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Abstract

We re-evaluate the status of supersonic electroweak baryogenesis using a
generalized fluid Ansatz for the non-equilibrium distribution functions. Instead
of truncating the expansion to first order in momentum, we allow for higher
order terms as well, including up to 21 fluctuations. The collision terms are com-
puted analytically at leading-log accuracy. We also point out inconsistencies
in the standard treatments of transport in electroweak baryogenesis, arguing
that one cannot do without specifying an Ansatz for the distribution function.
We present the first analysis of baryogenesis using the fluid approximation to
higher orders. Our results support the recent findings that baryogenesis may
indeed be possible even in the presence of supersonic wall velocities.
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1 Introduction

Despite the immense empirical successes of the Standard Model, the origin of the
matter-antimatter asymmetry in the Universe remains one of the outstanding open
problems in particle physics. The issue is particularly tantalizing because our current
theories do seem to contain all the necessary ingredients for solving the problem,
namely baryon number non-conservation, charge and charge-parity violation, and
non-equilibrium dynamics. Indeed, in the Standard Model baryon number is violated
by processes which become very efficient at high temperatures, such as those found in
the early Universe, where one also has non-equilibrium dynamics such as the Hubble
expansion and possibly phase transitions, while C and CP violation are present in the
weak and fermionic sectors. However, the requirement that these ingredients appear
simultaneously and in a sufficient amount turns out to be a severe constraint, making
it difficult for a concrete mechanism to be devised that correctly predicts the observed
asymmetry.

A very appealing approach is non-local electroweak baryogenesis [1–3], which has
attracted much attention from the community in the past decades for its phenomeno-
logical and cosmological implication at current and near-future experiments. The
mechanism relies on charge transport along bubbles of the Higgs field in a first-order
electroweak phase transition in the early Universe. The basic idea is that particle col-
lisions in front of the expanding bubble may lead to a net CP asymmetry, which can
be converted to a baryonic asymmetry by baryon-number-violating sphaleron pro-
cesses in front of the wall. When the asymmetry is diffused into the bubble, where
the sphalerons are inefficient, the reverse baryon-wash-out reactions are suppressed,
ensuring that the Universe remains asymmetric to the present day.

Because this mechanism relies on diffusion of particles in the primordial plasma,
it has been common lore that it could not work for supersonic wall speeds, since in
this case the time for non-equilibrium processes to take place in the plasma before the
bubble sweeps past would supposedly be insufficient. This intuition was confirmed in
the first works that studied the velocity dependence of electroweak baryogenesis in
detail [4].

However, this claim has been disputed in a recent work by Cline and Kainu-
lainen [5]. The main argument is that diffusion, being an essentially microscopic
non-equilibrium process, heavily dependent on particle interactions, is not necessar-
ily related to a collective phenomenon such as the propagation of sound in the plasma.
Indeed, the Bose-Einstein and Fermi-Dirac equilibrium distribution functions show
no regard for the sound speed cs ' 1/

√
3, and some of the particles do have larger

velocities and could diffuse into a supersonic bubble. This is confirmed by their anal-
ysis of the relevant non-equilibrium transport equations, which shows that the baryon
asymmetry behaves completely regularly at the speed of sound.

However, these results crucially depend on the Ansatz for the shape of the non-
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equilibrium particle distribution function. In this recent study [5] the working hy-
pothesis was (based on previous baryogenesis analyses [4]) that these functions are
fully characterized by two perturbations only: a chemical potential and a velocity
parameter encapsulating how the particle’s velocity deviate locally from the plasma
velocity uµ. All other possible perturbations are assumed to be linearly related to
these velocity perturbations.

Apart from being a restrictive and largely unjustified assumption, this factoriza-
tion hypothesis does not sufficiently specify the shape of the distribution functions to
allow for a computation of the relevant collision terms. For these, one has to assume
a specific Ansatz, e.g. the fluid Ansatz of the form

f(x, p) =
1

eβ(pµuµ+δ) ± 1
, (1)

and expand the perturbations δ in powers of momenta, truncating the expansion at
some appropriate order [6,7]. Thus, the working hypothesis of reference [5] is actually
inappropriate for practical purposes, since it forces one to use different Ansätze for
different terms of the Boltzmann equation.

When the transport analysis is performed thoroughly and consistently with this
Ansatz, keeping only terms up to first order in momenta (a so-called fluid Ansatz
which amounts to including a chemical potential, a velocity perturbation and a tem-
perature fluctuation as well), the speed of sound emerges as a singularity of the
Liouville operator, corresponding to the kinetic term in the Boltzmann equations.
This implies that, for supersonic walls, all fluctuations trail the source [8]: there are
no non-equilibrium dynamics in front of the wall, and the baryon asymmetry should
therefore vanish. This is in sharp contrast to recent findings in [5], but still does not
constitute a definitive position on the issue, because one must still ask whether this
first order truncation is justified at all, and how the system would change if higher
order terms were included.

The goal of the present paper is to extend this analysis of the transport equations
using an extended fluid Ansatz, including more perturbations appearing at higher
orders in momenta. To keep consistency, collision terms from annihilation and scat-
tering processes associated to these new fluctuations are computed numerically and
analytically. Since the issue under investigation is encapsulated in the behavior of
the kinetic term, we choose to simplify the analysis by neglecting complications aris-
ing from CP-violation as well as neglecting collision terms that would be relevant
to a full baryogenesis study, such as chirality flips, W -boson interactions and strong
sphalerons.

Our treatment is rigorously adequate for the study of friction in front of the wall,
a problem which has been tackled in a fully relativistic approach both with the first-
order fluid approximation [8] and in the formalism adopted in [5]. But baryogenesis
and wall friction are very similar phenomena, since both rely on out-of-equilibrium
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distributions of the particles in the plasma close to the propagating wall, and in
both cases the source that drives the distribution functions away from equilibrium is
the interaction between the particles and the Higgs. The main difference is that in
baryogenesis one is mostly interested in the CP-violating component of the deviation
from equilibrium, but for the purposes of discussing the behavior of the solutions
around the speed of sound this is not relevant. Interestingly, our findings support the
results in [5] that the fluctuations behave continuously across the sound speed, albeit
for different reasons.

The paper is organized as follows. In section 2 we review the standard fluid ap-
proximation for the non-equilibrium distribution function [6, 8], and how the Boltz-
mann equation can be used to determine the three fluctuations in chemical potential,
local particle velocity and local temperature. We will see how the speed of sound
emerges naturally in this setup as the singularity of the kinetic term. In section 3
we present some arguments leaning towards a criticism of this simple approximation
and motivate a generalization with more fluctuations. We also present here some
specific criticisms on the standard approach for transport baryogenesis found in the
literature [4, 5, 9], arguing that one cannot escape from making a specific Ansatz for
the shape of the distribution functions. In section 4 we present our generalized fluid
Ansatz, showing explicit expressions for the kinetic matrix, the collision terms and
the source up to six fluctuations. Our results are presented in section 5, and we con-
clude in section 6. An argument from hydrodynamics for the relevance of the speed
of sound is presented in Appendix A. General expressions for the collision terms to
leading-log accuracy up to arbitrary orders in the generalized Ansatz can be found in
Appendix B.

