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Laser-plasma accelerators (LPAs) outperform current radiofrequency technology in acceleration
strength by orders of magnitude. Yet, enabling them to deliver competitive beam quality for de-
manding applications, particularly in terms of energy spread and stability, remains a major chal-
lenge. In this Letter, we propose to combine bunch decompression and active plasma dechirping for
drastically improving the energy profile and stability of beams from LPAs. Start-to-end simulations
demonstrate the efficacy of such post-acceleration phase-space manipulations and the potential to
reduce current state-of-the-art energy spread and jitter from 1 % to 0.10 % and 0.024 %, respectively,
closing the beam-quality gap to conventional acceleration schemes.

Laser-plasma accelerators (LPAs) [1] have attracted
considerable attention in recent years due to their po-
tential for realizing ultra-compact particle accelerators.
Among many applications, they could enable a new gen-
eration of cost-effective coherent light sources [2] or injec-
tors for future storage rings [3]. Landmark achievements
such as the generation of electron beams with peaked en-
ergy spectrum [4–6], GeV energy [7–9], high current [10]
and low emittance [11–13], have brought the performance
of these devices closer to current radiofrequency acceler-
ators. However, numerous challenges still limit their ap-
plicability, in particular with regards to the beam energy
spread and stability.

Achieving a low (<∼ 0.1 %) energy spread is especially
relevant for applications such as free-electron lasers [14].
Although large efforts have been made to minimize it,
beams from LPAs still typically exhibit >∼ 1 % energy
spreads [15]. One of the main reasons for this is the large
slope of the accelerating fields, which leads to a strong
longitudinal energy correlation (chirp) along the accel-
erated beams. This slope can be flattened by means of
beam loading [16–18], which has allowed the demonstra-
tion of 1 % to 10 % energy spreads [15, 19]. The remaining
energy spread arises from non-linear correlations as well
as the intrinsic slice energy spread [20], which can arise
from the betatron motion of beam particles [21]. Several
concepts can also mitigate the energy spread when beam
loading is negligible [22–24], but are therefore limited in
charge and efficiency. Alternatively, plasma dechirpers
[25–28] and dielectric [29, 30] or corrugated [31, 32] struc-
tures could passively reduce the energy spread after ac-
celeration by means of beam self-generated wakefields.

In addition to a lower energy spread [33], an improved
energy stability is required for most applications. In par-
ticular, a <∼ 0.1 % rms energy jitter and energy spread
are required for injection into diffraction-limited storage
rings, which feature a total ∼ 1 % momentum accep-
tance [34]. Currently, with a state-of-the-art energy jit-
ter > 1 % rms [35], LPAs operate an order of magnitude

above this requirement. A promising path towards im-
proved stability is the use of advanced machine-learning
techniques [36] and active feedback systems with high-
repetition-rate (kHz) lasers. These have been success-
fully implemented to stabilize the driver [37] as well as
optimizing and stabilizing the parameters of the output
beams [38, 39], even at moderate repetition rates [36, 40].
Such techniques could prove essential for realizing reliable
LPAs, but might not be sufficient for reaching <∼ 0.1 %
energy spread and jitter levels.

In this Letter, we propose to combine bunch decom-
pression and active plasma dechirping for drastically re-
ducing the energy spread and energy jitter of LPAs. The
decompression [41], performed by a magnetic chicane,
imprints a linear correlation between the arrival time
and the energy of the beam particles [24, 41–44]. An
active plasma dechirper (APD), in which a wakefield is
generated by a fraction of the LPA laser driver, is then
able to correct deviations with respect to the target en-
ergy thanks to the imprinted correlation and the intrin-
sic synchronization between the LPA and APD drivers.
Contrary to passive dechirpers [25–28], an APD can cor-
rect not only the beam energy spread but also the cen-
tral energy jitter. All together, the decompression and
dechirping result in a system for energy compression [45]
which, unlike in other work [24], is only applied after ac-
celeration, stabilizes the beam energy, and is not limited
to weakly beam-loaded LPAs. Thus, it could be incor-
porated into current state-of-the-art setups [15, 36] to
further improve the energy spread and achieve unprece-
dented energy stability. Start-to-end simulations with
the fbpic [46] and ocelot [47] codes demonstrate its
performance.

