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Abstract. The lepton–proton collisions produced at the HERA collider rep-
resent a unique high energy physics data set. A number of years after the end
of collisions, the data collected by the H1 experiment, as well as the simulated
events and all software needed for reconstruction, simulation and data analysis,
were migrated into a preserved operational mode at DESY. A recent moderni-
sation of the H1 software architecture has been performed, which will not only
facilitate on going and future data analysis efforts with the new inclusion of
modern analysis tools, but also ensure the long-term availability of the H1 data
and associated software. The present status of the H1 software stack, the data,
simulations and the currently supported computing platforms for data analysis
activities are discussed.

1 The H1 experiment at HERA

Operating during the years 1992 to 2007, HERA at DESY is so far the only high energy
lepton–proton (ep) collider in the world to have been constructed, where 27.6 GeV electrons
or positrons were brought into collision with 920 GeV protons, resulting in a centre–of–mass
energy of 319 GeV. The collision of point–like leptons with hadrons made HERA a unique
tool for precise measurements of the structure of the proton. Many other areas of particle
physics were also accessible at HERA, including QCD and jets, heavy quark production,
diffraction, electroweak physics, as well as the search for rare processes in ep collisions.

The H1 detector [1, 2] at HERA recorded the final state particles of ep collision events,
and features tracking detectors closest to the beam pipe, surrounded by electromagnetic and
hadronic calorimetry, a muon system, and several further subdetector components. Approx-
imately 270, 000 readout channels were employed by the H1 detector. A multi–level trigger
system was employed to reduce the event-rate from the bunch crossing frequency of 96 ns
(≈ 10 MHz), and selected events were then stored with a rate of 20–50 Hz in the RAW data
format. The total volume of RAW ep collision data recorded by the H1 detector and suitable
for analysis amounts to about 75 TB, and comprises approximately 1 billion events collected
in the years 1996–2007.

Considering the planned Electron–Ion Collider in the US (EIC) [3], the proposed Large
Hadron-electron Collider at CERN (LHeC) [4] and the proposed Electron-Ion Collider in
China (EicC) [5], as well as many new related theoretical developments, the unique ep data
from HERA retain their relevance for many years to come.
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2 The H1 software stack

The H1 Collaboration developed and maintains a sizeable software stack, which was used
during data taking, and continues to be used not only for subsequent data reconstruction and
high-level data analysis, but also for the simulation of the detector response to high energy
physics (HEP) processes. The software stack is also crucial to perform physics analyses of
the H1 ep collision data. The relevant components of the software stack are briefly described
in the following.

2.1 The core packages

The H1 core software is written almost entirely in FORTRAN 77, was designed in a machine-
independent manner 1, and has served the experiment well since 1988. It is this software
which creates the basic format, the Data Summary Tape (DST) from the RAW data, as well as
providing the means to simulate ep collision events for Monte Carlo (MC) comparisons to
data.

The FORTRAN software is based on two key components, BOS [6] and F-PACK [7], and is
arranged in a series of strictly modular packages or modules, with self-contained sets of rou-
tines and clear input/output (I/O) interfaces. BOS is a dynamic memory management system
for defined data blocks and their persistent I/O. The system supports a modular structure of
the application program and portability for both the software and the data sets. F-PACK is a
machine-independent general I/O package for data blocks. It performs automatic word for-
mat conversions for different machine representations (IBM, VAX, DEC, IEEE) and supports
fast access to subsets of data through indexed files. An important feature of F-PACK is the
support of keyed/ordered access files, which is essential for data-base-like applications. The
modules of the H1 packages communicate with each other strictly only via BOS banks, and
larger programs, such as the reconstruction program, consist of a plain series of module calls.

The H1 reconstruction package H1REC comprises approximately 50 different sub-modules
for noise suppression, clustering, calibration, tracking, vertexing, tagging, for the combina-
tion of different sub-detector quantities, as well as electron identification and the reconstruc-
tion of deep inelastic scattering kinematic variables. The detector simulation package H1SIM
is based on GEANT3 [8]. It has a modular structure and contains the geometry definition of all
sub-detectors, the magnetic field map, and tools for fast simulation and the shower library.
Taking the relevant run conditions from an Oracle database, MC events are produced in the
same format as the data, with some additional information. The same reconstruction software
as used on the data is then applied to the simulated MC events.

