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Abstract

The vacuum of quantum chromodynamics has an incredibly rich structure at the nonper-

turbative level, which is intimately connected with the topology of gauge fields, and put to a

test by the strong CP problem. We investigate the long-distance properties of the theory in

the presence of a topological θ term. This is done on the lattice, using the gradient flow to

isolate the long-distance modes in the functional integral measure and tracing it over succes-

sive length scales. We find that the color fields produced by quarks and gluons are screened

for vacuum angles |θ| ą 0, not unexpectedly, thus providing a natural solution of the strong

CP problem.

1 Introduction

Quantum chromodynamics (QCD) decribes the strong interactions remarkably well, from the

smallest distances probed so far to hadronic length scales where quarks and gluons confine to

hadrons. Yet it faces a problem. The theory allows for a CP-violating term S θ in the action. In

Euclidean space-time it reads

S θ “ i θQ , Q “ 1

32π2

ż

d4x Fa
µνF̃

a
µν P Z , (1)

where Q is the topological charge, and θ is an arbitrary phase with values ´π ă θ ď π. A

nonvanishing value of θ would result in an electric dipole moment dn of the neutron. The current

experimental upper limit is |dn| ă 1.8 ˆ 10´13e fm [1], which suggests that θ is anomalously

small. This feature is referred to as the strong CP problem, which is considered as one of the

major unsolved problems in the elementary particles field.

It is known from the case of the massive Schwinger model [2] that a θ term may change

the phase of the system. Callan, Dashen and Gross [3] have claimed that a similar phenomenon

will occur in QCD. The statement is that the color fields produced by quarks and gluons will

be screened by instantons for |θ| ą 0. ’t Hooft [4] has argued that the relevant degrees of
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freedom responsible for confinement are color-magnetic monopoles, realized by partial gauge

fixing [5], which leaves the maximal abelian subgroup U(1) ˆ U(1) Ă SU(3) unbroken. Quarks

and gluons have color-electric charges with respect to the U(1) subgroups. Confinement occurs

when the monopoles condense in the vacuum, by analogy to superconductivity. This has first

been verified on the lattice by Kronfeld et al. [6]. In the presence of a θ term the monopoles

acquire a fractional color-electric charge proportional to θ, as has been noticed by Witten [7]. It

is then expected that the color fields of quarks and gluons will be screened by forming bound

states with the monopoles, driving the theory into a Higgs or Coulomb phase [4, 8] for |θ| ą 0.

This strongly suggests that θ is restricted to zero in the confining phase of the theory, which

would mean that the strong CP problem is solved by itself. A direct derivation of the phase struc-

ture of QCD for nonvanishing values of θ from first principles has remained elusive. A crucial

step in solving the strong CP problem is to isolate the relevant degrees of freedom. This is a

multi-scale problem, which involves the passage from the short-distance weakly coupled regime,

the lattice, to the long-distance strongly coupled confinement regime. The framework for dealing

with physical problems involving different energy scales is the multi-scale renormalization group

(RG) flow. Exact RG transformations are very difficult to implement numerically. The gradient

flow [9, 10] provides a powerful alternative for scale setting, with no need for costly ensemble

matching. It can be considered as a particular, infinitesimal realization of the coarse-graining

step of momentum space RG transformations [11, 12, 13, 14] à la Wilson [15], Polchinski [16]

and Wetterich [17], leaving the long-distance physics unchanged, and as such can be used to

study RG transformations directly.

In this work we investigate the long-distance properties of the theory in the presence of the θ

term (1) using the gradient flow, and show that CP is naturally conserved in the confining phase.

2 The gradient flow

The gradient flow describes the evolution of fields and physical quantities as a function of flow

time t. The flow of SU(3) gauge fields is defined by [10]

B t Bµpt, xq “ DνGµνpt, xq , Gµν “ Bµ Bν ´ Bν Bµ ` rBµ, Bνs , Dµ ¨ “ Bµ ¨ ` rBµ, ¨s , (2)

where Bµpt, xq “ B a
µ pt, xq T a, and Bµpt “ 0, xq “ Aµpxq is the original gauge field of QCD. It

thus defines a sequence of gauge fields parameterized by t. The renormalization scale µ is set

by the flow time, µ “ 1{
?

