentum flow

'In Ref. [102], the word multi-edge is used instead of edge to avoid confusion with the notation traditionally developed
for geometry and graph theory.



Figure 2: Causal equivalence of a multiloop Feynman diagram (left) with a reduced Feynman graph
made of edges obtained by merging all propagators connecting a pair of vertices (right).

[101, 102], see Fig. 2. This replacement is further supported by the explicit demonstrations reported
in Ref. [99].

Once propagators have been collapsed into edges, we can count the number of actual loops in
the reduced Feynman graph: these are the so-called eloops. We would like to emphasize that the
number of eloops is always smaller (or equal) to the number of loops. Whilst the latter counts the
number of primitive integration variables, the former refers to a purely graphical and topological
property of the reduced Feynman graph.

Following the geometrical description of Feynman diagrams, we introduce a topological
classification related to the number of vertices, V. In concrete, we define the order of a reduced
diagram as £ = V' — 1, which corresponds to the number of off-shell lines involved in the dual
representation. In fact, it can be shown that &k = n — L, and thus the order of the diagram
coincides with the number of causal propagators that are being multiplied in each term of the causal
representation in Eq. (2.4).

At this point, let us comment on the reconstruction of the causal structure and some of the
available computational strategies for that purpose. Causal propagators, 1/ )\;t, are identified
efficiently starting from the connected binary partitions of vertices of the reduced Feynman graph.
Once the causal propagators are known, the representation in Eq. (2.4) can be recovered by
identifying all the possible causal compatible combinations of %k causal propagators: these are
the so-called causal entangled thresholds. There are three conditions that determine the allowed
entanglements [102]:

1. The combination of k causal propagators depends on the on-shell energies of all the edges.

2. The two sets of vertices associated to two causal propagators are disjoint, or one of them is
totally included in the other. For instance, if a maximally connected graph (i.e. a graph where
all the vertices are connected to each other) is composed by the vertices V' = {1,2, 3,4, 5},
then \; = {2,3,4} and X2 = {1,3,4} cannot be simultaneously entangled since their
intersection is not empty. But, A; and A3 = {2, 3} are causal-compatible because {2,3} C
{2,3,4}.



3. Causal flow: The momentum of the edges that crosses a given binary partition of vertices
(i.e. each )\; being entangled) must be consistently aligned. Momentum must flow from one
partition to a different one.

The strategy to successfully identify the set X in Eq. (2.4) consists in following the conditions 1 to 3,
in that specific order, as already implemented in Refs. [102, 115]. Remarkably, the third condition
can be reinterpreted as the directed graphs associated to the reduced Feynman diagram. Since
momenta must exit one partition and enter into a different one, there cannot be closed cycles. This
means that condition 3 is equivalent to identifying all possible directed acyclic graphs compatible
with a given set of causal propagators {/\Zl, ey /\?: }. In this way, another reformulation exists for
the causal reconstruction:

1. Causal flow: Identify all the possible directed acyclic graphs obtained from the original
reduced Feynman graph.

2. Dress each causal configuration with all the possible combinations of entangled causal
propagators fulfilling conditions 1-2 of the previous listing.

Both approaches turn out to be equivalent, and this justifies our focus on the detection of causal
configurations from the corresponding directed acyclic graphs. However, the identification of
directed acyclic graphs is known to be very time-demanding in classical computations (as will be
later exposed in Sec. 5.5). This motivates the search for alternatives that could provide any possible
speed-up. In the following we will explain how to use quantum algorithms for such a purpose. This
can be considered as a first step towards a fully quantum approach to the identification of entangled
causal thresholds.

In Fig. 3, we show the representative multiloop topologies that we have considered in this work.
We follow the classification scheme introduced in Refs. [95, 96], where loop diagrams are ranked
according to the number of sets of propagators that depend on different linear combinations of the
loop momenta, starting from the maximal loop topology (MLT) with L + 1 sets, to N*MLT with
L + 1+ k sets. An extended classification has been introduced in Ref. [101] that considers all the
vertices connected to each other.

