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Given current discrepancy in muon g − 2 and future dedicated efforts to measure muon electric
dipole moment (EDM) dµ, we assess the indirect constraints imposed on dµ by the EDM measure-
ments performed with heavy atoms and molecules. We notice that the dominant muon EDM effect
arises via the muon-loop induced “light-by-light” CP -odd amplitude ∝ BE3, and in the vicinity
of a large nucleus the corresponding parameter of expansion can be significant, eEnucl/m

2
µ ∼ 0.04.

We compute the dµ-induced Schiff moment of the 199Hg nucleus, and the linear combination of de
and semileptonic CS operator (dominant in this case) that determine the CP -odd effects in ThO
molecule. The results, dµ(199Hg) < 6 × 10−20ecm and dµ(ThO) < 2 × 10−20ecm, constitute ap-
proximately three- and nine-fold improvements over the limits on dµ extracted from the BNL muon
beam experiment.

Introduction.— The searches for EDMs of elemen-
tary particles progressed a long way since the first indi-
rect limit on neutron EDM found by Purcell and Ram-
sey seventy years ago [1]. Current precision improved by
nearly ten orders of magnitude since [1] and nil results of
the most precise measurements [2–5] have served a death
warrant to many models that seek to break CP symme-
try at the weak scale in a substantial way (see e.g [6–9]).

EDMs of neutron and heavy atoms can also serve to
constrain EDMs of heavier particles that do not appear
inside these light objects “on-shell” [10]. While for the
EDMs (and color EDMs) of heavy quarks the gluon medi-
ation (and for heaviest objects such as t-quark, Higgs me-
diation) diagrams play a crucial role [11, 12], the EDMs of
muons and τ -leptons require three-loop α3

EM suppressed
amplitudes to generate the electron EDM de via radia-
tive corrections [13]. In this work, we re-evaluate the
muon EDM (dµ) induced CP -odd observables and find
the enhanced sensitivity to dµ in experiments that mea-
sure EDMs of heavy atoms/molecules.

Latest interest to muons is fueled by the on-going dis-
crepancy between theoretical predictions and experimen-
tal measurement of the muon anomalous magnetic mo-
ment [14–20]. It brings into focus a question of other
observables that involve muons, and one such important
quantity is the muon EDM, dµ (see e.g. [21] on extended
discussion on this point). At the moment, the auxiliary
EDM measurement at the Brookhaven g − 2 experiment
sets the tightest bound on muon EDM [22],

|dµ| < 1.8× 10−19 ecm, (1)

but there are proposals on significantly improving this
bound with dedicated muon beam experiments [23–26].
Given these upcoming efforts it is important to re-
evaluate indirect bounds on muon EDM, especially given
significant progress in precision of atomic/molecular
EDM experiments in recent years.
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FIG. 1: A representative light-by-light scattering diagram
with dµ insertion (indicated by the crossed dot) giving rise
to E3B interaction. When E2B is sourced by the nucleus, as
shown on the right, dN and SN are generated.

In this Letter we evaluate indirect limits on dµ finding
superior bounds to (1) from Hg and ThO EDM experi-
ments [2, 4]. Our results draw heavily on the fact that
the closed muon loop with dµ insertion is placed in a very
strong electric field of a large nucleus (e.g. Hg or Th).
The resulting interaction, encapsulated by E3B effective
operator, is capable of generating Schiff moment [27],
CP -odd electron-nucleus interaction [6], and magnetic
quadrupole moment. Below, we elaborate on details of
our findings.
Muon EDM and E3B interaction.— The input

into our calculations is the muon EDM operator,

LCP -odd = − i
2
Fαβ × µσαβγ5µ× dµ, (2)

and for the purpose of this paper we assume that the
Wilson coefficient dµ is the only source of CP -violation.