Further modules include the H1 global database H1NDB, the data management system
DATMAN, the event filter modules H1L4 and H1ECLASS, trigger simulation modules H1TRIG
and H1FTTEMU, as well as libraries for useful numerical utilities H1UTIL and utilities for MC
production H1MCUTIL. Finally, the LOOK package is a general system for graphics applications
in physics, and uses GKS [9] for basic graphical operations with a system of utility subpro-
grams to prepare own display programs. As such, LOOK provides the core framework for the
event display, H1ED.

Only a few mandatory external dependencies exist, namely CERNLIB [10], GEANT3, GKS,
oracle-instant and the FORTRAN compiler, presently gfortran. The first three packages
are no longer maintained, but H1 retains a copy in its internal software stack.

1The H1 Collaboration employed many computing platforms and operating systems to analyse data, among them
AIX, AILLANT, APOLLO, AXP, Ultrix, HPUX, IBM, IBMMVS, MAC, MIPS, OS-9, RTPC, VAC, VAXMVS,
VMS, UNIX, SGI, SUN, LINUX, and most recently i686 and amd64 with RHEL or Scientific Linux distributions.



2.2 Analysis data and software: H1oo

In the year 2000, a few years ahead of the HERA II phase of data taking, H1 made the
decision to develop a new object–oriented analysis core framework in C++ , H1oo [11–15].
The goal of the H1oo project was to improve the overall efficiency in H1 physics analysis and
performance by providing a modern analysis environment, new standardised and fast event
selection facilities and a new, common data format.

The design and development principles employed in H1oo were closely aligned to the am-
bitious developments of the emerging ROOT [16] framework at CERN. Concepts such as (mul-
tiple) inheritance, dynamic instantiation of objects via Names, consistent Setter and Getter
functions for the use with the interactive C++ interpreter (CINT) and comprehensive source-
code documentation are among the similarities in the design principles. H1oo also makes use
of the generic collection of tools for high-performance I/O, as well as the interactive analysis
environment and graphical opportunities provided by ROOT. The use of a global singleton
class to provide convenient access to all relevant quantities is also very similar to the ROOT
paradigm.

The H1oo framework is structured into about 50 sub-packages and consists of more than
600 C++ classes, inheriting from the core ROOT class TObject. The highly standardised data
transfer methods between the sub-packages via BOS and F-PACK in the FORTRAN software
described in the previous section also provided a stable access interface to read the DST event
files from H1oo in C++. A more complete discussion of the structure of the H1oo software
can be found in [14].

For H1oo, new data formats were designed to define new high-level analysis objects, such
as jets, heavy-quark tagging information or (re-)calibrated particle candidates, with improved
data I/O via TTrees stored in ROOT files. The H1oo data format typically used for analysis
is in reality comprised of two persistent file formats, to be used in tandem: the "H1 Analysis
Tag" (HAT) which contains simple, calibrated variables to perform a fast event selection,
and the larger "Micro Object Data Store" (mODS) which contains additional information on
identified particles. A third H1oo file format, the "Object Data Store" (ODS), may be accessed
transiently during an analysis event loop, and provides an interface to the full information
stored on the original DST file in ROOT format. This transient ODS access is the only part of
an H1oo analysis which requires the FORTRAN software.

The H1oo framework provides many utilities for data analysis, wrappers for data access,
templates for analysis codes, and standards for H1 physics analyses. An event display H1Red
provides visualisation tools in the ROOT analysis environment, and features full backward
compatibility with LOOK and H1ED.

Whilst at some level each H1 physics analysis retains its own specific high-level analysis
code and workflows, the common H1oo framework greatly helped to standardise event selec-
tion, particle and event reconstruction, calibration, production of histograms and the assess-
ment of measurement uncertainties and systematic errors. This has had additional benefits
in terms of shared analysis code, expert knowledge and working environments and, perhaps
most importantly, data handling where members of the collaboration all use the same file
formats.

2.3 Software access, distribution and documentation

All H1 software and source code are available to the members of the collaboration through
their DESY credentials. Pre-compiled executables, shared libraries and a working environ-
ment are provided centrally via the DESY-IT infrastructure for the supported operating sys-
tem(s), which is currently CentOS7. The FORTRAN code is documented in about 60 internal



H1 software notes that were written in a standardised, journal–like format. Some packages
were also presented and documented in journals or conference proceedings. Each of the
approximately 10 000 subroutines is stored in a separate file and includes comprehensive,
standardised in–code documentation as well as a version history.