4 Quantum algorithm for causal querying

Following the standard Grover’s querying algorithm [2] over unstructured databases, we start from a
uniform superposition of N = 2" states

1 N—-1
- 4.1
) m;'g’>’ (4.1)

which can also be seen as the superposition of one winning state |w), encoding all the causal
solutions in a uniform superposition, and the orthogonal state |¢ ), that collects the noncausal states

lg) = cosf|qL) + sinf |w) . 4.2)
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Figure 3: Representative multiloop topologies with up to four eloops. The direction of the arrows

corresponds to the |1) states. The vertices may or may not have attached external momenta. Beyond
one eloop, each line can be composed of n; edges that introduce additional vertices. From left to
right and top to bottom: one eloop with n vertices, two eloops (MLT), three eloops (N?MLT), four
eloops with one four-particle vertex (N>MLT), and four eloops with trivalent interactions (N*MLT),
t-, s- and u-channels.

The mixing angle is given by 6 = arcsin y/7/N, where r is the number of causal solutions, and the
winning and orthogonal uniform superpositions are given by

|w) \/EZM lqL) = Vﬁ—fEJm (4.3)

TEW rdw

The algorithm requires two operators, the oracle operator
Uy = I = 2[w)(w], 4.4)

that flips the state |z) if z € w, Uy, |z) = —|x), and leaves it unchanged otherwise, U |z) = |z) if
x ¢ w, and the Grover’s diffusion operator

Uqg=2|q){q| - T, 4.5)

that performs a reflection around the initial state |¢). The iterative application of both operators ¢
times leads to
(UgUuw)'lq) = cos by |qL) + sin 0y [w) , (4.6)

where 6; = (2t + 1) 6. The goal is then to reach a final state such that the probability of each of
the components in the orthogonal state is much smaller than the probability of each of the causal
solutions by choosing 6; accordingly:
cos? 6, sin? 6,
< .

N, " “.7)




This goal is achieved when sin? 6; ~ 1.

Grover’s standard algorithm works well if < 7 /6, namely » < N/4, but does not provide the
desired amplitude amplification of the winning states for larger angles. For example, if = 7/3 the
first iteration leads to 81 = 7 which in fact suppresses the projection onto the set of solutions, while
for = 7/4 or r = N/2 no matter how many iterations are enforced the probabilities of the initial
states remain unchanged. One of the strategies that we apply, which is also valid for other problems
where the number of solutions is larger than N /4, is to enlarge the total number of states without
increasing the number of solutions by introducing ancillary qubits in the register that encodes the
edges of the loop diagram 2. In general, the maximum number of ancillary qubits needed is two, as
this increases the number of total states by a factor of 4. Furthermore, for Feynman loop diagrams
we will take advantage of the fact that given a causal solution (directed acyclic configuration), the
mirror state in which all internal momentum flows are reversed is also a causal solution. Therefore,
we will single out one of the edges and consider that only one of its states contributes to the winning
set, while the mirror states are directly deduced from the selected causal solutions. As a result, the
complete set of causal solutions can be determined with the help of at most one ancillary qubit.

Three registers are needed for the implementation of the quantum algorithm, together with
another qubit that is used as marker by the Grover’s oracle. The first register, whose qubits are
labelled ¢;, encode the states of the edges. The qubit ¢; is in the state |1) if the momentum flow of
the corresponding edge is oriented in the direction of the initial assignment and in |0) if it is in the
opposite direction (see Fig. 3). In any case, the final physical result is independent of the initial
assignment, being used only as a reference.

The second register, named c;;, stores the Boolean clauses that probe whether or not two qubits
representing two adjacent edges are in the same state (whether or not are oriented in the same
direction). These binary clauses are defined as

cij = (6 = q5) ,
¢ij = (¢ # 45) , i,j€{0,...,n—1}. (4.8)

The third register, ax({c;;}, {¢i;}), encodes the loop clauses that probe if all the qubits (edges) in
each of the eloops that are part of the diagram form a cyclic circuit.