At one loop order, muons induce CP -odd nonlinear
electromagnetic interactions, much the same as the well-
studied “light-by-light” diagrams in the CP -even chan-
nel. In Fig. 1 we show an example of such diagram. We
notice that photon momenta entering the muon loop are
small compared to the muon mass mµ. Indeed, in a large
nucleus, qmax

γ ∼ R−1
N ∼ 30 MeV, one can truncate the se-
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ries to the lowest dimension operator, and assume electric
E and magnetic B fields to be uniform. Working in the
lowest order in dµ, we directly compute the correspond-
ing electromagnetic operators, similar to the dimension
eight term in the Euler-Heisenberg Lagrangian:

L = −e4(F̃αβF
αβ)(FγδF

γδ)× dµ/e

96π2m3
µ

= − dµ/e

12π2m3
µ

e4(E ·B)(E ·E−B ·B), (3)

where F̃αβ = 1
2εαβµνF

µν , and we define the gauge cou-
pling e to be positive. One can notice interesting dif-
ferences with CP -even case: dimension four (F̃αβF

αβ)
operator can be dropped, and there is only one dimen-
sion eight operator (FF )(FF̃ ), while CP -even case has
two, (FF )(FF ) and (FF̃ )(FF̃ ). The effective CP -odd
photon interactions were discussed recently in [28]. In
principle, all terms in the expansion can be computed
analytically. Neglecting O(B3) interaction that is sub-
dominant due to no Z-enhancement leaves only E3B ef-
fective operator that we write in a more generic form that
can be applied to other sources of CP -violation as well:

Heff = CE3B ×
∫
d3x e4(E ·E)(E ·B), (4)

with CE3B = (12π2m3
µ)−1dµ/e in our model (2).

It is important to note that the E3B effective interac-
tion does not always capture all relevant physics. For
example, the muon-loop-mediated electron EDM that
arizes at three loop order involves computation with loop
momenta that can be comparable or even larger than mµ.
In that case, the entire CP -odd four-photon amplitude
is needed [13]. In what follows we evaluate the physical
consequences of the E3B interaction.
Muon EDM and nuclear CP -odd observables—

Nuclear spin dependent EDMs (sometimes called dia-
magnetic EDMs) provide stringent tests of CP -violation
via probing nuclear T, P -odd moments. At this step we
address the mechanisms that convert CP -even static nu-
clear moments to the CP -odd ones,

µN , QN
E3B−−−→ dN , SN ,MN , (5)

where subscript N stands for “nuclear”, and
µ, Q, d, S, M are magnetic, electric quadrupole,
electric dipole, Schiff and magnetic quadrupole mo-
ments. (Inside a neutral atom, dN is not observable by
itself, but in the linear combination that parametrizes
the difference between EDM and charge distribution,
the Schiff moment [27].)

Consider a spin- 1
2 nucleus, as in the most sensitive dia-

magnetic EDM experiment with 199Hg [2]. Then MN is
absent by definition, but dN and SN can be induced as
shown in Fig. 1. To calculate them we notice that the

magnetic field of the I = 1/2 nucleus can be presented
in the following form:

eBi(r) = b1(r)nIi + b2(r)(3ninj − δij)nIj , (6)

where we introduced the unit vector in the direction of
the nuclear spin, nI = I/I, n = r/r and some scalar
invariant functions b1(2)(r). Notice that in the limit of
a very small nuclear radius, RN → 0, the corresponding
asymptotics of these functions are

b1(r)→ 2eµN
3

δ(r); b2(r)→ eµN
4πr3

. (7)

where µN is the nuclear magnetic dipole moment value.
The nuclear electric field, to good accuracy, can be de-
scribed by the radial ansatz,

eE =
n

r2
× Zαf(r), (8)

where Z is the atomic number, α is the fine structure
constant and f(r) is the fraction of nuclear charge within
the radius r. For the uniform sphere charge distribution
f(r) = r3/R3

