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Abstract

We elucidate various aspects of the physics of thraxions, ultra-light axions arising at

Klebanov-Strassler multi-throats in the compactification space of IIB superstring the-

ory. We study the combined stabilization of Kähler moduli and thraxions, showing that

under reasonable assumptions, one can solve the combined problem both in a KKLT and

a LVS setup. We find that for non-minimal multi-throats, the thraxion mass squared

is three-times suppressed by the throat warp factor. However, the minimal case of a

double-throat can preserve the six-times suppression as originally found. We also dis-

cuss the backreaction of a non-vanishing thraxion vacuum expectation value on the

geometry, showing that it induces a breaking of the imaginary self-duality condition for

3-form fluxes. This in turn breaks the Calabi-Yau structure to a complex manifold one.

Finally, we extensively search for global models which can accommodate the presence

of multiple thraxions within the database of Complete Intersection Calabi-Yau orien-

tifolds. We find that each multi-throat system holds a single thraxion. We further point

out difficulties in constructing a full-fledged global model, due to the generic presence

of frozen-conifold singularities in a Calabi-Yau orientifold. For this reason, we propose

a new database of CICY orientifolds that do not have frozen conifolds but that admit

thraxions.
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1 Introduction

A generic prediction of string phenomenology models is the presence of axion-like par-

ticles in the four-dimensional effective theory. Often arising in the compactification

process as integrals of higher p-form gauge potentials on p-cycles of the internal space,

the number and properties of these particles are determined essentially by the ten-

dimensional origin.

Some unique properties of string axions make them interesting to study from a

phenomenological point of view [1–5], for example in the context of inflation, or as

possible dark matter constituents. Moreover, their features are of central prominence

in the Swampland program [6, 7], especially in the context of the Weak Gravity Con-

jecture [8]. Hence, axions represent a promising class of particles which could provide

information about the underlying theory of quantum gravity at the level of testable

physics. Many of the next-generation experiments will partially cover the parametric

space where string axions are expected to live. In addition, thanks to the discovery of

– 1 –



gravitational waves [9], there is now a completely new window where one could detect

their effect on gravitational phenomena, such as the superradiance instability of binary

black holes (BHs) [4] (for recent progress in linking large-scale CY database scans with

the BH superradiance constraints for axions see e.g. [10]).

In this paper, we focus on type IIB superstring theory compactified to 4d on a

compact six dimensional Calabi-Yau (CY) orientifold with 3-form fluxes [11, 12]. At

low energy and large volume, the supergravity approximation holds. In order to extract

phenomenological properties of these axionic particles (such as their mass and decay

constant), we should then study the moduli stabilization problem in the context of

the low-energy effective 4d N = 1 supergravity. Lots of efforts have been spent in

this direction since two different moduli stabilization procedures for type IIB on CYs

were proposed by Kachru, Kallosh, Linde and Trivedi (dubbed as KKLT [13]) and

subsequently by Balasubramanian, Berglund, Conlon and Quevedo (whose model goes

under the name of Large Volume Scenario, or LVS [14]). However, the stabilization of

one particular class of axions is still left unexplored.

Thraxions, or throat-axions [15], are a recently discovered class of ultra-light axionic

modes arising whenever the CY admits a system of multiple warped throats (multi-

throat) sharing some common 3-cycle B, near a conifold point in complex structure

moduli space. In such a case, it is in fact possible to reduce the 2-form RR and NS

potentials C2 and B2 on the family of sectional S2 ⊂ B, generating new axions as the

lowest-lying radial Kaluza-Klein (KK) mode in the low energy effective theory. These

axions were found to be parametrically lighter than any other particle in the spectrum.

Their mass squared is suppressed by six times the warp factor ωIR of the throats,

while the warped-throat KK modes of, e.g. the throat complex-structure (c.s.) modulus,

receive a double suppression only. Since the thraxions own such unique features, it is

important to explore their behavior in a fully stabilized setup in order to connect them

with axion phenomenology.

The aim of this work is to discuss two relevant questions that were left behind

in the original paper [15]. First, we study the effect of a non-vanishing thraxion vac-

uum expectation value (VEV) at the level of the SU(3)-structure torsion classes of the

compactification space. We find that for a non-vanishing VEV, the compactification

space fails to be CY and becomes simply a complex manifold. We understand this as

a breakdown of the imaginary self-dual condition (ISD) of the G3-flux, and we relate

quantitatively the size of the thraxion VEV with the size of the ISD breaking. Second,

we study the interplay between thraxions and Kähler moduli stabilization.

In particular, we find that in general the thraxion potential receives potentially

non-vanishing corrections which lift the mass squared to ∼ ω3
IR only. After explaining

why this is the case, we show that these cross terms in general do not vanish in multi-
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throats consisting of at least three joined throats. Conversely, in the simplest class

of double-throats, avoiding the cross terms reduces to essentially a single concretely

realizable condition on the periods of double-throats.

Among the necessary conditions for the absence of these corrections on generic

multi-throats, we find that each multi-throat system must admit one single thraxion.

Motivated by this, we perform a quantitative and systematic search for a realistic

global model containing thraxions within the Complete Intersection Calabi-Yau (CICY)

orientifold database introduced in [16]. Remarkably, we find that in all CICY orientifolds

with O3/O7-planes which allow for the presence of thraxions there is always a single

thraxion per multi-throat system, and multiple multi-throat systems are also realized.

We compile a database of all the CICY orientifolds supporting thraxions, which extends

the one given in [16].

This paper is organized as follows. In Section 2 we review the rôle of thraxions

in type IIB CY compactifications with fluxes. In Section 3 we show how the backre-

action of thraxions on the geometry breaks the conformal CY condition of GKP-like

solutions [11] using the torsion classes defined on the 6d internal manifold used in the

compactification. In Section 4 we show that Kähler moduli stabilization induces correc-

tions to the thraxion potential. We discuss this issue both in KKLT and in LVS setups.

In Section 5 we introduce a new database constructed from the CICY orientifolds one

proposed in [16]. This database can be found at this link and contains all the orien-

tifolds of the CICYs that do not have frozen conifolds (in the sense of [16]) and in

which there is at least one thraxion. For technical details, we provide two appendices.

In Appendix A we give detailed examples for the Kähler moduli stabilization following

the approximations introduced in Section 4.

Finally, in Appendix B we show that the masses for the axion and saxion, c and b,

in the KKLT AdS vacuum are consistent with results from the representation theory

of a Quantum Field Theory (QFT) defined in an AdS background.

2 Thraxions in Flux Compactification

Let us consider type IIB superstring theory compactified on a compact CY threefold

X whose volume is sufficiently larger than the string scale. The manifold X has a c.s.

moduli space Mcs and a Kähler moduli space Mk respectively of complex dimension

h2,1 and h1,1. The low energy effective theory is 4d N = 2 supergravity with a field

content of h1,1 hypermultiplets and h2,1 vector multiplets.1

1There is also the gravity multiplet and the double-tensor multiplet. Both will play no role in this

paper.
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Let H3(X,Z) be the third homology group of X with integer coefficients. We fix an

integral basis for H3(X,Z) consisting of b3 = 2h2,1+2 3-cyclesAi, Bj, i, j = 1, . . . h2,1+1.

This integral basis is symplectic, meaning that the 3-surfaces intersect as

Ai ∩ Bj = −Bj ∩ Ai = δ j
i , Ai ∩ Aj = Bi ∩ Bj = 0 . (2.1)

The c.s. moduli spaceMcs is special Kähler, and one can define special coordinates on

it as follows:

zi :=

∫
Ai

Ω , F j :=

∫
Bj

Ω , (2.2)

where Ω is the nowhere vanishing holomorphic 3-form that exists on X since X is CY.

In particular, we take (2.2) as the definition of the c.s. moduli zi.

Generic pointlike singularities of X arise at specific codimension 1 loci in Mcs,

where one of the c.s. moduli zi vanishes. Such singularities are called conifold points [17,

18]. It is important to discuss now a crucial difference regarding conifold singularities in

a compact CY, compared to a non-compact one. In a non-compact setting, it is possible

to have a conifold singularity in which a single one of the c.s. moduli zi vanishes. From

(2.2) this implies that a single A-cycle vanishes. On the other hand, in a compact setting

a conifold singularity is only possible if two or more A-cycle related in homology shrink

to zero volume [19].2 Throughout the paper, we will call this latter case multi-conifold,

to distinguish it with the non-compact case in which a single A-cycle vanishes.

Let us consider a multi-conifold singularity on X, in which a set of n A-cycles

vanish, and they satisfy m homology relations of the form

pIi [A]i = 0 . (2.3)

Eq. (2.3) only leaves n − m Ai-cycles independent. For each one of them, there is a

symplectic dual Bi-cycle in H3(X). Geometrically, this Bi-cycle interpolates between

di singular points. The numerical value of di can be determined as a function of the

homology relations coefficients pIi , essentially determining which independent Bi-cycle

intersect which of the original n Ai-cycles. We depict this schematically in Figure 1, for

the simplified case of n = 2, m = 1. Notice that in this picture, for ease of exposition,

we draw two finite-size long throats rather than two conifold points. We will see later

that this is the relevant setup once fluxes are turned on and the orientifold projection

breaking to N = 1 is imposed.

As it can be seen from Figure 1, for n = 2, m = 1, the interpolating B-cycle is, as

a topological space, homeomorphic to I×S2, where I is a finite size interval connecting

2The reason for this arises from the subset of conifold singularities which admit a resolution phase.

In such a case, the fact that a single 3-cycle shrinks to zero size will induce a breaking of the Kähler

condition on the resolution side of the transition.
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bulk CY

ω � 1

ω ∼ 1

S2

B = I × S2

I

Figure 1: Example of a double-throat system with one thraxion.

the two singular points. The situation generalizes easily for n,m > 1. In such a case

the n−m interpolating 3-cycles will be topologically homeomorphic to Y i
di
× S2 where

i = 1, . . . n−m, and Ydi is the complete graph with di nodes.

We now define the thraxion field as the dimensional reduction of the Ramond-

Ramond (RR) 2-form gauge potential on the interpolating family of S2 sphere discussed

above, namely,

c :=

∫
S2

C2 . (2.4)

Hence, on the deformed side c = c(r) does not constitute a true harmonic zero mode,

but the lowest radial KK-mode in the multi-throat. Moreover, the decay constant can

be computed from dimensional reduction of the F3 ∧ ?F3 term over the sectional S2

on which c is defined. The result can be found in Appendix D, starting from Eqs.

(108),(109) of ref. [15] leading to Eq. (113) ibd.

Given a conifold singularity, it is often also possible to perform a small resolution of

it, producing extra 2-cycles.3 Going from the deformed to the resolved phase is known

as a conifold transition [20]. Let us call X̃ the manifold on the resolution side. In a

conifold transition, in a compact setting, the Hodge numbers change as h̃1,1 > h1,1,

h̃2,1 < h2,1. In particular, on the resolved side, there will be ∆h1,1 := h̃1,1 − h1,1 extra

3This is not always the case. A famous example of a compact CY admitting a conifold singularity

without resolution branch is the mirror quintic [19].
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resolution 2-cycles compared to the deformed side. This number of 2-cycles is equal to

the number of the homology relations among the conifolds in the deformed side. On

the resolved side, thraxions correspond to massless axions coming from the integrals of

the 2-form over these ∆h1,1 independent resolutions P1.

It is believed that the presence of conifold singularities and conifold transitions is

very generic. It has been conjectured that all the CY manifolds are connected with

each other by a web of conifold transitions [20, 21]. It has also been shown that this

statement holds true in numerous closed classes of examples [22–27]. Therefore, the

existence of thraxions is a generic prediction of any IIB CY compactification, at the

N = 2 level.