8t for t " 0, where
?

8t is the ‘smoothing range’ over which the

gauge field is averaged. Correlators of the flowed fields are automatically renormalized [18].

The expectation value of the energy density

Ept, xq “ 1

2
Tr Gµνpt, xq Gµνpt, xq “ 1

4
Ga
µνpt, xq Ga

µνpt, xq (3)

defines a renormalized coupling

g2
GFpµq “ 16π2

3
t2xEptqy

ˇ

ˇ

t“1{8µ2 (4)

at flow time t in the gradient flow (GF) scheme. Varying µ, the coupling satisfies standard (al-

though scheme dependent) RG equations.
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For a start we may restrict our investigations to the SU(3) Yang-Mills theory. If the strong CP

problem is resolved in the Yang-Mills theory, then it is expected that it is also resolved in QCD.

We use the plaquette action [19]

S “ β
ÿ

x, µăν

´

1 ´ 1

3
Re Tr Uµνpxq

¯

(5)

to generate representative ensembles of fundamental gauge fields. For any such gauge field the

flow equation (2) is integrated to the requested flow time t. We use a continuum-like version of

the energy density Ept, xq obtained from a symmetric (clover-like) definition of the field strength

tensor Gµνpt, xq [10]. The simulations are done for β “ 6{g2 “ 6.0 on 164, 244 and 324 lattices.

The lattice spacing at this value of β is a “ 0.082p2q fm, where we have taken
?

t0 “ 0.147p4q fm

to set the scale [20, 21], with t0 defined by t2
0 xEpt0qy “ 0.3. Our current ensembles include 4000

configurations on the 164 lattice and 5000 configurations on the 244 and 324 lattices each. First

results on the smaller lattices have been reported in [22].
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Figure 1: The dimensionless quantity t2xEptqy as a function of t{a2 on the 164, 244 and 324 lattice.

We consider flow times up to t{a2 “ 200. This allows us to detect finite size effects, which

we expect to show up at
?

8t Á L, where L is the linear extent of the lattice. In Fig. 1 we show

the dimensionless quantity t2xEptqy on the 164, 244 and 324 lattice as a function of t{a2. The data

on the 324 lattice fall on a straight line up to t{a2 « 200, corresponding to
?

8t « L. On the 244

and 164 lattices finite size effects show up at t{a2 « 100 and 50, respectively, in rough agreement

with
?

8t « L. The evaluation of physical quantities will be limited to t{a2 ď 100.

Hadron observables should be independent of the RG scale. In the Yang-Mills theory the

choice of observables that can be computed accurately is limited. Two such quantities are the

topological susceptibility and the normalized Polyakov loop susceptibility. The topological sus-

ceptibility is defined by

χt “ xQ2y ´ xQy2

V
, (6)

where V “ L4. We define the normalized Polyakov loop susceptibility [23] by

χP “ x|P|2y ´ x|P|y2

x|P|y2
, (7)
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where

P “ 1

V3

ÿ

x

Ppxq , Ppxq “ 1

3
Tr

L´a
ź

x0“0

U0px0, xq (8)

with U0px0, xq being the (complex valued) link matrix in time direction and V3 the spatial volume,

V3 “ L3. Note that x|P|2y denotes the Polyakov loop correlator

x|P|2y “ 1

V3

ÿ

x

xPp0q P:pxqy . (9)

The Polyakov loop requires normalization to be interpreted as the free energy of static quarks.