N for r < RN and f(r) = 1 for r > RN .
Substituting (8) and (6) into (4) and performing angular
integration, we obtain intermediate expressions for dN
and SN :

dN
eCE3B

= 4π(Zα)2

∫
dr

r2
f2

(
5

3
b1 +

4

3
b2

)
, (9)

SN
eCE3B

=
2π(Zα)2

15

∫
drf2

[
b1

(
11− 25

3

r2
c

r2

)
+b2

(
16− 20

3

r2
c

r2

)]
. (10)

In these expressions, r2
c is the nuclear charge radius. We

follow the standard definition of the Schiff moment that
in non-relativistic limit and point-like nucleus leads to
the effective nuclear-spin-dependent T, P -odd Hamilto-
nian for electrons

HT,P -odd = −(SN/e)× 4πα(nI ·∇e)δ(re). (11)

Nuclear dependence in (9) and (10) is encapsulated in f
and bi. Electric field, i.e. f , is determined by the collec-
tive properties of the nucleus and has little to no depen-
dence on the details of the nucleon’s wave function in-
side a large nucleus. In contrast, the scalar functions bi
that describe magnetization are determined by mostly
“outside” valence nucleons and carry more detail about
nuclear structure. For any realistic choice of f and bi,
however, it is easy to see that radial integrals will be
saturated by distances r ∼ RN .

Specializing our calculations to the 199Hg nucleus, we
adopt a simple shell model description of it with a valence
neutron in nr = 2, l = 1, j = 1/2 state carrying all an-
gular momentum dependence, and ignore configuration
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mixing. Its wave function can be conveniently written as

ψ(rn) = R2p(rn)
(σn · nn)√

4π
χ, (12)

where rn = nnrn and χ are neutron’s coordinate and
two component spinor, and R2p is the radial wave func-
tion normalized as

∫
R2r2dr = 1. Nuclear spin in this

case coincides with j, and nI = χ†σnχ. The magnetic
moment of the nucleus has a simple connection to the
magnetic moment of the neutron, eµN = (−1/3)eµn =
(−1/3)×(−1.91)×4πα/(2mp). The magnetization func-
tions bi defined earlier in (6) can be directly related to
radial R2p functions, and explicit calculations give

b1(r) =
−1.91α

2mp
× 2

3

(
2

∫ ∞
r

drn
rn

R2
2p(rn)−R2

2p(r)

)
,

b2(r) =
−1.91α

2mp
× 1

3

(
R2

2p(r)−
1

r3

∫ r

0

drnr
2
nR

2
2p(rn)

)
.

One can easily check that the corresponding boundary
conditions (7) are satisfied. To learn about the para-
metric dependence of our answers we first explore the
simplified case when not only the charge distribution but
also R(r) is taken to be constant inside the nuclear radius
and zero outside, R2

2p(r) = 3R−3
N θ(RN − r) [7]. In this

approximation we get

dN
eCE3B

=
1.91× 2πZ2α3

3mpR4
N

;
SN

eCE3B
=

1.91× 39πZ2α3

245mpR2
N

,

(13)
and consequently SN scales as Z4/3 since RN ∝ Z1/3.
In order to get a more realistic answer, we solve for R2p

numerically using the Woods-Saxon potential with pa-
rameters outlined in Ref. [29]. We check that our results
reproduce SN (dn) [7, 29] with reasonable ∝ 30% accu-
racy. Performing two numerical integrals over rn and r,
and substituting explicit expression for CE3B , we obtain
the following numerical result,

S199Hg/e ' (dµ/e)× 4.9× 10−7 fm2, (14)

that lands itself very close (withing 20%) from the naive
estimate (13). Given the experimental constraint of
|S199Hg| < 3.1×10−13 e fm3 [2], we arrive at the following
final result

|dµ| < 6.4× 10−20 e cm, (15)

which is somewhat more stringent bound, by a factor of
∼ 2.5 than (1). Result (14) carries a 25-30% uncertainty
due to neglected contributions from the nuclear orbital
mixing.