The causal quantum algorithm is implemented as follows. The initial uniform superposition is
obtained by applying Hadamard gates to each of the qubits in the g-register, |¢) = H®"|0), while
the qubit which is used as Grover’s marker is initialized to

louty) = -1 _ |-, (4.9)

V2
which corresponds to a Bell state in the basis {|0),|1)}. The other registers, |c) and |a), used to
store the binary and eloop clauses are initialized to |0). Each binary clause ¢;; requires two CNOT
gates operating between two qubits in the |g) register and one qubit in the |c) register. An extra
XNOT gate acting on the corresponding qubit in |c) is needed to implement a ¢;; binary clause.
The oracle is defined as

Uulg)le)|a)louto) = (=1)7*9 |g)|c)|a)|outo) - (4.10)

*This strategy has been previously discussed in Ref. [116].



eloops (edges per set)  |q) |c) |a) Total

one (n) n+1 n—1 1 2n + 2

two (ng, n1,n2) n n 3 2n +4
three (ng, - .., n5) n  n+((2t03) 4t07 2n+ (7toll)
four (ng, ..., n7) n n+(3to6) 5t013 2n+ (9to20)
four (ng,...,n{"")  n  n+(407) 51013 2+ (10t021)
four (ng,...,n{)  n n+(5t08) 91013 2+ (1510 22)

Table 1: Number of qubits in each of the three main registers. The total number of qubits includes
the ancillary qubit which is initialized to |—) to implement Grover’s oracle. Measurements are made
onn = Y n; classical bits.

Therefore, if all the causal conditions are satisfied, f(a, q) = 1, the corresponding states are marked,;
otherwise, if f(a,q) = 0, they are left unchanged. After the marking, the |c) and |a) registers
are rotated back to |0) by applying the oracle operations in inverse order. Then, the diffuser Uy is
applied to the register |¢). We use the diffuser described in the IBM Qiskit website .

The upper and lower limit in the number of qubits needed to analyze loop topologies of up to
four eloops is summarized in Tab. 1. The final number of qubits depends on the internal configuration
of the loop diagram. The lower limit is achieved if n; = 1 for all the sets, the upper limit is saturated
for n; > 2. Specific details on the implementation of the quantum algorithm and causal clauses
are provided in the next section. We use two different simulators: IBM Quantum provided by the
open source Qiskit framework; and Quantum Testbed (QUTE) [117] , a high performance quantum
simulator developed and maintained by Fundacién Centro Tecnolégico de la Informacién y la
Comunicacién (CTIC) .

The output of the Grover’s algorithm described above is a quantum state that is predominantly
a superposition of the whole set of causal solutions, with a small contribution from orthogonal states.
After a measurement, a single configuration is determined and the superposition is lost. If one
requires knowing all solutions and not just a single one, the original output of Grover’s algorithm has
then to be prepared and measured a certain number of times, also called shots, large enough in order
to scan over all causal solutions, and to distinguish them from the less probable noncausal states.
The final result is represented by frequency histograms and is affected by the statistical fluctuations
that are inherent to the measurements of a quantum system. Our approach is based on Grover’s
search algorithm and, as such, has a similar quantum depth compared to the original implementation
and thus a well-known noisy performance on a real present device [118-120]. Given the quantum
depth of the algorithm and the resulting difficulties in introducing a reliable error mitigation strategy,
we will only consider error-free statistical uncertainties in quantum simulators. Nevertheless, for the
sake of benchmarking, we will present a simulation on a real device for the less complex multiloop
topology we have analyzed.

We estimate that the number of shots required to distinguish causal from noncausal configu-

*http://qgiskit.org/
*nttp://qute.ctic.es/
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rations with a statistical significance of Ac standard deviations in a quantum simulator is given
by

Naots ~ 7 (80)° (1 + O(cos®(61))) @.11)

assuming that an efficient amplification of the causal states is achieved, i.e. cos(6;) ~ 0.

For the identification of causal configurations of the multiloop topologies shown in Fig. 3, for
which the number of solutions is of the order of 1/4 of the total number of states, the quantum
advantage over classical algorithms is suppressed by the number of required measurements given by
Eq. (4.11). However, as we will explain in Sec. 5.5, the number of states fulfilling causal-compatible
conditions for increasingly complex topologies is much smaller than the total combinations of
thresholds. Thus, for very complex topologies which are less affordable with a classical computation,
we turn back to the original quantum speed-up provided by Grover’s algorithm. In the following, we
will consider Ao 2> 3, which provides a sufficiently safe discriminant yield with a minimal number
of shots.

