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Finding sound shells in LISA mock data
using likelihood sampling

Felix Giese, Thomas Konstandin, Jorinde van de Vis
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Abstract

We study to what extent LISA can observe features of gravitational wave
spectra originating from cosmological first-order phase transitions. We focus
on spectra which are of the form of double-broken power laws. These spectra
are predicted by hydrodynamic simulations and also analytical models such as
the sound shell model. We argue that the ratio of the two break frequencies
is an interesting observable since it can be related to the wall velocity while
overall amplitude and frequency range are often degenerate for the numerous
characteristics of the phase transition. Our analysis uses mock data obtained
from the power spectra predicted by the simplified simulations and the sound
shell model and analyzes the detection prospects using χ2-minimization and
likelihood sampling. We point out that the prospects of observing two break
frequencies from the electroweak phase transition is hindered by a shift of the
spectrum to smaller frequencies for strong phase transitions. Finally, we also
highlight some differences between signals from the sound shell model compared
to simulations.
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1 Introduction

The gravitational wave telescope LISA [1] will probe stochastic gravitational wave
(GW) backgrounds with unprecendented precision in the near future. A possibly
observable signal is formed by gravitational waves originating from a cosmological
first-order phase transition (PT). This possibility received a lot of attention after the
discovery of the Higgs, because the electroweak phase transition – triggered by the
Higgs field – is first-order in many models that feature an extended scalar sector or
strong couplings.

While current collider experiments at the LHC test properties of the Higgs field,
such as its mass, its couplings to Standard Model (SM) particles and its vacuum
expectation value (VEV), the information from GW experiments are complementary.
For example, the characteristics of the phase transition are rather sensitive to dark
sectors coupling to the Higgs [2] which cannot be easily tested at collider experiments.

The information of the phase transition is encoded in the shape of the GW spec-
trum that features a peak in the mHz regime in case the PT took place around
electroweak temperature scales [3]. The most accurate predictions of the gravita-
tional wave signal today have been obtained from lattice simulations of the bubble
interacting with the plasma [4, 5, 6]. Although the spectrum can have more than one
characteristic feature, it is often described by a broken power law with a single peak
frequency, see for example the recent review [7].

The most important characteristics in this expression are the temperature of the
PT (denoted by T ∗), the wall velocity during the first-order PT (denoted by vw), the
inverse duration of the PT (denoted by β) and the amount of energy released into
the plasma by the phase transition (denoted by α, see below for more comments on
the quantity). So in total there are four underlying parameters

α, β, T ∗, vw. (1)

This leads to the unfortunate conundrum that one would typically observe only
two features (peak position and amplitude, whilst the two slopes of the spectrum
are expected to be universal) of the GW spectrum, which results in degeneracies in
the underlying four characteristics. In particular, the peak frequency depends on
T ∗ and vw/β while the peak amplitude depends on α, vw and β. Hence, additional
assumptions have to be made for example by fixing the PT temperature T ∗ and the
PT duration β−1 to specific values, see e.g. [8].

Fortunately, it is reasonable to expect that the GW spectrum has a more compli-
cated structure than the formula from Ref. [7]. The reason is that there are several
relevant length scales in the process. One break in the spectrum is related to the
average separation between bubbles towards the end of the PT when most GWs are
produced, denoted by R∗, which is related to the phase transition duration and bubble
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wall velocity via

R∗ =
(8π)1/3vw

β
. (2)

In addition, the PT features a second length scale that might be imprinted as a second
break in the spectrum: the thickness of the sound shells Lssh, which is the size of the
region around the bubble wall where the fluid is in motion. One finds

H−1 � R∗ & Lssh . (3)

When Lssh differs significantly from R∗, the GW spectrum will be a double-broken
power law rather than a broken power law with a single peak. Interestingly, the ratio
of these two break frequencies allows to measure the ratio R∗/Lssh which in turn
depends mostly on the wall velocity vw and to a lesser extent on the strength of the
phase transition α [8]. This makes it an excellent target to learn more about the
characteristics of the PT even though a small degeneracy in the other parameters
(and possibly an ambiguity in the wall velocity) still persists. In this work, we will
simulate the LISA detection of a GW spectrum with two characteristic length scales
(see e.g. Eq. (6)) and study how much information can be extracted from such a
spectrum.

Unfortunately, the amount of data from full-fledged hydrodynamic simulations is
still somewhat too limited to study the behavior of the sound shell thickness Lssh

in detail. In the present work, we will therefore model the source of GWs in two
alternative ways. We will employ the sound shell model as given in [9] and also fits
to the simplified simulations provided in [10]. We will see that there are significant
differences in the prediction for Lssh in its dependence on the four parameters given
in Eq. (1).

Recently, a study of the observational prospects of LISA was presented in [8]. One
of the main results of this study is that indeed the double broken power law shape is
essential and allows for a reliable measurement of the wall velocity. In comparison,
the focus of the present study is more on the question what are the prospects of
observing the double broken power law shape in the first place. Compared to the
study in [8], our setup is somewhat more general: we consider the sound shell model
as well as results from simplified simulations to model the expected GW spectrum.
Since both models differ considerably in their predictions, we fit to a six parameter
model that leaves the slope of the source spectrum towards the IR and UV unspecified
and is not optimized to fit the predictions of either of the two source models we use.
Instead of treating the temperature and phase transition temperature as external
parameters, we use concrete models from the literature to relate these two parameters
to the strength of the phase transition. As we will see, this leads to the unfortunate
observation that for strong phase transitions, one of the breaks in the spectrum is
often shifted out of the LISA sensitivity band [11]. To estimate the uncertainties, we
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use a Markov chain Monte Carlo instead of the Fisher matrix, which in combination
with the more general fitting model leads to some sizeable deviations. In particular,
we find some non-elliptical probability contours. Some additional comments on how
our work relates to [8] are given in the discussion section.