The combined effect of decompression and dechirping
can be studied by investigating the single-particle dy-
namics. By establishing a reference energy γref as the
desired beam energy of the accelerator, a relative energy
deviation δ(t) = (γ(t)−γref)/γref and longitudinal coordi-
nate ζ(t) = z(t)− zref(t) can be defined for each particle.
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FIG. 1. Basic layout and working principle of an LPA energy compressor and stabilizer. Only the LPA source and the relevant
beam line components (laser, chicane and APD) are shown. The longitudinal phase space of the beam at different locations is
also displayed, as well as the 3D [48] wakefield structure in the APD.

Here, γ =
√

1 + (p/mec)2 is the relativistic Lorentz fac-
tor, with p and me being, respectively, the momentum
and rest mass of an electron; c is the speed of light in
vacuum; t is time; z is the longitudinal position; and zref
is the position of a reference particle with δ = 0 initially
located at the beam center. A dispersive section trans-
forms the phase-space coordinates of a particle initially
at (ζi, δi) to a final position ζf = ζi+R56δi+O(δ2i ) [49],
where R56 is the linear dispersion coefficient, while leav-
ing the energy unchanged. Thus, to first order in δi,
a beam with no initial correlation between ζi and δi is
longitudinally stretched by a factor

S ≡
σζf
σζi

=

√(
R56σδi
σζi

)2

+ 1 , (1)

while developing a linear chirp χ ≡ σζδ/σ
2
ζ = R−156 (1 −

S−2), which is χ ' R−156 for S2 � 1. Here σζ and σδ are
the standard deviations of ζ and δ, and σζδ is their covari-
ance. After decompression, the beam enters a dechirper
of length L which applies a linear longitudinal electric
field Ez(ζ) = −(mec

2/e)E ′(ζ− ζ0) with normalized slope
E ′ centered at ζ0, where e is the elementary charge. This
leaves the position of the particles unchanged, but trans-
forms their energy into a final value

δf =
1

R56
(ζf − ζi) +

E ′L
γref

(ζf − ζ0) . (2)

Eq. (2) shows that the energy correlation imprinted
by the linear dispersion can be compensated for by the
dechirper if

E ′L = −γref
R56

. (3)

This results in a net reduction of the beam energy spread,
which is fully determined by R56 as

σδf =
σζi
R56

' σδi
S

, (4)

where the last equality holds if S2 � 1. This technique
is ideally suited for LPA beams due to their intrinsically
ultra-short (few-µm) length and typically large (∼10 kA)
peak current. Thus, for FEL applications, S ∼ 10 would
allow for an order of magnitude improvement of the en-
ergy spread while maintaining a kA current. When high
current is not required, such as in storage ring injectors,
a more drastic energy spread reduction could be realized.

Eq. (1) shows that for ∼1 µm long and ∼1 % energy
spread beams, R56 ∼ 1 mm is sufficient for S ∼ 10. As
illustrated in Fig. 1, this dispersion could be generated
by a symmetric magnetic chicane, where path length dif-
ferences arise due to an energy-dependent transverse de-
flection. This results in R56 = 2θ2(Ld + 2Lm/3) [49],
where Lm and θ are, respectively, the magnet length and
bending angle (for δ = 0); and Ld is the distance between
the central and outer dipoles.

When Eq. (3) is satisfied, Eq. (2) also yields that the
final deviation of the average beam energy is given by

〈δf 〉 =
ζ0
R56

. (5)

This implies that, if ζ0 = 0, the final beam energy is
stabilized to γref regardless of its initial value. This sta-
bilization can only be realized with an active dechirping
medium, where ζ0 can be controlled independently of the
beam position. In order to achieve this, we propose here
a so-called active plasma dechirper, a device where the
dechirping fields are generated by a laser pulse split from
the main LPA driver, and not by the electron beam itself.
This is conceptually similar to a laser-plasma lens [50],
but aimed at the generation of longitudinal fields. The in-
trinsic synchronization between the LPA and APD pulses
allows the arrival time of the APD driver to be adjusted
with sufficient precision to ensure that ζ0 = 0. The im-
pact that a timing jitter of the APD driver would have
on the final beam energy stability can also be evaluated
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directly from Eq. (5). This yields that for R56 ∼ 1mm,
maintaining a per-mille energy jitter requires a timing
jitter <∼ 10 fs, a level of precision which has been experi-
mentally demonstrated [51].
The APD consists of a plasma source inside which a

tightly focused laser pulse excites a trailing wakefield.
When the peak normalized vector potential of the driver
is sufficiently high, a0 >∼ 2, large electron cavitation oc-
curs and a strong wakefield with a uniform accelerating
slope is generated (cf. Fig 2(a)). The length of this
cavity is approximately given by the plasma wavelength
λp = 2π/kp, where kp = (npe