We now consider the introduction of an orientifold projection, and fluxes, in order

to break supersymmetry to N = 1. For concreteness, we focus on the case in which

the orientifold projection has O3/O7 fixed loci. The orientifold involution induces a

splitting of the H2,1(X,Z) and H1,1(X,Z) cohomology groups into the direct sum of

vector spaces H2,1(X,Z) ' H2,1
+ ⊕H

2,1
− and H1,1(X,Z) ' H1,1

+ ⊕H
1,1
− . The dimensions

h±1,1 (resp. h±2,1) of the eigenspaces H1,1
± (resp. H2,1

± ) fixes the number of fields present in

the 4d N = 1 effective theory [12]. These fields are the axiodilaton τ = C0 + ieφ,4 h2,1
−

c.s. moduli zi, h
1,1
− 2-form moduli GI and h+

1,1 Kähler moduli Tα. In particular, from

the point of view of representation theory of the 4d N = 1 SUSY algebra, thraxions

are the lowest component of a scalar chiral superfield GI , I = 1, . . . ,m, i.e.

GI =
1

2πα′

∫
ΣI

(C2 − τB2) = cI − τbI . (2.5)

Clearly, not all CY orientifolds will support the presence of thraxions: for example

many orientifolds are such that h1,1
− = 0. In order for thraxions to be present in a N = 1

setup, at least two crucial conditions must hold true:

• The orientifold projection must leave the conifold transition intact.

• In the quotient space, a multi-conifold with interpolating B-cycles must still exist.

It has been shown in [16] that orientifolds supporting thraxions exist within the set of

complete intersection CYs. We will discuss at length these explicit models in Section 5.

Having included an orientifold, for reasons of both tadpole cancellation and moduli

stabilization, we will consider the addition of 3-form fluxes. Flux quanta are defined as

Mi =
1

(2π)2α′

∫
Ai
F3 and Ki = − 1

(2π)2α′

∫
Bi
H3 . (2.6)

4Unless explicitly stated, we will set C0 directly to zero in the following expressions.
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As shown in [11, 28], generic choices of the fluxes stabilize the c.s. moduli and the

axiodilaton. Furthermore, if Ki � gsMi, the c.s. modulus associated to the cycle Ai
will be stabilized close to the conifold point,

|zi| = exp

(
−2π

Ki

gsMi

)
� 1 . (2.7)

Everywhere in this paper we will work under this assumption, which we request to hold

independently for each pair of flux quanta Ki, Mi.

When the c.s. moduli are stabilized close to the conifold point, the multi-conifold

system described in the previous paragraphs is replaced with a system of long multiple

throats, which arise due to the backreaction of fluxes on the geometry. Within the

throats, the metric is well approximated by the Klebanov-Tseytlin [29] solution

ds2 = w(r)2ηµνdx
µdxν + w(r)−2

(
dr2 + 22dsT 2

1,1

)
, w(r)2 ∼ r2

gsMα′
log

(
r

rIR

)− 1
2

,

(2.8)

where r is the radial coordinate, w(r) is the warp factor, and M is the flux quanta

defined in (2.6). The solution ceases to hold at a UV cutoff rUV, where the multi-

throat is attached to the bulk geometry, and also at a IR cutoff rIR near the bottom

of the throats. For r . rIR the metric is given by the full Klebanov-Strassler (KS)

solution [30]. An exponential hierarchy, as the one in Randall-Sundrum model [11, 31],

is thus engineered by wIR ≡ w(rIR) ∼ rIR/rUV ∼ |z1/3|.
We will now review in more detail how the c.s. moduli stabilization operates, in

this setup. For concreteness, we focus on a subset of n ≤ h2,1
− c.s. moduli associated

to n A-cycles subject to m homology relations. The superpotential coupling the thrax-

ion fields GI to the c.s. moduli can be derived from the Gukov-Vafa-Witten (GVW)

superpotential [32] and it reads [15]

W =
n∑
k=1

(
Mk

zk
2πi

log zk − τKkzk

)
−

m∑
I=1

GI

2π
PI +

ˆ̂
W0(z) +O(z2

k) , (2.9)

where Ŵ0(z) is a holomorphic function denoting contributions from other cycles and

PI are the m relations for the n c.s. moduli zi, PI ≡
∑n

k=1

∑m
I=1 p

k
Izk .

In (2.9) the n complex structure moduli are thought to be all independent. The

fact that they are subject to m relations is imposed dynamically, once the thraxions GI

are set on-shell by their equation of motion. In particular, the fields GI act as Lagrange

multipliers, imposing the homology relations among the c.s. moduli.
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On the other hand, the Kähler potential for the complex structure moduli reads

Kc.s.(zi, z̄i) = − log

(
−i
∫

Ω ∧ Ω̄

)
= − log

(
igK(z)− gK(z) +

n−m∑
I=1

iz̄IG
I + c.c.

)
=

= − log

(
igK(z)− gK(z) +

n∑
i=1

[
|zi|2

2π
log(|zi|2) + iz̄ig

i(z)− izigi(z)

])
,

(2.10)

where gK(z) is a holomorphic function encoding contributions from the periods of

h2,1
− − n c.s. moduli of the bulk CY, while the gi(z) are related to the periods of the

c.s. moduli of the multi-throat. Being interested in small zi we can Taylor expand these

functions, giving

gk(z) = gK,0 +
∑
j

giK,1zi +O(z2) , gi(z) = gi0 +
∑
j

gijzj +O(z2) . (2.11)

It is also possible to expand
ˆ̂
W (z) as

ˆ̂
W (z) = gW,0 +

n∑
i=1

g1
W,1zi +O(z2) , (2.12)

and define

Ŵ0 ≡ gW,0 +
n∑
i=1

Mig
i
0 (2.13)

to be the superpotential containing all the contributions of order O(z0). By computing

the F-term equations of the c.s. moduli zi using (2.9), one can relate the VEV of the n

c.s. moduli to the VEV of the thraxions, as5

zk = z0,k e
i
∑
I

pIkG
I

Mk where

z0,k = e
−1−2π

Kk
gsMk e

− 2πi
Mk

(∑
j g
kj
1 +gkW,1−i

g̃k0 Ŵ0
2Im gK,0

)
+O

(
e
−4π

Kk
gsMk

)
.

(2.14)

We remark that at the current level of the discussion, the thraxion fields themselves

are not stabilized yet. Therefore, the c.s. moduli themselves are yet not stabilized, but

simply expressed in terms of the VEV of the thraxion and flux quanta. By plugging

(2.14) in (2.9), we find the effective superpotential for the thraxions we will be using

in the stabilization procedure. Let us consider the effective thraxion superpotential for

n throats and m thraxions [15]:

Weff = Ŵ0 −
n∑
k=1

εke
i
∑m
I=1 p

k
IG

I/Mk , (2.15)

5In Eq.(2.14) we have already set C0 to zero.
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where

εk ≡
Mk

2πi
z0,k

(
1− 2π

Mk

Ŵ0g̃k0
a

)
. (2.16)

We also introduced

g̃k0 = gk0 − gkK,1 , a ≡ −2Im (gK,0) (2.17)

and z0,k given in Eq. (2.14). We remark that the physical deformation parameters are

zk defined in Eq. (2.14). As we will analyze in Section 3, a VEV different from zero for

GI is necessary to generate a potential for the thraxions, but whenever they are not

stabilized at zero, the CY condition is broken. Indeed, generically GI does not need

to stabilize at zero. Whenever the thraxions do not stabilize at vanishing VEV, they

induce backreaction that breaks the CY condition for the extra dimensions. We will

comment about this at length in Section 3.

By using some approximations, one can simplify Eq. (2.15) above. In particular, in

the explicit examples discussed in Section 4 and in Appendix A we will always work

with a simplified superpotential. As used in [15], supposing that only gW,0 and gK,0
are non-vanishing, the definitions of z0,k, εk and Ŵ0 simplify.6 For the case in which

there is only one thraxion in one multi-throat system composed of n throats, by using

a symmetrical choice of Mk and Kk fluxes, it is possible to rewrite Eq. (2.15) as

Wthr(G) = W0 + npε (1− cos (G/M)) , (2.18)

where np is the number of KS throats in the multi-throat system, and we have defined

W0 ≡ Ŵ0 − np ε.7 In the case in which there are k multi-throats in the CY, each one

hosting a single thraxion the superpotential can approximately be written as q copies

of (2.15), namely

Wthr(G
I) = W0 +

q∑
I=1

εI
(
1− cos

(
GI/MI

))
, (2.19)

where we have absorbed the number of KS throats inside each system in the definition

of εI .

So far we reviewed the problem of moduli stabilization for the c.s. moduli, in pres-

ence of thraxions. One is then left with discussing the problem of moduli stabilization

for the thraxions themselves and for the Kähler moduli. The total Kähler potential

actually reads

K
(
G, Ḡ, T, T̄ , z, z̄

)
= Kc.s.(z, z̄) +Kthr(G− Ḡ, T + T̄ ) , (2.20)

6Such approximation imposes that Ŵ0 and all the non-logarithmic terms in Eq. (2.10) are constants.
7In this way, the axion c has the well-known axion effective potential.
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where Kc.s. has been introduced in (2.10), while Kthr is a Kähler potential coupling the

thraxions to Kähler moduli. In (2.20) we introduced the complexified Kähler moduli8

Tα = τα + iθα +
i καab

2 (τ − τ̄)
Ga
(
G− Ḡ

)b
=

(
τα −

1

2gs
καabb

abb
)

+ i

(
θα −

1

2
καabc

abb
)
,

(2.21)

where καab are the triple intersection numbers between the α-th orientifold-even 4-

cycle and the orientifold-odd combination of a pair of orientifold swapped 4-cycles,

α = 1, . . . , h1,1
+ and

τα + iθα :=
1

2
καβγt

αtβ + i

∫
Dα
C4 . (2.22)

Notice that in the second line of (2.21) we have already set C0 to zero. We assume that

one can invert the relation between the 2-cycle moduli and the 4-cycle moduli to write

the Kähler potential Kthr for the T and G fields as

Kthr = −2 log (F ) , where

F =

h1,1+∑
α=1

h1,1−∑
a,b=1

cα

(
Tα + T̄α −

gs
4
καab

(
Ga − Ḡa

) (
Gb − Ḡb

))3/2

.
(2.23)

However, we stress that the discussion we will carry out in Sections 4.1 and 4.2 does

not need to assume any explicit expression for the Kähler potential.

The F-term 4d supergravity potential can be computed as

V = eK
[
KAB̄DAWDB̄W̄ − 3|W |2

]
, (2.24)

where DAW ≡ ∂AW + KAW is the Kähler covariant derivative and the indices A,B

run over all the moduli Tα and Ga. Notice that the no-scale relation for Kthr,

∂K†thr

(
∂2Kthr

)−1
∂Kthr = 3 ,

is satisfied. Let us consider for simplicity the case of a single thraxion. Thanks to the

no-scale property of Kthr, one can show that the F-term potential scales as

V
(
G, Ḡ

)
∝ |∂GW (G) |2 . (2.25)

8We have introduced the index a for the fields Ga because in general in the resolved side of the

conifold transitions not all the h1,1
− moduli come from the presence of thraxions. We can call h̃1,1

− the

moduli that do not come from thraxions, such that h1,1
− = m+ h̃1,1

− , hence in principle we should have

a = 1, . . . ,m+ h̃1,1
− . For the purpose of this paper, we will always assume h̃1,1

− = 0.
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Hence, the potential for the thraxion gets a double suppression in the ε ∼ z0 ∼ ω3
IR

parameter. In turn, by construction this implies that the mass-squared of the G field is of

order ω6
IR � 1, making the thraxion an extremely light particle. This effect generalizes

trivially for the case of multiple thraxions.

So far, the Kähler moduli sector is left as a flat direction of the potential. We have

considered only tree-level contributions to the superpotential, which come from the

presence of thraxions in the theory. In Section 4 we will study if and how the poten-

tial for thraxions gets modified by the inclusion of perturbative and non-perturbative

quantum effects proportional to the Kähler moduli.

3 Backreaction of Thraxions on SU(3) Torsion Classes

As it is well known, the presence of fluxes and localized objects backreacts on space-

time, generically causing the compactification manifold X to cease to be CY, yet still

maintaining a SU(3) structure. Geometrical properties of the backreacted compactifi-

cation manifold can be understood by an analysis of its SU(3) torsion classes. In this

section, we focus on the effect that the presence of non-vanishing thraxion VEVs pro-

duces on the torsion classes of X, in a IIB compactification. We follow the exposition

and conventions of [33] and we refer to that review (and references therein) for details.