Our modeling of the sources are discussed in Section 2 and 4.2. In Section 3 we
discuss how we generate mock data for our LISA analysis and in Section 4 we set
up the analysis using χ2 as well as likelihood approaches. In this section, we also
present our results and we conclude in Section 5. The Appendices provide additional
information on the implementation of the sound shell model and details on the Markov
chain Monte Carlo parameter reconstruction.

2 Sources of the GW spectrum

In this section we desribe how we model the GW spectrum as a function of the four
parameters given in Eq. (1). As discussed in the introduction, our main concern is
the double-broken structure in the GW spectrum that arises when the scales R∗ and
Lssh do not coincide.

This feature has not yet been studied systematically in the literature. In par-
ticular, in hydrodynamic simulations, the observation of this feature is technically
challenging since besides the bubble separation R∗ and the shell thickness Lssh also
the wall thickness has to be resolved in the simulation. This limits the range where
R∗/Lssh is large enough to be observable and at the same time does not interfere with
the other length scales (such as the box size and the grid resolution).

2.1 Simplified simulations

Simplified simulations [10] of the phase transition have closed this gap to a certain
extent. Additional assumptions (like e.g. linearity of the sound waves) have to be
accepted for these simulations. Still, the results seem to be in quantitative agreement
with full hydrodynamic simulations and allow to study the impact of the sound shell
thickness.

In [10], both breaks in the spectrum have been observed and correlated with the
naive thickness of the sound shells that can be read of from the fluid profiles of
spherical bubbles before collision. It was argued that the shell thickness resulting
after collision is related to the thickness in spherically symmetric simulations via

Lssh ' (ξfront − ξback)/β = ξshell/β , (4)

where ξfront/back denote the beginning and end of the non-zero fluid profile for the
different expansion modes (detonations/deflagrations/hybrids). In [10], a compar-
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ison between this heuristic and the simulation result found qualitative agreement.
Nevertheless, this was only tested for relatively weak phase transitions (α < 0.05).

For the source at production time we use the formulas presented in [10]

Ω∗gw,sim = 5 ξshell (κα)2 S(f ∗)
4H∗τ

3π2

H∗

β
. (5)

We put ∗s on quantities to denote that they are evaluated at the time the gravitational
wave spectrum is produced. f ∗ thus denotes the frequency at production time and
S(f ∗) is the spectral shape

S(f ∗) = N
(f ∗/f1)3

1 + (f ∗/f1)3 + (f ∗/f1)3(f ∗/f2)3
, (6)

with the break positions f1 ' 1/R∗ and f2 ' β/(ξfront − ξback). The spectrum is
normalized such that

∫
df ∗/f ∗ S(f ∗) = 1.

The energy budget κα is determined by solving the relativistic hydrodynamic
equations for a single spherical bubble interacting with the plasma [12, 13, 14, 15].
The fit from [15] can be used to obtain the energy budget as a function of the wall
velocity and the phase transition strength α

α =
1

3

∆θ(Tn)

w+(Tn)
, θ = e− 3p , (7)

with p and e the pressure and energy density respectively and ∆ denoting the differ-
ence between the broken and symmetric phase. [16, 17] generalized the results of [15]
for a general equation of state, but in this work we will assume for simplicity that
the equation of state is radiation-like and c2

s = 1/3. The hydrodynamic equations are
also used to determine the mean squared fluid velocities Ū2

f

Ū2
f '

3

4
κα , (8)

where we used the adiabatic index Γ = 4/3 for a relativistic plasma and assume small
α.

The factor τ in Eq. (5) determines the duration of the GW source that is either
cut off by the Hubble expansion or the decay of the sound waves into turbulence[18].
The decay time into turbulence is hereby given as

τnl = R∗/
√
Ū2
f max(1, cs/vw) (9)

and is shorter than the inverse Hubble rate, τ ' τnl for all our parameter choices.
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2.2 Sound shell model

A second possibility to predict a quantitative GW spectrum including the second
length scale Lssh is to use the sound shell model (SSM) [19, 9]. In this model, the ve-
locity power spectrum is determined using the whydrodynamic solutions of spherical,
isolated bubbles. Assuming that the correlators of the fluid velocity are Gaussian,
the two-point function of the energy-momentum tensor and GW production rate can
be deduced. The sound shell gravitational wave spectrum is given in Eq. (48) and
further details are discussed in Appendix A.

The outcome of the sound shell model can be significantly different than what has
been seen in simulations. Overall, the source seems to be smaller compared to the
simulation results. Besides, the two length scales as observed in the GW spectrum
are well separated for deflagration and hybrid expansions but then almost merge for
slightly larger wall velocity when the expansion modes transitions to detonations.
This suggests that the second break is set by the width of the shock for deflagrations
and hybrids, while for detonations the width of the rarefaction wave is the relevant
scale.

2.3 Redshift and models

The gravitational wave spectra from the simulations are defined in terms of f ∗, the
frequency at the time of production, and the sound shell spectra are defined in terms
of the dimensionless quantity q = kR∗. To convert the sound shell spectrum into a
function of wave number k, we divide by R∗,

q

R∗
=

q

(8π)1/3vw

β

H∗
H∗ , (10)

and we obtain the corresponding frequency at production as

f ∗ = 1.12× 109Hz
1

vw

β

H∗

(
T ∗

100GeV

)2 ( g∗
100

)1/2

q . (11)

To obtain the frequency as observed by LISA f0, we have to account for the redshift

f0 = 7.97× 10−16

(
100GeV

T ∗

)(
100

g∗

)1/3

f ∗, (12)

where g∗ is the number of relativistic degrees of freedom at the phase transition
temperature.