2/meε0c
2)1/2 and np are

the plasma electron wavenumber and density and ε0 is
the vacuum permittivity. The longitudinal extension of
the stretched beam should fit within this cavity. As de-
picted in Fig. 1, this can be ensured by placing a slit in
the center of the chicane for collimating particles beyond
a maximum, δmax, and minimum, δmin, energy deviation.
For a total beam extension<∼ λp/2, this yields a condition
λp

>∼ 2 (δmax−δmin)R56, which determines the maximum
plasma density in the APD. The field slope E ′ can be
estimated from the non-linear cold fluid equation [52] for
the wakefield potential, ψ, behind the driver, E ′ = ∂2

ζψ =

−k2p (1− 1/(1 + ψ)2)/2. At ζ0, which occurs around the
center of the cavity, the wakefield potential is maximum
and given approximately by ψ0 ∼ k2pw

2
0/4 [53], where w0

is the spot size of the laser at focus. This implies that
E ′ ∼ −k2p (1 − 1/(1 + k2pw

2
0/4)

2)/2 around ζ0. Coupled
with Eq. (3), this expression allows for an estimation of
the required dechirper length, under the assumption that
w ∼ w0 throughout the dechirper. Relative to the laser
Rayleigh length, ZR = πw2

0/λ0 [52], the dechirper length
is found to be L/ZR = γref R

−1
56 λ0 g(kpw0), where λ0 is

the laser wavelength and g(x) = 2(4 + x2)2/πx4(8 + x2).
For R56 = 1mm, γref = 103 and λ0 = 800 nm, this
expression yields kpw0

>∼ 1 for ensuring L <∼ ZR (i.e.
w ∼ w0). Under this condition, no external guiding is
required and a compact, mm-long APD can be realized.
This scales favorably to higher energies, requiring only a
small increase to kpw0

>∼ 2.6 for γref = 104.
To demonstrate the capabilities of the presented con-

cept, a set of start-to-end simulations of the beam de-
compression and APD have been carried out. The
simulations start from a 6D Gaussian electron beam
with parameters representing the current state-of-the-art
[15, 36], featuring an energy of 500MeV with an energy
spread and energy jitter of 1% rms. The simulated beam
line follows the design outlined in Fig. 1, and aims at im-
proving the beam energy spread and stability by at least
an order of magnitude. The beam capture, transport and
focus is performed by two active plasma lenses [54] placed
10 cm apart from the virtual LPA and the APD. Com-
pared to the use of conventional magnets, this minimizes
chromatic emittance growth [55] and simplifies the sim-
ulation setup. In practice, conventional transport lines
using advanced chromaticity correction techniques could

FIG. 2. (a) Plasma wakefields and electron beam at the
center of the APD. (b) Density profile of the APD. (c), (d) and
(e) show, respectively, the evolution of the rms energy spread,
average energy and normalized emittance along the APD of
beams with an initial energy deviation between −3% and
3%. The dashed lines show the reference case at 500MeV.
The differences in the initial energy spread arise due to charge
loss in the chicane slit for strongly off-energy beams.

also be realized [56]. The simulations of the plasma ele-
ments have been performed with the quasi-3D particle-
in-cell code fbpic, while the chicane has been simulated
with the ocelot tracking code, including the effects of
3D space charge and 1D coherent synchrotron radiation
(CSR). Hundreds of simulations have been performed to
comprehensively study the energy stability of the setup.

The initial LPA beams have a typical normalized emit-
tance εn = 1µm, a divergence of ∼0.5mrad, a FWHM
duration of 7 fs and a charge of 10 pC, resulting in a
∼1.3 kA peak current. The active plasma lenses pro-
vide a gradient of 800Tm−1 over a length of 2 cm and a
plasma density of 1015 cm−3. In order to achieve a per-
mille energy spread and jitter, a chicane with S = 13 has
been used. From Eq. (1), this requires R56 = 1.16mm,
which is generated by a compact 1.6m long chicane with
Ld = 30 cm, Lm = 20 cm and θ = 36.7mrad. The chicane
includes a collimating slit with a total horizontal aper-
ture of 1mm for filtering particles with an energy devia-
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FIG. 3. Energy spectrum of 300 simulated beams with an
initial 1% rms energy jitter and energy spread. (a) Initial
spectrum of the Gaussian beam emulating the LPA output.
(b) Final spectrum after lengthening and active dechirping.
(c) Same as (b) but with a 10 fs rms timing jitter in the APD
driver. The dashed lines represent a ±1% energy deviation.