5 Benchmark multiloop topologies

After introducing the quantum algorithm that identifies the causal configurations of multiloop
Feynman diagrams in Sec. 4 and explaining the connection between acyclic graphs and causality in
Sec. 3, we present here concrete examples. We consider several topological families of up to four
eloops, discussing in each case the explicit implementation of the Boolean clauses and explaining
the results obtained.

5.1 One eloop

The one-eloop topology consists of n vertices connected with n edges along a one loop circuit
(see Fig. 3A). Each vertex has an external particle attached to it, although it is also possible to
have vertices without attached external momenta that are the result of collapsing, e.g., a self-energy
insertion into a single edge as explained in Sec. 3.

We need to check n — 1 binary clauses, and there is one Boolean condition that has to be
fulfilled

ao({cij}) =~ (COI ANET WARREWA Cn—2,n—1) . 5.1

The qubit ag is set to one if not all the edges are oriented in the same direction. This condition
is implemented by imposing a multicontrolled Toffoli gate followed by a Pauli-X gate. We know,
however, that this condition is fulfilled for N — 2 states at one eloop. Therefore, the initial Grover’s
angle tends to arcsin ( (N—-2)/N ) ‘ = 7/2. In order to achieve the suppression of the
orthogonal states, we introduce one ancrilll_gl?; qubit, ¢, and select one of the states of one of the
qubits representing one of the edges. The required Boolean marker is given by

FY(a,q) =ao Ao A gn, (5.2)

which is also implemented through a multicontrolled Toffoli gate.
The ratio of probabilities of measuring a winning state versus an orthogonal state is enhanced
by adding the ancillary qubit. Alternatively, we can still rely on the original Grover’s algorithm
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Figure 4: Probability distribution of causal and noncausal configurations obtained with (blue) and
without (purple) an ancillary qubit for a one-eloop three-vertex topology. Results are presented with
both the IBM quantum simulator and the real quantum device.
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Figure 5: Quantum circuits used to bootstrap the causal configuration of a three-vertex multiloop
Feynman diagram. Implementation with (up) and without (down) an ancillary qubit.

when the number of noncausal configurations is small, by swapping the definition of winning and
orthogonal states. However, the ancillary qubit is absolutely necessary when the number of winning
solutions is O(N/2).

The output of the algorithm for a three-vertex multiloop topology is illustrated in Fig. 4, where
we extract and compare the selection of causal states with and without the ancillary qubit. The
corresponding quantum circuits are represented in Fig. 5. The ancillary qubit is set in superposition
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001) 011) 1101)

Figure 6: Causal bootstrapping of the one-eloop three-vertex topology. Configurations with all
internal momentum flows reversed (not shown) are also causal.

with the other qubits but is not measured because this information is irrelevant. Note that in the
Qiskit convention qubits are ordered in such a way that the last qubit appears on the left-most side
of the register |g).

Fig. 6 shows the corresponding directed acyclic configurations and the bootstrapped causal
interpretation in terms of causal thresholds. Once the direction of the edges is fixed by the quantum
algorithm, the causal thresholds are determined by considering all the possible on-shell cuts with
aligned edges that are compatible or entangled with each other. This information can be translated
directly into the LTD causal representation in Eq. (2.4); the on-shell energies q%) that contribute to
a given causal denominator, A, are those related through the same threshold.

The quantum depth of the circuit estimated by Qiskit is 25 in the simulator, while it amounts to
O(200) with the ancillary qubit, and O(150) without the ancillary qubit in a real device where not
all the qubits are connected to each other. The circuit depth is therefore too large to provide a good
result in a present real device, as illustrated in Fig. 4. We will focus hereafter on the results obtained

by quantum simulators. They are in full agreement with the expectations.

0 1

Figure 7: Two-eloop five-edge topology.

