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The Higgs trilinear coupling is a crucial tool to investigate the structure of the Higgs sector and
the nature of the electroweak phase transition, and to search for indirect signs of New Physics.
Classical scale invariance (CSI) is an attractive concept for BSM model building, explaining
the apparent alignment of the Higgs sector and potentially relating to the hierarchy problem. A
particularly interesting feature of CSI theories is that, at one loop, they universally predict the
Higgs trilinear coupling to deviate by 67% from the SM prediction at tree level. This result is
however modified at two loops, and we present here results from the first explicit computation of
two-loop corrections to the Higgs trilinear coupling in classically scale-invariant BSM models.
Taking as example a CSI variant of the Two-Higgs-Doublet Model, we show that the inclusion of
two-loop effects allows distinguishing different scenarios with CSI, even though the requirement
of correctly reproducing the mass of the Higgs boson, as well as unitarity, severely restrict the
possible values of the Higgs trilinear coupling.

*** The European Physical Society Conference on High Energy Physics (EPS-HEP2021), ***
*** 26-30 July 2021 ***
*** Online conference, jointly organized by Universität Hamburg and the research center DESY ***

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

ar
X

iv
:2

11
0.

11
27

0v
2 

 [h
ep

-p
h]

  2
2 

M
ar

 2
02

2

mailto:johannes.braathen@desy.de
mailto:kanemu@het.phys.sci.osaka-u.ac.jp
mailto:m_shimoda@het.phys.sci.osaka-u.ac.jp
https://pos.sissa.it/


Two-loop corrections to the Higgs trilinear coupling in CSI theories Johannes Braathen

1. Introduction

The Higgs trilinear coupling 𝜆ℎℎℎ offers a unique opportunity to probe the Higgs sector and
search for signs of Beyond-the-Standard-Model (BSM) physics. Firstly, it directly relates to the
shape of the Higgs potential, of which little is currently known. Indeed, only the location of the
electroweak (EW) minimum – obtained from the Higgs vacuum expactation value (VEV) – and
the curvature of the potential around this minimum – given by the Higgs mass – are known. In
particular, the behaviour of the potential away from the EW minimum remains to be determined
– and it depends greatly on 𝜆ℎℎℎ. In turn, the strength of the EW phase transition (EWPT) also
depends on the value of 𝜆ℎℎℎ: for instance in order for the EWPT to be of strong first order (a
necessary condition 𝑒.𝑔. for successful EW baryogenesis), 𝜆ℎℎℎ must deviate by at least 20% from
its SM prediction [1, 2]. Moreover, because its experimental determination is currently not very
precise but will be drastically improved in the future (for a review see Ref. [3]), the Higgs trilinear
coupling is an ideal target to search for large BSM deviations [4].

Theories with classical scale invariance (CSI), in which all Lagrangian mass-dimensionful are
forbidden at tree level, provide a good example of this. In these models, a flat direction must exist
in the tree-level potential, along which the EW gauge symmetry is broken radiatively à la Coleman-
Weinberg [5, 6]. This flat direction corresponds to the 125-GeV Higgs boson and is automatically
aligned at tree level [7] (see also Ref. [8] for a discussion of how this is modified at loop level).
Furthermore, BSM states cannot be decoupled as all Lagrangian mass terms are forbidden – thereby
making CSI theories perfect examples of scenarios with alignment without decoupling [9]. Another
distinctive property of CSI models is that, at one loop, 𝜆ℎℎℎ is universally predicted to deviate by
67% from the tree-level SM value of 𝜆ℎℎℎ [10]. In Ref. [11], we found that this universality is lost
once two-loop effects are included. We summarise in these proceedings our computation of the
dominant two-loop corrections to 𝜆ℎℎℎ, and we present some examples of our numerical results in
a CSI variant of the Two-Higgs-Doublet Model (2HDM).

2. The Higgs trilinear coupling at one and two loops

We begin by reviewing briefly the calculation in CSI models of 𝜆ℎℎℎ – defined in terms of the
effective potential𝑉eff as 𝜆ℎℎℎ ≡ 𝜕3𝑉eff

𝜕ℎ3

��
min – and we recall the most important results at one and two

loops. The special results for 𝜆ℎℎℎ stem from the particular form of field-dependent masses in CSI
models: in the absence of any BSM mass-dimensionful term, the field-dependent masses of a state
𝑖 – no matter its nature – can be written as 𝑚2

𝑖
(ℎ) = 𝑚2

𝑖
(1 + ℎ/𝑣)2, where 𝑚𝑖 is the corresponding

field-independent mass and 𝑣 is the Higgs VEV. This implies that along the Higgs direction in field
space, the one-loop effective potential takes the very simple form