Let X be a SU(3) structure manifold. Notice that this in particular implies that,

since SU(3) ⊂ SO(6), X is a particular case of a SO(6) structure manifold. Suppose

that the metric-compatible connection on X is the Levi-Civita connection ∇′m, which is

torsionless. Then X is CY if and only if it admits a non-vanishing globally well-defined

spinor which is also covariantly constant. However, in general, it is possible that the

metric-compatible connection for the SU(3) structure manifold is not the Levi-Civita

one, and in particular it might have torsion.

Let ∇′m be a generic metric-compatible connection. Its Lie bracket, acting on a

vector Vp ∈ Γ(TM) will read

[∇′m,∇′n]Vp = −Rq
mnpVq − 2T qmn∇′qVp , (3.1)

where Rq
mnp is the Riemann curvature tensor, and T qmn is the torsion tensor. We take

this as the definition of the torsion tensor. We notice that T pmn ∈ Γ(TM ⊗ Ω2(M)),

namely, the torsion tensor is a section of the space of 1-vectors tensored with the

space of 2-forms. Viewing Ω2(M) as a vector space, it holds Ω2(M) ' so(6), the 15-

dimensional vector space on which the Lie algebra so(6) of the structure group SO(6)

acts. Similarly, TM can be thought as a 6-dimensional vector space on which the

fundamental representation of so(6) acts.
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Since X has not only SO(6) structure, but more specifically SU(3) ⊂ SO(6) struc-

ture, it is possible to split the vector spaces TM and Ω2(M) in subspaces that are

left invariant by the action of su(3). This amounts to find the branching rules of the

adjoint 15-dimensional representation of so(6), acting on Ω2(M), and the fundamental

6-dimensional representation of so(6), acting on TM . This is

15→ 8⊕ 3⊕ 3̄⊕ 1

6→ 3⊕ 3̄
(3.2)

From (3.2) we see that Ω2(M) ' so(6) splits in the direct sum of an 8-dimensional

vector space on which the 8-dimensional adjoint representation of su(3) acts, plus a

7-dimensional vector space on which 3⊕ 3̄⊕ 1 acts.

In conclusion, we find that T pmn is a section of (3⊕ 3̄)⊗ (8⊕3⊕ 3̄⊕1), where now

we are committing the small abuse of notation of denoting the vector space on which

a given representation of a Lie algebra acts, with the representation itself.

In order to define the torsion classes, we need to focus on the components of the

torsion tensor which, under a generic SU(3) action, leave invariant the 8 subspace, i.e.

T 0
mn

p ∈ (3⊕ 3)⊗ (3⊕ 3⊕ 1) . (3.3)

One then defines the torsion classes as a particular reducible representation (or equiv-

alently the vector spaces on which they act) in the expression (3.3), namely

T 0
mn

p = (3⊕ 3) ⊗ (3⊕ 3⊕ 1)

= (1⊕ 1) ⊗ (8⊕ 8) ⊗ (6⊕ 6) ⊗ 2(3⊕ 3)

W1 W2 W3 W4, W5

(3.4)

We have introduced in (3.4) the torsion classes Wi, i = 1, . . . , 5.

Following [33–35], they transform in the following way:

• W1 is a complex scalar.

• W2 is a complex primitive (1, 1)-form.

• W3 is a real primitive (2, 1) + (1, 2)-form.

• W4 is a real vector.

• W5 is a complex (1, 0)-form.

Here, we recall that a differential form ω is primitive if ω ∧ J = 0, where J is the

Kähler form of X. Depending on which torsion classes vanish (or take specific values),
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Manifold Vanishing torsion classes

Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0

Half-flat ImW1 = ImW2 = W4 = W5 = 0

Special Hermitian W1 = W2 = W4 = W5 = 0

Nearly Kähler W2 = W3 = W4 = W5 = 0

Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

Conformal Calabi-Yau W1 = W2 = W3 = 3W4 − 2W5 = 0

Table 1: Vanishing torsion classes in special SU(3) structure manifolds [33].

different properties of X can be present or absent, such as for example the symplectic,

Kähler, or CY structure. SU(3) structure manifolds can be organized in this way in

nine different classes, which we recall in Table 1.

We now focus on 4d N = 1 compactifications of type IIB superstring, where we

take the external space to be R1,3. We make the ansatz that the 10d metric is

ds2 = e2A(y)ηµνdx
µdxν + gmndy

mdyn , with µ, ν = 0, . . . , 3 , m, n = 1, . . . , 6 ,

(3.5)

where ηµν is the 4d Minkowski metric, and gmn is the metric of the internal manifold X.

We have also introduced a warp factor A(y), a function of only the internal coordinates.

We first split the ten-dimensional supersymmetry spinors into 4-dimensional and

6-dimensional ones [33]:

ε1 = ξ1
+ ⊗ η+ + ξ1

− ⊗ η− , ε2 = ξ2
+ ⊗ η+ + ξ2

− ⊗ η− , (3.6)

where η± are the covariantly constant spinors of the X manifold, i.e.

∇mη± = 0 . (3.7)

We introduce two complex functions of the internal coordinates a(y) and b(y), such that

|a|2 + |b|2 = eA. The existence of such functions is a consequence of the request that

the vacuum is N = 1. These functions parametrize the way in which a given N = 1

subalgebra is embedded in the larger N = 2 SUSY algebra. The spinors in Eq. (3.6)

then become

ε1 = ξ1
+ ⊗ (aη+) + ξ1

− ⊗ (aη−) , ε2 = ξ2
+ ⊗ (bη+) + ξ2

− ⊗ (bη−) . (3.8)
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It is possible to obtain general expressions for the torsions, the fluxes, the warp factor

of the metric and the functions a and b that classify all possible N = 1 vacua in type

IIB. From [33, 35] we take the following relations which are valid for any 4d Minkowski

vacuum in type IIB:

2abW3 = eφ(a2 + b2)F
(6)
3 ,

(a2 − b2)W3 = −(a2 + b2) ?6 H
(6)
3 ,

2abH
(6)
3 = −eφ(a2 − b2) ?6 F

(6)
3 ,

(3.9)

eφF
(3̄)
3 =

−4iab(a2 + b2)

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

eφF
(3̄)
5 =

−4ab(a2 − b2)

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

H
(3̄)
3 =

−2i(a2 + b2)(a2 − b2)

a4 − 2ia3b+ 2iab3 + b4
∂̄a,

∂̄A = − 4(ab)2

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

∂̄φ =
2(a2 + b2)2

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

W1 = 0 ,

W2 = 0 ,

W4 =
2(a2 − b2)2

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

W̄5 =
2(a4 − 4a2b2 + b4)

a4 − 2ia3b+ 2iab3 + b4
∂̄a ,

(3.10)

where φ is the 10d dilaton, and with the superscript we indicate the dimension of the

representation of SU(3). GKP-like solutions [11] correspond to a = ±ib. In this case

(3.9) and (3.10) will read:

W1 = 0 , W2 = 0 , W3 = 0 , ∂̄φ = 0 , eφF
(6)
3 = ∓ ?6 H

(6)
3 ,

eφF
(3)
5 =

2

3
iW 5 = iW4 = −2i∂̄A = −4i∂̄ log a .

(3.11)

The condition eφF
(6)
3 = ∓ ?6 H

(6)
3 is equivalent to the request that G3 = F3− ie−φH3 is

ISD and has no single (0, 3) component:

?6 G3 = iG3 , G(0,3) = 0 . (3.12)

The last condition in (3.11) is implying that the manifold is conformal CY, since all

torsion classes are zero except for 2W5 = 3W4.

From Eq. (3.11), we see that on a conformal CY W4 and W5 are only sourced

by 5-form flux F
(3)
5 . On the other hand from Eq. (3.9), we have that only the (2, 1)-

form fluxes H
(6)
3 , F

(6)
3 can source W3 and that depending on the choice of the preserved

4d spinor pair, either the ISD combination of H
(6)
3 , F

(6)
3 (corresponding to the choice

a = ib) or the anti-ISD (a = −ib) will set W3 = 0.
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It does now become clear what the drastic effect of a non-zero thraxion VEV on

a warped (conformal) CY is. For this, we recall that in order for a thraxion to exist

there must be present in X at least one warped multi-throat region, with at least one

homology relation among the shrinking β-cycles.

This setting implies the presence of quantized (2, 1)-form background fluxes. Hence,

there is an amount of H
(6)
3

∣∣∣
0
, F

(6)
3

∣∣∣
0

stabilizing the whole c.s. moduli sector and warp

factor. On top of this background flux configuration, turning on the thraxion corre-

sponds to turning on ‘a bit’ of C2 at the IR ends of the multi-throat, with profile in

the throat radial direction. Thus, turning on the thraxion corresponds to turning on ‘a

bit’ of pure9 ∆F
(6)
3 but without any accompanying H

(6)
3 .

Hence, the extra thraxion-flux ∆F
(6)
3 is non-ISD. The reason for which the extra

thraxion-flux breaks the ISD condition is that the c.s. moduli of the multi-throat simply

cannot adjust their VEVs in order to be ISD again with respect to the new configura-

tion. This is impossible for the following reason. If they could adjust their VEVs to be

ISD again, this would imply that the thraxion potential vanishes. However, this was

shown to be impossible since the 10d equations of motion of the perturbed multi-throat

analyzed in [15] forbid it, once the multi-throat is embedded in a compact CY. The

system cannot relax back to vanishing vacuum energy at finite thraxion-flux. Schemat-

ically, this can be denoted as:

(ISD ⇒ V = 0 ∧ ∂ziV = 0 ∀i) ⇒ (V 6= 0 ∨ ∂ziV 6= 0 ⇒ non-ISD) . (3.13)

We now analyze the effect of this violation of ISD on the torsion classes of the

compactification. For this purpose, we keep treating the solution as it was living in 4d

Minkowski space, neglecting the tiny positive effective Cosmological Constant (CC) of

the thraxion potential. We argue that this approximation makes sense as the size of

this potential is parametrically small due to warp factor suppression. Furthermore, the

CC-induced gravitational backreaction is also suppressed by the 1/M 2
P gravitational

coupling of the Einstein equations.

As discussed above, the main backreaction from the thraxion will be its non-ISD

nature, which distorts the torsion classes of the manifold. In glossing over the multiple

3-cycles of an actual CY we can see, that by writing this extra thraxion-flux ∆F
(6)
3 ≡

ε F
(6)
3

∣∣∣
0

the ISD relation (3.9) changes as

2abH
(6)
3 = 2a(b0 + δb) H

(6)
3

∣∣∣
0

= −eφ(a2 − (b0 + δb)2) ?6 F
(6)
3

∣∣∣
0

= −eφ(a2 − b2
0) ?6 F

(6)
3

∣∣∣
0

+ eφε ?6 F
(6)
3

∣∣∣
0
.

(3.14)

9The thraxion-induced F3-flux lives on a 3-cycle in the throat part of the (2, 1)-homology of the

CY, and thus has to be locally of the same cohomology type as the ISD background fluxes.
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Plugging in a = ib0 this becomes

2ib2
0 H

(6)
3

∣∣∣
0

+ 2ib0δb H
(6)
3

∣∣∣
0

= eφ(2b2
0 + 2b0δb+ δb2) ?6 F

(6)
3

∣∣∣
0

= eφ2b2
0 ?6 F

(6)
3

∣∣∣
0

+ eφε ?6 F
(6)
3

∣∣∣
0
.

(3.15)

Canceling out identical pieces, we see that δb =
√
ε, that is, the thraxion-sourced

extra ∆F
(6)
3 = O(ε) deforms the ISD relation a = ib0 to a 6= ib with deformation

O(ε1/2). Hence, the flux with turned-on thraxion is non-ISD in such a way, that W3 6= 0

because now a 6= ±ib. According to Table 1 the thraxion thus ‘wrecks’ the CY in the

qualitatively worst fashion – leaving just a complex manifold.

Still, the extreme scale suppression of the thraxion sector due to warping may

leave this just-complex non-CY manifold in some sense “near” the original conformal

CY, where the word “near” awaits an appropriate definition of distance in torsion

deformation space and the space of 4d effective actions from KK reduction, which is

beyond the scope of this paper.