5.2 Two eloops

We now analyze multiloop topologies with two eloops (see Fig. 3B). These topologies are charac-
terized by three sets of edges with ng, n1 and ng edges in each set and two common vertices. The
first non-trivial configuration requires that at least two of the sets contain two or more edges. If
ng = n1 = ng = 1, we have a multibanana or MLT configuration with L 4 1 propagators which is
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Figure 8: Oracle of the quantum circuit (up, omitting the reflection of the quantum gates) and
probability distribution of causal and noncausal configurations (down) for a two-eloop topology
(MLT) with ng = ny = 2 and n; = 1 edges.

equivalent to one edge, while the NMLT configuration with L + 2 sets of propagators, or ng = 2
and n; = ny = 1, is equivalent to the one-eloop three-vertex topology already analyzed in Sec. 5.1
because propagators in the sets 1 and 2 can be merged into a single edge. We consider the five-edge
topology depicted in Fig. 7 as the first non at two ops. The diagram is composed by three subloops,
and therefore requires to test three combinations of binary clauses

ag = —(co1 Aciz A esa)
a; =~ (co1 N C12)
ag = (023 VAN 034) . (5.3)
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Figure 9: Causal bootstrapping of the two-eloop five-edge topology. Configurations with all internal
momentum flows reversed (not shown) are also causal.

We know from a classical computation [95] that the number of causal solutions over the total number
of states is 18/32 ~ 1/2. Therefore, it is sufficient to fix the state of one of the edges to reduce the
number of states queried to less than 1/4, while the ancillary g,,-qubit is not necessary. We select go
as the qubit whose state is fixed, and check the Boolean condition

FP(a,q) = (ap Aar Aaz) Ao . (5.4

The oracle of the quantum circuit and its output in the IBM’s Qiskit simulator are shown in
Fig. 8, and the causal interpretation is provided in Fig. 9. The number of states selected in Fig. 8 is 9,
corresponding to 18 causal states when considering the mirror configurations obtained by inverting
the momentum flows, and in full agreement with the classical calculation.

The generalization to an arbitrary number of edges requires to check first if all the edges in
each set are aligned. We define

isES

bs = p Cigis+1 » S € {0, 1,2} . (5.5
The number of subloops is always three, and so the number of conditions that generalize Eq. (5.3)

ag = = (bo A Cop(ny—1) A b2)
a1 = = (bo A Enp—1)(ny1—1) A b1)
az == (b1 A Cny—1)0, A b2) (5.6)
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Figure 10: Oracle of the quantum circuit (up, omitting the reflection of the quantum gates) and
probability distribution of causal and noncausal configurations (down) for a three-eloop topology
(Mercedes topology or N°MLT with n; = 1).

where 0, represents the first edge of the set s, and (ns — 1) is the last one. The total number of qubits
required to encode these configurations is summarized in Tab. 1. With 32 qubits as the upper limit
in the IBM Qiskit simulator, one can consider any two-eloop topology with _ n; < 14 distributed
in three sets.
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Figure 11: Causal bootstrapping of the three-eloop topology (N?MLT). Configurations with all
internal momentum flows reversed (not shown) are also causal.

5.3 Three eloops

The N?MLT multiloop topology (see Fig. 3C) is characterized by four vertices connected through
six sets of edges, and n; edges in each set, ¢ € {0, ...,5}. It appears for the first time at three loops.
The algorithm for the multiloop topology with n; = 1 requires to test the following loop clauses

- (co1 A ci2

)

- (€15 A\ €45

)

( )
= (Coa N C34)
( )

( )

ao
a1
as
as

—/

C23 N\ C35) . 5.7

It is worth noticing that the loop clauses can be implemented in several ways. For example the
following expressions are equivalent

(504 A 534) = (003 A 534) . (5.8)

However, the expression on the Lh.s. of Eq. (5.8) requires one NOT gate less than the one on the
r.h.s., so it is preferable. It is also worth mentioning that testing loop clauses involving four edges,
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such as
—(€35 A €15 A co1) (5.9)

is not necessary because four-edge loops enclose one qubit that in any of its states would create a
cyclic three-edge loop if the other four edges are oriented in the same direction. The final Boolean
condition is

Fa,q) = (agA...Nas) Aqo . (5.10)

The oracle of the quantum circuit and probability distribution are shown in Fig. 10, and the causal
interpretation is given in Fig. 11. The number of causal configurations is 24 out of 64 potential
configurations.