The H1oo framework comes together with its own manual, tutorials, examples and a cen-
tral, internal web–page. Online HTML code documentation is provided using ROOT’s THtml
class and features more than 2000 individual web–pages. A single, central web–server pro-
vided by DESY-IT hosts all web-resources from all parts of the collaboration, such as meet-
ing notes, hardware documentation, run–dependent documentation, analysis notes, trigger
details, papers and so on.

3 DPHEP and the data preservation model for H1

Data taking at HERA ended in June 2007, and was soon followed by other high energy
physics experiments of the same generation, namely BaBar at the PEP-II e+e− collider at
SLAC (April 2008) and the DØ and CDF experiments at the Tevatron pp̄ collider (September
2011). In order to perform a detailed evaluation of how to preserve high energy physics
data for long–term analysis, an inter–experimental study group "Data Preservation in High
Energy Physics" (DPHEP) [17] was formed at the end of 2008 to systematically investigate
all technical and organisational aspects of this subject. A series of six workshops took place
between 2009 and 2012 and following a short interim report in 2009 [18], a full report was
released in May 2012 [19].

The complete H1 RAW collision data comprises around 75 TB, the set of compressed DST
data amounts to about 20 TB and the analysis level H1oo files are about 4 TB. Other data, such
as random trigger streams, noise files, cosmic data, luminosity monitor and other calibration
data amounts to a few TB. The total volume of preserved simulated MC sets is around the
same size of the data, and hence the total volume of preserved data is about 0.5 PB. This is
about the similar volume of RAW data written out in just three days by the ATLAS detector at
the LHC.

A key issue in data preservation is that in addition to the data themselves the associated
software also needs to be considered, such as the programs for data access, reconstruction,
simulation and analysis programs. These programs also provide an important documentation
of the data themselves. In contrast, without a well defined and understood software environ-
ment the scientific potential of the data is limited, e.g. the possibility to study new observables
or to incorporate new reconstruction algorithms, detector simulations or event generators may
not be possible. With this is mind, a model for data preservation was devised [20], based on a
series of levels of increasing complexity into which projects could be assigned [21], as shown
in Table 1.

Table 1. Data preservation levels defined by the DPHEP Study Group.

Level Preservation Model Use Case

1 Provide additional documentation Publication related info search
2 Preserve the data in a simplified format Outreach, simple training analyses and data exchange
3 Preserve the analysis level software Full scientific analysis possible, based on the

and the data format existing reconstruction
4 Preserve the reconstruction and simulation Retain the full flexibility and potential of the

software as well as the basic level data experimental data

As new experimental methods, new phenomenological models or new observables, are
likely to be the prime reasons for analysing event data again, scenarios arise where only a



more comprehensive preservation model will provide the necessary ingredients. For example
if a parameter in the reconstruction algorithm is kinematically limiting, or a new simula-
tion written in a modern computing language provides only incompatible interfaces. This
approach assumes, justifiably, that it would be impossible to rewrite experiment specific soft-
ware such as detector simulation or reconstruction code from scratch, due to missing expert
knowledge about real hardware components and complexity of these programs. With this in
mind, H1 followed a DPHEP level 4 preservation model [22], and preserves the analysis level
data formats, as well as the most basic level (RAW) data, and all software. It is clear that this
level of preservation will necessarily include the full range of both experiment–specific and
external software library dependencies. However, the benefit of such a model is that the full
physics analysis chain is available and full flexibility is retained for future use, similar to a
real running experiment.

Whilst beyond the scope of this paper, it is also worth noting that a significant DPHEP
level 1 preservation effort has also been performed. This ensures all relevant digital and non–
digital documentation concerning all aspects of H1 are safeguarded for future use [22]. A
dedicated web server now hosts all of the documentation of the H1 experiment through static
web pages, representing a single resource for knowledge transfer for the members of the
collaboration. Furthermore, a new, simpler operational model was also officially adopted by
the collaboration in July 2012 to ensure the efficient long term governance via the H1 Physics
Board, which is made up of experts from all areas of the experiment.

4 Preserved operational mode: 2012–2020

The final version of the reconstructed data, DST 7, was produced in December 2010 with
the inclusion of the HERA I data from 1996–2000. This reprocessing campaign utilised a
dedicated "dataflow meta–computing framework" [23], which reached a stable performance
of 60 million events per day. This represented a factor of 20 improvement with respect to the
previous architecture employed during earlier HERA I reprocessing campaigns [24]. It was
not until summer 2012 that the HERA I H1oo data and MC to be used for analysis were fully
prepared including all relevant alignments and calibrations. The H1oo production release
4.0.25, which uses ROOT5.34, represented the end of major development, and was not only
used to produce the data and MC for long term analysis but would also be the software release
to be used for the remainder of the decade and beyond.