4 Moduli Stabilization

The GKP-type flux compactification that we considered so far discusses the stabiliza-

tion of c.s. moduli in presence of thraxions. We are still left with the problem of Kähler

moduli stabilization, which we will address in this section. Whenever thraxions are

present, there are two sources of no-scale breaking, which contribute to Kähler moduli

stabilization: one is the usual F-term scalar potential coming from the introduction

of non-perturbative corrections to the superpotential, while the other one is the CY

breaking potential of the thraxions reviewed in Section 2. In [15], an initial study of

the mixing between these two effects was discussed. However, no detailed analysis was

carried out.

The aim of this section is to perform this combined analysis. In particular, we

will study the backreaction on the thraxion potential (2.25) when we appropriately

stabilize the Kähler moduli via the leading stabilization mechanisms. In particular,

we will answer whether Kähler moduli stabilization can change the property that the

thraxion mass squared is six-time suppressed by the warping. As a main result, we find

a 2-fold statement. On one hand, generically the six-fold warp suppression is spoiled,

once the thraxion-carrying multi-throat consists of at least 3 connected throats. On the

other hand, for double-throats there exist classes of CY flux compactifications where

the six-times warp suppression survives Kähler moduli stabilization.

The survival of the full warp suppression depends on the Kähler moduli stabiliza-

tion, potentially inducing a cross term which is proportional to the warp factor cubed
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only. Consequently, the mass gets lifted whenever this cross term does not vanish. The

mass squared of the warped-throat KK modes scales as ω2
IR. Moreover, we will show be-

low that while the stabilized Kähler moduli are parametrically lighter than the warped

KK modes, the thraxion is still parametrically lighter than the Kähler moduli. Hence,

it remains the lightest state inside the throat. The mass-spectrum is still effectively

gapped.

We show how this works in the most general case in Section 4.1. Nevertheless, we

find that in certain classes of setups the O(ε) cross term (which is responsible for lifting

the mass) gets canceled by Kähler moduli stabilization. This happens when we set the

C4 axion to its minimum.10 In Section 4.2 we explain in which cases this holds and

which is the amount of tuning required. Moreover, in Sections 4.2 and 4.3 we specialize

the discussion to KKLT and LVS respectively.

The flatness of the F-term scalar potential for the Kähler moduli can be cured

by considering perturbative and non-perturbative corrections to the Kähler potential

and the superpotential. For the superpotential, only non-perturbative ones are allowed

in the Kähler moduli T . These corrections can be generated either by Euclidean D3-

brane (ED3-brane) instantons [36] or by gaugino condensation effect happening in the

worldvolume theories of stacks of D7-branes wrapping rigid divisors [37, 38]. Both these

contributions take the form

Wnp =
∑
α

Aαe
−aαTα , (4.1)

where aα = 2π for ED3-branes and aα = 2π
h∨(Gα)

for the gaugino condensation case. Here

h∨(Gα) is the dual Coxeter number of the gauge group Gα on the α-th stack of D7-

branes. The coefficients Aα depend on the stabilization of the c.s. moduli. Additionally,

there might be higher instanton corrections, but these can be neglected as long as

aαTα > 1.

The Kähler potential admits also perturbative corrections both in gs and α′. In the

following, we neglect string-loop corrections. The leading α′ correction of the 4d N = 2

effective action reads [39]

K = −2 ln

(
V +

ξ̂

2

)
, (4.2)

where ξ̂ is a constant which controls the strength of α′ corrections and is given by

ξ̂ = ξ/g
3/2
s , ξ = −χ(X)ζ(3)

2(2π)3
, ζ being the Riemann zeta function and χ(X) = 2 (h1,1 − h2,1)

being the Euler number of the CY 3-fold X. In the N = 1 case, this correction was

10We will also need some assumption on the VEV of the saxion b. We will comment on this point

later on.
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shown to be the only one to contribute thanks to the extended no-scale cancellation [40]

of O(α′2) and the subdominance of higher terms.11

Let us specialize the F-term potential in Eq. (2.24) by including the perturbative

and non-perturbative corrections of Eqs. (4.2) and (4.1). Hence, we can rewrite it

as [14, 42]

V = eK

[∑
α,β

KTαT̄βaαAαaβAβe
−aαTα−aβ T̄β

]
+

− eK
[∑
α,β

KTαT̄β
(
aαAαe

−aαTαW̄∂T̄βK + aβAβe
−aβ T̄βW∂TαK

)]
+

+ 3ξ̂
ξ̂ + 7ξ̂V + V2(
V − ξ̂

)(
2V − ξ̂

)2 |W |
2 + . . .

:=Vnp1
+ Vnp2

+ Vα′ + . . .

(4.3)

where the dots stand for the pieces corresponding to the G fields only and the mixing of

G and T . Indeed, in the following analysis we can disregard the GḠ contribution since

it will lead to a double-warp suppressed term as in Eq. (2.25). For a general treatment

of the potential, we should add also the cross terms between the Kähler moduli and the

G fields. However, it was shown in [12] that the Kähler metric for these components is

proportional to ba. If the VEV of ba at the minimum is at most order ε as defined in

Eq. (2.16), they can be neglected in this analysis because they will produce terms of

order O(ε2). If the VEV of ba at the minimum is larger than ε, they must be considered.

For the sake of expositions, we will now assume that the VEV of ba vanishes at the

minimum.12 The vanishing VEV of ba implies then that the Kähler metric is block

diagonal. We do not expect that a different VEV for ba would change the consequences

of our discussion.

The terms that might lift the thraxion mass are those that break the no-scale

condition of the potential and the perturbative corrections in α′, i.e. Vnp2
+ Vα′ . This

allows us to focus only on the terms in Eq. (4.3), since there will be no contributions

to the potential coming from the mixing between the Ga fields and the Kähler moduli

Tα once ba = 0. By decomposing the superpotential and the Kähler moduli in real and

imaginary parts, i.e.

W = Re (W )+ iIm (W ) = WR+ iW I , Tα = Re (Tα)+ iIm (Tα) = TRα + iT Iα , (4.4)

11Notice that in the N = 1 case with O7-planes one should trade χ(X) with χeff(X) = χ(X) +

2
∫
X
D3
O7 in the definition of ξ̂ [41].

12This assumption is generically satisfied when D-terms are included [43–45]
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we rewrite Vnp2
+ Vα′ as follows:

Vnp2
+ Vα′ = eK

[
2
∑
α,β

KTαT̄βWRaαAαe
−aαTRα ∂T̄βK cos

(
aαT

I
α

)
+

− 2
∑
α,β

KTαT̄βW IaαAαe
−aαTRα ∂T̄βK sin

(
aαT

I
α

)
+

+3ξ
ξ2 + 7ξV + V2

(V − ξ)(2V + ξ)2

((
WR

)2
+
(
W I
)2
)]

.

(4.5)

In Section 4.1, we will see that Eq. (4.5) can endanger the double suppression of the

thraxion potential found in [15] and displayed in (2.25). Generically, the superpotential

for the thraxions will generate linear terms in the warp factor in presence of Kähler

moduli. However, we propose two ways in which such situation does not occur and the

six-time warp suppression is recovered. In Section 4.2 we show that by allowing for

tuning of fluxes and topological properties of the CY, the linear term in ε vanishes. In

Section 4.3 we comment on how an exponentially large CY volume stabilized à la LVS

could compete with ε. For particular cases, this makes the linear term in ε subdominant

with respect to the ε2 ones.

4.1 General structure of the superpotential in the presence of thraxions

In this section, we argue that the potential in Eq. (4.5) actually generates cross terms

that are linear in the warp factor ε ∼ ω3
IR. We consider a setup of n multi-throats, each

one hosting a number mk of thraxions, k = 1, . . . n. The superpotential reads:13

Weff = Ŵ0 −
n∑
k=1

εke
i
∑mk

I=1 p
k
IG

I/Mk +
∑
α

Aαe
−aαTα . (4.6)

It is possible to divide the superpotential in real and imaginary part, defining

Ŵ0 = Re (Ŵ0) + iIm (Ŵ0) = ŴR
0 + iŴ I

0 , εk = Re (εk) + iIm (εk) = εRk + iεIk ,

GI = Re (GI) + iIm (GI) = GI
R + iGI

I , Tα = Re (Tα) + iIm (Tα) = TRα + iT Iα ,

(4.7)

13In this section we use I as index to count the number of thraxions, because we reserve I to be the

index indicating the imaginary part of a complex function.
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so that

W = ŴR
0 +

∑
α

Aαe
−aαTRα cos

(
aαT

I
α

)
−
∑
k

εRk e
−
∑

I p
k
I

GI
I

Mk cos

(∑
I

pkI
GI
R

Mk

)
+

+
∑
k

εIke
−
∑

I p
k
I

GI
I

Mk sin

(∑
I

pkI
GI
R

Mk

)
+

i

(
Ŵ I

0 −
∑
α

Aαe
−aαTRα sin

(
aαT

I
α

)
−
∑
k

εRk e
−
∑

I p
k
I

GI
I

Mk sin

(∑
I

pkI
GI
R

Mk

)
+

−
∑
k

εIke
−
∑

I p
k
I

GI
I

Mk cos

(∑
I

pkI
GI
R

Mk

))
=WR + iW I .

(4.8)

We can try to explicitly compute εk introducing

g̃0,k = Re (g̃0,k) + iIm (g̃0,k) = g̃kR,0 + ig̃kI,0 ,

gjk1 = Re (gjk1 ) + iIm (gjk1 ) = gjkR,1 + igjkI,1 ,

gkW,1 = Re (gkW,1) + iIm (gkW,1) = gkR,W,1 + igkI,W,1 .

(4.9)

In this way we can define

z0,k = |R0,k|eiϕ0,k , (4.10)

with

|R0,k| = exp

[
−2π

Kk

gsMk

+
2π

Mk

(∑
j

Mjg
jk
I,1 + gkI,W,1 + g̃kR,0

ŴR,0

a
+ g̃kI,0

ŴI,0

a

)
− 1

]
,

ϕ0,k = − 2π

Mk

(∑
j

Mjg
jk
R,1 + gkR,W,1 − g̃kR,0

ŴI,0

a
+ g̃kI,0

ŴR,0

a

)
.

(4.11)

Finally, εk becomes

εk = εRk + iεIk

=
Mk

2π
|R0,k| sin(ϕ0,k)−

1

a
|R0,k|

(
g̃kR,0Ŵ

R
0 + g̃kI,0Ŵ

I
0

)
sin(ϕ0,k)+

− 1

a
|R0,k|

(
g̃kR,0Ŵ

I
0 − g̃kI,0ŴR

0

)
cos(ϕ0,k)+

+ i

(
−Mk

2π
|R0,k| cos(ϕ0,k) +

1

a
|R0,k|

(
g̃kR,0Ŵ

R
0 + g̃kI,0Ŵ

I
0

)
cos(ϕ0,k)+

−1

a
|R0,k|

(
g̃kR,0Ŵ

I
0 − g̃kI,0ŴR

0

)
sin(ϕ0,k)

)
.

(4.12)
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Assuming that the c.s. moduli stabilization in the bulk is done at energies high enough

that do not interfere with the stabilization of the Kähler moduli, we can take the func-

tions g in (4.12) to be approximately zeros except for gW,0 and gK,0. This approximation

was done in Section 3.2.3 of [15], however, in Section 4.2, we show that this assumption

is necessary, together with other assumptions, in order to get the six-times suppression

of the thraxion masses. As a consequence, εRk in (4.12) vanishes.

Another possible assumption is that Ŵ0 is purely real,14 so that, finally, (4.8)

becomes

W = ŴR
0 +

∑
α

Aαe
−aαTRα cos

(
aαT

I
α

)
+
∑
k

εIke
−
∑

I p
k
I

GI
I

Mk sin

(∑
I

pkI
GI
R

Mk

)
+

− i

(∑
α

Aαe
−aαTRα sin

(
aαT

I
α

)
+
∑
k

εIke
−
∑

I p
k
I

GI
I

Mk cos

(∑
I

pkI
GI
R

Mk

))
.