𝑉eff(ℎ) = 𝐴 · (𝑣 + ℎ)4 + 𝐵 · (𝑣 + ℎ)4 log
(𝑣 + ℎ)2

𝑄2 , (1)

where𝑄 is the renormalisation scale, and 𝐴, 𝐵 are functions of the scalar, fermion, and gauge-boson
mass matrices of the model considered – their expressions can be found 𝑒.𝑔. in Ref. [10]. When
performing an effective-potential computation, we can express first 𝐴 in terms of 𝐵 and 𝑣 with
the tadpole condition, and next we can eliminate 𝐵 in favour of the Higgs effective-potential mass
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[𝑀2
ℎ
]𝑉eff and 𝑣. In other words, the one-loop potential is entirely fixed in terms of the Higgs mass

and VEV, which are both known experimentally. As a consequence, one finds that at one loop the
Higgs trilinear coupling is universally predicted in CSI models to be [10]

𝜆ℎℎℎ =
5[𝑀2

ℎ
]𝑉eff

𝑣
=

5
3
(𝜆SM

ℎℎℎ)
tree , (2)

(𝜆SM
ℎℎℎ

)tree ' 191 GeV being the tree-level SM prediction. We emphasise that this result is completely
independent of the particle content of the CSI model. This picture is however altered once one
includes two-loop corrections to 𝑉eff and 𝜆ℎℎℎ. Indeed, new types of terms involving squared
logarithms appear in 𝑉eff at two loops (see 𝑒.𝑔. Ref. [12]) and the two-loop potential takes the form

𝑉eff(ℎ) = 𝐴 · (𝑣 + ℎ)4 + 𝐵 · (𝑣 + ℎ)4 log
(𝑣 + ℎ)2

𝑄2 + 𝐶 · (𝑣 + ℎ)4 log2 (𝑣 + ℎ)2

𝑄2 . (3)

𝐴 and 𝐵 receive both one- and two-loop contributions but 𝐶 is a purely two-loop quantity. Like
at one loop, 𝐴 and 𝐵 can be eliminated, using respectively the tadpole equation and the Higgs
effective-potential mass, however 𝐶 remains and one finds that at two loops

𝜆ℎℎℎ =
5[𝑀2

ℎ
]𝑉eff

𝑣
+ 32𝐶𝑣 . (4)

Because the effective potential is model-dependent, it follows that 𝐶, and hence also 𝜆ℎℎℎ, are also
model-dependent – 𝑖.𝑒. the universality of 𝜆ℎℎℎ found at one loop is lost once two-loop effects are
taken into account. We refer the interested reader to Ref. [11] for technical details of our derivations
and complete expressions for our results. We only mention here that general results for two-loop
contributions to𝑉eff, written in terms of MS-renormalised parameters, can be found 𝑒.𝑔. in Ref. [13].
These can be used to extract the log2 coefficient 𝐶, from which 𝜆ℎℎℎ is straightforwardly obtained
(in the MS scheme) using equation (4). Additionally, we included the necessary finite counterterms
to translate our expressions to the OS scheme.

3. Numerical analysis

As a concrete setting to present numerical results, we consider a CSI variant [14] of the
(CP-conserving) 2HDM. Like the normal 2HDM, the CSI-2HDM contains three additional Higgs
bosons – 𝐻 (CP-even), 𝐴 (CP-odd), and 𝐻± (charged) – however it differs from the usual model by
absence of mass terms in the scalar potential and the automatic alignement of its Higgs sector at tree
level. More details on the model and our conventions can be found in Ref. [11]. We present in the
following results for the BSM deviation of the trilinear coupling computed in the CSI-2HDM with
respect to the SM, which we define as 𝛿𝑅 ≡ 𝜆CSI-2HDM

ℎℎℎ
/𝜆SM

ℎℎℎ
−1 (the values of 𝜆ℎℎℎ being computed

at the same order in both models). The left side of figure 1 shows the deviation 𝛿𝑅 as a function of
the degenerate mass 𝑀Φ of the BSM scalars in the CSI-2HDM (𝑀Φ = 𝑀𝐻 = 𝑀𝐴 = 𝑀𝐻±) at one
loop (red line) and at two loops for different values of tan 𝛽 (black, cyan, blue, and purple curves) –
tan 𝛽 being the ratio of the VEVs of the neutral components of the two Higgs doublets. While the
one-loop result is constant1 as explained in the previous section, the inclusion of two-loop effects

1We have a deviation of 82%, and not 67% as shown in eq. (2), because we compare here the one-loop result in the
CSI-2HDM, with the one-loop (rather than tree-level) SM prediction.
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Figure 1: BSM deviation 𝛿𝑅 in the Higgs trilinear coupling, as a function of the degenerate mass 𝑀Φ of the
BSM scalars. Left: Deviation in the CSI-2HDM at one loop (red) and at two loops for different values of
tan 𝛽. Right: Comparison between the deviations in the CSI-2HDM (solid curves) and in an aligned scenario
of the usual 2HDM (dashed curves). One-loop results are in red while grey and green curves correspond to
two-loop values respectively for tan 𝛽 = 1 and tan 𝛽 = 1.4.

in 𝛿𝑅 introduces a significant dependence on both 𝑀Φ and tan 𝛽, and hence allows distinguishing
different parameter points of CSI-2HDM using the value of 𝜆ℎℎℎ. Furthermore, the two-loop
corrections to 𝜆ℎℎℎ result in an additional positive – and potentially large for increasing 𝑀Φ – shift
in 𝛿𝑅, meaning that 𝜆ℎℎℎ is more easily accessible in experiments than what would be expected
from the one-loop result.