The H1 computing infrastructure included a dedicated 1200 core batch system, significant
storage capabilities comprising both tape and disk, and several large working group servers.
As part of the 2012 transition into the new "preserved operational mode", the majority of these
resources were phased out and replaced by a computing infrastructure centrally managed by
DESY–IT and largely shared with other experiments. The H1 data identified for preservation
(see section 3) was relocated during 2014–2015 to a dedicated, dCache [25] based storage at
DESY, featuring two copies of the RAW data on different tape media as well as an online pool
for access to the most popular data.

As described in section 3, the H1 strategy is to retain the full flexibility of the data using
a DPHEP level 4 data preservation model. This requires that the H1 software stack and all
of its dependencies are continuously maintained and repeatedly updated and tested whenever
a change in either the infrastructure or external dependencies is made. These continuous
migrations were made possible due to the modular structure, the high quality and stability of
the packages, and H1 further benefited from the choice of stable programming languages for
the software, FORTRAN 77, C and C++98, and only a very moderate usage of shell and perl
scripts.



The main OS employed by DESY–IT in 2012 was 32–bit Scientific Linux DESY 5
(SLD5), and whilst this became the baseline version for H1, work was begun that year to
migrate to 64–bit, an important step to achieve given that next generation OS versions would
only be available as 64–bit versions. SLD6 became the standard at DESY after 2015. Each OS
migration revealed certain dependencies or required additional updates from DESY–IT, for
example new versions of Oracle or dCache, which required only small changes to the H1
software to retain compatibility. For example, after the transition from SLD6 to CentOS7 in
2020, the library "libdcap.so" used for direct IO access to dCache systems was removed
from the DESY computing environment, resulting in corresponding, minor adjustments to
the H1 software.

The use of external software in the H1oo software was reduced as much as
possible in 2012 and whilst those remaining, namely ROOT, fastjet [26] and
neurobayes�expert [27], were migrated to the new operating systems, the last stable ver-
sions from 2012 were kept. Table 2 shows a breakdown of the different components of the H1
software stack, and the status of the various dependencies during the preserved operational
mode (2012–2020).

Whilst the migrations required only moderate person power, due to necessary validations
and the overall complexity of the software stack as such they had to be performed by ex-
perienced H1 software experts. To assist in this exercise a framework [28] was developed,
consisting of a series of well defined validation tests, to check for consistency every time a
part of the software stack or environment was updated. Whilst not fully deployed in an au-
tomated way, this project nevertheless showed its value during the first migrations to 64–bit
operating systems.

Table 2. Breakdown of the H1 software stack and its dependencies for the preserved operational mode
(2012–2020).

Component Responsible Maintained packages Discontinued packages

H1 software H1 H1 core software, H1oo –

OS dependencies DESY–IT Oracle, dCache, web–services, CVS
(continuous updates) compilers, GNU utilities,

gmake, system libraries

External dependencies H1 fastjet, neurobayes–expert, CERNLIB, GKS, GEANT3,
(selected fixed releases) MC generators ROOT5, LHAPDF5,

MC generators

5 The modernisation of H1 software and computing for the 2020s

5.1 Revisiting the status of the H1 software

In 2020 the status of the H1 software and the data analysis capabilities were again revisited.
Although the entire software was successfully migrated to CentOS7 and the full data analysis
capability is retained, the overall status of the H1 software had a few shortcomings. Some
of these were introduced causally over the time period of the data preservation effort, and
include the following:
• The programming languages and standards (C++98) are unattractive for young people

to learn and slow down new developments and data analysis efforts
• Outdated dependencies, such as ROOT5, complicate the usage of modern data analysis

techniques



• Modern tools have not in general been introduced
• No link to an externally maintained package repository is present, meaning that new

packages had to be provided manually
• New dependencies may be incompatible, for example due to different compiler stan-

dards like C++20, or different interfaces such as MC event generators providing an
event record in newer data formats
• The compilation and maintenance of the packages still requires a profound and detailed

knowledge about the specific structure of the H1 software, as well as some insight into
the historic development
• No concise build instructions of the entire H1 software stack are available
• The H1 core packages are bound to the DESY–IT infrastructure and cannot be relocated

Some of these issues are very specific to the H1 software or computing infrastructure as it
developed organically over three decades, but others are of a more general nature and may
be repeated in data preservation efforts by other experiments in the future. In particular for
younger students, who want to perform a modern data analysis and also need to learn modern
computing languages and techniques, the H1 software environment was not attractive.