2 The fluid approximation

Ultimately, we want to study the Boltzmann equation, that in its relativistic form
reads

pµ∂µ fi(x
µ, pµ) +mF µ∂pµ fi(x

µ, pµ) = C[fj] , (2)

where pµ is the four-momentum of the particles (evaluated on-shell p0 = E =√
~p 2 +m2 ), f is the particle distribution function, F denotes the forces in the system

and C is the collision term.
The Boltzmann equation is a non-linear partial differential equation (due to the

collision term), and in order to make progress different approximations are typically
used. The first approximation is to assume that the system is close to equilibrium.
The equilibrium distribution is given in terms of the four-velocity of the fluid uµ

(relative to the global restframe of the plasma) and the temperature T . In the current
setup, the forces will drive the system out-of-equilibrium while the collision terms
will relax the system to some local equilibrium that in principle can be different on
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both sides of the wall (in fact it has to be so, as demanded by energy momentum
conservation, see Appendix A). In the analysis of baryogenesis, this problem can
be eliminated by introducing a background fluid (made up mostly from the gluons
and quarks that are not much affected by the Higgs) that will reflect this change as
demonstrated in [6].

Since we assume the system close to equilibrium, one can split the distribution
function into a deviation and an equilibrium value

f(pµ, xµ) = δf(pµ, xµ) + f eq(pµuµ/T ) . (3)

After this one arrives at a system of equations that reads

pµ∂µ δfi(x
µ, pµ) = C[δfj] + S[f eqj ] , (4)

where the source term S contains all the forces and depends at leading order only on
some forces acting on the equilibrium distributions.

Here we want to note that any peculiarities at the speed of sound are due to a
vanishing (or very small) eigenvalue in the first term of this equation (the so-called
Liouville term). In particular, it has nothing to do with the specific form of the sources
or collision terms. This is also why the relativistic analysis for the wall friction can
be carried over to baryogenesis without much effort.

In the following we summarize the steps in ref. [8] to present the analysis for the
fluid approximation in Lorentz covariant form. The fluid approximation assumes the
different species have individual temperatures and fluid velocities and also chemical
potentials. Assuming that the fluctuations are small relative to the background, one
obtains

δf ' −
(
µ/T + pµδuµ/T − pµuµδT/T 2

)
f ′eq(p

µuµ/T ) . (5)

The fluctuations µ, δT and δuµ describe (for every species) the deviation from equi-
librium. Note that δuµ obeys uµδu

µ = 0 so that, in the planar wall case we will
consider, it constitutes only one degree of freedom. Therefore in this approximation
the system is described by three fluctuations in total.

Before we come to the usual approach of solving these equations, let us discuss
whether this Ansatz makes sense. The main argument here is that (depending on
the system under consideration), there often is a hierarchy between different classes
of interactions. The strongest interactions are often gauge scatterings that do not
change the particle content of the plasma. In the Standard Model, these are e.g.
2-by-2 scatterings mediated by the gluons. Notice that the t-channel interactions
even feature a logarithmic enhancement on top of the rather large gauge coupling
in the strong sector [7, 10]. When inspecting the collision terms, these interactions
will equilibrate the quarks among themselves. Very quickly, all quarks should have a
distribution function close to the fluid approximation and share the same temperature
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and velocity but not chemical potential, since this requires interactions that change
particle number.

This leads to the conventional wisdom that kinetic equilibrium is attained faster
than chemical equilibrium. (Notice that there is a subtle difference in the definition
of the chemical potentials of particles and anti-particles when it comes to the study
of the friction compared to baryogenesis, see section 4). Still, ultimately, there is no
proof that the fluid approximation is holding in the baryogenesis and/or friction setup
and that differences between the fluctuations in the temperatures and flow velocities
should equilibrate slower than any other fluctuations. This leaves the question of how
important these fluctuations are for a correct determination of the friction or baryon
asymmetry. This is an open question that was already raised in the seminal work by
Moore and Prokopec [6], and is discussed to some extent in their Appendix B.

Even though one cannot make a strong argument in favor of the fluid approxi-
mation with only three perturbations, let us briefly discuss the standard procedure
in order to understand the generalization which will follow, as well as to understand
where the strong dependence on the wall velocity in the setup comes from. Since
the fluid approximation has three degrees of freedom per species, one can take three
moments of the Boltzmann equations to obtain a (non-partial) system of differen-
tial equations. The most natural choice is to simply multiply by four-momenta and
integrate, so that the Boltzmann equation (4) reads

∂µ

∫
d3p

E
pµδf(p, x) = collisions + source , (6)

∂µ

∫
d3p

E
pµpνδf(p, x) = collisions + source . (7)

Note that the denominator includes only one power of E from the Lorentz invariant
integration measure. At this point our treatment differs from [5] (and also from [4,
9]) who advocate different moments in their analyses, obtained by multiplying the
Boltzmann equations with extra factors of 1/E as well. Our choice of moments seems
more natural, since the resulting equations can be easily interpreted as the divergence
of the charge current and the energy-momentum tensor. As we will see, this is one
important reason why the speed of sound is of relevance in the analysis of [6], while
it is not in [5]. Obviously, the analysis presented here does not rely on small wall
velocities.

We can then linearize the system using the fluctuations in (5) and focus on the
case of an approximately planar wall, which is justified after the bubble reaches a
steady-state, and also because we are interested in the behaviour of fluctuations close
to the wall where its curvature becomes negligible. This means that there is only one
direction ūµ perpendicular to the fluid velocity, i.e. with ūµuµ = 0 and ūµūµ = −1.
In particular the velocity fluctuations can be written as δuµ = ūµδv. Moreover in the
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steady-state situation the fluctuations depend only on ξ = xµvµ, where vµ = γ(vwuµ−
ūµ) characterizes the four-velocity of the wall, which then leads to ∂µ = vµ∂ξ. Finally,
we note that equation (7) contains two components, which we can project onto uν
and ūν , leading to a total of three equations for three fluctuations. Putting everything
together, we see that the Liouville part of the Boltzmann equations, corresponding
to the kinetic component of the flow, involves derivatives ∂ξ(...) of the fluctuations
multiplied by coefficients of the form∫

d3p

E
(pµuµ)m(pν ūν)

n(−f ′eq) = 4πTm+n+2

{ cm+n+1

n+ 1
, n even

0, n odd,
(8)

where, in the massless case and for n ≥ 2,

cbn ≡
1

T n+1

∫
dp pnfBE

p (1 + fBE
p ) = n! ζn , (9)

cfn ≡
1

T n+1

∫
dp pnfFD

p (1− fFD
p ) =

(
1− 1

2n−1

)
n! ζn , (10)

with fBE and fFD the Bose-Einstein and Fermi-Dirac distribution functions, respec-
tively. For the collision terms associated to annihilations, it will also be convenient
to define

c̃n+1 ≡
1

T n+1

∫
dp pnfFD

p (1 + fBE
p ) =

(
1− 1

2n+1

)
n! ζn+1 , (11)

which we quote here for reference.
In Appendix B, the collision terms are derived to linear order, so this momentum

decomposition of the Boltzmann equation leads to a system of the form

A · d
dξ
q + Γ · q = S , (12)

with the vector q = (δµ/T,−δT/T, δv) describing the fluctuations of the system. The
matrix Γ stems from the linearized collision term while S contains the sources. On
the other hand, the matrix A comes from the Liouville term and has the form (for a
relativistic plasma in equilibrium)vwc2 vwc3 c3/3

vwc3 vwc4 c4/3
c3/3 c4/3 vwc4/3

 . (13)

Now, the authors of [6] made the interesting observation that for vw = 1/
√

3 the de-
terminant of this matrix vanishes and one eigenvalue changes sign. The corresponding
eigenvector corresponds to vwδv = −δT/T . For supersonic wall velocities all eigen-
values have the same sign such that all fluctuations trail the wall. Hence the only
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contribution to baryogenesis comes from a local source in the wall and the resulting
asymmetry is strongly suppressed. Notice that this discussion does not rely on the
special form of the collision term or the source. Only the analysis of the Liouville
term in the Boltzmann equation is relevant to make this argument. Moreover, the
effect should occur in every species individually and does not arise from the interplay
of different species.