(4.13)

Recall that in Eq. (4.5), we have ignored the cross terms proportional to ba because we

will evaluate the potential at the minimum. We notice that a linear term in ε survives

in the scalar potential. Because of this linear dependence of V in ε we expect that

generically the thraxion mass scales linearly with the warp factor.

One could naively argue that, in the case in which the minimum is realized at

T Iα = κπ/aα, such linear dependence of V in ε vanishes, as in this case the whole second

line of equation (4.5) vanishes.15 However, we remark that this is not the case, as the

WR term in (4.13) will still carry a linear dependence in ε. Moreover, we generically

do not expect T I to stabilize at such VEV. Despite this, we will see in the next section

that in some specific models the opposite is true and T I stabilizes at zero. We will

expand on this point in the next sections.

4.2 Vanishing conditions of the O(ε) cross terms and application to KKLT

We showed that generically, the thraxion potential receives non-trivial contributions of

order O(ε) from Kähler moduli stabilization, which spoil their characteristic six-time-

warp suppressed scale. However, in some cases, such contributions to the scalar potential

can vanish. In this section we first perform the KKLT moduli stabilization procedure

with a simplified thraxion superpotential. Then, we comment on some possible ways to

cancel the terms of the potential which are linear in ε.

14This assumption is not strictly necessary, but it could be another way to simplify the expression.

Note that W0 from the c.s. moduli stabilization is related to Ŵ0 by a shift of a function depending on

εk. The requirement that Ŵ0 is completely real, means that we are allowing for small imaginary parts

for W0.
15Moreover, the piece proportional to (W I)2 also will not have a linear piece in ε.
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Consider a setup of n multi-throats, each one hosting mk thraxions, k = 1, . . . n.

Suppose that the k-th multi-throat has nk interpolating A-cycles and B-cycles. Then,

we allow the following simplifications:

• mk = 1, ∀k = 1, . . . n.

• For each multi-throat system, the flux quanta are chosen with the same magni-

tude, i.e. |Ki,k| = ck, |Mi,k| = dk, ∀ i = 1, . . . nk and given fixed integer numbers

ck, dk.

• The homology relation defining the single thraxion present in the multi-throat is

of the form
∑

j[Aj] = 0, namely pkj = 1, ∀j, k.

• All εk are equal.

It is straightforward to show that under these assumptions the superpotential (2.15) in

a single multi-throat system plus the non-perturbative corrections takes the form

W = W0 + ε

(
1− cos

(
G

M

))
+
∑
α

Aαe
−aαTα , (4.14)

where ε = εR + iεI .16 The KKLT scenario achieves Kähler moduli stabilization by in-

cluding only the non-perturbative corrections to the superpotential. All Kähler moduli

are stabilized to a SUSY AdS minimum. A necessary condition for the KKLT scheme

to hold is that the c.s. stabilization is performed such that W0 is very small. This is

needed in order to stabilize at large volume and ignore possible corrections. Lately, this

has been proven to be achievable in a series of controlled setups [46–48]. In order to

include the thraxion in the KKLT scenario, we use the superpotential of Eq. (4.14). As

a concrete example, we consider the stabilization of one Kähler modulus in presence of

one thraxion. The Kähler potential is

Kthr = −3 log (F ) , where F = T + T̄ − gs
4
κ+−−

(
G− Ḡ

)2
. (4.15)

After stabilizing b to zero, the F-term scalar potential reads [49]

e−Kc.s. · V =
aA2e−2aTR

(
aTR + 3

)
6(TR)2

− |ε|2

6(TR)2M2gsκ+−−
sin
( c

M

)2

+

+
aA

2(TR)2
Re
[
W̄0e

−aT + ε̄ e−aT
(

1− cos
c

M

)]
.

(4.16)

16Notice that we reabsorbed the factor proportional to n in the definition of ε.
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We have some new pieces compared to the usual VKKLT without thraxions. The first

one is the GḠ term found in (2.25): it scales as ε2 ∼ ω6
IR. Instead, the cross term is new,

it is induced by the presence of no-scale breaking effects and it scales as ε ∼ ω3
IR. Thus,

even in the easiest toy model, we obtain a term which lifts the double suppression of

the thraxion mass to a single suppression.

Now, we investigate if we can remove the cross term and restore the six-time warp

suppression. Consider adding to the bullet list above the additional requirement:

• All εk are imaginary, i.e. εRk = 0.

Hence, we see already from the toy model that with this additional request, the cross

term cancels when the C4 axion is stabilized to its minimum. In general, we can show

this process as follows. We can expand (4.14) with εR = 0 in its real and imaginary

parts as

W =W0 +
∑
β

Aβe
−aβTRβ cos

(
aβT

I
β

)
+ εI sin

( c
M

)
sinh

(
b

gsM

)
+

− i

(∑
β

Aβe
−aβTRβ sin

(
aβT

I
β

)
+ εI

(
cos
( c
M

)
cosh

(
b

gsM

)
− 1

))
=WR + iW I .

(4.17)

First, we see that, when b = 0, WR does not contain εI , so the cross terms that were

present in Section 4.1 cancel out. Moreover, it is possible to see that T Iβ stabilizes

at κπ/aβ, with κ ∈ Z. The only terms that contain εI are those multiplied by W I .

However, they cancel when the potential is evaluated at T I = κπ/aβ. All the terms

that could possibly give cross terms are then canceled and the final potential for the

thraxion scales as in Eq. (2.25), i.e. with the six-time warp factor.

Many moduli stabilization scenarios naturally minimize at b = 0. However, stabi-

lizing the b field to zero carries about another important consequence that could help

to reduce the amount of tuning required to cancel the linear terms in ε. As shown

in [15], a non-vanishing VEV for the b field produces a backreaction on the throats as

it changes the relative H3-flux distribution. In other words, this makes all the throats

(in the same multi-throat system) of different lengths. In this case, the warp factors,

i.e. the ε parameters, acquire all different values. In turn, this means that in the case in

which b = 0, all the warp factors in the same multi-throat system could be taken to be

equal more easily. As εk ∼ e−Kk/gsMk , one still has to require that the ratio of the flux

numbers is equal in each throat of the system. Once these two requirements are met, all

the warp factors in the same multi-throat system are actually equal. We note here that
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in a double-throat system, this is always the case. Thanks to the homology relation,

we have only one effective A- and B-cycle, hence only one effective flux quantum of F3

and of H3.

We comment now on the conditions listed above. The first condition states that

in every multi-throat system there must be a single homology relation and therefore a

single thraxion. It is interesting to notice that in all known examples of CY orientifold

supporting thraxions, this is always true. Namely, at the moment of writing we do not

know of any CY orientifold in which a given multi-throat hosts more than one thraxion.

However, in view of how small the set of CICY parents of our CICY orientifold database

is compared to other known algorithmically constructable sets of CY 3-folds, it seems

unwarranted to assume a priori that manifolds with multi-throats hosting more than

one thraxion do not exist. We comment more on this in Section 5.

The second condition implies that all the various throats in the same multi-throat

system have the same length. The third condition requires a specific form of the homol-

ogy relation. Notice that one could use a rescaling of the base of 3-cycles [Aj]→ nj[Aj],
[Bj]→ n−1

j [Bj], nj ∈ Z \ {0} in order to ensure that such condition is always satisfied.

We remark that if we have more than one homology relation, only one of them can

be recast in the form
∑

j[Aj] = 0 by rescaling. Hence, for multi-throats carrying more

than one thraxion the symmetrization of the multi-throat becomes impossible.

The last condition, εRk = 0, is observed to restore the six-times warp suppression of

the thraxion mass. Moreover, for double-throats (provided stabilizing b = 0) ensuring

εRk = 0 guarantees the enhanced warp suppression of the thraxion mass. Hence, it is

interesting to note that in the subclass of flux vacua found in [47], which is determined

by the prime condition necessary for well working KKLT vacua (i.e. small W0), ε is

always imaginary to leading order in the conifold modulus z0.17 This should not be

seen as a physical motivation, but rather as evidence supporting the existence of whole

classes of examples realizing this assumption.

In this section, we argued that under some special conditions, the thraxion mass

can still be double-suppressed. However, these requirements are generically difficult to

meet in a more complicated scenario in which within a given multi-throat system there

is more than one thraxion, or unequal flux ratios.

4.3 Behavior of the O(ε) thraxion mass cross terms in LVS

There is another, interesting way which could restore the six-times warp suppression.

Such way appears to be quite generic as long as one stabilizes the CY volume V to

exponentially large values, as happens in LVS. In the following, we show how the inter-

17We thank J. Moritz for pointing this out to us.
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play between large values of V and small values of ε could favor the terms proportional

to ε2 over the linear ones.

LVS stabilizes the Kähler moduli via an interplay between α′ corrections to K

and non-perturbative corrections to W . In order to keep control on α′ corrections, the

overall CY volume V must be stabilized at exponentially large values. As a result, W0

takes O(1) values. However, some topological requirements are needed. First, inside the

α′ correction in (4.2), the Euler number of the CY must be negative, i.e. h2,1 > h1,1 > 1.

This in turn ensures that ξ is positive and so that, as V → ∞, the potential goes to

zero from below. LVS produces an AdS minimum which is no longer supersymmetric.

Second, there must be present at least one blow-up mode, τs ⊂ Ts, corresponding to a

4-cycle modulus resolving a pointlike singularity. In the limit V → ∞, all τi →∞ but

τs. This modulus should be the one inducing the leading non-perturbative corrections

to W , namely Wnp ∼ e−asTs . Of course all moduli could appear in Wnp, but in the

above limit their contribution is subleading.

More in detail, by considering a superpotential corrected with (4.1) together with

the Kähler potential in (4.2), LVS stabilizes the volume as V ∼ easT
R
s . In turn, this

means that in the potential, each time a term is proportional to e−nasT
R
s , such term is

O(V−n) times suppressed. The standard LVS potential without the odd sector scales

as O(V−3) [14].18 Let us now consider the superpotential in Eq. (4.6). For V → ∞, the

no-scale breaking potential of Eq. (4.3) scales as19

Vnp1
∼ KTsT̄s |∂TsW |2

V2
∼ O

(
1

V3

)
+ . . .

Vnp2
∼ −K

TsT̄sKT̄s

V2
WRe−asT

R
s cos

(
asT

I
s

)
− KTsT̄aKT̄a

V2
e−asTsW̄

∼ O
(

1

V3

)
+O

( ε

V3

)
+ . . .

Vα′ ∼
ξ̂|W |2

V3
∼ O

(
1

V3

)
+O

( ε

V3

)
+ . . . .

(4.18)

18See also [50] for the inclusion of the odd sector in LVS, where the odd axions get a potential

from fluxed D3-brane instanton contributions to W , as well as [51] for very recent results on moduli

stabilization with odd axions.
19Here and below we make use of the no-scale breaking property of the Kähler potential and of the

following standard relations about the Kähler metric, as derived in [12], in the V → ∞ limit:

KTα ∼ tαV−1 , KTαT̄β ∼ −Vκαβγtγ + τατβ , KTαT̄βKTα ∼ −τβ , KGaḠb ∼ −g−1
s V (κabγt

γ)
−1

.

Since at this stage we are only interested in the scaling with V, we will drop numerical factors, the

signs and the dependence on the 2-cycles. We will restore them when computing the explicit example.
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However, the GḠ part of the potential has a different scaling, namely

VG,Ḡ = KGḠDGWDḠW̄ =
KGḠ|∂GW |2

V2
∼ O

(
ε2

V

)
. (4.19)

This piece receives volume-suppression only from eK , which is partially compensated by

the inverse of the Kähler metric KGḠ. This results in an O(V−1) suppression, which is

milder than theO(V−3) dependence of the term proportional to ε in the potential (4.18).

Therefore, in LVS the stronger suppression in ε2 is compensated by a milder one in V
and hence it could happen that the O(ε2) term coming from (4.19) would dominate

over the O(ε) one. Notice that, so far, the discussion is completely general.