Future developments may bring about new experi-
ments that would search for EDMs involving nuclei with
I ≥ 1 [30], opening the possibility of measuring magnetic
quadrupole moments, and using nuclei with large defor-
mations/large QN . We perform a simple estimate for the

expected size of the magnetic quadrupole by taking the
electric field created by QN outside the nucleus, and cut-
ting divergent integrals at RN . This way, we arrive at
the following estimate

MN

eCE3B
∼ 48πZ2α3

5

QN
e

∫
dr

r5
' QN

e

12πZ2α3

5R4
N

. (16)

Substituting expression (4), and normalizing electric
quadrupole on large values observed in deformed nuclei,
we get

MN

e
∼ 10−4 fm× QN

e 300 fm2 × (dµ/e). (17)

Taking typical matrix elements and extrapolating future
sensitivity to the current one of the ThO experiment,
one could probe MN/e ∝ 10−11 fm2 and consequently
achieving dµ/e ∝ 10−20 e cm.
Muon EDM and paramagnetic CP -odd observ-

ables.— Finally we turn our attention to the electron-
spin-dependent EDMs referred to as paramagnetic EDMs
of atoms and molecules. These experiments probe the
electron EDM operator (defined through Eq. (2) with
µ → e) and semi-leptonic CP -odd operators among
which the most important one is CS ,

LeN = CS
GF√

2
(ēiγ5e)(p̄p+ n̄n). (18)

For non-relativistic electrons and small RN limit, this
term gives rise to ∝ (σe ·∇e)δ(re) effective interaction.
The importance of CS for probing CP violation in the
Higgs sector, quark sector etc has been emphasized many
times in the literature, see e.g. [31–34]. Tremendous
progress of the past decade with limits on de and CS
has been achieved by the ACME collaboration in experi-
ment with the ThO paramagnetic molecule [4]. Since the
results are often reported in terms of de, it is convenient
to introduce a linear combination of the two quantities
limited in experiment and refer to them as “equivalent
de”[35]:1

dequiv
e = de + CS × 1.5× 10−20 e cm. (19)

Current experimental limit stands as |dequiv
e | < 1.1 ×

10−29 e cm [4].
Muon EDM contributes both to de and CS through

loops. The bona fide three-loop de(dµ) computation,
Fig. 2, was performed in [13],

de = dµ

(α
π

)3 me

mµ
× 1.92 ' 1.1× 10−10dµ. (20)

1 The sign convention of CS can be checked, e.g., with [36]. We
define γ5 = iγ0γ1γ2γ3 that has the opposite sign as theirs.
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FIG. 2: Three-loop contribution to de and two-loop contribu-
tion to equivalent CS generated by dµ.

If the direct bound (1) is saturated, de will be larger
than the experimental limit by about a factor of two, as
already noted in Ref. [21]. It turns out, however, that
equivalent of CS generated by E3B interaction gives a
larger contribution.

A representative diagram contributing to the T, P -odd
electron-nucleus interaction via E3B term is shown in
Fig. 2. The two electric field lines can be sourced by a
nucleon, or a nucleus, while the photon loop attached to
electron line generates meēiγ5e interaction. There are
two important considerations regarding this type of con-
tribution: i. The photon loop is enhanced by log(Λ/me),
and we calculate this loop to logarithmic accuracy, cut-
ting it at Λ = mµ. (In practice, this cutoff will be sup-
plied by the non-local nature of the muon loop in Fig. 1.)
ii. In a large nucleus E2 is coherently enhanced and
dominates over effects proportional to electromagnetic
contribution of individual nucleons ∝ Z〈p|E2|p〉. Being
concentrated inside and near the nucleus, E2 can be con-
sidered equivalent to the delta-functional contribution:

e2(E2)nucl → δ(r)× 4π(Zα)2

RN
×
∫ ∞

0

f2(RNx)

x2
dx, (21)

where x = r/RN . For a constant density charge dis-
tribution, the integral in (21) is 6/5, and we adopt this
number. Putting the results of the loop calculation to-
gether with (21), and using the explicit form for CE3B

we arrive at the following prediction for the equivalent
CS value:

GF√
2
Cequiv
S = κ

4Z2α4

πA
× me(dµ/e)

m3
µRN

× log

(
mµ

me

)
. (22)

As one can see, Cequiv
S scales as Z2A−1R−1

N ∝ Z2/3,
which is the sign of coherent enhancement. A is the
number of nucleons, and A = 232 for Th. In this ex-
pression, κ is a fudge factor to account for the change
of the electronic matrix elements stemming from the fact
that nuclear E2 extends beyond the nuclear boundary,
while true nucleonic CS effect is proportional to nuclear
density and vanishes outside. Solving the Dirac equation
near the nucleus for the outside s1/2 and p1/2 electron
wave functions and finding a ratio of the matrix elements
for these two distributions result in κ ' 0.66. We then

arrive to the numerical result

Cequiv
S = 3.1× 10−10

(
dµ

10−20 e cm

)
. (23)

Combining (23) with (20) into (19), we arrive at our main
result

dequiv
e ' 5.8× 10−10 dµ =⇒ |dµ| < 1.9× 10−20 e cm.

(24)

We observe that de and Cequiv
S interfere constructively,

and CS contribution is larger by a factor of ' 4. We
believe (23)to be accurate within ∼ 15 − 20% with un-
certainties associated with modelling of E(r) and loga-
rithmic approximation for the photon loop integral.
Outlook— We have evaluated the electromagnetic

transmission mechanisms of muon EDM to the observ-
able EDMs that do not involve on-shell muons. We
have found that muon-loop-induced E3B effective inter-
action plays an important role and leads to novel indi-
rect bounds, Eqs. (15) and (24) that are already stronger
than the direct bound (1). Result (24) provides a new
benchmark that future dedicated muon EDM experi-
ments would have to overtake. We also notice that since
both 199Hg and ThO EDM results give an improvement,
it is highly unlikely that a fine-tuned choice of de and
hadronic CP -violation would lead to the relaxation of
indirect bounds on dµ.

In this paper, we do not discuss the short-distance
physics that may lead to the enhanced dµ. We note that
while in some models dµ is predicted at the same level as
de, it is also feasible that dµ/de scales as (mµ/me)

3 and
possibly even larger. (Given the on-going g − 2 discrep-
ancy in the muon sector, it is clear that dµ deserves a
separate treatment.) Still, it is instructive to equate dµ
to some simple scaling formula that involves an ultravi-
olet scale Λµ, and we choose dµ = mµ/Λ

2
µ scaling. Then

our results translate to

Λµ > 300 GeV, (25)

which underscores that the (weak scale)−1 distances start
being probed. Depending on underlying model, there
can be some scale dependence of the muon EDM form
factor dµ(Q2) (see e.g. [13]). This, however, does not
obscure comparison of direct (Q2 ' 0) and indirect (Q2 '
m2
µ) limits derived in our paper as long as dµ operator is

generated at distances Λ−1 � m−1
µ .

We also update the limit on the τ -lepton EDM dτ de-
rived in [13]. Our analysis is directly applicable to dτ
after replacing mµ by the τ -lepton mass mτ . In this
case, the electron EDM plays the dominant role since
de ∝ m−1

τ while SN , CS ∝ m−3
τ up to logarithm. For the

ThO molecule, we obtain

dequiv
e ' 7.0× 10−12 dτ =⇒ |dτ | < 1.6× 10−18 e cm.

(26)
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This surpasses the constraint from the Belle experi-
ment [37]. The constraint from 199Hg is weaker by a
factor of ∼ 2× 102 than (26).