This fits rather nicely with the observations of how the system behaves on the
largest scales, as inferred from hydrodynamics (see Appendix A). In particular, the
behavior of the system changes qualitatively once the wall velocity surpasses the speed
of sound.

3 Why higher moments are essential

Since the validity of the fluid Ansatz with only three momentum-independent fluctu-
ations is somewhat controversial, let us now venture towards a generalisation of the
previous argument. As a consequence of the discussion in this section, we will propose
a generalised fluid Ansatz with higher order perturbations, analogous to including a
momentum dependence of the fluctuations in the previous section.

Let us start by noticing that sound waves are a collective phenomenon that obvi-
ously needs at least some notion of equilibrium. Assuming that the plasma has a rest
frame where the distribution functions only depend on the energy, in a general frame
the distribution function is of the form f(pµuµ/T ) where uµ is the fluid four-velocity
and the temperature T is introduced for dimensional reasons. Otherwise, the function
f is arbitrary.

Now consider two fluctuations that mimic the temperature and velocity fluctua-
tions from the last section,

δf =
(
pµūµδv/T − pµuµδT/T 2

)
f ′(pµuµ/T ) , (14)

and let us again focus on the steady-state situation, with ∂µ = γ(vwuµ − ūµ)∂ξ. The
Liouville term then contains three different Lorentz structures,

pν ūν p
µuµ(vw∂ξδv + ∂ξδT/T )f ′(pµuµ/T )/T,

pν ūν p
µūµ(∂ξδv)f ′(pµuµ/T )/T,

pνuν p
µuµ(vw∂ξδT/T )f ′(pµuµ/T )/T.

As in the fluid approximation, for vwδv = −δT/T the first term vanishes but the
others do apparently not. The remaining terms combine into

pνpµ(ūν ūµ − v2w uµuν)(∂ξδv)f ′(pµuµ/T )/T. (15)
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However, for a relativistic plasma, in the plasma frame pµuµ = E and pµūµ = pz.
Moreover, for massless particles 〈En p2zf

′〉 = 〈En+2f ′〉 c2s and odd moments of pz
vanish (this follows e.g. from the fact that the energy momentum should be traceless).
This means that the lowest moment that can potentially spoil the vanishing eigenvalue
in the kinetic term contains four factors of pµūµ. This is one of the motivations to
generalize the fluid approximation, to introduce a larger class of fluctuations and to
use higher moments of the Boltzmann hierarchy to study the system more rigorously.

Before jumping into this analysis, let us briefly comment on the alternative ap-
proach found in the literature, which claims to perform the analysis without an ex-
plicit Ansatz for the perturbations. One can quite generally write the non-equilibrium
distribution function as

f =
1

exp(β(pµuµ − µ))± 1
+ δf, (16)

letting δf encode all fluctuations away from equilibrium except for the momentum-
independent part of the chemical potential, which is encapsulated by µ. In standard
transport baryogenesis treatments [4,5,9] one then take moments by multiplying the
Boltzmann equation by powers of pz/E in the plasma frame, resulting in fluctuations
defined as1

u` ≡
〈(

pµūµ
E

)`
δf

〉
. (17)

Of course, this description is so general that it includes the fluid approximation as a
particular case. But, without imposing any further restriction on the form of δf , one
cannot make any progress towards determining the shape of δf . So some Ansatz is
unavoidable. This difficulty is then typically sidestepped by imposing a factorization
condition which essentially states that all fluctuations u` for ` ≥ 2 are proportional
to u1. This entire approach is problematic for a few reasons.

First, the choice of momenta is very peculiar. While u1 is the z-component of
the four-current in the wall frame, u2 is not simply related to the relevant conserved
quantities like the energy momentum tensor, and consequently the physical meaning
of the resulting equations in this formalism is less transparent. Moreover, using
the energy-momentum tensor conservation as a moment, as in equation (7), has the
advantage that the corresponding collision terms vanish (not for individual species
but collectively).

Next, this approach is supposedly the most general since it does not rely on
an Ansatz. But in fact the specific choice of factorisation, relating all higher-order
fluctuations to one velocity perturbation u1, is equivalent to an Ansatz, with the dis-
advantage that its physical significance is not very transparent. Besides, this Ansatz

1Note the additional factors of 1/E for ` ≥ 2, which are absent in our approach delineated in the
previous section.
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is not specific enough to allow for the computation of the collision terms. For that,
one needs to know the explicit form of the non-equilibrium distribution, such as we
do have in the fluid approximation. Even though this seems unrelated to our issue at
hand, this makes the method impractical in actual calculation. In previous baryoge-
nesis analyses [4, 5, 9] the collision terms have been ultimately derived assuming the
fluid approximation.

Finally, as discussed in the last section, for the peculiar fluctuations (14) the
kinetic term vanishes up to fourth order in pz at the speed of sound, so by construction
u1 = u2 = 0 and the system is oblivious to the eigenvector with zero eigenvalue. In
other words, the functions u1 and u2 do not encode this eigenvector and only higher
moments would be sensitive to it.

In summary, we cannot escape from using a specific Ansatz for the non-equilibrium
distributions, yet there is little justification in keeping only three momentum inde-
pendent fluctuations in the fluid approximation. In the following, we will generalize
this fluid Ansatz to include terms at higher order in momenta. We will see that the
results for baryogenesis across the speed of sound are modified even at a qualitative
level.

4 Generalized fluid Ansatz

A general non-equilibrium distribution can always be written in the form shown in
equation (1). But, in much the same way as argued above, this is too generic to allow
for the computation of the resulting perturbations from the Boltzmann equation.
Some progress can be made by expanding the perturbations δ in powers of momenta.
The standard fluid approximation is then obtained by truncating this expansion at
first order, as in (5). Here, we would like to extend the set of fluctuations and study
the behaviour of the solutions. This is not the first time that higher moments have
been considered in treatments of the Boltzmann equation, see e.g. [6, 11, 12] for an
interpretation of the higher-order equations in terms of entropy production due to
dissipative work and heat flow. However, the present work is the first that uses this
extended approach in the context of baryogenesis.