For configurations with an arbitrary number of edges the loop clauses in Eq. (5.7) are substituted
by

I

ap = = (bo A Cng—1)0; A b1 A iy —1)0, /A b2)
= (bo A E(ng—1)(na—1) /A ba A o405 Ab3)
== (b1 A Eny—1)(ns—1) A\ bs A Cos0, Aba)
a3 = = (b2 A E(ny—1)(ng—1) A\ b3 A Cos05 A bs) (5.11)

This is the minimal number of loop clauses at three eloops. For three-eloop configurations with
several edges in each set an extra binary clause (¢(,,_1)0,) and up to three loop clauses may be
needed to test cycles over four edge sets. These clauses are

aqg =" (bo A €(ng—1)0, N b1 A C(ny—1)(ns—1) N bs A €05 N b3) ,
as = — (bl A Clny—1)05 N ba A Clna—1)(ng—1) N\ b3 A Co,05 N b4) ,
ag = 7 (bg A\ Cny—1)00 Abg A E(nofl)(m;fl) Abgy A Co504 N b5) . (5.12)

The number of qubits reaches the upper limit reflected in Tab. 1 for n; > 2.

5.4 Four eloops

Starting at four loops, we should consider four different topologies (see Fig. 3D to 3G). The N3MLT
multiloop topology is characterized by 8 sets of edges connected through 5 vertices. For n; = 1,
with i € {0,..., 7}, the loop clauses are

—
N
=

ag’ = (co1 Acia Aeas)
a\" =~ (205 A as)
054) = (€16 A C56)
CL:(34) = - (527 A 667) ,
al =~ (@4 Newr) (5.13)
and the Boolean test function is
FDa,q) =@ A na) A (5.14)
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Figure 12: Representative bootstrapped diagrams at four eloops, from the quantum algorithm output
in Fig. 14.

Some of the loop clauses in Eq. (5.13) are common to the ¢-, s- and u-channels, which are inclusively
denoted as N*MLT as they involve each one extra set of edges with respect to N>MLT. The channel
specific loop clauses that are needed are

agt) = = (505 N cs8 N\ 548) , Clgt) = (527 A Crg N 668) ) (5.15)

(s)

as

= —(C16 N\ Cos A C358) a’iS) = (€34 N cag N Crg) (5.16)
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Figure 13: Oracles of the quantum circuits for four-eloop topologies (omitting the reflection of the
quantum gates). (a) N3MLT, (b) ¢-channel, (¢) s-channels and (d) u-channel of N*MLT.

and
aé“) = = (Car N 18 A\ Ceg)
aiu) = (Ca NCag N erg)
al") = = (co1 A 216 A eas)
aéu) = (c12 NGz AN Cs7)
0§ = = (e33 N B34 A )
aé”) = —(co3 A Cos A C57) - (5.17)

The number of loop clauses for the u-channel is much larger than for the other configurations
because it is the first nonplanar diagram. Each of the ¢-, s- and u-channel is characterized by one of
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the following Boolean conditions

F9(a,6) = (o 70 o n o af?) o,

490, 0) = (o 7Pl 2P
f(4’“)(a, q) = (a(()4) A agt) A ags) A agu) AA aéu)) Aqo . (5.18)

The number of qubits required for each configuration is given by the lower ranges of Tab. 1, i.e.
25, 28, 28 and 33 qubits respectively. Despite the complexity of these topologies, the quantum
algorithm is well supported by the capacity of the IBM Quantum simulator (see Fig. 14), with the
exception of the u-channel that was tested within the QUTE Testbed framework as it supports more
than 32 qubits (see Fig. 15). Following the procedure described for three-eloop topologies, more
complex topologies with n; > 1 are also amenable to the quantum algorithm, although they may
soon exceed the current capacity of the quantum simulator. Representative bootstrapped diagrams at
four eloops are shown in Fig. 12. The corresponding oracles of the quantum circuits are presented
in Fig. 13.

5.5 Counting of causal states

After discussing the causal structure of multiloop Feynman diagrams, it is clear that detecting all the
configurations with causal-compatible momenta flow is crucial to identify the terms involved in the
LTD representation of Eq. (2.4). Also, as explained in Sec. 4, the performance of quantum search
algorithms depends on the number of winning states compared to all the possible configurations of
the system. Thus, in this section, we present a counting of states fulfilling causality conditions for
different topologies.