5.2 Restructuring the H1 software infrastructure after 10 years

At DESY, the only supported and locally deployed platform for the H1 software is CentOS7,
including all of the add–ons that it brings. However, in HEP the LCG package reposi-
tory [29, 30] is commonly used as standard, and many recent dependencies, as well as modern
compilers, are provided by LCG/AA [31] through cvmfs [32] for CentOS7. H1 has decided
to adopt this dependence, update all external dependencies accordingly, and to provide its
software in a similar scheme to the members of the collaboration.

In a first instance, the platform x86_64-centos7-gcc9-opt and the LCG version
LCG_97a are selected for the next stable H1 software release. Many external packages are
now provided through LCG, such as ROOT, fastjet, neurobayes�expert, thus reducing the
maintenance cost to H1, as can be seen in Table 3. This may be contrasted with the previous
situation shown in Table 2.

Table 3. Breakdown of the H1 software stack and its dependencies from 2020 onwards.

Component Responsible Maintained packages Discontinued packages

H1 software H1 H1 core software, H1oo –

OS dependencies DESY–IT Oracle, dCache, web–services, –
(continuous updates) GNU utilities, git,

gmake, system libraries

External dependencies H1 – CERNLIB, GKS, GEANT3
(selected fixed releases) (selected) MC generators

External dependencies LCG LHADPF6, ROOT6, compilers, –
(selected regular updates) fastjet, neurobayes–expert,

MC generators, (and as back up
option: Oracle, dCache, Git)

The transition to the GNU compiler collection 9.2.0, in contrast to the previously used
version 4.8.5, required a rebuild of all of the core FORTRAN packages from scratch. Due to
the high quality of those packages, the stability of the FORTRAN 77 standard, and the many
previous migrations of these codes, this transition was accomplished without complications,
and only one case of memory corruption and few incorrect bit–wise logical operators needed



to be fixed in about 950k lines of code (LOC). The discontinued packages CERNLIB, GKS 2

and GEANT3 could also be sourced. The important low–level packages BOS and FPACK, which
are needed for the interface between the H1 core packages and the access to the data, have
been tested successfully.

More important for data analysis is the migration of the H1 analysis framework H1oo,
which is 300k LOC written in C++98 and where the last stable version was built in 2012 upon
ROOT5.34 3. The migration of H1oo to ROOT6 was non–trivial, since for efficient data access,
H1oo makes extensive use of dynamic instantiation of named classes and dynamic scopes.
This functionality was provided in ROOT5 through CINT, which was replaced by CLING in
ROOT6. Consequently, H1oo had to strictly use the respective interfaces from ROOT6 and the
direct access to CINT functions had to be omitted. A single class out of about 600 H1oo
classes could not be re–factored and was dropped, but this did not limit the usability of the
analysis framework. On the other hand, the new C++17 standard permits the implementation
of convenient range–based for loops for H1oo array classes, thus simplifying the code. This
feature facilitates the processing of particle lists in single events. The object–oriented file
formats mODS and ODS remain compatible, but a single object-oriented database file had to
be regenerated. Latest releases of fastjet v3.3.2 and neurobayes�expert v3.7.0 were
integrated and successfully tested.

A complete release of all of the H1 software is provided to the collaboration in a single
directory on afs, which is mirrored to cvmfs and the internal nfs shared file system at
DESY. This directory contains the binaries, libraries and the include files for all H1 software
packages, together with compatible database snapshots. A small setup script also initialises
the compatible LCG release LCG_97a/x86_64-centos7-gcc9-opt. Compatible Oracle
and dCache libraries are further provided from the LCG mirror, and serve as a backup option
if the DESY–IT libraries fail.

5.3 Python–based and interactive data analysis with H1oo

One great benefit from the close integration of H1oo into the ROOT–ecosystem is obtained
from the PyROOT developments in ROOT6 [33]. Through ROOT’s automatised Python–C++
bindings, the full functionality of H1oo is available from Python. Together with the range–
based operators in H1oo, this enables a fully pythonic analysis of the H1 data and makes
use of the H1oo analysis framework. Interactive data analyses in Python, or using ROOT’s
C++ interpreter, are also possible, and may become a valuable option for future training or
outreach activities.