To be specific, we parameterise the fluctuations as

δf =
(
w(0) + pµw(1)

µ + pµpνw(2)
µν + · · ·

)
× f ′eq(p

µuµ/T ) . (18)

This generalizes the fluid approximation, and due to the symmetries only n+1 degrees
are relevant in w(n). For instance, expanding up to n = 2 will lead to 6 fluctuations in
total. In order to truncate the Boltzmann hierarchy we then multiply the Boltzmann
equations by the factors (pµuµ)a(pν ūν)

b with a, b ≥ 0 and (a + b) ≤ n and take the
corresponding moments to arrive at a linear equation system for the fluctuations.
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The result is again a system of the form shown in equation (12), but now with
enlarged (n + 1)(n + 2)/2 square matrices, whose entries will involve the coefficients
defined in (10) and (11). Indeed, for n = 2 the kinetic matrix has the form

A =


vwc2 vwc3 c3/3 vwc4 c4/3 vwc4/3
vwc3 vwc4 c4/3 vwc5 c5/3 vwc5/3
c3/3 c4/3 vwc4/3 c5/3 vwc5/3 c5/5
vwc4 vwc5 c5/3 vwc6 c6/3 vwc6/3
c4/3 c5/3 vwc5/3 c6/3 vwc6/3 c6/5
vwc4/3 vwc5/3 c5/5 vwc6/3 c6/5 vwc6/5

 . (19)

The source term is defined in equation (4) as

S[f eq] ≡ −mF µ∂pµfeq − pµ∂µ feq = −f ′eqmuµFµ, (20)

and the force can be divided into a CP-even and a CP-odd term as mFµ = ∂µm
2/2 +

mF��CP
µ . As mentioned before, baryogenesis relies on C and CP violation, so the CP-

odd component of the source is essential in this calculation. However, in this work we
are interested in studying the behaviour of the solutions across the speed of sound,
which depends exclusively on the kinetic term. In this sense the calculation of the
baryon asymmetry and of friction are similar, and we will therefore consider here a
CP-even source for simplicity. Then, after multiplying the Boltzmann equation by
factors of pµuµ and pµūµ and integrating, we again get integrals as in equation (8),
resulting in

S =
uµ∂µm

2

2

(
c1 c2 0 c3 0 c3/3

)T
, (21)

for six perturbations. Here cf1 = log 2 and cb1 = log(2T/m), whereas c2 and c3 are
given in equations (10).

Focusing on the CP-even terms has an extra advantage in simplification. For
baryogenesis one would have to compute the CP-odd components of the chemical
potential and of the other fluctuations. In particular, the chemical potential in baryo-
genesis calculations is a proper chemical potential, while the fluctuation µ in friction
calculations parametrizes a tilt in the distribution function that is equal for parti-
cles and anti-particles. Hence, in the collision terms the fluctuation µ in friction
calculation will be damped by annihilation processes. In baryogenesis, on the other
hand, damping of the chemical potential obviously requires particle number changing
interactions that are far weaker and less abundant. This is because, due to the CP
violating source of baryogenesis, the chemical potentials have opposite signs for differ-
ent chiralities and are reduced by the mass terms of the fermions in the broken phase.
Moreover, the strong sphaleron can flip the chirality of the quarks and erase their
chemical potentials. Therefore, in focusing on the CP-even part of the fluctuations
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only, we neglect these complications and simplify the analysis of the collision terms
as well.

In summary, we consider collision terms from top-quark annihilations and scat-
terings off other quarks and off gluons. The collision matrix for annihilations is

Γann =
16α2

s T

9π



2γ0000ann 2γ1000ann 0 2γ2000ann 0 2γ0020ann

2γ1000ann γ2000ann + γ1100ann 0 γ3000ann + γ2100ann 0 γ1020ann + γ1002ann

0 0 γ0020ann 0 γ1020ann 0

2γ2000ann γ3000ann + γ2100ann 0 γ4000ann + γ2200ann 0 γ2020ann + γ2002ann

0 0 γ1020ann 0 γ2020ann 0

2γ0020ann γ1020ann + γ0120ann 0 γ2020ann + γ0220ann 0 γ0040ann + γ0022ann


(22)

and for scatterings

Γscatt =
16α2

s T

9π

9A

4



0 0 0 0 0 0

0 γ1100scatt 0 γ2100scatt 0 γ0120scatt

0 0 γ0011scatt 0 γ1011scatt 0

0 γ2100scatt 0 γ2200scatt 0 γ0220scatt

0 0 γ1011scatt 0 γ1111scatt 0

0 γ0120scatt 0 γ0220scatt 0 γ0022scatt


, (23)

where A = 1 for scatterings by gluons and A = 5/3 for scatterings by quarks. An-
alytic expressions for the coefficients γann and γscatt at leading-log can be found in
equations (58) and (67) in Appendix B.

Now, a further complication arises when we attempt to include the sphalerons
in this generalized framework. In standard baryogenesis calculations, based on two
fluctuations only, the sphalerons couple only to the zeroth-order fluctuation, i.e. that
which is not multiplied by any power of momenta, and which is interpreted as the
chemical potential of the corresponding field. In principle, in our framework one
would have to recalculate how the effective interaction of the strong sphaleron damps
the fluctuations in our generalized Ansatz (18). This task is beyond the scope of what
we want to achieve here and we will mimic the true collision terms of the sphalerons
in different ways.

The strong sphaleron will be mimicked using the collision term from the friction
calculation. This will lead to a damping of the chemical potential similar to what the
strong sphaleron achieves in baryogenesis. At the same time it is a set of physical
collision terms that just occur in a different setting. So, strictly speaking, the conver-
gence properties that we will observe are the ones of the friction network and not the
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ones of baryogenesis. In order to facilitate transport, we choose the corresponding
gauge couplings rather small, such that the charges can travel into the symmetric
phase as in the case of non-local baryogenesis.

To mimic the weak sphaleron, we use the standard result for the sphaleron rate,

Γws ' 10−6T exp(−aφ(z)/T ) , (24)

where a ≈ 37 and φ(z) = φ0
2

(1 − tanh z
Lw

) is the bubble profile with wall thickness
Lw and vev φ0 at the critical (or nucleation) temperature. We couple the sphaleron
to Jµuµ, where Jµ = 〈pµ/E〉 is the current of the plasma, since this is after all the
moment associated to particle number density and should therefore be interpreted
as the full chemical potential [12]2. Coupling the weak sphaleron to the zeroth-order
fluctuation would be rather arbitrary and would make the result highly dependent
on the precise basis of fluctuations. In any case, the coupling to the weak sphaleron
is of course not relevant to study convergence of the out-of-equilibrium distribution
functions but rather to reproduce the qualitative behavior of baryogenesis for a low
number of fluctuations and supersonic wall velocities where the resulting BAU is
suppressed.

5 Results

With this setup, we have all we need to solve the resulting Boltzmann system and
find the fluctuations and the toy baryon asymmetry. The latter is obtained by solving

∂znB =
3

2vw
Γws(κuµJ

µ −AnB) , (25)

with A = 15/2, and κ = 3/(4πc2) is a factor chosen so that the result will agree with
the traditional coupling to the chemical potential at zeroth-order. In order to find
the current Jµ we solve the system

d

dξ
q + (A−1 · Γ) q = A−1 · S . (26)

If λi, χi are respectively the eigenvalues and eigenvectors of A−1 · Γ, the Green’s
function is

G(z) =

{ ∑
λi>0 αi χi exp(−λi z), z > 0∑
λi<0 αi χi exp(−λi z), z < 0 ,

(27)

2The interpretation of the zeroth-order perturbation w(0) as the chemical potential is only valid

under the condition that [12]
∫
d3p
E pµuµδf = 0, which is not automatically satisfied in our Ansatz.

The coincidence is only granted in a two-fluid approximation, which has often been employed in
previous baryogenesis studies.
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and the fluctuations are

q(z) =

∫ ∞
z

dz′
∑
λi>0

(χ−1i · A−1 · S)(z′)χi exp [−λi (z′ − z)]

−
∫ z

−∞
dz′

∑
λi<0

(χ−1i · A−1 · S)(z′)χi exp [−λi (z′ − z)] .

(28)

We see that for positive eigenvalues the fluctuations at z get contributions from the
source at z′ > z, and we say that the fluctuations trail the source. The opposite occurs
for negative λi, in which case the fluctuations are ahead of the source. Because the
baryon number is obtained from a convolution of the fluctuations with the sphaleron
rate Γws, and because the latter is only active in front of the wall, as can be seen from
equation (24), the trailing fluctuations produce a negligible baryon asymmetry.