The overall amplitude also is redshifted and we obtain

h2Ωgw(f0) = 1.64× 10−5

(
100

g∗

)1/3

Ω∗gw (f ∗) , (13)
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Once the model for the GW spectrum (sound shell model or simulation fit) is
selected, the observed GW spectrum still depends on the the four parameters given
in Eq. (1). In order to reduce the complexity of the problem, several assumptions can
be made. As explained before, for most parts we would like to vary the wall velocity
vw and study the ratio of the two break positions in the spectrum resulting from the
separation of the scales R∗ and Lssh.

One reasonable choice would be to fix the phase transition temperature T ∗ (which
will be of electroweak scale ∼ 100 GeV) and the duration of the phase transition β
(that for models typically is in the range β/H∗ ∼ 100− 1000).

However, it is known that these parameters actually are strongly correlated with
the stength of the parameter α. Stronger phase transition tend to reduce the PT
temperature T ∗ and also the inverse duration β/H∗. This leads to the unfortunate
observation that stronger phase transitions eventually escape detection since the GW
spectrum shifts towards the IR and out of the sensitivity band of LISA [11].

In the following we would like to capture this effect and hence assume not fixed
values but fixed relations via the phenomenological relations

T ∗/GeV = 48.4− 33.8α +
0.259

(0.0677 + α)2
, (14)

and

β/H∗ = 26.3 + 74.8α +
8.85

(0.0592 + α)2
. (15)

These relations are approximately true in the two Higgs doublet model for ratios of
Higgs VEVs, tan βv ' 10, and have been obtained by fitting the datapoints provided
on PTPlot [7]. Quite similar relations are found for singlet extensions of the Standard
Model and the extension with effective higher-dimensional operators [7, 20]. Most of
our analysis will rely on these relations but we will eventually increase the temperature
by a factor 10 to mimick electroweak symmetry breaking from strong dynamics [21].

3 LISA mock data generation

To generate the LISA mock data, we follow the approach of [22]. We briefly summarize
the approach here.

We assume that the LISA mission will last 4 years, in which data are collected
75% of the time. Due to the need of regular operational breaks, the data will be
collected in 94 chunks, with a corresponding frequency resolution of ∆f = 10−6Hz.

To good approximation, the noise signal is characterized by

Ωnoise(f) =
4π2

3H2
0

f 3

10
3

(
1 + 0.6

(
2πfL
c

)2
) (
Poms(f, P ) +

(
3 + cos 4πfL

c

)
Pacc(f, A)

)
(2πfL/c)2

,

(16)

7



Figure 1: Example data and fits with α = 0.25, vw = 0.4. The left plot shows a
signal from the sound shell model and the right plot shows a signal from simplified
simulations. For both cases, the single broken power law is preferred (according to
the criterion discussed in Section 4.1).

where L is the arm length and c the speed of light. Poms and Pacc are the power spectral
densities from the optical metrology system and the mass acceleration, respectively:

Poms(f, P ) = P 2 pm2

Hz

(
1 +

(
2 mHz

f

)4
)(

2πf

c

)2

, (17)

Pacc(f, A) = A2 fm2

s4Hz

(
1 +

(
0.4 mHz

f

)2
)

×
(

1 +

(
f

8 mHz

)4
)(

1

2πf

)4(
2πf

c

)2

, (18)

where P ∼ 15 and A ∼ 3 are noise parameters.
We consider frequencies between 3× 10−5 Hz and 0.5 Hz with a spacing of ∆f =

10−6 Hz. For each frequency fi, we generate Nc = 94 data points for the different
chunks (labeled by j), as a sum of the signal and noise contributions

Di,j = Si,j +Ni,j , (19)
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where the Si,j and Ni,j are obtained from the power spectra:

Si,j =

∣∣∣∣∣∣
Gi1

(
0,
√
h2Ωgw(fi)

)
+ iGi2

(
0,
√
h2Ωgw(fi)

)
√

2

∣∣∣∣∣∣
2

, (20)

Ni,j =

∣∣∣∣∣∣
Gi3

(
0,
√
h2Ωnoise(fi)

)
+ iGi4

(
0,
√
h2Ωnoise(fi)

)
√

2

∣∣∣∣∣∣
2

. (21)

The numbers Gik(0, σ) are randomly drawn from a Gaussian distribution with zero
mean and standard deviation set by the square root of the power spectra. For each
frequency, we obtain the mean D̄i and standard deviation σi from the 94 data points.

To reduce the computational load, we coarse grain the simulated data for frequen-
cies larger than 10−3 Hz. The data with frequencies between 10−3 Hz and 0.5 Hz are
grouped into 1000 bins. The signal D and frequency f of the bins is obtained by
a weighted average of all the D̄i and fi in the bin, with weights 1/σ2

i . The overall
standard deviation of the bin is given by

σ =

(∑
i

1

σ2
i

)−1/2

. (22)

The coarse graining procedure of Ref. [22] was modified in Ref. [23], to remove a
bias in the reconstructed parameters coming from non-Gaussianities. Since the Di,j

follow a χ2 distribution, the sample means D̄i and sample variances σ2
i are corre-

lated. This leads to an additional bias and ultimately a mismeasurement of the noise
parameters. This issue will be treated later.