We use the field-theoretic definition (1) of Q. On the 244 lattice at flow time t{a2 “ 50, for

example, the mean deviation from the nearest integer, ∆Q, turns out to be |∆Q{Q| « 0.03 for

|Q| ą 0. In Fig. 2 we show χt and χP as a function of flow time for t{a2 “ 10 to 100. Both

quantities are independent of t within the errorbars, as expected. A linear fit to the topological

susceptibility gives
?

t0 χ
1{4

t “ 0.162p3q. This result agrees precisely with the value reported

in [24],
?

t0 χ
1{4
t “ 0.161p4q. A linear fit to the Polyakov loop susceptibility gives χP “ 0.289p7q.

We may compare (7) with a 2D Gaussian distribution of real and imaginary P. The outcome is

χP “ 4{π´ 1 “ 0.273, which is close to the lattice result. Later on we shall see that the glueball

correlator, respectively the mass gap, is independent of the flow time as well.
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Figure 2: The topological susceptibility χt on the 324 lattice, and the Polyakov loop susceptibility

χP on the 164 (`), 244 (ˆ) and 324 (˙) lattice.

It is interesting to note that the field-theoretic definition (1) of Q, where it applies, is indepen-

dent of the flow time. It is known that the charge density q “ p1{32π2q Ga
µνG̃

a
µν can be written as

a total derivative, q “ Bµωµ, where ωµ is the Chern-Simons density or 0-cochain [25]. The latter

is gauge variant. Its time derivative, Btωµ “ p1{8π2q BtB
a
νG̃

a
µν, however is gauge invariant, which

leads to BtQ “ 0 on the periodic lattice after partial integration.

3 Running coupling and linear confinement

The gradient flow running coupling αGFpµq “ g2
GFpµq{4π, introduced in (4), plays a key role in

our investigations. In Fig. 3 we show αGF{π on the 324 lattice as a function of t{a2 “ 1{8 a2µ2.
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Figure 3: The gradient flow coupling αGFpµq{π on the 324 lattice as a function of t{a2 “ 1{8a2µ2,

together with a linear fit.

The key result is that αGF is a linear function of t “ 1{8µ2 in the nonperturbative regime. We

have already seen that the linear behavior extends to
?

8t « L. We can assume that it extends

linearly to ever larger values of t as the volume is increased. This results in the gradient flow beta

function
B αGFpµq

B ln µ
” βGFpαGFq “

µ! 1 GeV
´ 2αGFpµq . (10)

For arbitrary values of µ the RG equation (10) has the implicit solution

ΛGF

µ
“ p4πb0αGFq

´
b1

2 b2
0 exp

"

´ 1

8πb0αGF

´
ż αGF

0

dα
1

βGFpαq ` 1

8πb0α
2

` b1

2b2
0
α

*

, (11)

which for large values of t{a2 leads to

αGFpµq “
µ! 1 GeV

Λ2
GF

µ2
. (12)

A fit of (12) to the lattice data shown in Fig. 3 gives
?

t0 ΛGF “ 0.475p16q.

To make contact with phenomenology, it is desirable to transform the gradient flow coupling

αGF to a common scheme. A preferred scheme in the Yang-Mills theory is the V scheme [26]. In

this scheme

ΛV

µ
“ p4πb0αVq

´
b1

2 b2
0 exp

"

´ 1

8πb0αV

´
ż αV

0

dα
1

βVpαq ` 1

8πb0α
2

` b1

2b2
0
α

*

. (13)

If we divide Eq. (11) by Eq. (13), we arrive at the relation

ΛGF

ΛV

“ exp

"

´
ż αGF

0

dα
1

βGFpαq `
ż αV

0

dα
1

βVpαq

*

. (14)

Using (10) and (12), we can solve Eq. (14) for βVpαVq and αVpµq in the nonperturbative regime.

The result is

βVpαVq “
µ! 1 GeV

´ 2αVpµq , αVpµq “
µ! 1 GeV

Λ2
V

µ2
. (15)
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From the literature we know ΛV{ΛMS “ 1.600 [26] and ΛMS {ΛGF “ 0.534 [10]. This leads to?
t0 ΛV “ 0.406p14q and

?
t0 ΛMS “ 0.217p7q. The latter number is in excellent agreement with

the outcome of a recent dedicated lattice calculation [27],
?

t0 ΛMS “ 0.220p3q.