Thus, when all eigenvalues are positive, the resulting asymmetry should vanish.
This is exactly what happens for supersonic wall velocities in the fluid approximation
with three perturbations, which leads to the interpretation of the speed of sound as
an upper limit for viable transport baryogenesis. But when we add additional fluctu-
ations, not all eigenvalues become positive beyond this threshold. Some eigenvalues
may remain negative and yield a contribution to the BAU, albeit smaller than for
lower velocities because some eigenvalue sign flipping does invariably take place.

This is illustrated in figure 1, with the resulting toy baryon asymmetry for two
values of the relevant coupling entering the collision terms (in this case, the strong
coupling αs). The red line represents the case of three fluctuations, where it is clear
that there is no asymmetry beyond the speed of sound. However, once we add more
perturbations, this picture changes and a resulting asymmetry does become possible.
There also appear other thresholds, related to new singularities of the larger kinetic
matrix. Curiously, as one adds more and more perturbations, the sharp drops in
these threshold values seem to smoothen out and one approaches a continuous curve,
similar to the result obtained in [5].

We highlight, however, that the reasoning for this similar behaviour is fundamen-
tally different. Here the smoothness is an emergent asymptotic behaviour obtained
from a well-defined expansion in momenta, rather than from an ad hoc factorization
assumption. Furthermore, the speed of sound does not constitute a sharp disconti-
nuity, but it remains a feature of the system, even if hidden in the first few momenta
only. Our approach is also thoroughly consistent, in the sense that we use the same
Ansatz to compute all the terms in the Boltzmann equation, including the collision
terms.

It is also interesting to point out that the result clearly converges as we add more
fluctuations. As can be seen by comparing the two plots in figure 1, the parame-
ter determining this convergence is the inverse coupling appearing in the collision
terms. This is not unexpected: the stronger the interactions are, the quicker and
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Figure 1: Baryon asymmetry for αs = 0.01 (left) and αs = 0.06 (right) as a function
of the wall velocity. The different lines correspond to a different basis of fluctuations
and different numbers of moments.

more effective the thermalisation processes will be, so we would effectively need less
perturbations to describe the distribution functions well.

In figure 2 we extend the velocity dependence of the BAU down to very small
values, vw . 0.001. As expected, the result becomes highly suppressed and also
converges rather quickly in this region. This is also in agreement with the findings
in [5]. We note also that the first-order approximation (with three perturbations,
corresponding to the red curves) may be an over- or an underestimate of the full
result, depending on the wall velocity and also on the value of the coupling in the
collision terms.

Finally, the dependence with the wall thickness is displayed in figure 3. As one
might expect, the shape of the curve does not change drastically by the addition of
new fluctuations, but it is displaced as already seen in figures 1 and 2 above. The
convergence of the series is also clearly highlighted in this plot.

6 Conclusions

In order to analyze electroweak baryogenesis or the bubble wall friction during a
cosmological phase transition, a Boltzmann equation has to be solved for the particles
in the plasma. Since a full solution of this system of partial differential equations is
often (even numerically) not attainable, the main way to progress is to take moments
which leads to the Boltzmann hierarchy.

Some assumptions have to be made to decouple the Boltzmann hierarchy and the
evaluation of the collision terms basically forces one to choose an Ansatz for the dis-
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Figure 2: Same as figure 1, but now with a logarithmic scale in vw showing the
behaviour at very small velocities.
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Figure 3: Dependence of the baryon asymmetry on the wall width for αs = 0.01 and
vw = 0.4.
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tribution functions. It turns out that if only a few moments and a few basis elements
are chosen, the outcome critically depends on these choices. For some choices, the
speed of sound is an important quantity and baryogenesis for wall velocities beyond
the speed of sound is insufficient, for others not.

In this work, we use extensive basis sets (that generalize the fluid approximation)
and many moments of the Boltzmann equation to study a toy model that resem-
bles the most important features of electroweak baryogenesis calculations. The main
stumbling block for this kind of analysis is the evaluation of the collision term that
we detailed in Appendix B. We find that for the fluid Ansatz and a low number
of moments, supersonic baryogenesis is indeed suppressed. Then again, for a large
number of moments, we find that the outcome behaves smoothly in wall velocity and
supersonic baryogenesis becomes possible, in support of recent findings by Cline and
Kainulainen [5].

The reason for the suppression in case of a few moments beyond the speed of sound
is that the eigenvalues in the Liouville operator change sign. For large wall velocities
all eigenvalues share the same sign, fluctuations only exist behind the bubble wall and
baryogenesis becomes local. Qualitatively, it is the same for higher moments, but the
velocity at which all eigenvalues share the same sign progressively moves to vw → 1.
This is not too surprising since for a time-like wall velocity vector vµ all fluctuations
have to be damped in the positive time direction. So it is not too surprising that all
eigenvalues have the same sign when vµ approaches the light cone.

In order to leverage our results in a realistic baryogenesis calculation some ingre-
dients are still missing. The main improvement would be to determine how the strong
and weak sphalerons couple to the fluctuations in this generalized Ansatz. These are
essential in the baryogenesis calculations since they break chirality and B+L number.
While we model these effect in our toy setup, representing these processes in a full
analysis would require the evaluation of the corresponding collision/interaction rates
for the extended fluid Ansatz.

Another important issue concerns the systematics governing the momentum ex-
pansion in the fluid Ansatz, and the criteria for deciding the appropriate order for
truncation. On general grounds one can expect the fluid to behave as nearly perfect if
the mean free path is much smaller than the relevant macroscopic parameter, namely
the wall width Lw. This indicates an expansion parameter of the order (ΓLw)−1,
with Γ denoting some combination of the relevant interaction ratios. This is in line
with our findings that the convergence of the BAU gets better as the coupling con-
stant (hence the interaction rates) become larger. As the mean free path increases,
non-perfect behaviour such as viscosity and conductivity starts to become relevant,
which are modelled by higher moments in the distribution function. All that said,
it should be emphasized that a rigorous and a prioristic proof of the convergence
of this moment expansion, or of the accuracy of any specific truncation, is still lack-
ing [12]. However, the convergent behaviour in numerous applications of this method,
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including the results of this work, corroborate the validity of this approach as long as
non-linear phenomena (such as shock waves) are not present. A related issue is the
accuracy of a fluid-like Ansatz in describing intermediate and low energy collisions.
An expansion in powers of pµ will naturally be dominated by the high energy regime,
but may be less sensitive to complex angular behaviour of collisions at lower energies.
This is not a problem in the leading-log approximation considered here, but may
become an issue when attempting a leading order estimate. In this case a different
Ansatz may become necessary, perhaps expanding in the energy E and momentum
direction pµ/E. Be it as it may, our numerical results show that, to leading-log accu-
racy, the conventional fluid approximation with three fluctuations seems to work fine
at subsonic wall speeds when aiming at an O(10%) accuracy.