4 Analysis

In this section, we study the ability of LISA to characterize the gravitational wave
signal. Even though the input gravitational wave signal might be best described by
a double-broken power law, (part of) the signal might be unrecoverable due to noise.
As a result, a better fit (see the discussion around Eq. (27) for our criterion) might be
provided by a model with fewer parameters. In this situation, LISA can not extract
the maximal amount of information from the gravitational wave signal.

Our analysis works as follows. After generating mock data for a range of phase
transition parameters we pretend to be agnostic about the input signal, and attempt
to reconstruct the gravitational wave spectrum. The analysis consists of two parts.
In the first part we study the ability of LISA to observe a signal and to identify its
break(s). In the second part we study more carefully what accuracy can be obtained
for the reconstructed parameters.
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4.1 Parameter scan with χ2

In the first step, we reconstruct the gravitational wave spectrum by minimizing the
χ2:

χ2(~θm, ~θn) = Nc

∑
i

[
D̄i − h2Ωgw(fi, ~θm)− h2Ωnoise(fi, ~θn)

σi

]2

, (23)

as a function of the model parameters ~θm and noise parameters ~θn = P,A. We
minimize χ2 for four different models (with reference frequency f0 = 1 mHz):

• No gravitational wave spectrum. h2Ωgw = 0, i.e. we fit the signal to a
spectrum that consists of noise only.

• Power law

h2Ωgw(f,B, p1) = B

(
f

f0

)p1
. (24)

• Broken power law

h2Ωgw(f,B, f1, p1, p2) = B

(
f
f0

)p1
1 +

(
f
f1

)p2 . (25)

• Double-broken power law

h2Ωgw(f,B, f1, f2, p1, p2, p3) = B

(
f
f0

)p1(
1 +

(
f
f1

)p2)(
1 +

(
f
f2

)p3) . (26)

We do not resort to the fit functions of [7, 9], in which the shape around the peak
and the IR- and UV-slopes are fixed, in order to avoid overfitting. This reflects the
reality that in the actual LISA analysis, the true shape of the spectrum will not be
known. Besides, we have to accommodate the shape of both source models in our
analysis.

In contrast to [22], we do not split our data set into smaller bins, but instead we
minimize the χ2 of the entire data set at once. We determine the overall best fit by
comparing the Akaike Information Criterion (AIC) [24] of the four different fits:

AIC = χ2
bestfit + 2k , (27)

where k is the number of fit parameters. A comparison between the AICs instead of
the bare χ2 prevents overfitting.
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Figure 2: Analysis of the fit quality for the sound shell model, with the relation
between α and T ∗ and β/H∗ set by Eqs. (14,15). Top row: comparison of the AIC
of the double broken power law (right), single broken power law (middle) and (power
law) with the minimum AIC of fits with fewer parameters for the sound shell model.
A positive AIC, signalling a poorer fit, is indicated by red, and a negative AIC,
signalling a better fit, is indicated by blue. Bottom row: logarithm of the ratio of the
break positions | log f1/f2|, obtained from the input signal (left) and the fit to the
double broken power law (right).

4.2 Comparison of the AIC

We present our results of the χ2 comparison in Figures 2 to 5. In the top row of each
figure we compare the AIC of a given model (right: double broken power law, middle:
single broken power law, left: power law), with the smallest AIC of the models with
fewer parameters. When this difference is positive (red), we conclude that the model
with fewer parameters provides the better fit.

In the bottom row of Figures 2 to 5 we show the distance between the two breaks-
breaks. The left plots show | log f1/f2|, which is obtained by mapping the input signal
onto Eq. (26). This plot can be used as a benchmark for the relation between the ratio
of the break positions and the wall velocity. The right plot shows the reconstruction
of the distance between the two breaks from a χ2 fit of the LISA mock data including
the signal and noise.

Figures 2 and 3 demonstrate our results for the sound shell model and the simu-
lations. We vary α and vw between 0.04 – 0.4 and 0.2 – 0.92 respectively. The values
of T ∗ and β/H∗ are obtained from Eqs. (14,15). The right plot in the top row of
Figure 2 demonstrates that the double broken power law fit typically has a larger
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Figure 3: The same quantities as in Figure 2, but for the simulation data, with the
relation between α and T ∗ and β/H∗ set by Eqs. (14,15).

AIC than fits with fewer parameters for the sound shell model, meaning that the two
break positions cannot be reconstructed. The appearance of some blue points and
the relatively small positive value of ∆AIC in the upper left corner of the right graph
demonstrate that these are really borderline cases; the double break can almost be
reconstructed. The middle plot demonstrates that in that region of parameter space,
with relatively small bubble wall velocity and large phase transition strength, the sin-
gle broken power law signal provides the best fit. The explanation for this is that the
low-frequency break of the input signal lies at a frequency where LISA’s sensitivity is
not optimal. The fit therefore only reconstructs the high frequency break. There is
only a small region, with large α and vw, for which the power law provides the best
fit, and a large range (the region that is mostly red in all three graphs) for which
noise only provides the best fit, and no signal is reconstructed at all.

The detection of a signal is significantly more likely for the data predicted by
the simulations. There is a small region for strong phase transitions and slow wall
velocities where the double broken power law is reconstructed.1 For phase transitions
with α & 0.15 the single broken power law provides the best fit for all wall velocities.
In a thin sliver around α ∼ 0.1, the power law provides the best fit. Only for α . 0.1,
the reconstruction finds only noise.