The linear growth of αVpµq with 1{µ2, which is commonly dubbed infrared slavery, ef-

fectively describes many low-energy phenomena of the theory. So, for example, the static

quark-antiquark potential, which can be described by the exchange of a single dressed gluon,

Vpqq “ ´ 4
3
αVpqq{q2. A popular example is the Richardson potential [28], which reproduces

the spectroscopy of heavy quark systems, like charmonium and bottomonium, very well. Upon

performing the Fourier transformation of Vpqq to configuration space, we obtain

Vprq “ ´ 1

p2πq3

ż

d3q ei qr 4

3

αVpqq
q2 ` i0

“
r " 1{ΛV

σ r , (16)

where σ, the string tension, is given by σ “ 2
3
Λ2

V . The result is
?

t0 σ “ 0.331p11q. Converted

to physical units, we obtain
?
σ “ 445p19q MeV, which is exactly what one expects from Regge

phenomenology. This gives us confidence in our results, and the linear rise of αV in particular.
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Figure 4: The gradient flow beta function compared to the four-loop and twenty-loop result.

It is interesting to compare the beta function (10), matched to the two-loop result at shorter

distances, Eq. (11), with its perturbative counterparts. In Fig. 4 we show the gradient flow beta

function, together with the four-loop [29] and twenty-loop [30] perturbative results in the qq̄

scheme (Λqq̄{ΛV “ 0.655). As was to be expected, the perturbative beta function gradually

approaches the nonperturbative function with increasing order.

4 Phase structure in the presence of the θ term

With increasing flow time the initial gauge field ensemble splits into effectively disconnected

topological sectors of charge Q. This will be the case for ever smaller flow times as the lattice

spacing is reduced [10].

We distinguish the topological sectors by the affix Q. The first quantity we look at is the

energy density xEpQ, tqy in form of the ‘action’ S Q “ VxEpQ, tqy{8π2, normalized to one for a

single classical instanton. In Fig. 5 we plot S Q on the 324 lattice as a function of t{a2. While
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Figure 5: The action VxEpQ, tqy{8π2 of the different topological sectors as a function of t{a2

on the 324 lattice for charges ranging from Q “ 0 (bottom) to |Q| “ 22 (top). The solid line

represents the ensemble average. No transition from one sector to the other is observed, in accord

with BtQ “ 0.

VxEpQ, tqy{8π2 shows a plateau for borderline charges at large flow time, the ensemble average,

that is the statistical average across all topological sectors, vanishes like 1{t.

If the general expectation is correct and the color fields are screened for |θ| ą 0, we should

find, in the first place, that the running coupling constant will be screened at long distances. From

xEpQ, tqy we obtain the running coupling αVpQ, µq depending on Q. In Fig. 6 we show αVpQ, µq
divided by the ensemble average αVpµq as a function of t{a2 and Q. Already at relatively small

flow times αVpQ, µq starts to fan out according to Q. If multiplied by the lattice volume, the

entries of all three figures fall on top of each other. The transformation of αVpQ, µq to the θ

vacuum is achieved by the discrete Fourier transform

αVpθ, µq “ 1

Zpθq
ÿ

Q

e i θQ PpQq αVpQ, µq , Zpθq “
ÿ

Q

e i θQ PpQq , (17)
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Figure 6: The ratio αVpQ, µq{αVpµq as a function of t{a2 on the 164 (left), 244 (center) and 324

(right) lattice for charges ranging from Q “ 0 (bottom) to |Q| “ 6, 16 and 22 (top), respectively.

On the 244 and 324 lattices no errorbars are shown for marginal values of Q because of limited

statistics. On the 164 lattice finite volume effects become noticeable for t{a2 Á 50 (
?

8t Á L).
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Figure 7: The running coupling αVpθ, µq as a function of θ on the 164 (left), the 244 (center) and

the 324 (right) lattice for flow times from t{a2 “ 10, 20 and 40 (bottom) to 100 (top), respectively.