Finally, we comment how the present calculation relates to the evaluation of the
bubble wall friction. Unlike the baryogenesis calculation, the friction calculation leads
to a change in the collective temperature and velocity of the fluid through energy injec-
tion. This is captured by fluctuations in a background field that also become singular
when the Liouville operator develops zero eigenvalues, leading to a blow-up in friction
as explicitly shown in reference [8]. In the baryogenesis calculation, this singularity
in the source is counteracted by a divergent damping and no singularities occur in
the final baryon asymmetry. In the friction calculation, however , such divergences
can be expected on the ground that there is a build up of particles in front of the
wall precisely at the speed of sound, similar to a sonic boom effect, which drastically
increases the friction in this case. In [17] the behaviour of friction was analysed in
the framework laid out in reference [5], and because the speed of sound plays no role
in such formalism the findings point to a continuous non-singular behaviour for the
friction at all values for the wall velocity. However, in our generalized fluid Ansatz
with higher moments it is well possible that the singularities remain and yet others
appear, indicating that, in the limit of very high moments, the problem essentially
becomes non-linear for wall velocities beyond the speed of sound.
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A An argument from hydrodynamics

Even though hydrodynamics does not describe the phenomenon of diffusion, the hy-
drodynamic analysis of bubble nucleation and expansion can shed some light on the
relevance of the speed of sound. This is an old topic already presented in text-
books [13] and we will only summarize the main relevant points to the present dis-
cussion.

While the wall is expanding, the interactions of the particles in the plasma with
the Higgs field will drive the system out-of-equilibrium. This will lead to the fact
that the equilibrium attained before and behind the wall are not the same. On length
scales much larger than the bubble wall or diffusion length but smaller than the
bubble size, the system is in local equilibrium. The energy-momentum tensor of the
combined system (plasma+Higgs) is conserved and the system can be described by
hydrodynamics. Moreover, since there is no inherent length scale, the system behaves
self-similarly and the hydrodynamic equations read [14]

(ξ − v)
∂ξe

w
= 2

v

ξ
+ γ2(1− ξv)∂ξv , (29)

(1− ξv)
∂ξp

w
= γ2(ξ − v)∂ξv , (30)

where v is the fluid velocity in the plasma frame, γ is the corresponding Lorentz
factor, e and p are the energy and pressure densities and ξ is the self-similar coordinate
ξ = r/t.

At the same time, in the vicinity of the wall, the Higgs field injects energy (and
pressure) into the plasma which leads to the matching equations

v+
v−

=
eb(T−) + ps(T+)

es(T+) + pb(T−)
, (31)

v+v− =
ps(T+)− pb(T−)

es(T+)− eb(T−)
, (32)

where u± denote the plasma velocities (in the wall frame) and T± the temperature in
front/behind the wall.

The interesting point about these equations is that only certain classes are valid
globally. For example, if the wall velocity is supersonic (and the phase transition is
not too strong), the fluid velocity in front of the wall has to vanish, since otherwise
(29) would imply a singularity in the fluid velocities somewhere in front of the wall.
So the two matching equations abide to v+ = vw and T+ is the phase transition
temperature. This leads to detonations (v− < v+) with a rarefaction wave developing
behind the wall.

On the other hand, if the wall velocity is subsonic, the fluid velocity behind the
wall has to vanish since otherwise the solution will encounter a singularity according
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to (29). So the only valid solution in this regime is that of a shock before of the wall
which are called deflagrations (v− > v+). The fluid will then drop to the equilibrium
configuration in the shock front (see ref. [14] for details).

So, these solutions fulfill all the naive expectations. For supersonic wall velocities,
the plasma changes only behind the wall while it is still in equilibrium in front of the
wall. For subsonic wall velocities, particles have to be reflected which leads to a snow-
plow effect that ultimately will build the shock in front of the wall. Qualitatively, the
solutions for subsonic and supersonic walls behave quite differently and one would
expect that this also has to be reflected by the behavior close to the wall once one
looks into the details of diffusion.

Actually, there is also an intermediate regime where so-called hybrids develop
with rarefaction waves and a shock. However, for very weak phase transition, this
case becomes less and less relevant. Moreover, the strongest detonations (with the
smallest wall velocity) are so-called Jouguet detonations. In this case, the fluid profile
becomes very steep behind the wall (dv/dξ →∞) due to the fact that the local fluid
velocity (in the wall frame) is the speed of sound, so the Mach number is 1.

The main takeaway from this section is that the macroscopic behavior of the fluid
indeed changes from subsonic to supersonic wall velocities, which suggests that also
microscopically the picture has to change qualitatively in this transition. Still, it is
only very indirect evidence that baryogenesis is not possible for supersonic walls.

B Collision terms

As explained in the last section, we will use the collision terms of the friction network
to mimic the damping from the strong sphaleron in baryogenesis. We follow closely
the analysis in [6] and also use for most parts their notation and conventions. The
collision integrals are of the form3

C[f ] =
∑ 1

2Ep

∫
k

∫
p′

∫
k′
|M|2(2π)4δ4(p+ k − p′ − k′)P [fi] , (33)

with
P [fi] = fpfk(1± fp′)(1± fk′)− fp′fk′(1± fp)(1± fk) , (34)

and the shorthand
∫
k

=
∫
d3k/2Ek. The incoming momenta are denoted k and p

and the outgoing k′ and p′. M is the matrix element of the process and fi are the
particle distribution functions of the particles (that are fermionic/bosonic depending
on process).

We will evaluate the collision terms to linear order in the fluctuations (see [6]),
i.e.

P [fi] '
(∑

δi

)
f eqp f

eq
k (1± f eqp′ )(1± f eqk′ ) , (35)

3Compared to the notation in equation (4) one has EpC[f ] = C[δf ].
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where

fp =
1

exp(pµuµ/T + δ)± 1
' δ × (f eqp )′ (36)

and
1± f eqp = exp(pµuµ/T )f eqp . (37)

Notice that this relation together with energy-momentum conservation in the process
implies that the last factor in P [fi] is actually symmetric under exchange of k with
p, exchange of k′ with p′ and exchange of k,p with k′,p′ as long as the statistics of
these particles are the same. In effect the symmetries of P [fi] depend then on the
first factor

∑
δi.

Following [6] we are only interested in contributions that are logarithmically en-
hanced due to IR sensitivity, which only can arise from the t and u channels. The
mass dependence of the particles in the matrix element regulate the IR sensitivity
of these integrals but we assume the particles to be massless otherwise. There are
two types of diagrams we need to evaluate: annihilation diagrams and scattering
diagrams. For the incoming particle with momentum p we consider only fermions
(quarks) and the scattering can happen off gauge bosons or other fermions.

Our Ansatz for the fluctuations we call collectively χ and expand

χ(p) =
∑
a

χa(p) = w(0) + pµw(1)
µ + pµpνw(2)

µν + · · · (38)

with

w(1)
µ = w

(1)
0 uµ + w

(1)
1 ūµ ,

w(2)
µν = w

(2)
0 uµuν + w

(2)
1 ūµuν + w

(2)
2 ūµūν , (39)

and so on.
In order to obtain the various moments of the Boltzmann equation, we multiply

the Boltzmann equation with some factors χa(p) and integrate over p. The outcome
is ∫

d3p χa(p)C[f ] =

∫
p

∫
k

∫
p′

∫
k′
|M|2(2π)4δ4(p+ k − p′ − k′)

×χa(p)
(∑

δi

)
f eqp f

eq
k (1± f eqp′ )(1± f eqk′ ) . (40)

Annihilations: The fluctuations are in the incoming particles while the pro-
duced particles are assumed to be in equilibrium. In case of the friction analysis
the dominant contributions are CP and C conserving such that the incoming quarks
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Figure 4: Diagrams for annihilation and scattering processes involving top quarks.
Left: Annihilation into gluons in the t-channel. The u-channel is obtained by ex-
changing p′ ↔ k′. Middle: Top quark scattering by other quark. Right: Scattering
by gluons.

and anti-quarks share the same fluctuations – this is where a baryogenesis calculation
would depart. The resulting integrals are then of the form∫

p

∫
k

∫
p′

∫
k′
|M|2(2π)4δ4(p+ k − p′ − k′)

×χa(p) (χb(p) + χb(k)) f eqp f
eq
k (1± f eqp′ )(1± f eqk′ ) . (41)

The matrix element for annihilations is (we use the QCD rates of the Standard Model)

|M|2 ' −64

9
g4s

st

(t−m2
q)

2
. (42)

We can symmetrize the expression by exchanging simultaneously p with k and p′ with
k′ what essentially gives

χa(p) (χb(p) + χb(k))→ 1

2
(χa(p) + χa(k)) (χb(p) + χb(k)) (43)

Remember that the factors like χ(p) will contain some products of the momentum
with an tensor structure for the momenta. This will make the evaluation of these
integrals somewhat cumbersome. Below we discuss three methods to deal with this
Lorentz structure.