tion above ±3%. The APD operates with a plasma den-
sity of 4× 1016 cm−3 and has a plateau length of 5.5mm
with two short 0.3mm Gaussian ramps at the entrance
and exit. The APD driver is a bi-Gaussian pulse with
a0 = 2, λ0 = 0.8 µm, w0 = 24 µm, a FWHM duration of
25 fs, and an energy of 2 J.

More than 300 simulations with the prescribed energy
jitter have been performed to study the performance of
the scheme. Fig. 2 shows a detailed view of the beam
evolution within the APD, including the wakefield struc-
ture at the center of the dechirper. The decompressed
beam fits well within the plasma wake, and is positioned
so that Eq. (5) ensures a final energy of 500MeV. The
effectiveness of this can be seen in Figs. 2(c)-(e), which
show the energy spread, mean energy and emittance of a
subset of 11 beams with −3% ≤ 〈δi〉 ≤ 3%. All of them
converge to the final target energy while reducing the
energy spread to <∼ 0.1%. The emittance is not signifi-
cantly affected, experiencing an average growth of 7.1%
due to transverse beam loading, since the blowout is not
fully cavitated of plasma electrons. APDs thus have a
clear advantage over passive dechirpers in terms of cen-
tral energy stabilization, while offering a large dechirping
strength (∼78GeVmm−1 m−1 in the present case) and
emittance preservation.

The energy compression and stabilization of the LPA
beams, as seen in Fig. 3, results in a drastic improvement

FIG. 4. (a) Energy spectrum of the LPA output with and
without an APD for different values of the beam charge. Each
curve is the projection of 300 simulations with an initial 1%
rms energy jitter. (b) Final longitudinal phase space of beams
with 〈δi〉 = 0. Higher charge can lead to non-linearities due
to beam loading. For reference, the phase space at the LPA
and chicane exit is also included (gray).

of the average beam energy spread and rms central en-
ergy jitter, which are reduced from 1% to only 0.10% and
0.024%, respectively. This is a degree of stability orders
of magnitude beyond current state-of-the-art. The im-
pact of a timing jitter between the LPA and APD drivers
has also been evaluated (cf. Fig. 3(c)). For a 10 fs rms
jitter, larger than experimentally expected [51], a signif-
icantly reduced energy jitter of 0.26% is still achieved.
This is in full agreement with Eq. (5), and showcases the
robustness of the concept.

In addition to the energy stabilization, this scheme of-
fers larger charge tolerance than previous work [24] owing
to the bunch stretching (and peak current reduction) in
the chicane. This minimizes beam-loading effects in the
APD, which could otherwise perturb the linearity of the
dechirping fields, while still allowing for an efficient LPA
with optimal beam loading. The charge tolerance of the
APD has been tested by performing the same scan as in
Figs. 3(a)-(b) for beams with a charge of 5 pC, 10 pC,
20 pC, 30 pC and 50 pC, keeping the rest of the setup
unchanged. The resulting cumulative energy spectra are
shown in Fig. 4. A sub-permille energy jitter is achieved
in all cases, with a value between 0.024% (5 pC) and
0.074% (50 pC). The final average energy spread also
varies between 0.079% (5 pC) and 0.43% (50 pC) due to
the increased beam loading in the APD. Thus, even for a
beam charge 5 times larger than the design value, an ex-
cellent stabilization is achieved, albeit with less effective
energy spread reduction. Higher charge tolerance can be
realized by re-optimizing the beam line. For the same
50 pC beam, a final energy spread of 0.18% can be ob-
tained by using a 2.5mm APD with an increased density
of 8× 1016 cm−3, a chicane with S = 10, and the same
APD laser driver but focused to w0 = 22µm.

In conclusion, we have shown that bunch decompres-
sion in combination with an active plasma dechirper can
effectively correct the energy output of an LPA. Start-
to-end simulations demonstrate that an unprecedented
beam energy spread and energy jitter in the permille to
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sub-permille range could be achieved with this technique,
using currently-available laser technology. This would
enable LPAs as compact beam sources for future storage
rings or free-electron lasers.
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