Note that αV » 2.56αMS .

where PpQq is the topological charge distribution at θ “ 0 with
ř

Q PpQq “ 1. Note that PpQq is

independent of flow time t once the ensemble has settled into disconnected sectors. The partition

function is known to be analytic in θ [31, 32]. Limits are set by the precision of PpQq and

αVpQ, µq. The statistics needed for consistent precision will increase relatively moderately with

the root of the volume. By comparing results on different volumes we can control statistical

and systematic effects. We like to emphasize that the transform (17) is not to be viewed as an

expansion around the confining vacuum, θ “ 0. Rather, it is the weighted average over quantum

mechanically disconnected, standalone sectors of the path integral, in which different values of θ

label distinct superselection sectors.

We show αVpθ, µq in Fig. 7 for our three volumes. The leftmost figure indicates finite size

effects for t{a2 Á 50 (
?

8t Á L) as expected (Fig. 1). We see clearly that the color charge

is screened, with the level of screening depending on the scale µ, which specifies the distance,

r „ 1{µ, at which the charge is probed. At large distances the charge appears to be screened

for |θ| ą 0, while at shorter, perturbative distances the coupling constant becomes gradually

independent of θ, reflecting the fact that the θ term is of nonperturbative nature.

Analytically, αVpθ, µq can be expressed by [22] αVpθ, µq “ αVpµq r1 ´ αVpµq pD{λq θ2sλ,
from which derive coupled RG equations. For θ2 ! 1{αVpθ, µq ! 1 (αV) and large t (θ), re-

spectively, the equations decouple and reduce to

B r1{αVpθ, µqs
B ln t

» ´ 1

αVpθ, µq ` D θ2 ,
B θ

B ln t
» ´1

2
θ . (18)

The latter equation has the solution θ9 1{
?

t, which means that θ renormalizes to zero in the

infrared limit. In Fig. 8 we show the RG flow of π{αVpθ, µq and θ, with t increasing from top to

bottom, for different initial values of θ. The curves are obtained by replacing θ in αVpθ, µq by

θ » C{
?

t, where C specifies the initial value of θ. The figure shows that confinement implies

CP invariance of the strong interactions. An interesting question is if 1{αV “ θ “ 0 is an IR

fixed point of the theory. An analytical derivation of the flow equations would be desirable [33].

Qualitatively similar RG equations for the charge and vacuum angle have been derived from

instanton-based models of the vacuum [34, 35]. It thus appears that the renormalization of θ is a

8
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Figure 8: The RG flow of π{αV pθ, µq and θ on the 244 lattice for different initial values of θ. Here

D « 0.12 and λ « 0.75.

generic property of instanton fluctuations. Other examples are found in the scaling theory of the

integer quantum Hall effect [36], in which the θ angle stands in analogy to the Hall conductivity.

As shown in Fig. 7, screening is a gradual process, which is an important process to un-

derstand. Let us stay with the picture of ’t Hooft [4], which has been verified in countless

publications. (See also the work of [37].) Accordingly, the density of color-electric charge in

the θ vacuum is proportional to the density of color-magnetic charge [38, 39, 40] times |θ|. (This

appears to be nonperiodic in θ, but this is not so [4].) Thus, the screening length will be the larger

the smaller |θ| is. The result is that at sufficiently long distances (large values of
?

t) the color

charge will be totally screened for any |θ| ą 0, whereas at shorter distances (smaller values of?
t) the charge will only be totally screened once the color-electric charge density has reached a

sufficiently high level, which requires larger values of |θ|. Below this value the color charge is

spatially diluted only, reflected in the parabolic shape of the curves.

The calculations of αVpθ, µq are rather robust. The determining factor is that αVpQ, µq fans

out to a monotonically increasing function of |Q| as t is increased, which makes the numerator of

(17) fall off much faster than the denominator, Zpθq, while the charge distribution PpQq largely

cancels out. An interesting feature of αVpθ, µq is that for fixed values of |θ| ą 0 it rises to a

certain point before it drops towards zero as t “ 1{8µ2 is increased. A similar behavior is found

for the running coupling αspT, µq at finite temperature T ą Tc [41].