Scattering processes: We can follow the same steps and obtain expression like∫
p

∫
k

∫
p′

∫
k′
|M|2(2π)4δ4(p+ k − p′ − k′)

×χa(p) (χb(p)− χb(p′)) f eqp f eqk (1± f eqp′ )(1± f eqk′ ) , (44)

where the matrix element is

|M|2 ' 160

3
g4s

s2

(t−m2
q)

2
(45)
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for scattering off a quark and

|M|2 ' 40g4s
s2

(t−m2
q)

2
(46)

for scattering off a gluon. Symmetrisation leads to the replacement

χa(p) (χb(p)− χb(p′))→
1

2
(χa(p)− χa(p′)) (χb(p)− χb(p′)) . (47)

In the following we discuss three different ways to solve these integrals. The first
one uses a symbolic solver to resolve and invert the Lorentz structure of the integrals.
The second method is to evaluate the integrals numerically. The last one is to evaluate
all integrals explicitly.

B.1 Symbolic solver

In this subsection we explain how to resolve the Lorentz structure arising from the
basis functions χa(p) using a symbolic solver. We wrote a python code to automat-
ically follow these steps. At some point the procedure becomes to expensive but we
obtained results up to fourth order that we compared with ref. [6] as well as with the
explicit solution found below.

As noted in [6], one can further simplify the integrals in (44) and (41) by only
capturing the leading log. In particular, in the limit t→ 0 the difference (pµ−p′µ) and
(kµ−k′µ) are of order

√
t. This means that since the Matrix elements in combination

with the basis functions χ behave as 1/t, one can send k′µ → k and p′µ → p in the
remainder of the integrals. Notice that this is for the scattering integrals only possible
after the symmetrization (47).

Annihilations: At this stage, the only dependence on the momenta p′ and k′

appears in the matrix element and the Dirac delta function. Without loss of generality
one can boost into the frame where ~p + ~k = 0, and integrate over the spatial part of
the delta function. This enforces ~p′ + ~k′ = 0. Since we assume the particles to be
massless (which implies Ek′ = Ep′ = |~p′| = |~k′| = p′ and Ek = Ep = |~p| = |~k| = p),
the remaining integral is of the form (see [6])∫

p′2dp′dΩp′

(2π)32Ep′2Ek′
2πδ(2Ep−2Ep′)

(2pµk
µ)2pp′(1− cos θ′)

(2pp′(1− cos θ′) +m2
q)

2
=

1

8π
log

(
2pµkµ
m2
q

)
. (48)

Here cos θ′ denotes the angle between ~p and ~p ′ and the final result was written in a
Lorentz invariant way using pµk

µ = 2pk, which holds in the center-of-mass frame.
The next step is to evaluate the Lorentz structure. Ultimately, the integrals only

depend parametrically on the vector uµ, so the final result can only involve the vector
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uµ and the metric ηµν . We construct the most general basis that has the correct
symmetries and is build from these two ingredients. We then contract the Ansatz as
well as the integral with the different basis elements and invert the system.

The resulting integrals can be evaluated in the plasma frame. The expression
then involves the energies Ep = p and Ek = k as well as the Mandelstam variable

s = 2kp(1− cos θ), where cos θ parametrizes the angel between ~k and ~p. The integral
over the angle reads

8π2

∫
d cos θ (1− cos θ)n log

(
2kp(1− cos θ)

m2
q

)
=

2(n+1)

n+ 1

[
log

(
4kp

m2
q

)
− 1

n+ 1

]
' 2(n+1)

n+ 1
log

(
4kp

m2
q

)
(49)

in leading log approximation.
The remaining integrals factorize and using the approximation [6]∫

dp pn log
p

T
fp(1± fp) ' log(n+ 1/2)

∫
dp pnfp(1± fp) , (50)

and the final integrals can be evaluated depending on the statistics of the particles,
yielding the coefficients in equations (10) and (11).

Scattering: The scattering diagrams are a bit harder to determine. The basis
functions χ depend also on p′ such that the integrals over p′ and k′ are non-trivial.
Still, also this problem can be solved by choosing an appropriate basis and inverting
the problem by taking contractions of the integrals with this basis.

Consider a term that contains the following Lorentz structure in the numerator,

(pµpν · · · − p′µp′ν)(pαpβ · · · − p′αp′β) . (51)

The most general outcome after integrating p′ and k′ can contain a tensor structure
involving kµ, pµ and the metric ηµν . Consider the contractions of this basis with terms
of the form (51). The contraction is at least of order t such that the overall integrand
scales as t−1 just as the annihilation contributions. The Mandelstam variables are
given by

2kµpµ = s , 2kµp′µ = −u = s+ t , 2pµp′µ = −t . (52)

First consider basis elements that contain factors p and k but not η. The corre-
sponding contractions with (51) are at least of order t2 and can be discarded. Basis
elements with more than one η are also higher order in t. The only contributions
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linear in t arise from basis elements with one factor η and the remaining factors are
all k. We call the set of these basis elements C.

To invert the problem, one has to consider again the most general basis elements
involving k, p and η, and considers the class of basis elements that can give a non-
vanishing contraction with elements of C (meaning not suppressed by any factors t).
One obvious class are elements with one factor η and the remaining factors are p.
But there is a second class: elements with one factor k and the remaining factors are
involve only p.

The fundamental integrals over p′ and k′ that have to be solved are then of the
same form as for annihilation processes and the resulting expressions have a Lorentz
structure in k and p that can be resolved in the same way as for annihilations. One
novelty is that the scattering on gauge bosons involves integrals with two bosonic
distribution functions as given in (10).

B.2 Numerical integration

Another method to evaluate the collision integrals is to do it numerically, preferably
with a Monte-Carlo integrator like CUBA [15]. One might think that this even allows
to evaluate the integrals beyond the leading log approximation, but this is a mirage
since the true result going beyond leading log requires to incorporate hard thermal
loop correction in the scattering processes [7, 10,16].