In the following, we show this remarkable behavior in a specific example. Then, we

comment on the implications of the interplay between ε and V in two phenomenolog-

ical applications. For the sake of consistency, we explicitly compute the F-term scalar

potential for a CY with one thraxion, h1,1
+ = 2 and whose volume takes the standard

Swiss-cheese form

V =
(
Tb + T̄b

)3/2 −
(
Ts + T̄s −

gs
4
κs−−

(
G− Ḡ

)2
)3/2

, (4.20)

where we assumed that the only nontrivial even-odd-odd triple intersection number is

κs−−. In Appendix A.1 we show that considering all couplings to be nontrivial leads to a

potential with the same structure. We further assume that the thraxion superpotential

can take the form of Eq. (2.18) and hence the total superpotential for this toy model

can be written as

W (G, Ts) = W0 + ε (1− cos (G/M)) + Ase
−asTs , (4.21)

where the leading non-perturbative correction comes from the blow-up modulus τs. The

field b stabilizes at zero, and in order for its kinetic terms to be positive definite we

should have κs−− > 0. Hence, we get the following potential

e−Kc.s.V =
2
√

2a2
sA

2
s e
−2asτs

√
τs

3V
+

4asAsW0τse
−asτs cos (asθs)

V2
+

3W 2
0 ξ̂

4V3
+

− 3ε2 ξ̂

V3
sin
( c

2M

)4

−
ε2
√

2
(

4V2 − 2V ξ̂ + ξ̂2
)

12gsM2κs−−
√
τs V3

sin
( c

M

)2

+

+
4i ε asAsτs e

−asτs

V2

(
1− cos

( c

M

))
sin (asθs)

≡VLVS (V , τs, θs) + Vthr (V , τs, θs, c) .

(4.22)

Notice that for ε = 0 we recover the standard LVS potential, and the thraxion c enters

as a correction inO(ε) andO(ε2). Then, the LVS moduli stabilization proceeds as usual.
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Also, this turns out to be one of the special cases in which the thraxion is independent

of the stabilization of the Kähler moduli, as the O(ε) term vanishes once the C4 axion

is set in its VEV. However, our main point now is the following: in (4.22) the O(ε) term

is twice more suppressed in V than one of the O(ε2) ones. Therefore, it could happen

that these effects balance among each other and the O(ε2) term becomes eventually

the leading one.

As a first application, we could investigate whether this situation takes place when

we require the thraxion to be the inflaton. Suppose we want to realize an inflationary

potential with V ∼ (1015 GeV)4, i.e. V ∼ 10−12 in Planck units. In order for the

O(ε2) term to be the leading one and thus to reproduce such scaling, we should have

V > 250. This guarantees that the O(ε) term is subleading. The value we found for

the CY volume fits perfectly within LVS. Therefore, for inflationary applications, we

restore the double suppression of the thraxion mass as in its original proposal.

Nevertheless, if we consider the thraxion to be a possible Fuzzy Dark Matter (FDM)

candidate as in [52], this balance turns out to be impossible, or very dangerous for LVS.

With FDM we refer to a particle taken as a possible dark matter candidate that is so

light that its nature is basically wave-like [53]. Such particle should be characterized

by a mass of order m ∼ 10−22 eV and a decay constant of roughly f ∼ 1017 GeV.

In [54], it was shown that for a stringy axion-like particle to be a good FDM candidate,

its instanton action (and thus the potential) should scale as e−S ∼ e−230 ∼ 10−100 in

Planck units. Requiring the O(ε2) term to be the leading one entails a large size for the

CY volume, namely V > 1020. However, such value is incompatible with the low energy

phenomenology. Given that the scale of SUSY breaking is m3/2 ∼ V−1MP , we would

have SUSY at values smaller than 10−2 GeV. Therefore, for FDM in a LVS moduli

stabilization, the leading term is always the O(ε) one (if it does not get canceled by

the C4 axion stabilization).

4.4 Mass scales for thraxion setups in KKLT and LVS

We can now apply our results to derive the mass scaling of the low-lying states in setups

with volume moduli stabilization. These light states include the lightest Kähler moduli,

the warped KK modes inside the multi-throat carrying the thraxion, and the thraxion

itself.

4.4.1 KKLT

We begin with the KKLT scenario. Fluxes inside a warped throat generically induce per-

turbations which scales with powers of r. These perturbations are divided in normaliz-

able and non-normalizable modes. In particular, non-normalizable modes correlate with

the ISD breaking fluxes [55]. Since gaugino condensation (necessary to stabilize Kähler
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moduli) breaks both no-scale and sources non-ISD fluxes [56], its presence activates

the non-normalizable perturbation. Following the classification of throat perturbations

in [56], we then have the gaugino condensate sourcing a perturbation

δG3 ∼ 〈λλ〉 r−3/2 ∼ W0 r
−3/2 . (4.23)

As discussed in [56, Section 2.4] we have to require the coefficients of such perturbations

in the UV to be small enough such that at the IR end of the throat they do not become

comparable with the background fluxes. In our case we see that the 〈λλ〉-sourced non-

ISD flux perturbation becomes O(1) whenever r3/2 ∼ W0. Hence, for our perturbation

to satisfy the condition of [56] we must ask for20

ε > W 2
0 . (4.24)

Let us now use Eq. (4.24) to compare the mass of the thraxions to the masses of the

other light particles in the compactification. In this section we will focus on KKLT

scenarios, while in the following section we will discuss similar computations for LVS.

From the potential in Eq. (4.16), we have that

m2
thr ∼ ε

|W0|
V4/3

∼ m2
wKK ε

1/3|W0| , (4.25)

where we used the definition m2
wKK ∼ ε2/3/V4/3 for the mass squared of the warped KK

modes. Since |W0| � 1 in KKLT and ε ≤ 1 by definition, this implies that thraxions

stay parametrically lighter than the warped KK modes even if the cross term lifts the

thraxion mass-squared to O(ε). Moreover, the condition (4.24) implies that the ratio

m2
thr

m2
wKK

> |W0|5/3 (4.26)

is bounded from below.

Then, we should compare the mass of Kähler moduli with the one of thraxions, to

ensure that the latter are still the lightest particle in the spectrum. The Kähler modulus

mass reads

m2
τ ∼
|W0|2

V2
. (4.27)

Hence
m2

thr

m2
τ

∼ V
2/3ε

|W0|
∼ ε

log
(
W−1

0

)
|W0|

, (4.28)

20We thank J. Moritz for recalling to our attention the discussion and condition in [56] and its

implication for the IR warp factor.
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where we used the KKLT relation V ∼ − log(|W0|)3/2 for the CY volume (in case of

single modulus). We see that m2
thr < m2

τ if ε < |W0|. Therefore, to ensure that the

thraxion is lighter than the Kähler modulus and that the IR end of the throat is safe

from large corrections, ε should sit in the window |W0|2 < ε < |W0|.
We can also consider the scaling of the gravitino mass m3/2 ∼ |W0|| log(W0)|−3/2

in Planck units, then we get the relation

m2
τ

m2
thr

∼
m3/2

ε
| logW0|1/2 . (4.29)

Therefore, the Kähler modulus is heavier compared to the thraxion if

m2
τ > m2

thr ⇐⇒
m3/2

MP

>
ε√

| logW0|
, (4.30)

where in the last relation we restored the Planck mass. By requiring that m2
τ > m2

thr

together with the relation (4.24), we have a lower bound on the gravitino mass.

4.4.2 LVS

In LVS, we have that the thraxion is always lighter than the warped KK modes, as

m2
thr

m2
wKK

∼ ε

V5/3
. (4.31)

Then, we can compare the thraxion mass to the one of the volume-supporting Kähler

modulus, as it is the lightest modulus in the LVS spectrum. The mass squared of the

big cycle scales as m2
τb
∼ V−3. We see that

m2
thr

m2
τb

∼ ε , (4.32)

which means that the thraxion is always lighter.

We note here that both the non-perturbative effect stabilizing τs and the O(α′3)

correction inferred from the 10d R4 term via the induced correction to the volume

moduli Kähler potential break no-scale as well as likely source non-ISD 3-form fluxes.

By an analysis similar to the one in the KKLT section above, this will source pertur-

bations in the thraxion multi-throat which will bound ε from below. However, doing

this properly while including the perturbations sourced by the O(α′3) correction to K

is difficult, as the structure of the direct 10d origin, schematically represented by terms

α′3G2
3R

3 is unknown. Hence, we have to leave a proper analysis for a future time when

the corresponding supersymmetric completion of the R4 term in type IIB string theory

will have been determined.
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4.5 Comments about 10d origin of the cross terms

We will review here shortly an argument given in [49, Section 6.8] concerning the 10d

origin of the single-warped cross term in the thraxion scalar potential with moduli

stabilization in many cases. The starting point is the observation that as soon as non-

perturbative effects like gaugino condensation on a stack of 4-cycle wrapping D7-branes

are involved in Kähler moduli stabilization, these non-perturbative effects tend to gen-

erate non-ISD 3-form flux contributions. For simplicity, we now focus on the situation

of a double throat. As thraxions are the lowest lying radial KK-mode of C2 in the dou-

ble throat, they react sensitively not just to the change of the IR Dirichlet boundary

conditions driven by giving thraxion a finite VEV, but to changes of the UV boundary

conditions as well. The presence of ISD-breaking non-perturbative effects in the bulk

in general will source such UV boundary terms which take the form [49]

δS[z] =
M8

10

2

∫
d4x

∫
dr

r
(JUVz̄ + c.c.) . (4.33)

If we use for moduli stabilization e.g. gaugino condensation as the non-perturbative

effect, this implies a source JUV = j ·r δ(r−rUV) with j ∼ 〈λλ〉. In the dual holographic

description of a perturbed KS throat [56] used to describe each half of the double

throat, this corresponds to a dimension ∆ = 3 chiral operator. In presence of this UV

perturbation the solution for z(r) takes the form [49]

z(r) =
1

4
j (r2 − r2

IR) + z1 +
1

2

r2 − r2
IR

r2
UV − r2

IR

(z2 − z1) (4.34)

in the first throat, and with z1 ↔ z2 in the second throat. If we now insert this back

into the 5d effective action for the complex structure modulus z(r) from [15, 49] and

corrected by δS[z], we get a scalar potential

V (c) = |z1 − z2|2 + Re (j̄(z1 + z2)) + const.

= 4|z0|2 − 2Re (j̄z0)(1− cos(c/M)) + const.

which clearly shows the ISD-violating source j generating the cross term, provided that

j̄z0 is not purely imaginary. Moreover, since e.g. j ∼ 〈λλ〉 ∼ |W0| in the KKLT scenario,

we see that this argument has the features to reproduce the cross term observed in the

4d EFT computation. We leave a more detailed construction of this argument for future

work.

Finally, a full treatment of our 4d EFT results in a 10d setting is difficult at the

current time, in particular for the case when we choose LVS to stabilize the Kähler

moduli. The reason here consists of the fact that for LVS, the O(α′3) correction in

– 30 –



the volume moduli Kähler potential contributes to the O(ε) cross term in the scalar

potential. However, the contributions to the scalar potential at O(α′3) were derived

from 10d in [39] using the known 10d type IIB α′3R4 correction dimensionally reducing

to the known O(α′3) correction to K, from which in turn via 4d N = 1 local SUSY [39]

inferred the O(α′3) to the supergravity F-term scalar potential. The direct 10d origin

of this correction to V would arise from terms reading schematically as O(α′3)G2
3R

3

which are part of the SUSY completion of the R4 term in type IIB in 10d. This SUSY

completion, however, unfortunately is to date not completely known already at the

needed fifth order. Hence, at least for the case of LVS Kähler moduli stabilization, a 10d

discussion of our 4d EFT results must await future progress on the SUSY completion

of the type IIB α′3R4 term.

5 Concrete Calabi-Yau Orientifolds Supporting Thraxions

In this section, we discuss explicit examples of CY orientifolds which support multi-

throat systems hosting thraxions. We work with the set of manifolds known as CI-

CYs [57]. The manifolds in this class are defined as the zero-locus of a set of k ho-

mogeneous polynomials pj (z) in an ambient space given by A =
∏

i Pni , constrained

by ∑
i

ni − k = 3 . (5.1)

The multi-degrees of the polynomial equations with respect to the coordinates of the

ambient space factors are encoded in a configuration matrix
Pn1 q1

1 · · · q1
k

Pn2 q2
1 · · · q2

k
...

...
. . .

...