Finally, while the focus of our paper was on dµ, one
could also derive limits on CE3B applicable to other
models. We get constraints on CE3B at the level of
10−41 eV−4 and better, which would be challenging to
match with photon-based experiments [28].
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Supplemental Material

In this Supplemental Material, we provide technical details on the evaluation of the Schiff moment and the semi-
leptonic CP -odd operator, as well as estimate theoretical errors in evaluating these quantitites.

Schiff moment

Here we start from the CP -odd photon operator (4) and derive the Schiff moment (10). We focus on the part linear
in the electric field induced by the electron as shown in Fig. 1. The E3B operator is then evaluated as

Heff = −CE3B ×
∫
d3x

(
∇ α

|x− re|

)
· (2eE (eE · eB) + eB (eE · eE)) , (S1)

where E and B in this expression are understood to be the nuclear electromagnetic field, and re is the position vector
of the electron. With Eqs. (6) and (8), we obtain

Heff =

∫
d3x

(
∇e

α

|x− re|

)
·Pd, (S2)

where the nuclear EDM distribution is given by

Pd = CE3B
Z2α2f2

r4

[
5b1 + 4b2

3
nI +

2b1 + 7b2
3

(3(n · nI)n− nI)

]
. (S3)

We thus obtain the nuclear EDM as

dN
e

=

∫
d3xPd = nI × CE3B

∫
d3x

Z2α2f2

r4

(
5b1 + 4b2

3

)
, (S4)

reproducing Eq. (9). Due to the screening effect, the atomic EDM is induced not solely by the nuclear EDM distribution
but by the interaction of the form

Heff =

∫
d3x

(
∇e

α

|x− re|

)
·
(
Pd − ρq

dN
e

)
, (S5)

where ρq is the nuclear charge distribution normalized as
∫
d3xρq = 1. Since the atomic scale is much larger than the

nuclear scale, we may expand the electric field induced by the electron as

∇e
1

|x− re|
= ∇e

[
1

re
− x ·∇e

1

re
+

1

2
(x ·∇e)

2 1

re
+ · · ·

]
. (S6)

The first two terms do not contribute and we obtain to the leading order

Heff =
α

2

(
∇i∇j∇k

1

re

)∫
d3x

[
(Pd)i − ρq

dNi
e

]
xjxk, (S7)

where we omit the subscript e from ∇ for notational ease but the derivatives still act on re as the bracket indicates.
After the angular integration, we obtain

Heff = −SN
e
× 4πα (nI ·∇e) δ(re), (S8)

where the Schiff moment is given by Eq. (10).
Up until this point, the treatment was completely general, and used only the symmetry considerations applied to

E and B. To move further and evaluate the Schiff moment, we adopt the model where E is created collectively by all
protons inside the nucleus, while B is generated by a valence nucleon in a shell model of the nucleus. Evaluations of
the magnetic moment of the 199Hg show that the latter approximation holds to ∼ 20% accuracy. In our evaluation, we
simply take f(r) = r3/R3

N for r < RN and f(r) = 1 for r > RN for the nuclear electric field. We have checked that the
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result is affected only within 10% if we instead use the Woods-Saxon type charge distribution. The nuclear magnetic
field induced by the magnetic moment of the valence neutron is given by [39] (notice the different normalization of e)

eB(x) =
eµn
4π

∫
d3xn

[
∇n ×

(
ψ†n(xn)σnψn(xn)

)]
×∇n

1

|xn − x|
, (S9)

where xn is the position vector of the valence neutron and σn is the Pauli matrix. The wave function of the valence
neutron ψn is normalized as ∫

d3xn |ψn|2 = 1. (S10)

After integration by parts we obtain

eB(x) =
2eµn

3
ψ†n(x)σnψn(x) +

eµn
4π

[
∇ (∇·)− ∇2

3

] ∫
d3xn

ψ†n(xn)σnψn(xn)

|xn − x|
. (S11)