The only nontrivial problem in the numerical evaluation is how to represent the
four-dimensional Dirac delta function. We choose to align the wall along the z-
axis and then sample the six momenta ~k and ~p. The vectors ~k′ and ~p ′ are then
parameterized as

~k′ = ~P + ~Q , ~p ′ = ~P − ~Q , (53)

where ~P = (~k + ~p)/2 and we choose ~Q = q q̂ = (0, q sinα, q cosα). The remaining
constraint on the energy then gives

q2 =
Ē2 − ~P 2

Ē2 − (q̂ · ~P )2
Ē2 (54)

with 2Ē = Ek + Ep. Due to the symmetries of the integral and since we sample

all signs of the six momenta ~k and ~p, one can restrict oneself to the positive branch
of q. Notice that this construction leads to an additional factor from the Jacobian
determinant when the integral of the delta function is performed,∣∣∣∣d(Ek + Eq + Ek′ + Ep′)

dq

∣∣∣∣−1 =

∣∣∣∣∣q + (q̂ · ~P )

Ek′
+
q − (q̂ · ~P )

Ep′

∣∣∣∣∣
−1

(55)
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We checked that the leading log result corresponds to the one obtained with the
other two methods. The full numerical result can differ from the leading log up to
a factor 2 in extreme cases (depending on the involved masses that regulate the IR
behavior). We checked that this has no effect on our main results.

B.3 Explicit solutions

It turns out that, to leading log order, the collision integrals for annihilation and
scattering can be solved analytically to a simple closed form.

Annihilations: As discussed above, for annihilations one can always perform the
p′ and k′ integrals in the center-of-mass frame, which from equation (48) results in

∫
d3p χa(p)C[f ] =

16α2
s

9π2

∑
b

∫
p

∫
k

χa(p)
[
χb(p) + χb(k)

]
×

× f eqp f eqk (1 + f eqp )(1 + f eqk ) log

(
2pµkµ
m2
q

)
.

(56)

The terms χa,b(p) contain powers of Ep and pz, so that the problem actually
reduces to the solution of integrals of the form

4π2Tm+n+r+s+4γmnrsann =

∫
d3p d3k

2Ep 2Ek
Em
p p

r
z E

n
k k

s
z f

eq
p f

eq
k (1 + f eqp )(1 + f eqk ) log

(
2p · k
m2
q

)
(57)

(the pre-factor was chosen for later convenience as well as to make the quantity γmnrsann

dimensionless).
By symmetry the result vanishes unless r and s are even, and one finds

γmnrsann =


c̃m+r+2 c̃n+s+2

(r + 1)(s+ 1)
log

(
(2m+ 2r + 3)(2n+ 2s+ 3)T 2

m2
q

)
, r and s even

0, otherwise,
(58)

with the coefficients c̃n given in equation (11).

Scatterings: The scattering integrals are significantly more complicated, but can
be done with the assistance of a good deal of patience and perseverance. In this case
equation (44), after antisymmetrizing according to (47), reduce to integrals of the
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form

π

4
Tm+n+r+s+4γmnrsscatt =

∫
d3p d3k

2Ep 2Ek
f0pf0k(1− f0p)(1± f0k)

∫
d3p′ d3k′

(2π)6 2Ep′ 2Ek′
×

× (2p · k)2

(2p · p′ +m2
g)

2
(2π)4δ4(p+ k − p′ − k′)×

×
(Em

p p
r
z − Em

p′ p
′ r
z )(En

p p
s
z − En

p′p
′ s
z )

2
.

(59)

Again it is convenient to perform the primed integrals in the c.o.m. frame, but now
this operation is complicated by the presence of primed factors of Ep′ and p′z in the
integrand. To change the reference frame, let uµ be the plasma four-velocity, which
in the plasma frame is uµ = (1, 0, 0, 0), and let vµ = (0, 0, 0, 1) be a unit four-vector
in the z direction in the plasma frame. Then we can replace

Em
p′ p
′ r
z → (u · p′)m(v · p′)r (60)

in the integrand above, and since these are now Lorentz invariant quantities the k′

integral can be easily performed in the c.o.m. frame, yielding remaining integrals of
the form ∫

d3p′

(2π)34E2
p′

(2p · k)2

(2p · p′ +m2
g)

2
(2π)δ(2Ep − 2Ep′)

(u · p′)n(v · p′)r
2

. (61)

The task is now to write and solve this integral in the c.o.m. frame. For this purpose,
let θ be the angle between ~p and ~p ′, and β the angle between ~u and ~p, as seen in
the c.o.m. frame. If we setup a coordinate system where z is along ~p, and with an
appropriate choice of remaining axes, we can write

u = |u| (cos β p̂ + sin β ŷ),

v = |v| (cosα p̂ + sinα sin ρ ŷ + sinα cos ρ x̂),

p ′ = |p ′| (cos θ p̂ + sin θ sinϕ ŷ + sin θ cosϕ x̂),

(62)

and

(u · p′)n =
[
u0Ep′ − |u||p′|(cos θ cos β + sin θ sin β sinϕ)

]n
,

(v · p′)r =
{
v0Ep′ − |v||p′|

[
cos θ cosα + sin θ sinα (sin ρ sinϕ+ cos ρ cosϕ)

]}r
.

(63)

We can now perform a binomial expansion of these expressions and integrate over θ
and ϕ, keeping only leading log terms via∫ π

0

dθ
cosn θ sin θ[

2|p||p′|(1− cos θ) +m2
g

]2 ' − n

4|p||p′| log

(
4|p||p′|
m2
g

+ 1

)(
1 +

m2
g

2|p||p′|

)n−1
.

(64)
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Many terms will drop out and some of the binomial expansions can be resummed, es-
pecially when we set mg → 0 in the second brackets above. After some combinatorics
the integral in equation (61) can be put in the form

1

8π

(2p · k)2

16|p|4 log

(
4|p|2
m2
g

)
× (u · p)n−2(v · p)r−2

{

n |u|2|p|2(v · p)2
[
u0

|u| cos β − cos2 β +
(n− 1)

2
sin2 β

]
+ r|v|2|p|2(u · p)2

[
v0

|v| cosα− cos2 α +
(r − 1)

2
sin2 α

]
+ (n r)(u · p)(v · p)

[
(u0|p|) (v0|p|)− (|u||p| cos β) (|v||p| cosα)

]}
.

(65)

But this is only one of the four terms contributing to γmnrsscatt in equation (59).
When we add the other terms, other cancellations will take place, and the remainder
can be written in a simple form in the plasma frame, involving only the terms

2|p|2|u|2 sin2 β = (EpEk + p · k)pl ,

2|p|2|v|2 sin2 α =
1

3
(3EpEk − p · k)pl ,

2|u||p| cos β = −(Ep − Ek)pl ,
2|v||p| cosα = (pz − kz)pl ,

2u0|p| = (Ep + Ek)pl ,

2v0|p| = −(pz + kz)pl.

So, going back to the plasma frame,∫
p′

∫
k′

(2p · k)2

(2p · p′ +m2
g)

2
(2π)4δ4(p+ k − p′ − k′)

(Em
p p

r
z − Em

p′ p
′ r
z )(En

p p
s
z − En

p′p
′ s
z )

2
'

' 1

16π
log

(
2p · k
m2
g

)
×
{

(m · n) (−pz)r+sEm+n−2
p (EpEk + p · k)

+ (r · s) (−pz)r+s−2Em+n
p

1

3
(3EpEk − p · k)

− (ms+ nr)(Ekpz + Epkz)E
m+n−1
p (−pz)r+s−1

}
pl

.

(66)

Finally, this can be integrated over p and k to yield a vanishing result for r + s
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odd, while for r + s even one has

γmnrsscatt = log

(
5(2m+ 2n+ 2r + 2s+ 1)T 2

m2
g

)
×

×
(
ms+mn+ nr

r + s+ 1
+

r s

r + s− 1

)
cfm+n+r+s

{
cf2
cb2

}
.

(67)

The term cf2 enters in scatterings by fermions and cb2 appears in scatterings by gluons.
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