Pns qs1 · · · qsk

 . (5.2)

Requiring the zero-locus of the pj to be a CY manifold, the vanishing condition for the

first Chern class imposes

ni + 1 =
k∑
j=1

qij , ∀ i = 1, ...s . (5.3)

Let X be a CICY with ambient space A. If h1,1(X) = h1,1(A) we say that X is

a favorable CICY. All CICYs apart from 70 are favorable [58]. In the following, we

restrict ourselves to work with favorable CICYs only.
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An explicit database listing all the Z2 actions on CICY manifolds which admit

fixed loci of codimension 1 and 3, and that descend from involutions of A was produced

in [16]. One important comment is that at a generic point in complex structure moduli

space, a CICY will not admit any geometric Z2 symmetry which could be used in order

to define an orientifold projection. However, at special points in c.s. moduli space,

such symmetry exists. Due to this complex structure tuning, Z2 symmetric CYs will

generically contain conifold singularities that lie on the fixed locus of the Z2 action.

Being located on top of an O-plane, these singularities cannot be deformed in a way that

is compatible with the Z2 action. However, they can be resolved.21 After the orientifold

projection, these singularities are called frozen conifold singularities. We stress that this

feature is extremely generic: in Figure 2 we show the percentage of CICY orientifolds

for which there exists at least one frozen conifold with respect to all CICY orientifolds,

as a function of the Hodge numbers.
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Figure 2: Percentage of orientifolds admitting frozen conifold points, with respect of

the total number of orientifolds, distributed by h1,1 and h2,1. We remark that we are

only analyzing favorable CICYs, therefore the cutoff at h1,1 = 15.

We wish now to comment about some aspects of the orientifolds admitting frozen

conifolds. From Figure 2 we see clearly that, regardless the presence of thraxions, only

O(1)% of all orientifolds are free of frozen conifolds. While the CICYs comprise only

a comparatively small set of CY manifolds, this outcome raises the possibility that a

21Just as the usual conifold, they can be resolved in two different ways, related by a flop.
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sizable fraction of all O7-orientifolds of CYs may contain frozen conifolds. For example,

Table 2 informs us, that even for the 5 single-polynomial CY manifolds which the CICY

set has in common with the much larger KS set of anticanonical hypersurfaces in toric

ambient spaces [59], about ∼ 47% of the possible orientifolds acquire frozen conifolds.

The existing partial scans of KS orientifolds, which failed to detect frozen conifolds,

may thus be structurally incomplete.

CICY Orient. w/out FCPs.

7890 50%

7887 60%

7884 0%

7880 44.4%

7862 50%

Total 46.7%

Table 2: Percentage of orientifolds without frozen conifold points for the 5 CICYs that

are also in the KS database.

If this is the case, this poses the question of understanding in more details the

resolution branches of the frozen conifold singularities. This is especially important

for phenomenological applications. By entering the resolved phase of a frozen coni-

fold singularity, h1,1
+ increases by ∆h1,1

+,f.c.. Thus, new divisors will be present in the

resolved phase, compared to the divisors of the double-cover, i.e. the original CY be-

fore the orientifold quotient is taken. In turn, this implies that the simple splitting of

the H1,1(CY)-eigenspace of the parent CY into Z2-even and odd subspaces to compute

the purely even sector and even-odd-odd sector intersection numbers will generically

fail to be correct in the resolved phase. Furthermore, such computation is of dubious

meaning at the singular point, as the Dolbeault cohomology is not well-defined for

singular varieties. Hence, achieving an understanding of the structure and ubiquity of

singular CY orientifolds characterized by the presence of frozen conifolds, as well as

their resolutions, forms a pressing task for the future.

We would like now to bring the attention back to the set of CICY orientifolds

constructed in [16]. A subset of them consists of geometries hosting multi-conifolds and

therefore thraxions. We immediately stress that these multi-conifolds are not the frozen

ones discussed in the previous paragraph, as thraxions are defined in the deformed

phase. We will explain this point in more details later. In order for a CICY orientifold

to allow for the presence of thraxions, two conditions must be satisfied:

1. In the double cover, it must be possible to cross a conifold transition locus in a

– 33 –



way that preserves the Z2 symmetry that one uses to define the orientifold. As a

consequence, the resolved side must have h1,1
+ larger than the deformed side.

2. The set of axions that appears in the resolved side must not be fully projected

out by the O7-orientifold projection. This means that h1,1
− must also increase in

the resolved side.

The two conditions together imply the following: at the N = 2 level, there are two sets

of multi-conifolds, each one with the same number of conifold points in it, the same

number of homology relations, and the orientifold swaps them. We notice that, despite

the multi-conifolds do not lie on the Z2 fixed locus, in principle other sets of conifold

singularities can, and generically will, lie on top of the orientifold plane. Therefore,

resulting in frozen conifolds. We depict this in Figure 3.

Orientifold
plane

^ ^

Figure 3: A representation of the orientifold projection acting on a CY manifold with

two double throats. The blue dashed line represent the fixed locus of the projection.

The double throats are mapped to each other by the Z2 symmetry. Snowflakes depict

frozen conifolds.

Let M be the set of 319, 521 thraxions transitions. With this we mean couples of

resolved and deformed geometries associated with a conifold transition used to define

a thraxion. Equivalently,M is the set of all the possible multi-throat systems that can

appear in the CICY orientifold database. We notice that it is possible that the same

deformed side of the CY orientifold has more than one multi-throat, and therefore has

more than one resolved phase. We define three interesting subsets of M as follows.

First, we consider a set M1 of multi-throats such that the position and number of
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O3/O7-planes is the same both in the deformed phase and the resolved one, related

by the conifold transition used to define the thraxions themselves. We find that M1

consists of 11, 533 elements. In addition to this, we further restrict to orientifolds that

do not have frozen conifolds. This leaves us with a subsetM2 ⊂M1 of 1, 279 examples

satisfying both conditions. Finally, we consider only orientifolds that do admit both

O7-planes and O3-planes. This generates a subset M3 ⊂ M2 ⊂ M1 of 57 examples

satisfying all three conditions.

The reason why we restrict to these subsets is the following. For CY orientifolds in

M\M1 the number and position of orientifold planes varies in a discontinuous way

when crossing the transition locus. This means that in the proximity of the transition

locus, some O-planes are very close to either merging or splitting. This implies that

some extra degrees of freedom become very light in such a region of the moduli space.

We leave the study of this very interesting situation for future work. For CY orientifolds

inM1\M2 the number and position of O-planes in the two sides of the transition agree,

but there are frozen conifold points on at least one of the O7-planes. While these models

are in principle viable for phenomenology, the presence of frozen conifolds makes it hard

to compute topological quantities needed for writing the low energy effective action, as

for example the triple intersection numbers. Finally, CY orientifolds in M2 \M3 are

free of the two possible problems remarked before. However, all orientifolds in this set

have either no O7-planes, or no O3-planes. Therefore, using them for phenomenology

can be challenging or also completely impossible.

We compiled a new database, listing all the couples of deformed/resolved CICY

orientifolds contained in M2. This database is explicitly available at this link. Every

element of the database takes the following form:

{{Resolved CICY info} , {Deformed CICY info} ,# thraxions,# Conifold pts.} .
(5.4)

The last two entries are the number of thraxions and the number of conifold points,

computed as:

# thraxions :=
∣∣∆h1,1

−
∣∣ , # Conifold pts. :=

1

4
|∆χ| , (5.5)

with χ the Euler number of the two CYs. The first two components contain some useful

information about the orientifold:

1. The number of the CICY following the numeration given in [58].

2. h1,1 and h2,1 of the CICY before the orientifold action.

3. A configuration matrix of the CICY.
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4. The triple intersection polynomial of the CICY.22

5. The number of the orientifold given in [16].

6. The rows in the configuration matrix that have to be swapped in order to define

the thraxion transition.

7. h1,1
− and h2,1

− of the CICY orientifold.

8. The triple intersection polynomial of the CICY orientifold computed as in [60].

9. The data relative to the number of O7-planes, number of O3-planes, number of

frozen conifolds on each O7-plane, following the notation of [16].

Thraxions
Orientifolds

Total
Both

O7/O3-planes
Only

O7-planes
Only

O3-planes

1 55 140 381 576

2 1 12 114 127

3 1 12 41 54

4 0 0 14 14

5 0 0 12 12

6 0 0 9 9

7 0 0 6 6

8 0 0 3 3

9 0 0 2 2

10 0 0 2 2

11 0 0 0 0

12 0 0 0 0

13 0 0 1 1

Table 3: Number of CICY orientifolds inM2 divided by the number of thraxions and

kind of orientifolds they admit.

Essentially, by construction, for every multi-throat system there is just one thrax-

ion.23 However, it does happen that the same CICY orientifold admits multiple multi-

throats, therefore allowing for multiple thraxions, still one per multi-throat system. We

22This is computed with respect to a divisor basis given by the pullbacks of the hyperplane classes

of the various Pni ∈ A.
23We stress that this needs not to be the case in general, it is just an artifact of the way in which

thraxions transitions were discovered in [16].
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Figure 4: Number of CICY orientifolds in M2 for given number of thraxions. The

different colors show the presence of both O7/O3-planes, or only O7 or O3-planes. The

detailed numbers of CICY divided by the kind of the orientifolds and the number of

thraxions are shown in Table 3.

display in Table 3 and Figure 4 the number of multi-throats (and therefore the number

of thraxions) within the database M2 discussed above.

If we instead consider the set M1, we find a much larger number of orientifolds

supporting thraxions. We report this in Table 4 and Figure 5.

We would like to comment now about the following fact. Since in every multi-throat

system there is a single homology relation giving rise to a single thraxion, when we

study the moduli stabilization problem we are in the situation described in Section 4.2.

Therefore, it is possible to argue that with a certain amount of tuning of the fluxes, the

thraxion potential does not receive order O(ε) contributions from the stabilization of

the Kähler moduli. Such needed tuning involves a democratic distribution of the fluxes

in the throats and as a result the thraxion mass is still six-times-warped suppressed.

However, if the number of throats in a given multi-throat system is equal to 2, the

tuning of the fluxes is minimal. For this reason, in Figure 6 we show the multi-throats

in M2 for a given number of throats. In the database we provide, there are, then, 110

multi-throats that have only 2 conifold points. We leave for further study the question

of which exact flux choice must be made so that the discussion in Section 4.2 can be

realized.
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(b) Number of CICY orientifolds that admit
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(c) Number of CICY orientifolds that admit

from 7 to 13 thraxions.

Figure 5: Number of CICY orientifolds in M1 for given number of thraxions. The

different colors show the presence of both O7/O3-planes, or only O7 or O3-planes. The

detailed numbers of CICY divided by the kind of the orientifolds and the number of

thraxions are shown in Table 4.
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Thraxions
Orientifolds

Total
Both

O7/O3-planes
Only

O7-planes
Only

O3-planes

1 7117 900 381 8398

2 721 136 114 971

3 119 29 41 189

4 15 4 14 33

5 25 6 12 43

6 8 4 9 21

7 0 0 6 6

8 0 0 3 3

9 4 0 2 6

10 0 0 2 2

11 0 0 0 0

12 0 0 0 0

13 0 0 1 1

Table 4: Number of CICY orientifolds inM1 divided by the number of thraxions and

kind of orientifolds they admit.
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Figure 6: Number of multi-throats in M2 that admit from 2 to 28 throats.
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6 Conclusions

In this work, we performed a detailed study about thraxions beyond the flux compact-

ification level. Specifically, we analyze 4d, N = 1 effective supergravity in presence

of thraxions and how the results derived in [15] change when also the Kähler moduli

sector is taken into account.

In the first part of this work, we study the backreaction of a non-vanishing thraxion

VEV on the internal space geometry. By analyzing SU(3)-structure’s torsion classes,

we find that the CY condition is broken due to the breakdown of the ISD condition of

the G3 flux. This leaves us with just a complex manifold. The amount of the breaking

is related qualitatively to the value of the thraxion VEV. In turn, if the CY condition

is broken already at the KK scale, the use of the 4d supergravity approximation in

order to describe the 4d effective theory could be questionable. However, we argue for

a sufficiently small thraxion VEV or a decoupling of the thraxion dynamics coming

from the high warping, in such a way that the manifold is still (almost) CY. Hence, we

can be entitled to use the effective supergravity action and include the Kähler moduli

stabilization.