With Eq. (12), the spin density for p1/2 neutron orbital is given by

ψ†n(xn)σnψn(xn) =
R2

2p(rn)

4π
[2 (nn · nI)nn − nI ] . (S12)

The angular integral can be performed with the multipole expansion of the Coulomb potential

1

|xn − x|
=

Θ(rn − r)
rn

∞∑
l=0

(
r

rn

)l
Pl(cos θ) +

Θ(r − rn)

r

∞∑
l=0

(rn
r

)l
Pl(cos θ), (S13)

where cos θ = xn · x/rrn, and we obtain

eB(x) = b1(r)nI + b2(r) (3(n · nI)n− nI) , (S14)

where

b1(r) =
µn
6π

(
2

∫ ∞
r

drn
rn

R2
2p(rn)−R2

2p(r)

)
, b2(r) =

µn
12π

(
R2

2p(r)−
1

r3

∫ r

0

drnr
2
nR

2
2p(rn)

)
, (S15)

thus reproducing the equations in the main text. As a cross check, one can show that these expressions satisfy
Maxwell’s equation ∇ ·B = 0.

In order to obtain R2p, we numerically solved the Schrödinger equation for the valence neutron moving in the
Woods-Saxon potential. The parameters of the potential [29] are tuned to reproduce single-particle energies and
collective properties of heavy nuclei. We have checked that our numerical results are consistent with other single-
particle calculations, of e.g. Schiff moment induced by the neutron EDM [7]. Final numerical results for S199Hg are
given in Eq. (14).

Semi-leptonic CP -odd operator

Here we provide details on our evaluation of the semi-leptonic CP -odd operator CS . We again start from the
CP -violating photon operator

L =
e4CE3B

8
(F̃αβF

αβ)(FγδF
γδ). (S16)

We contract two photons with the electron line as shown in Fig. 2. At the level of effective operators, this diagram
is logarithmically divergent. However, since we have integrate out the muon, the logarithmic divergence is tamed by
the muon mass scale, and hence we obtain

L = CE3B × 10α2me log

(
mµ

me

)
|eE|2 ēiγ5e, (S17)
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to the leading log accuracy, where E is the nuclear electric field and we ignore B2 that is subdominant. We use the
same character e for both gauge coupling and the electron spinor, but there should be no confusion.

It is well-known that the strength of atomic EDMs in heavy atoms is determined mostly by the mixing of s1/2

and p1/2 atomic orbitals. It is easy to see that both the E2-proportional interaction (S17) and the usual form of
CS-interaction (18) induce a mixing between the atomic s1/2 and p1/2 states. Near/inside the nucleus where N̄N and
E2 operators peak, the electron wave functions satisfy the Dirac equations and are given by

ψjlm = e−iEt
(

fjl(r)Ωjlm
(−)j−l−1/2gjl(r)Ωjl′m

)
, l′ = 2j − l, (S18)

where Ωjlm is the spherical harmonics spinor (see e.g. [40]). Thus the atomic matrix element induced by (18) is∫
d3xN ρN (xN )ψ†p(xN )γ0γ5ψs(xN ) = A

∫
drN r

2
N ρ̄N (fpgs + fsgp) , (S19)

where ρN is the nucleon density distribution inside the nucleus, A = 232 is the atomic number of Th and we made
the index j = 1/2 implicit for notational ease.

Atomic/molecular theory connects the small-r asymptotic form of the wave functions (S18) with the full numerically
determined atomic orbitals. CP -violation, on the other hand, comes exclusively from the atomic short-distance matrix
element (S19). Therefore, in order to determine the atomic matrix element induced by (S17) we need to replace (S19)
with ∫

d3xN |eE(xN )|2 ψ†p(xN )γ0γ5ψs(xN ) =
24πZ2α2

5RN

∫
drN r

2
N ρ̄E2 (fpgs + fsgp) . (S20)

Here the normalized distributions are taken as

ρ̄N (rN ) ∝ 1

1 + e(rN−RN )/a
, ρ̄E2(rN ) ∝ r2

N

R6
N

Θ(RN − rN ) +
1

r4
N

Θ(rN −RN ),

∫
drNr

2
N ρ̄N =

∫
drNr

2
N ρ̄E2 = 1.

(S21)