The bottom left plots of Figures 2 and 3 provide further insight in the relation
between the break distance and the wall velocity, and also in the difference between

1Note that simulations in [25] demonstrate that vorticity is produced in this region of parameter
space, which is not captured by the simplified simulations.
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the two source models. The relation between the break distance and the wall velocity
is already suggested by Eq. (4), which sets the position of one of the breaks, and
which depends on β and on vw via ξshell. As the other break position is set by R∗, the
β-dependence drops out of the break ratio. The bottom left plot of Figure 3 indeed
shows a clear relation between the break distance and the wall velocity, implying that
the reconstructed break distance could be used to infer the value of the bubble wall
velocity. Distinguishing between the two values of the velocity that yield the same
break ratio requires input from the other reconstructed signal parameters and/or
input from the new physics model.

The break distance becomes largest when the wall velocity approaches the speed
of sound, since the sound shell becomes very thin in this regime. The bottom middle
graph of Figure 3 shows that the reconstruction of the break distance is remarkably
successful for the simulation data, given the limited success of the double broken
power law fit indicated by the top right graph.

The relation between the break distance and the wall velocity for the sound shell
model, shown in Figure 2 looks quite different from the relation of the simulation
data. The difference is most apparent at the transition from hybrids to detonations.
The explanation is that in the SSM the position of the second break is set by the
width of the shock, see Figure 8, which suddenly disappears at the Jouguet velocity,
leading to an abrupt change in the spectrum. In the simplified simulations, on the
other hand, the bubble collisions are simulated, and these wash out the sharp shock
front of the hybrids (see e.g. Figure 14 of [10]). As a result, the rarefaction wave gives
the dominant contribution to the gravitational wave spectrum, and no discontinuity
appears at the Jouguet velocity.

We now keep the relation between α and β/H∗ the same as in Eq. (15), but
increase the temperature by a factor 10 compared to Eq. (14). This increase in
the temperature is not completely ad hoc, since models like composite Higgs and
gauged lepton models feature phase transition temperatures around the TeV-scale.
As becomes clear from Eqs. (12, 13), the only effect of the rescaling of the temperature
is a shift of the spectrum to higher frequency. The results are shown in Figures 4
(sound shell model) and 5 (simulations).

For both cases, there is now a significant region of parameter space in which
the double broken power law can be reconstructed. For the sound shell model it is
the parameter space at small wall velocity and relatively strong phase transitions,
and a small region with large wall velocity and strong phase transition. For the
simulations it also includes the region of fast wall velocities and intermediate to
strong phase transitions. The bottom rows demonstrate that the reconstruction of
the break distance is very successful in the regime where the two breaks are observed.
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Figure 4: The same quantities as in Figure 2 for the sound shell data. The relation
between α and β/H∗ is set by Eq. (15), but the temperature is increased by a factor
10.

Figure 5: The same quantities as in Figure 2, but for the simulation data. The
relation between α and β/H∗ is set by Eq. (15), but the temperature is increased by
a factor 10.
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4.3 Markov chain Monte Carlo

We will now employ a more careful reconstruction of the double-broken structure in
the sound shell model. As the double-broken structure is mostly observed in the T
shifted spectra, we adopt this shift also in this section. We will use the Markov chain
Monte Carlo (MCMC) method to estimate the accuracy of our analysis. Besides, we
improve the likelihood function to account for non-Gaussianities in our mock data.

In the Bayesian analysis the posterior probability density of the model and noise
parameters p( ~θm, ~θn|data) is proportional to the product of the priors on the fitting

parameters π( ~θm), π(~θn) and the likelihood function L(data|~θn, ~θm)

p( ~θm, ~θn|data) ∝ P (θm, θn) ≡ π(~θm)π(~θn)L(data|~θm, ~θn) . (28)

In this language, one can interpret the χ2-minimization of the previous subsection
as the maximum likelihood estimate (MLE) of the unnormalized posterior P

∂ logP

∂~θ

∣∣∣∣
~θ=θMLE

= 0 , (29)

with the Gaussian likelihood function logL = logLχ2 = −2χ2, and flat priors

∂ ~θm
log π(~θm) = 0 ∂ ~θn log π(~θn) = 0 . (30)

The χ2-fit only gives correct MLEs for Gaussian distributed data. Since our mock
data is not Gaussian- but χ2-distributed, we introduced a systematic bias of the
order of the skewness of the sample, when obtaining the model parameters by χ2-
minimization. The fact that the σi enter as weights in the coarse graining of the
data, is another source of systematic bias. We follow Ref. [23] to account for this
and instead of σ2

i use the following weight in the coarse-graining procedure of a data
point in bin k

wi(fi) =
(h2Ωnoise(fi))

−1∑
j∈bin k(h

2Ωnoise(fj))−1
, (31)

where the variances are now given by the noise spectra h2Ωnoise. This ensures that
the coarse grained data does not suffer from the correlation between D̄i and σi.