With our current statistics we are not able to compute αVpθ, µq with confidence for t{a2 À 20

and 40 on the 244 and 324 lattice, respectively. But there is no doubt that it will continue to flatten,

as seen on the 164 lattice. The main hindrance is that fluctuations of αVpQ, µq with respect

to Q can be severe on large volumes before the ensemble has settled into truly disconnected

topological sectors, as can be seen in Fig. 6. The situation is expected to improve for smaller

lattice spacings a.

Let us consider hadron observables now. The Polyakov loop susceptibility, which we con-

sidered already in Sec. 2, is a sensitive probe of the long-distance properties of the theory. The

Polyakov loop describes a single static quark in the fundamental representation travelling around

the periodic lattice. As such, it should be screened for nonvanishing values of θ. We show the

bare Polyakov loop correlator x|P|2yQ depending on Q as a function of t{a2 in Fig. 9 (left panel).

Also shown is a scatter plot of P at t{a2 “ 60 (right panel). Both plots are from the 164 lattice,
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Figure 9: Left panel: The Polyakov loop correlator x|P|2yQ as a function of t{a2 for charges

ranging from Q “ 0 (top) to |Q| “ 6 (bottom). Right panel: The Polyakov loop P for t{a2 “ 60

according to charge Q. The data are from the 164 lattice.

where we have the largest number of entries per charge. We find xPy “ 0 in each sector. That

implies center symmetry for all values of θ. The figure on the right shows that for small values of

|Q| the Polyakov loop P rapidly populates the entire theoretically allowed region, while |P| stays

small for larger values of |Q|. Similar results are found on the larger lattices. In the θ vacuum we

have

x|P|2yθ “ 1

Zpθq
ÿ

Q

e i θQ PpQq x|P|2yQ , x|P|yθ “ 1

Zpθq
ÿ

Q

e i θQ PpQq x|P|yQ . (19)

From (19) we derive the normalized Polyakov loop susceptibility

χPpθq “ x|P|2yθ ´ x|P|y2
θ

x|P|y2
θ

, (20)

which describes the connected part of the Polyakov loop correlator x|P|2yθ. We plot the Polyakov

loop susceptibility in Fig. 10 for t{a2 “ 10 to 100. It shows that the Polyakov loop gets screened,

as expected, within a narrow region around θ “ 0. Furthermore, the susceptibility is independent
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Figure 10: The Polyakov susceptibility χPpθq as a function of θ on the 164 (left), 244 (center) and

324 (right) lattice for flow times from t{a2 “ 10, 20 and 50 to t{a2 “ 100, respectively.
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of the flow time t, not only for θ “ 0, Fig. 2, but for all values of θ. The Polyakov loop

is somewhat special, as it can readily be screened by static dyon loops wrapped around the

lattice [42, 43].

A further key quantity is the glueball correlator. Above the vacuum, the energy density

Epx, tq, Eq. (3), projects onto JPC “ 0`` glueball states. The lowest energy state, which we

denote by m0`` , is called the mass gap. The inverse of the mass gap defines the correlation

length, ξ “ 1{m0``, which describes the length scale over that fluctuations are correlated. The

correlation length can be read off from the variance of the energy density, which is identical to

the integrated glueball correlator. In the θ vacuum it reads

xE2yθ ´ xEy2
θ “ 1

N

ÿ

t

ÿ

ną0

|xθ|E|ny|2 e´mnt ` e´mnpL´tq

2mn

» 1

N
|xθ|E|0``y|2 1

m2
0``

, (21)

where xE2yθ “ ř

x xEpt, xq Ept, 0qyθ{V and N “ L6{16. (Here t should not be confused with the

flow time.) We have assumed that the correlator is dominated by the lowest glueball state. Under

the condition that E is normally distributed, it can be shown that the variance is independent of

the flow time t. In Fig. 11 we show xE2yθ,c ” xE2yθ ´ xEy2
θ

as a function of θ on the 244 lattice

for three different values of t. As expected, there is little difference between the three curves.