In the right side of figure 1, we compare the behaviours of 𝛿𝑅 as a function of 𝑀Φ between
the CSI-2HDM and an aligned scenario of the usual 2HDM (in the maximal non-decoupling limit
𝑀 = 0 [4]) – where for the latter we employ expressions from Refs. [15]. Due to the drastically
different behaviours at one loop – an 82% deviation in the CSI case, compared to a growing deviation
proportional to 𝑀4

Φ
in the usual 2HDM – the total deviations at two loops are distinguishable for

most of the considered range of 𝑀Φ, although the two-loop corrections to 𝜆ℎℎℎ behave similarly
in the two scenarios, scaling like 𝑀6

Φ
. For low BSM masses, the largest effects are found in the

CSI case while, conversely, for large masses the non-CSI scenario exhibits the most significant
deviations (driven by the growth of the non-decoupling effects at one loop).

In both plots of figure 1, we have verified that perturbative unitarity [16] is maintained and also
that the EW minimum is the true minimum of the effective potential. A further important constraint
that must be considered as well is the requirement of correctly reproducing the 125-GeV mass of the
SM-like Higgs boson: indeed as the Higgs boson corresponds to the flat direction of the tree-level
potential, its mass must be generated entirely at loop level. This yields a relation between the known
SM inputs and the BSM parameters, from which one of the latter can be extracted; in the CSI-
2HDM, tan 𝛽 can thence be obtained as a function of 𝑀Φ. In figure 2, we show the possible values
of 𝛿𝑅, again as a function of 𝑀Φ, once tan 𝛽 is fixed by the Higgs-mass constraint. This additional
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Figure 2: BSM deviation 𝛿𝑅 as a function of the degenerate mass 𝑀Φ of the BSM scalars. For the two-loop
result (blue), tan 𝛽 is determined in terms of 𝑀Φ from the requirement of reproducing 𝑀ℎ = 125 GeV.

requirement, combined with perturbative unitarity, severely limits the allowed range of the BSM
scalar mass 𝑀Φ, which must now remain between 374 and 382 GeV. At two loops, 𝜆ℎℎℎ is found
to deviate from the SM prediction by 90% to 113% – 𝑖.𝑒. approximately 10% to 33% more than at
one loop. Interestingly, if one returns to the right pane of figure 1, one notices that this range of 𝑀Φ

and 𝛿𝑅 corresponds to where the curves from the CSI and non-CSI variants of the 2HDM overlap,
meaning a measurement of 𝜆ℎℎℎ may not suffice by itself to ascertain whether a BSM scenario
exhibits CSI or not. Finally, the parameter points presented in figure 2 have been checked against
limits from experimental searches with HiggsBounds [17] (the necessary inputs were produced by
a SPheno [18] based spectrum generator for the CSI-2HDM created using SARAH [19]).

4. Conclusions
In these proceedings, we have summarised our results from Ref. [11], in which the impact of the

leading two-loop corrections to the Higgs trilinear coupling in models with CSI was analysed. Our
most important finding is that the inclusion of two-loop contributions in 𝜆ℎℎℎ allows distinguishing
different parameter points of a given CSI scenario, because the universality of the prediction for
𝜆ℎℎℎ, found at one loop, is lifted at two loops. However, we also pointed out how different theory
constraints – in particular perturbative unitarity and the need to generate the correct mass of 125
GeV for the Higgs boson – severely limit the allowed range of BSM parameters, and in turn the
possible values of 𝛿𝑅. Once these constraints are included, the two-loop prediction for 𝜆ℎℎℎ in the
CSI-2HDM is found to deviate from the SM value by 90-113% – 𝑖.𝑒. 10-33% more than at one
loop. An adverse consequence of this is that a measurement of 𝜆ℎℎℎ may not suffice by itself to
distinguish CSI or non-CSI versions of a given model – although this could be achieved by using
the synergy of such a measurement with either collider or gravitational-wave searches (see 𝑒.𝑔.

Ref. [20]). Finally, while we illustrated the present discussion with numerical investigations for
a CSI variant of the 2HDM, our findings apply to more broadly to CSI models – in particular in
Ref. [11] similar results were also obtained in 𝑁-scalar models.
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