The second part of this work aims at studying the relation of thraxions and Kähler

moduli in the presence of perturbative and non-perturbative corrections to the Kähler

potential and the superpotential. We find that in general Kähler moduli stabilization

spoils the high suppression of the thraxion mass coming from the sixth power of the

warp factor. The no-scale breaking terms induce additional contributions to the poten-

tial which are proportional to the warp factor cubed only, hence lifting the thraxion

mass. However, the thraxion is still the lightest particle in the spectrum, and the spec-

trum is still effectively gapped.

One may ask what are the consequences of this new thraxion behavior on the

axionic version of the WGC [8]. In [15], it was found a parametric violation of the lattice

WGC while the sub-lattice WGC [61–63] was still satisfied but with a parametrically

coarse sub-lattice. The new scaling of the thraxion mass still provides a violation of the

lattice WGC but milder by a factor of 2, resulting in a less coarse sub-lattice needed

to satisfy the sublattice WGC. The study of the validity of the EFT whenever the

thraxion stabilizes to a VEV different from zero is an important task for future work.

As explained in Section 3, in this situation, the CY condition is broken. It would be

interesting to see for how long the EFT is still valid before new light states must be

integrated-in. Indeed, the violation of the lattice-WGC might be a symptom that some

new objects must be considered in order to fully describe the physics of thraxions.

In addition, there may be implications from the finite D3-brane charge tadpole of

any given type IIB CY compactification. While we leave a full discussion of this for
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future work, we observe that: i) metastability of a dS uplift from a single anti-D3-brane

implies a lower bound M & O(10) on the RR 3-form flux on the throat A-cycle. ii)

Fixing the thraxion mass scale for some physical application on the other hand fixes

the warp factor and thus K/M � 1. This entails the D3-brane charge tadpole placing

an upper bound M <
√
QD3(K/M)−1, which may get tightened by replacing QD3 by

Qeff.
D3 < QD3 due to flux stabilization of the c.s. moduli eating up a part of QD3 [64–

66]. Depending on the size of the available tadpole and the number of non-zero fluxes

needed to freeze the c.s. moduli, this may effectively limit the achievable warp factor

suppression of the thraxion mass scale and/or the existence of meta-stable anti-D3

uplifts.

After our generic discussion, we work out the conditions sufficient to obtain the

original scaling of the thraxion mass with respect to the warp factor. Such cases require

the presence of only one thraxion in each multi-throat system, a democratic distribution

of fluxes in the throats and a particular homology relation among the interpolating

cycles. These requirements need a certain amount of tuning, unless the multi-throats

are double-throats. Therefore, which of the two cases is more prevalent in the string

landscape will depend significantly on the relative frequencies of double versus higher

multi-throats. It is interesting to note here that in the database of the CICY orientifolds

built in [16], we always have one thraxion per multi-throat system. Whether this is the

case also for other CY sets as e.g. the Kreuzer-Skarke database [59] is an important

question that we leave to further study.

We then specialize the discussion of no-scale breaking effects to the specific ex-

amples of LVS and KKLT moduli stabilization approaches. In particular, in LVS the

exponentially large values of the CY volume allow us to suppress the cross terms which

otherwise would be responsible for lifting the mass. This suppression turns out to be

effective only in scenarios where the scalar potential scale is sufficiently high. This in

particular includes the interesting case of high-scale inflation.

Finally, starting from the database of CICY orientifolds presented in [16], we build

a new specific database for thraxions that one can find at this link. Our database aims

at showing that there exists the possibility to make phenomenologically viable models

with thraxions, and how frequent they are within a given CY orientifold. If we allow

for the presence of frozen conifolds in the sense of [16], we have plenty of possibilities

to do model building with thraxions. However, the presence of frozen conifolds pre-

vents the computation of essential quantities, which makes the construction of explicit

models challenging at the moment. As frozen conifolds are generically present in CICY

orientifolds, restricting to the cases in which they are not present naturally narrows

the thraxion landscape. Still, we find 57 CICY orientifolds allowing for the presence of

thraxions and both O3 and O7 orientifold planes, and the absence of frozen conifolds.
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Given the obvious phenomenological possibilities of thraxion models, as well as

their intrinsic theoretical interest, we hope to come back in the near future to the

many interesting open questions we raised in this work.
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A Details on Moduli Stabilization and Explicit Examples

In this Appendix we provide further examples of KKLT and LVS moduli stabilization

in presence of a thraxion. We explore setups which are the most relevant extensions of

the ones shown in Section 4, by allowing for the presence of more Kähler moduli and

one thraxions. Our main point here is to show that, in the special cases described in

Section 4.2 (namely, in the cases where there is only one thraxion per multi-throats

and where we allow for a certain choice of fluxes), the minimization of the C4 axions

always removes the terms in the scalar potential which are linear in ε.

A.1 LVS

In this Appendix, we extend the toy model presented in Section 4.3 to the case of two

Kähler moduli and one thraxion with both nontrivial triple intersection numbers. In

Section 4.3 we considered one thraxion coupling to the blow-up modulus only. Here,

we allow for the coupling with both moduli, i.e. we consider both triple intersection

numbers κb−− ≡ κb and κs−− ≡ κs to be nontrivial. We work with a CY parametrized

by a Swiss-cheese volume as

V =
(
Tb + T̄b −

gs
4
κb
(
G− Ḡ

)2
)3/2

−
(
Ts + T̄s −

gs
4
κs
(
G− Ḡ

)2
)3/2

. (A.1)
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The superpotential of Eq. (4.6) reads

W (G, Ts) = W0 + ε (1− cos (G/M)) + Ase
−asTs , (A.2)

where the leading non-perturbative correction comes from the blow-up modulus. The

positivity of the Kähler matrix requires κb < 0, while κs is unconstrained. The b field

stabilizes at vanishing VEV. Let us display here only Vthr, as the part of the potential

independent on the thraxion scales as the classical LVS potential. Then, the potential

for the thraxion c reads

Vthr =− 3 ε2ξ̂

V3
sin
( c

2M

)4

+
2 ε2 τsκ

2
s

3gsM2V3κ6
b

sin
( c

M

)2(
4
√

2τ 3/2
s

(
κ3
s − κ3

b

)
− ξ̂κ3

b

)
+

+
ε2 sin

(
c
M

)2

3 gsM2 V2 κ3
b

(
2κ2

bV2/3 + 2
√

2τsκbκ
4
sV1/3 + 4τsκ

2
s

)
+

+
ε2 sin

(
c
M

)2

9 gsM2 V7/3 κ4
b

(
4
√

2τ 3/2
s

(
3κ3

s − κ3
b

)
− 3ξ̂κ3

b

)
+

+
ε2 sin

(
c
M

)2

9 gsM2 V8/3 κ5
b

κs
√
τs

(
8τ 3/2
s

(
3κ3

s − 2κ3
b

)
− 3
√

2ξ̂κ3
b

)
+

+
4i ε asAsτse

−asτs

V2

(
1− cos

( c

M

))
sin(asθs) .

(A.3)

A.2 KKLT

Consider the case in which we have one thraxion intersecting with one Kähler modulus,

but in a setup with h1,1
+ = 2. Suppose we can write the Kähler potential as

Kthr = −2 log

((
T1 + T̄1

)3/2
+
(
T2 + T̄2 −

gs
4
κ2−−

(
G− Ḡ

))3/2
)
. (A.4)

Then, by using the superpotential in Eq. (4.6), we can compute the scalar potential for

the Kähler moduli, the C4 axions and the thraxion. For ease of exposition, we display

only the terms dependent on c after setting b to its VEV, namely

Vthr =
ε2 sin

(
c
M

)2

6gsM2κ2−−
√
τ2

(
τ

3/2
1 + τ

3/2
2

)+

+
i ε sin

(
c

2M

)2(
τ

3/2
1 + τ

3/2
2

)2

(
a1A1e

−a1τ1 sin(a1θ1) + a2A2e
−a2τ2 sin(a2θ2)

)
.

(A.5)

We see therefore that there is a repetition of the case with one modulus only of Sec-

tion 4.2, where this time the cross term vanishes when both the C4 axions θ1, θ2 are

set to their vanishing VEVs.
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B The Mass of the KKLT AdS Tachyon

In this section, we consider a KKLT scenario with only one Kähler modulus. We will not

take into account the potential for the thraxions, although they will enter as dynamical

fields. We are going to check that the masses obtained for the fields b and c in the

KKLT AdS vacuum are consistent with results from representation theory of the AdS

isometry group SO(3, 2).

Let us first describe in general how the masses for the moduli are obtained, in a

generic supergravity model, following [67, Section 3.1]. Suppose that we have found

the minimum of a potential for the moduli φi. Around the minimum we can write the

moduli as

φi = 〈φi〉+ δφi = 〈φi〉+ ϕi . (B.1)

The Lagrangian for the fluctuations ϕi is

L = Kij̄∂µϕ
i∂µϕj −

(
M2
)
ij
ϕiϕj − V0 −O

(
ϕ3
)
. (B.2)

We stress that Kij̄ and (M2)ij are computed in the values of the moduli at the minimum.

In our specific setup, both Kij̄ and (M2)ij are diagonal matrices. It is then possible to

define

Φi =
√

2Kīiϕi =⇒ ϕi =
1√
2

(K−1)īiΦi . (B.3)

Using this definition, we obtain the following Lagrangian for the canonically normalized

fields Φi:

L =
1

2
∂µΦi∂

µΦi −
1

2
(M2)ii(K

−1)iiΦiΦi − V0 −O(Φ2) . (B.4)

For a more general case, we refer to [67]. The physical masses of the fields are given by

(M2)ii(K
−1)ii.

Consider the Kähler potential in the case of a single Kähler modulus T and thraxion

G and the superpotential in (2.18) with ε = 0.24 The corresponding φi in Eq. (B.2) are

then {τ, θ, b, c}. Minimizing the potential (2.24), we find that the values of the fields at

the minimum are

〈θ〉 = 0 , 〈b〉 = 0 , (B.5)

while c is left unstabilized. The Kähler modulus τ will also be stabilized at some given

value 〈τ〉. Computing (M 2)ii(K
−1)ii at the minimum of the potential, the value for the

b mass is given by

m2
b = − 1

g2
s

a2|W0|2

〈τ〉(2a〈τ〉+ 3)2
. (B.6)

24We are then considering only the non-perturbative superpotential for the Kähler moduli.
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Being all the quantities positive definite, clearly b has a negative mass.

Let us check that this result is consistent with representation theory. The fields

{b, c} belong to the same massive Wess-Zumino supermultiplet. The field content of this

multiplet is given by a real scalar 0+, a real pseudoscalar 0− and a spin-1/2 fermion,

subject to the relation their masses are [68–70]

m2
0+ = m2 +m`− 2`2 , m0− = m2 −m`− 2`2 and m2

1/2 = m2 , (B.7)

where ` is proportional to the cosmological constant. Notice that, compared to SUSY

QFTs in Minkowski space, the operator M2 = PµP
µ is no longer commuting with the

supercharges, and therefore different fields in the same multiplet will have different

masses. In our case the pseudoscalar field is the c axion, the real scalar field is the b

axion, and ζ is the fermion.

Defining V0 to be the potential at the minimum, we have

` =

√
V0

−3
=

1√
2

a|W0|
〈τ〉1/2(3 + 2a〈τ〉)

. (B.8)

In our setup, the field c has zero mass, as it is a flat direction of the potential. Therefore,

by identifying it with the pseudoscalar in the Wess-Zumino multiplet, we can set to

zero the second equation in Eq. (B.7). Solving this in m, we find that m0− is zero when

m = −` or m = 2` . (B.9)

Choosing the first possibility and substituting in the mass for m0+ , we get

m0+ = − a2|W0|2

〈τ〉(2a〈τ〉+ 3)2
, (B.10)

that exactly matches the computation from the Hessian in (B.6).25 Finally, we notice

that the negative mass of b is still compatible with the BF bound; indeed, it saturates

it.

25Up to a rescaling of the fields to add gs.
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