Further, we write down a new likelihood function that accounts for the non-
Gaussianities in the fit LG+LN [23]

logLG+LN ≡
1

3
logLG +

2

3
logLLN , (32)

where

logLG = −Nc

2

∑
i

nf,i

(
D̄i − h2Ωnoise(fi)− h2ΩGW(fi)

h2Ωnoise(fi) + h2ΩGW(fi)

)2

, (33)
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vw α ∆fsignal ∆fχ2 ∆fG+LN

0.3 0.4 0.7397 0.7554 0.7323
0.4 0.25 0.9948 0.9657 0.9531
0.5 0.30 1.5795 1.5042 1.5546
0.92 0.3 1.2942 1.5825 1.6492

Table 1: Chosen points for the MCMCs. For the two set-ups, the chains are initialized
around the respective maximum likelihood points. The values for the respective break
ratio observable ∆f ≡ log f1/f2 at the point of maximum likelihood are given above.
The fit to the signal is given for comparison.

and we included a log-normal contribution to account for the slightly non-Gaussian
nature of the data

logLLN = −Nc

2

∑
i

nf,i log2 h
2Ωnoise(fi) + h2ΩGW(fi)

D̄i

. (34)

Note that it is the weighting that differs from the χ2 of Eq. (23), as the variance is
now estimated from the theoretical uncertainty instead of the data itself, consistent
to the updated coarsegraining method. The sum i is over coarse grained data, and
nf,i denotes the number of frequencies in each bin.

To determine the accuracy of the χ2 analysis from the previous step of the analysis
we set up two MLEs. The first estimate closely resembles the previously discussed
χ2-fit, using the MLE 2

logLχ2 = −2χ2 . (35)

The second one takes non-Gaussianities, better uncertainty estimates, as well as prior
information on the noise parameters into account. For this we use the likelihood
function LG+LN given in Eq. (32).

For the signal parameters ~θm, we adopt flat priors in both cases,

log π( ~θm) = 0 . (36)

For the noise parameters A,P we adopt either flat (δχ2 = 1) or Gaussian (δχ2 = 0)
priors, according to Refs. [22, 23],

log π(~θn) = (1− δχ2)
∑
θn

(θn − θn,center)
2

(θn,center/5)2
, with ~θn,center = (A,P ) = (3, 15) . (37)

Note that this prior dependence is actually very mild given the data-sample is largely
noise-dominated and has no impact on the analysis.

2Note that the subscript χ2 indicates that the likelihood is directly proportional to χ2, not that
it is given by a χ2-distribution.
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Figure 6: Posterior probability density for four selected parameter points (vw, α), see
Table 1. Depending on the point the uncertainty in the reconstruction of the break
ratio observable | log f1/f2| is of order O(0.1−1). The dashed lines shows the best-fit
value from the input signal.

We now choose a couple of selected benchmark points, which according to the χ2

analysis have a reconstructable double-broken structure (see Figure 4). The bench-
mark points are listed in Table 1.

We sample the two likelihood functions around the MLE using the publicly avail-
able Markov chain Monte Carlo (MCMC) code emcee [26]. The chain length NMCMC

is chosen such that the autocorrelation τac length of all chains fulfills σ2
MCMC ∝

τac/NMCMC � 1/50. Figure 6 shows the resulting posterior distribution of the break
ratio observable log(f1/f2). Further details of the signal reconstruction are shown in
Appendix B.

Figure 6 and the figures in Appendix B demonstrate two interesting findings. First,
non-Gaussianities seem to play an important role in the analysis. This becomes most
obvious in the reconstruction of the noise parameters in Figures 9 to 12. The noise
parameters are systematically underestimated by the χ2 analysis. Even though the
overall qualitative picture stays the same, the other parameter estimates are also
impacted. This means that the analysis using the non-Gaussian likelihood function
can do better than a simple χ2 analysis. Moreover, the reconstructions in Figures 9
to 12 reveal several non-elliptical error contours. These features can not be correctly
reproduced in a Fischer matrix analysis.

Second, in case the two breaks in the spectrum are resolved according to the AIC,
the observable | log f1/f2| can be measured with about 10% accuracy. Of course,
the precision will deteriorate when the border of the detectability of two breaks is
approached. Still, the observable | log f1/f2| can provide interesting and reliable in-
formation about the properties of the phase transition when a second break in the
spectrum is discovered.
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5 Discussion

The main target of this work is a dedicated study of the observable

| log f1/f2| , (38)

where f1 and f2 denote two breaks in a GW spectrum as observed by LISA. The
motivation consider this observable is that it encodes the ratio of two physical scales
in case the spectrum results from a first-order cosmological phase transition and
mostly depends on the wall velocity during the PT.

The first scale, R∗, corresponds to the mean separation of bubbles towards the
end of the phase transition, when most of the gravitational radiation is produced.
The second scale, Lssh, corresponds to the typical thickness of the sounds shells that
are produced during the phase transition.

In order to make connection to actual phase transition characteristics, we used
two approaches to predict the GW spectrum. The first one is the so-called sound shell
model [19, 9] and the second relies on fits to results from simplifed simulations [10].

We observe that the observable behaves quite differently in these two approaches.
In the sound shell model, the observable is largest for the hybrid expansion mode
where a very thin shock preceeds the wall. This happens when the wall velocity is
slightly below the Jouguet velocity. Once the wall velocity surpasses the Jouguet
velocity, the observable sharply drops in the sound shell model. In the simulations,
this feature is washed out by the collisions of the sounds shells and the subsequent
evolution of the sound shells. Hence the observable is typically largest when the wall
velocity is close to the speed of sound, where the shock front is strongest.

Overall, we expect that the simplified simulations represent the true spectrum bet-
ter than the sounds shell model, since the simulations account for the evolution of the
plasma after bubble collision and do not assume a Gaussian fluid velocity spectrum.
Nevertheless, the simplified simulations have not been tested (and are probably not
applicable since linearity of the sound waves is assumed) for strong phase transitions,
α > 0.05. In case a double-broken power law will indeed be observed by LISA, a
dedicated hydrodynamic simulation with increased precision will be indispensable.
Ultimately, we estimate that the above observable can be measured with a relative
error below 10% in case the two breaks are clearly identified in the data. We do
point out that the prospect of measuring the break ratio is largest for phase transi-
tions at a relatively high temperature T ∗ ∼ 1 TeV, since for smaller temperature, the
low-frequency break often lies outside of the LISA sensitivity band. The size of the
parameter space for which the two breaks can be observed will increase when GW
experiments become even more sensitive.