Given a reduced Feynman graph made of V' vertices connected through n edges, there are
N = 2" possible orientations of the internal edges but only some of them are compatible with
causality. Since causal-compatible momentum flows are in a one-to-one correspondence with the
number of directed acyclic graphs, n 4, built from the original reduced Feynman graph, we are
interested in estimating the ratio r4 = n4/2". In order to do so, let us consider two extreme
topologies:

* Maximally Connected Graph (MCG) where all the vertices are connected to each other and
n=V(V -1)/2.

* Minimally Connected Graph (mCG) with n = V, i.e. the minimal number of edges. It only
occurs at one eloop.

For a fixed number of vertices V/, the number of causal-compatible orientations is minimal for MCG
and maximal for mCG; the bigger the number of edges, the larger the set of constraints that a graph
must fulfil to be free of cycles. In fact, it is easy to show that

VIi<ny <2V-DV/2_o (5.19)

which implies that, in the limit V' — oo, we have r 4 — 0 for highly-connected topologies. In other
words, for diagrams with a high number of eloops, the ratio r 4 is generally small. On the other
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Figure 14: Probability distribution of causal and noncausal configurations for four-eloop topologies
after 700, 1300 and 1300 shots with qasm_simulator, respectively in the IBM’s Qiskit framework.
From top to down: N3MLT, ¢-, and s-channels of N*MLT with n; = 1. The number of selected
states is 39/256, 102/512 and 102/512, respectively.

hand, for one eloop diagrams, r4 — 1 as V' — oo, which means that the ratio of noncausal flow
configurations is small compared to the total number of configurations. In Tab. 2 we present explicit
values for the topologies described in Fig. 3, focusing on the number of causal configurations (1 4).

With these results on sight, we notice that n 4 turns out to become a small fraction of the total
number of flux-orientation for increasingly complex diagrams. Thus, we expect that the quantum
search algorithms perform better against classical algorithms, since the number of winning states
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Figure 15: Probability distribution of causal and noncausal configurations for the four-eloop
u-channel after 1600 shots in the QUTE Testbed framework. The number of selected states is
115/512.

Diagram Vertices/Edges ny na/2"
one eloop (n = 3) 3/3 3 6/8

two eloops (ng =ng =2,n1 = 1) 4/5 6 18/32
three eloops (n; = 1) 4/6 7 24/64
N3MLT (n; = 1) 5/8 13 78/256
N*MLT t-channel (n; = 1) 6/9 22 204/512
N*MLT s-channel (n; = 1) 6/9 22 204/512
NAMLT wu-channel (n; = 1) 6/9 24 230/512

Table 2: Number of causal propagators (n)) and causal or acyclic configurations (n4) for the
topologies drawn in Figs. 3 and 9.

is a tiny fraction of the total space of states. On the other hand, when the number of noncausal
configurations is small compared with the total number of states, we can revert the definition of
Grover’s marker and look for cyclic graphs (i.e. noncausal flow configurations). For instance, for
one-eloop topologies, we find that the ratio of noncausal versus total configurations is given by
21-V(V=1)/2 and the original version of Grover’s algorithm perfectly applies to this problem.

6 Conclusions

We have presented the first proof-of-concept application of a quantum algorithm to multiloop
Feynman integrals exploiting the loop-tree duality and causality. The specific problem we have
addressed is the identification of all the causal singular configurations of the loop integrand resulting
from setting on shell internal Feynman propagators. This information is useful both for identifying
the physical discontinuities of the Feynman loop integral and to bootstrap its causal representation
in the loop-tree duality. Beyond particle physics, this is also a challenging problem of identifying
directed acyclic graphs.
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We have described the quantum algorithm in general terms, and have provided the particular
details on its implementation to selected multiloop topologies. These cases were successfully
handled by IBM Quantum and QUTE simulators. Even if for these selected topologies the quantum
speed-up is attenuated by the number of shots required to identify all the causal configurations, more
involved topologies and the selection of configurations satisfying further causality conditions would
fully benefit from Grover’s quadratic speed-up.

Given the quantum depth of the algorithm, its execution in current real devices leads to unreliable
results due to the present hardware limitations. However, the quantum simulators successfully
identifies all causal states even for the most complex multiloop configurations considered.
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