Like the Polyakov loop susceptibility, xE2yθ,c quickly drops to zero for |θ| Á 0. Likewise, the

correlation length ξ vanishes, most probably in combination with the amplitude |xθ|E|0``y|2,

and the theory has no (finite) mass gap.
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Figure 11: The connected glueball correlator xE2yθ,c on the 244 lattice as a function of θ for three

diferent flow times t.

This raises the question of how the results for χPpθq and xE2yθ,c fit with the flow of the running

coupling αVpθ, µq. While the color charge will eventually be totally screened, and confinement

is lost, for |θ| ą 0, the situation is different for composite, color-singlet quantities of finite size.

Recall that the screening length decreases with increasing value of |θ|, starting from infinity at

θ “ 0. Thus, for the glueball to dissipate, and the Polyakov loop to be totally screened, the

screening length must be smaller than the glueball radius, respectively the radius of the heavy-

quark bound state. On the larger lattices this appears to be the case for |θ| ą 0.2 ´ 0.3. The

11



situation is very similar to the finite temperature phase transition. See, for example, [44]. In that

case the screening length depends on the temperature difference ∆T “ T ´ Tc.
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Figure 12: The partition function Zpθq on the 324 lattice as a function θ, where the discrete

Fourier transform, Eq. (17), is compared with a smooth fit.

For the sake of legibility we have not drawn error envelopes in Figs. 7, 10 and 11, as this is

the first application of the gradient flow to the infrared behavior of the theory, and we consider

it important to clearly display the (in)dependence of the various quantities on t. The running

coupling αVpθ, µq, which is the Fourier transform of a convex function, is strictly positive [45].

The Polyakov loop susceptibility χPpθq and the variance xE2yθ,c are positive by definition. How-

ever, after the three quantities have dropped to zero, they start to oscillate around zero with a

frequency of Op|Q|maxq, where |Q|max is the largest charge being detected, as a result of finite

statistics. This is demonstrated in Fig. 12 for the partion function Zpθq on the 324 lattice. The

oscillation amplitude is À 0.02 over the entire range of θ. Various techniques to filter unphysical

high-frequency modes from discrete Fourier transforms have been proposed in the literature [46].

We fit the tail of the distributions to a smooth function. Alternatively, one can employ a low-pass

filter, like the Savitzky-Golay smoothing filter, which practically gives the same result. With this

in mind, we estimate the vertical error in Fig. 7 at 2%, but no smaller than 0.2, and the horizontal

error at 10%. In Fig. 10 the vertical error is 6%, but no smaller than 0.02, and the horizontal error

is about 15%. In Fig. 11 the vertical error is less than 0.2, and the horizontal error is estimated at

18%.

We may extend the calculation of the static potential in Eq. (16) to nonvanishing, but small

values of θ. In this case the θ parameter acts as an infrared cut-off on αVpθ, qq, which results in

σ “ 0 and loss of linear confinement for |θ| ą 0.

5 Discussion

The numerical work is characterized by high statistics on three different volumes. A key point is

that the path integral splits into disconnected topological sectors. The physics of each sector is

classified by the global charge Q only, regardless of whether the simulations started from θ “ 0

12



or from |θ| ą 0, which decouples the numerical analysis entirely from θ. The splitting is expected

to occur at ever smaller flow times with decreasing value of the lattice spacing. Eventually, the

original gauge field ensemble itself will split into disconnected sectors [10]. We found consistent

results on all three volumes, which rules out significant systematic and statistical errors. Our

main conclusions relate to a very small area of θ around zero only, which does not raise any

question of convergence.