At this point, we would like to compare our results to the recent study [8]. As
mentioned before, we focus more on the prospects of observing the double broken
power law structure rather than the general observational prospects. Hence, we use
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two different approaches to model the source and we also use a more general fitting
function in the data analysis (leaving the two exponents in the deep IR and UV
unspecified). Another difference is that we use the Markov chain Monte Carlo method
to determine the uncertainties in the parameters, while the analysis of [8] mostly
used the Fisher matrix. In contrast to [8] we find some non-Gaussian features in our
parameter estimates. This difference is probably explained by the fact that we go
beyond the Gaussian approximation in the construction of the log-likelihood and use
a fit model with more parameters. The final main difference is that we relate the
phase transition temperature T ∗ and the inverse duration of the phase transition β
to the strength parameter rather than treating them as an external parameters. As
discussed before, this leads to a sizeable shift towards lower frequencies for strong
phase transitions.

There are also several minor differences that do not have a large impact on the
qualitative results: we assume that the lifetime of the sound waves is determined by
decay into turbulence (see Section 2), neglect the potential suppression in GW sources
from deflagrations [25], neglect foregrounds, and model noise following [22]. Overall,
our results seem to agree quite well whenever a one-to-one comparison is possible.

There are several ways to improve on the above analysis. First, following [22],
we only simulated the data taking of one Time Delay Interferometry channel. An
improved analysis would also simulate the other two channels and then switch to the
so-called AET basis, in which the signal and noise covariance matrices are diagonal
[27]. This updated analysis corresponds to a

√
2 improvement in the signal-to-noise

ratio.
Second, we have not included any stochastic gravitational wave foreground sig-

nals (see [8] for a discussion on reconstruction of the sound shell model signal in the
presence of foregrounds). One possible source of confusion noise is caused by un-
resolved extragalactic compact binaries [28]. The signal strength is expected to lie
significantly below the LISA sensitivity curve and thus our analysis should not be
significantly affected. The foreground coming from white dwarf binaries within our
galaxy [29, 30], on the other hand, can be a significant noise source in our frequency
range. The proximity of the binary sources possibly allows a distinction between the
binary foreground and the GW signal from the phase transition due to the annual
modulation of the former [31].
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A The Soundshell model

We follow [9] to calculate the contribution to the GW energy density from colliding
soundshells. We give a brief overview of the relevant equations for our analysis in the
following. We are interested in the (dimensionful) power spectrum Ω∗gw,ssm(k) which
is related to the dimensionless spectral density P (k) via

Ω∗gw,ssm(k) =
k3

2π2
Pgw(k) . (39)

The computation of Ω∗gw,ssm(k) proceeds in three steps. First, the hydrodynamic
equations of the plasma around a single bubble are solved, yielding the velocity profile
vip(ξ) and enthalpy density wip(ξ) as a function of the coordinate ξ = r/t, with r the
radial displacement from the center of the bubble and t the time since nucleation.
One distinguishes between three different kinds of combustion, that are displayed in
figure 7. See [15, 9] for the details of the solution. In fact, we are interested in the
energy density contrast

λ =
e− ē
w̄

, (40)

which is obtained from w using the equation of state. The bars indicate that the
quantities are evaluated at the nucleation temperature. From the invariant velocity
profile and the density contrast we determine

f(z) =
4π

z

∫ ∞
0

dξvip(ξ) sin(zξ) l(z) =
4π

z

∫ ∞
0

dξλip(ξ)ξ sin(zξ) . (41)

Both contribtutions can be combined into the spectral density for a single bubble

|A(z)|2 =
1

4

[
(f ′(z))

2
+ (csl(z))2

]
. (42)

This quantity enters in the second step, where the velocity spectrum is obtained by
averaging over many bubbles. This requires a choice of the nucleation model. We
choose the exponentially decreasing bubble lifetime distribution ν(βT ) = exp(−βT ),
one of the two choices of [9]. Here, T describes the time since the onset of the phase
transition, and β the nucleation rate.

The full velocity spectral density can then be expressed as integral over the single
bubble spectrum, via

Pṽ(q) =
2

(βR∗)3

1

2π

(
q

β

)3 ∫
dT̃ ν(T̃ )T̃ 6A|(T̃ q/β)|2 (43)

with T̃ ≡ βT .
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Figure 7: Depiction of different modes of combustion of a strong first order PT (α = 0.1).
The colors show non-vanishing fluid flow vip(ξ) in the bubble center frame. The location
of the wall vw is indicated by the black line. The shell thickness can be inferred from
the radial coordinates ξfront and ξback which are indicated by the blue numbers between 0
and 1. For a deflagration the bubble wall is preceeded by a shock, for a detonation the wall
is followed by a rarefaction wave, hybrids are inbetween. For α . 0.3 the fluid velocity vip

is non-relativistic, see e.g. fig 7 in ref. [15].

As a sidenote, the RMS fluid velocity follows from eq. 43, which gives a contribu-
tion to the overall normalization factor of the GW energy density,3

Ū2
f =

∫
dq

1

q
Pṽ(q) =

2

(βR∗)3

∫
dT̃ ν(T̃ )T̃ 3

∫
dz

z2

2π2
|A(z)|2

=
3

4π2ξ3
w

∫
dz

z2

2π2
2|A(z)|2 . (44)

From this, note that the single bubble spectrum |A(z)|2 contains essentially all nec-
essary information to calculate the RMS fluid velocity.