Therefore the effective CS-coupling induced by (S17) is estimated as

GF√
2
Cequiv
S = CE3B × κ

48πZ2α4me

RNA
log

(
mµ

me

)
, κ =

∫
drN r

2
N ρ̄E2 (fpgs + fsgp)∫

drN r2
N ρ̄N (fpgs + fsgp)

. (S22)

In order to evaluate the correction factor κ, that ultimately accounts for the difference of spatial distribution between
N̄N and E2 operators in the atomic matrix element, we solve the Dirac equation for the radial functions f and g
numerically. We take RN = r0A

1/3 with r0 = 1.27 fm and a = 0.742 fm following [29], and obtain

κ ' 0.66. (S23)

This is used for our estimation of the upper limit on dµ in the main text.

Comments on the accuracy of calculations

Since the calculation of S(dµ) and CS(dµ) involve many steps, it is appropriate to comment on the expected accuracy
of the results. The uncertainties can be subdivided into three categories, coming from particle physics, nuclear and
atomic physics.

Particle physics. In calculating the muon loop leading to (BE)E2 effective interaction, higher order terms in the
electric field have been neglected. Such terms are additionally suppressed by powers of (eE2)/m4

µ ≤ (Zαm−1
µ RN )4 <

10−3, and therefore this approximation holds really well. The loop integral also neglects the change of electric field
on the scale of the muon Compton wavelength. This correction can be at maximum ∼ (RNmµ)−2 ∼ 7%. Notice that
this can be consistently improved by numerically calculating the muon loop in the realistic E(r) background.

Photon loop calculation entering the calculation of CS has been performed to logarithmic accuracy, i.e. O(1) terms
have been dropped relative to log(m2

µ/m
2
e) ∼ O(10). This implies the accuracy of 10%, which again can be improved

upon numerical calculation of the two-loop (muon and photon) diagram.
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Nuclear physics. There are no nuclear uncertainties in the CS calculation, other than the exact modelling of the
electric field distribution inside the nucleus. The charge distributions used in our calculations are “anchored” by the
measured values of the nuclear charge radii, but the exact shape can modeled by either constant-within-sphere, or
Woods-Saxon form. This feeds into the calculation of the κ-factor, and we estimate that the possible variation does
not exceed ∼ 10%.

The calculation of the Schiff moment involves modelling of the magnetic field inside the nucleus. In our work it is
done in the simple shell model that predicts the magnetic moment to be µ199Hg = −µn/3 = 0.637, while in practice
the measured result for this quantity is 0.509. The rest of the magnetism comes from the mixing of different nuclear
orbital configurations, and neglecting it generates ∼ 20− 25% errors. It has to be emphasized that this uncertainty is
much smaller than a very large, order of magnitude uncertainty in calculations of the Schiff moment induced by the
CP -odd nuclear forces, where there is no valence contribution, and subtle effects in the core polarization widely vary
as function of adopted nuclear models.

Atomic physics. There is no change in atomic physics calculation (if the parameter κ is treated as essentially a
nuclear parameter). Therefore, same atomic calculations of molecular/atomic orbitals apply, and modern calculations
are performed with estimated errors not exceeding 10%.

Combining different sources of errors, we conclude that the calculation of CS(dµ) and the resulting bounds on dµ
carry a theoretical error of ∼ 15− 20% which can be brought down to 10% level with more accurate modelling of the
nuclear electric field distribution and full calculation of the two-loop diagram. Calculation of S(dµ) carries a ∼ 30%
uncertainty, mostly due to our reliance on the simple shell model, but can be improved with a more sophisticated
nuclear input.
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