Since H1oo is provided through a global shared file system (cvmfs or afs), similar to
the LCG releases, it is fully relocatable and H1 data analysis or MC production can now
be performed on any CentOS7 system anywhere in the world. Alternatively, standardised
CentOS7 containers, for example from CernVM [34], can be employed on other platforms.
For a quick start for students or newcomers, a few new code examples are provided to H1
Collaboration members, both in C++ and Python.

5.4 Future maintenance of the H1 software stack

Future migrations of the H1 software will be connected to given versions of LCG releases,
featuring newer platforms, dependencies and compiler versions. In order to facilitate this
dependence a few additional developments were done.

2GKS was obtained from https://github.com/Starlink/starlink/tree/master/libraries/gks
3H1oo was initially developed using ROOT version 2.

https://github.com/Starlink/starlink/tree/master/libraries/gks


All code repositories were migrated to Git, which is the current standard for code man-
agement, an important transition given that most younger developers are unfamiliar with
CVS (or going even further back, CMZ). The DESY–IT central Git repository hosting ser-
vice Bitbucket [35], which provides authentication for H1 members through their DESY
credentials, replaces the old CVS web tools, thus reducing the maintenance cost for H1.

A new set of build instructions has been developed that allow to rebuild the entire H1
software stack from scratch. Historic dependencies to central resources were removed and the
build system was further simplified. The build system remains dependent mainly on gmake,
which has proven to be very reliable over a long period of time. Standardised software tests
are currently under development. About 50 examples of analysis code are also kept in the Git
archive alongside the official H1 code, serving as a valuable reference for ongoing activities
and for new data analysts.

5.5 Singularity and containerised workflows

The advent of containerisation and Singularity [36] provides great opportunities for the
preservation of data and software in HEP. As binaries and libraries of the H1 software were
retained in the current storage systems deployed by DESY–IT on together with the complete
set up procedures, these can now conveniently be used with Singularity and compatible
SLD5 or SLD6 containers. Both SLD5 and SLD6 binaries have been tested and full function-
ality has been proven with standard containers from DESY–IT. The use of Singularity
represents the retrospective realisation of the DPHEP level 3 ‘encapsulation’ of the H1 soft-
ware.

It is worth noting that whilst the use of containers and virtualisation offers potential so-
lutions to data preservation, further development can only take place within the constraints
of the original environment and technologies. The modernisation program described in this
paper has not only increased the longevity of the H1 software but undoubtedly made it more
accessible and attractive to the next generation of collaborators.

6 Summary and Outlook

The H1 experiment recorded a unique data set of lepton–proton collisions in the years 1992 to
2007 and developed a sizeable software stack for its processing and analysis. The H1 Collab-
oration maintains these data, the related software and the documentation. Several data analy-
sis activities are still ongoing and new analysis projects are beginning due to the uniqueness
of this scientific data set and the increasing interest of the HEP community in ep scattering.
This interest is also reflected in the recent addition of new collaboration members. An addi-
tional 18 papers (8% of the total) have been published by the H1 Collaboration since 2012,
which was already five years after the end of data taking.

All core software packages that were developed in the years 1988 to 2012 have been
successfully migrated to a modern computing platform (amd64 (x86-64), CentOS7, GNU–
compilers 9.2). These software modules are required for data access, data processing, re-
construction, simulation, visualisation and, of course, high–level data analysis. External de-
pendencies were updated to latest releases and are now obtained from the LCG/AA package
repository. All other IT services are hosted by DESY–IT.

The common object–oriented data analysis framework H1oo is now based on ROOT6 and
supports the C++17 standard. This framework facilitates the communication within the col-
laboration members, provides a common standard, and additionally provides highly valuable
documentation. Some example programs and a few selected full high–level analysis codes



from previous publications are prepared for newcomers. The H1oo analysis framework is
now fully accessible in Python and an online code documentation is available. H1oo now
enables interactive analysis in C++ through CLING or more commonly in Python. Container
solutions have been implemented for backward compatibility and software tests.

The programs and libraries are provided to the members of the H1 Collaboration on
shared global file systems for convenience. All H1 software packages are now maintained
in Git and new build instructions for a complete re–build of the entire software stack have
been prepared. With these modifications to the H1 software architecture, H1 is confident to
provide high quality data analysis capability of the unique HERA data in the future, using
modern analysis tools, recent programming languages and on state–of–the–art platforms.
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