For convenience it is useful to rescale the velocity power spectrum to

Pv(q) = L3
f Ū

2
f P̃v(qLf ), (45)

where Lf is the characteristic scale in the fluid.
Finally, the velocity spectrum can be correlated with itself to give the spectral

density of GWs. The result for the relative growth rate of the GW power spectrum

3Note that this definition differs from Eq. (8). The difference between the two definitions is
discussed in [9] and turns out to be small numerically.
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compared to the Hubble scale is

Ω
′∗
gw,ssm(k) =

Ω̇∗gw,ssm

H
= 3

(
ΓŪ2

f

)2
(HLf )

(kLf )
3

2π2
P̃gw(kLf ) , (46)

with Γ = w̄/ē = 4/3 and

P̃gw(q) =
1

4πycs

(
1− c2

s

c2
s

)2 ∫ z+

z−

dz

z

(z − z+)2(z − z−)2

(z+ + z− − z)
P̃v(z)P̃v(z+ + z− − z) . (47)

Taking the lifetime estimate of the source into account, one has

Ω∗gw,ssm(k) = (Hτ) Ω
′∗
gw,ssm(k) , (Hτ) = min(1, Hτnl) , (48)

where τnl = Lf/Ūf is the time scale where non-linearities evolve. Note that the
rescaling freedom in Lf removes the β dependence from P̃gw(y), such that the spectral
information of the soundshell model is encoded by α and vw alone. The left panel of
figure 8 shows soundshell spectra for fixed α = 0.12 and varying vw. Multiple breaks
can arise, depending on the type of combustion. One break position is universally
set by R∗ which is the same for all profiles. For wall velocities close to the speed of
sound, c2

s = 1/3, the second scale Lssh emerges. For hybrids, close to the Jouguet
velocity, the spectrum might even have an additional break, but we have not studied
these systematically as these correspond to α < 0.01. Ultimately, these additional
features might be idiosyncratic to the sound shell model.
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Figure 8: Left: Gravitational wave spectra as predicted by the soundshell model,
before redshift. The PT strength is α = 0.12. For intermediate wall velocities,
besides R∗, a second scale Lssh emerges. Right: Corresponding invariant profiles,
which enter the single-bubble spectrum |A(z)|.

B Fit results

In this appendix, we show the details of the MCMC analysis of the data points
discussed in Section 4.3. Figures 9 to 12 show the results for the four benchmark
points listed in Table 1.

The upper right corner of each figure shows the (reconstructed) spectrum as a
function of frequency. Here, we show the input noise signal with fixed A = 3 and
P = 15, and the input gravitational wave signal, which is obtained from the soundshell
model. The data with f > 1 mHz have been coarse-grained according to the procedure
described in Section 3. In the frequency region f < 1 mHz, the data points are just
given by the mean of 94 chunks. For some data points the spread in the data points is
rather large, leading to error bands extending to the bottom of the graph. The finite
resolution of the figure in combination with the large amount of data points makes
this look rather dramatic, but in reality only 30% of data points have such large error
bars. Note that we do not use the sample estimate of the standard deviation in the
likelihood fit LG+LN, but the uncertainty is estimated from the theoretical uncertainty
of the fitted model following Eq. (31). We show the reconstruction of noise (green) and
signal (blue) with LG+LN with respective 1σ and 2σ credible intervals. For comparison,
we also show the χ2 result of the (double) broken powerlaw fits in dashed red (dotted
black), from which we estimate the fit quality via ∆AIC. The selected parameters all
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favor the double broken powerlaw fit by many units. The value of the AIC for pure
noise fits is shown for reference on top of the panel and demonstrates that pure noise
fits are heavily disfavored.

In the lower left panels we show the reconstruction of the double broken power law
fit in parameter space4. We compare the two choices for the likelihood functions from
the main text, Lχ2 (red) and LG+LN (blue). Concerning the noise (the two leftmost
columns), one can see that switching to LG+LN removes the bias from the gaussian
sample estimate of the uncertainties and the bias from the likelihood function. For
the reconstruction of the signal (the six other columns), the statistical uncertainty
dominates such that roughly the same central values are reconstructed using either
likelihood. The χ2 likelihood tends to underestimate the uncertainties.

4For easy visualization we use the package [32].
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Figure 9: Double broken power law fit to the mock data, generated with the sound
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corresponding to Lχ2 (LG+LN). Right: Corresponding mock data and noise and signal
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shell model for wall velocity vw = 0.4 and α = 0.25. Left: reconstruction of the
double broken power law fit parameters. The red (blue) contours show the result
corresponding to Lχ2 (LG+LN). Right: Corresponding mock data and noise and signal
reconstruction as a function of frequency.
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Figure 11: Double broken power law fit to the mock data, generated with the sound
shell model for wall velocity vw = 0.5 and α = 0.3. Left: reconstruction of the
double broken power law fit parameters. The red (blue) contours show the result
corresponding to Lχ2 (LG+LN). Right: Corresponding mock data and noise and signal
reconstruction as a function of frequency.
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Figure 12: Double broken power law fit to the mock data, generated with the sound
shell model, for wall velocity vw = 0.92 and α = 0.4. Left: reconstruction of the
double broken power law fit parameters. The red (blue) contours show the result
corresponding to Lχ2 (LG+LN). Right: Corresponding mock data and noise and signal
reconstruction as a function of frequency.
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