The gradient flow proved a powerful tool for tracing the evolution of the gauge field over

successive length scales. It passed several tests and showed its potential for extracting low-energy

quantities of the theory, highlighted by the topological susceptibility χt, the lambda parameter

ΛMS and the string tension σ. As expected, the long-distance properties of the theory remain

unchanged under the gradient flow. We can rule out that the vacuum settles to a dilute instanton

gas at long distances. In that case xEptqy 9 1{
?

V , which would lead to αGF “ 0 in the infinite

volume. The novel result is that the color fields produced by quarks and gluons are screened in

the θ vacuum by nonperturbative effects, and confinement is limited to θ “ 0, which rules out

any strong CP violation at the hadronic level. Here screening is a gradual process, characterized

by a screening length that decreases with increasing value of |θ|. A similar behavior is found at

finite temperatur T ą Tc. Our results do not come as a surprise [2, 3, 4, 7, 8]. Surprising though

is that earlier indications of a nontrivial phase structure have completely been ignored. Probably,

because one did not have the tools to address the problem.
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Figure 13: The three-flavor gradient flow coupling αGFpµq{π for β “ 5.50, 5.65, 5.80 and 5.95

on the 323 ˆ64 (β “ 5.50 and 5.65) and 483 ˆ96 (β “ 5.80 and 5.95) lattice. The lattice spacings

range from a “ 0.074 to 0.051 fm [20].

Not much changes in three-flavor QCD for heavy quarks. In Fig. 13 we plot αGFpµq as

a function of t{a2 at the SU(3) flavor symmetric point [47], mπ “ mK « 410 MeV, for four

different values of β. The individual curves fall onto a single straight line when transformed to

a common scale. As before, the gauge fields split into disconnected topological sectors at larger

flow times. In this case ΛMS turns out to be close to the quenched value, which is not surprising,

given the heavy quark masses. A flavor-diagonal CP-violating phase of the quark mass matrix,

which often enters phenomenological estimates of CP violating processes, can always be rotated

into a θ term. Hence, the mechanism that screens the color charge in the Yang-Mills theory can

be expected to screen the color fields in QCD too.
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Figure 14: The dipole form factor F3pQ2q of the neutron on the 323 ˆ 64 lattice at the SU(3)

flavor symmetric point mπ “ mK “ 410 MeV [20] for |θ| « 0.4 and β “ 5.50.

The search for an electric dipole moment of the neutron directly from QCD constitutes a

crucial test for our results. If a nonvanishing dipole moment exists, it should be largest for heavy

quarks, while it vanishes trivially in the chiral limit. In [48] we have computed dn “ eF3p0q{2mN

from a fully dynamical simulation of 2 ` 1 flavors of clover fermions including the θ term. The

calculation follows [49], corrected for spurious mixing effects of F3 with the Pauli form factor

F2 [50]. In Fig. 14 we show the dipole form factor F3 at the SU(3) flavor symmetric point for

|θ| « 0.4. This leads to dn “ 0.00028p30q re fm θs, which is compatible with zero, as expected.

Currently this is the most accurate result. Similar results have been reported in [50, 51, 52], while

the authors of [53] claim a nonvanishing value. For small values of θ it can be assumed that the

nucleon remains essentially intact. (See above.) In absence of a nonvanishing dipole moment

no upper limit of θ can be drawn from the experimental bound on dn [1]. One might object that

EFTs predict a nonvanishing dipole moment for |θ| ą 0 [54, 55]. However, there are indications

that the chiral condensate ΣpQq grows with a power of |Q| [56, 57, 58], which would lead to

Σpθq “ 0 and chiral symmetry restoration for |θ| Á 0. Under these conditions the predictions of

EFTs are no longer tenable. Calculations of Σpθq are in progress.

The nontrivial phase structure of QCD has far-reaching consequences for anomalous chiral

transformations. Whatever the new phases are, our results are incompatible with the axion ex-

tension of the Standard Model. The vacuum will be unstable under the Peccei-Quinn [59] chiral

transformation UPQp1q “ expti δQ5u, resulting in the shift symmetry θ Ñ θ ` δ, which thwarts

the axion conjecture.
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